final 190389.07 berkshire culvert design recommendations 3

47
Copyright 2018 GZA GeoEnvironmental, Inc. An Equal Opportunity Employer M/F/V/H Via Email March 27, 2018 File No. 04.0190389.07 Ms. Callie Ewald, P.E. Vermont Agency of Transportation Geotechnical Section 2178 Airport Road, Unit B Berlin, Vermont 05641 RE: Geotechnical Engineering Report VT Route 118 Culvert Berkshire STP SCRP (23) Berkshire, Vermont Dear Ms. Ewald: This report presents GZA GeoEnvironmental, Inc.’s (GZA’s) geotechnical engineering recommendations for the proposed replacement of the culvert located on VT Route 118 (Montgomery Road) in Berkshire, Vermont. This study has been conducted in accordance with our Standard Contract for Engineering Services, OnCall Geotechnical Engineering Services 2015 to the Vermont Agency of Transportation (VTrans), Geotechnical Section and our proposal dated January 23, 2018. The contents of this report are subject to the Limitations set forth in Appendix A. GZA’s understanding of the project is based on discussions with VTrans and our review of the conceptual project plans dated December 19, 2017. OBJECTIVES AND SCOPE OF SERVICES The objectives of our work were to evaluate the subsurface conditions with respect to the proposed construction, perform geotechnical engineering analyses, and develop foundation design and construction recommendations for the replacement of the box culvert. To meet these objectives, GZA completed the following Scope of Services: Conducted a site visit to observe surficial conditions, traffic and boring access; Coordinated and observed a subsurface exploration program consisting of four test borings and two hand probes to evaluate subsurface conditions; Conducted a laboratory testing program to evaluate the engineering properties of the soil and bedrock encountered in the test borings; Conducted geotechnical engineering analyses to evaluate the impacts of subsurface conditions on the proposed construction;

Upload: others

Post on 05-Jun-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

  

Copyright  2018 GZA GeoEnvironmental, Inc.  

 

An Equal Opportunity Employer M/F/V/H 

Via Email   March 27, 2018 File No. 04.0190389.07  Ms. Callie Ewald, P.E. Vermont Agency of Transportation Geotechnical Section 2178 Airport Road, Unit B Berlin, Vermont 05641  RE:        Geotechnical Engineering Report 

VT Route 118 Culvert      Berkshire STP SCRP (23)     Berkshire, Vermont  Dear Ms. Ewald:  This report presents GZA GeoEnvironmental, Inc.’s (GZA’s) geotechnical engineering recommendations for the proposed replacement of the culvert located on VT Route 118 (Montgomery Road) in Berkshire, Vermont.  This study has been conducted in accordance  with  our  Standard  Contract  for  Engineering  Services,  On‐Call Geotechnical Engineering Services 2015  to  the Vermont Agency of Transportation (VTrans),  Geotechnical  Section  and  our  proposal  dated  January 23,  2018.    The contents of this report are subject to the Limitations set forth in Appendix A.  GZA’s understanding of  the project  is  based on discussions with VTrans  and our review of the conceptual project plans dated December 19, 2017. 

OBJECTIVES AND SCOPE OF SERVICES 

The objectives of our work were to evaluate the subsurface conditions with respect to  the  proposed  construction,  perform  geotechnical  engineering  analyses,  and develop foundation design and construction recommendations for the replacement of  the  box  culvert.    To  meet  these  objectives,  GZA  completed  the  following Scope of Services:  

Conducted a site visit to observe surficial conditions, traffic and boring access; 

Coordinated  and  observed  a  subsurface  exploration  program  consisting  of four test borings and two hand probes to evaluate subsurface conditions; 

Conducted a laboratory testing program to evaluate the engineering properties of the soil and bedrock encountered in the test borings; 

Conducted  geotechnical  engineering  analyses  to  evaluate  the  impacts  of subsurface conditions on the proposed construction; 

Page 2: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

March 27, 2018 Vermont Agency of Transportation 

04.0190389.07  Page | 2 

 

 

Developed geotechnical engineering recommendations for new culvert foundations; and  

Prepared this report summarizing our findings and recommendations. 

BACKGROUND AND EXISTING CONDITIONS 

The existing culvert is located on VT Route 118 (Montgomery Road) in Berkshire, Vermont and carries the roadway over an unnamed brook, shown in Figure 1, Locus Plan. The original construction date is unknown; however, the culvert was  reportedly widened  in 1941 and  currently  consists of a 69‐foot‐long, 5.7‐foot  span  concrete box culvert. It is our understanding that the existing culvert is supported directly on bedrock.   We understand that a replacement culvert is currently being designed and will consist of an approximately 78‐foot  long, precast concrete, three‐sided (open bottom) box culvert. Based on correspondence with VTrans, we understand final culvert design will utilize cast‐in‐place concrete footings bearing directly on bedrock to support the precast three‐sided box culvert.    SUBSURFACE EXPLORATIONS 

GZA completed a subsurface exploration program consisting of four test borings (B‐1 through B‐4) and two hand probes (B‐3A(PR) and B‐5(PR)). Two borings (B‐2 and B‐3) were drilled in the northbound and southbound lanes on opposite sides of the existing culvert. Borings B‐1 and B‐4 were drilled at the toe of the existing embankment slopes and near the proposed headwalls. The borings were drilled using an ATV‐mounted drill rig and backfilled with cuttings, crushed stone, and finished with asphalt cold patch where drilled through the existing pavement.    The borings were drilled to depths of approximately 15.5 to 33 feet below ground surface (bgs). Borings were drilled using a combination of 4.25‐inch hollow stem augers and 4‐inch driven casing and drive‐and‐wash drilling techniques. Standard penetration testing (SPT) and split‐spoon sampling were performed continuously  in each boring drilled in the active roadway (B‐2 and B‐3) and at 5‐foot typical intervals in the remaining borings (B‐1 and B‐4). Approximately 9 to 10 feet of bedrock core was obtained at each boring  location using an NX core barrel (2.0‐inch‐diameter).   New England Boring Contractors  (NEBC) of Derry, New Hampshire coordinated DigSafe® utility clearance and provided drilling services and traffic control. The drilling was completed between February 12 and February 14, 2018.   GZA personnel observed the drilling and prepared  logs of each boring.   Samples were visually classified according  to  the Modified Burmister  classification  system.   Test boring  logs prepared by GZA are  included  in Appendix B.   Two hand probes (B‐3A(PR) and B‐5(PR)) were advanced to refusal by GZA personnel using a sledge hammer to evaluate the potential top of rock elevation in areas inaccessible by the drill rig.  Refusal was encountered at a depth of 4.1 feet bgs at probe location B‐3A(PR) and at 2.7 feet bgs at B‐5(PR).   The approximate as‐drilled boring locations were located by GZA personnel using taped ties to existing structures and nearby sign structures, and using a handheld GPS, and are shown on Figure 2, Boring Location Plan. Ground surface elevations were interpolated from ground surface contours shown on the base plan supplied by VTrans entitled “Existing Conditions,” dated December 19, 2017. Elevations referenced in this report are in feet and refer to the National American Vertical Datum of 1988 (NAVD88).  

Page 3: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

March 27, 2018 Vermont Agency of Transportation 

04.0190389.07  Page | 3 

 

 

LABORATORY TESTING 

Six  soil  gradation  analyses  and moisture  content  tests were  conducted  on  soil  samples  recovered  from  the subsurface explorations to confirm visual‐manual field classifications and for use in our engineering analyses.  The laboratory gradation testing was performed by the VTrans Construction and Materials Bureau Central Laboratory in Berlin, Vermont.    Unconfined  compressive  strength  tests  were  conducted  on  two  bedrock  core  samples  recovered  from  the subsurface explorations.  The tests were used to confirm the field classifications and to estimate the engineering properties of  the bedrock  for use  in our engineering evaluations.   Bedrock  testing was performed by Thielsch Engineering at their Cranston, Rhode Island facility.    Laboratory testing results are included in Appendix C.  SUBSURFACE CONDITIONS 

SUBSURFACE PROFILE 

Three soil units were encountered  in  the  test borings: Topsoil, Fill, and Glacial Till. Approximately 5  inches of asphalt  pavement were  encountered  in  the  test  borings  B‐2  and  B‐3  that were  drilled  through  the  existing roadway. The approximate thicknesses and generalized descriptions of the subsurface units are presented in the following  table,  in  descending  order  from  existing  ground  surface.  Detailed  descriptions  of  the  materials encountered at specific locations are provided in the boring logs in Appendix B.    

GENERALIZED SUBSURFACE CONDITIONS 

Subsurface Unit Approx. Thickness 

(ft) Generalized Description 

Topsoil  2 Loose, brown and gray, SILT, little fine Sand, trace Gravel. Encountered in borings B‐1 and B‐4. 

Fill  10.5 to 13.8 Loose to very dense, brown, fine to coarse SAND, some to little Gravel, little to trace Silt. Encountered in borings B‐2 and B‐3. 

Glacial Till  2.7 to 8.2 Loose to very dense, brown, fine to coarse SAND, with some to little Silt and Gravel TO Very dense, gray, SILT, some fine to coarse Sand, little Gravel. Encountered in all borings. 

BEDROCK 

According to the Bedrock Geology Map of Vermont (2011)1, bedrock in the vicinity of the site consists of a silvery green  quartz‐muscovite‐chlorite  Schist  and  Phyllite,  of  the  Underhill  Formation,  commonly  with  albite  and magnetite. Local  lenses of white  to pale gray quartzite are mapped  in  the area.   Bedrock outcrops were also mapped in the vicinity of the site.  Approximately 9 to 10 feet of bedrock core was obtained  in each of the test borings.   The top of bedrock was encountered  from approximately 4.7  to 22.4  feet bgs  in  the  test borings, corresponding  to Elevation 435.4  to 

                                                            1 Ratcliffe, NM, Stanley, RS, Gale, MH, Thompson, PJ, and Walsh, GJ, 2011, Bedrock Geologic Map of Vermont: USGS Scientific 

Investigations Series Map 3184, 3 sheets, scale 1:100,000.   

Page 4: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

March 27, 2018 Vermont Agency of Transportation 

04.0190389.07  Page | 4 

 

 

442.0. Refusal was encountered on potential bedrock  in  the hand probes  approximately 2.7  to 4.1  feet bgs, corresponding  to Elevation 434.9  to 443.3. GZA evaluated  the depth  to  top of bedrock based on  split  spoon refusals, casing refusals, drilling conditions, and confirmatory rock coring.   Top of bedrock elevations  for each exploration are presented in the table below.  

Exploration Location 

Ground Surface Elevation  (ft NAVD88) 

Depth to Bedrock (ft) 

Top of Bedrock Elevation (ft NAVD88) 

B‐1 (outlet)  445  4.7  440.3 

B‐2  459  17.0  442 

B‐3  458  22.4  435.6 

B‐3A(PR)1 (outlet)  439  4.11  434.91 

B‐4 (inlet)  444  8.6  435.4 

B‐5(PR)1 (inlet)  446  2.71  443.31 

1 Refusal encountered at hand probe exploration locations indicates potential top of bedrock elevations and was not confirmed with soil or rock sampling. 

 Bedrock recovered from the cores was generally described as medium hard to hard, fresh to slightly weathered, fine grained, green, SCHIST, consistent with the mapped geology of the site.  Joints were generally very close to moderately spaced, moderately dipping with few high and low angle joints, undulating to planar, rough to smooth, fresh to discolored, and partially open to open.  The Rock Quality Designation (RQD) for the bedrock cores ranged from 40 to 87 percent, with an average RQD of 70 percent, indicating fair rock mass quality.    Two laboratory unconfined compressive strength tests were conducted on bedrock core samples collected from test borings B‐1 at 9.0 feet bgs and B‐4 at 9.4 feet bgs.  The testing yielded unconfined compressive strengths of 4.9 and 4.2 kips per square inch (ksi), respectively.  Both samples were noted to have failed along foliation within the samples; photographs of the samples after testing are included in Appendix C. 

GROUNDWATER 

The drive‐and‐wash cased drilling method used  introduces  large quantities of water during drilling. Therefore, groundwater levels observed in the test borings do not represent stabilized groundwater levels. Groundwater was observed at the completion of drilling at depths ranging from 1.5 to 17.5 feet bgs in the test borings, corresponding to Elevation 435.4 to 443.1.   The  groundwater observations were made at  the  times and under  the  conditions  stated  in  the borings  logs. Fluctuations  in groundwater  levels will occur due to variations  in season, precipitation, stream  level and other factors. Consequently, water levels during and after construction are likely to vary from those encountered in the borings at the time the observations were made.  GEOTECHNICAL DESIGN 

The following subsections present GZA’s geotechnical design and construction recommendations for cast‐in‐place concrete spread footings bearing on bedrock to support the precast three‐sided box culvert.    

Page 5: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

March 27, 2018 Vermont Agency of Transportation 

04.0190389.07  Page | 5 

 

 

GZA  conducted  our  geotechnical  engineering  evaluations  in  general  accordance  with  the  2017  American Association of State Highway and Transportation Officials  (AASHTO) Load and Resistance Factor Design  (LFRD) Bridge Design Specifications, 7th Edition and the 2010 VTrans Structures Design Manual (SDM).  

LOAD AND RESISTANCE FACTORS 

AASHTO LRFD load factors should be applied to horizontal earth pressure (EH), vertical earth pressure (EV), and earth surcharge  (ES)  loads using  the  load  factors  for permanent  loads  (γp) provided  in LRFD Tables 3.4.1‐2  for strength and extreme limit state foundation design. For service limit state, a load factor of 1.0 should be applied to these loads.   Recommended LRFD resistance factors for strength  limit state design of spread footing foundations from LRFD Table 10.5.5.2.2‐1 are presented in the following table.  

RESISTANCE FACTORS – STRENGTH LIMIT STATE Foundation Resistance Type  Method/Condition  Resistance Factor () 

Bearing  Footings on Rock  0.45 

Sliding  Cast‐in‐Place Concrete/Leveling Pad on Rock 1  0.80 

Sliding Cast‐in‐Place Concrete on Cast‐in‐Place 

Concrete Leveling Pad 1 0.80 

Sliding  Cast‐in‐Place Concrete on Soil  0.80 1  Sliding resistance factor for concrete on rock or concrete is taken as equal to footing on sand. 

 Resistance factors for service and extreme limit state design should be taken as 1.0.   

SPREAD FOOTINGS EVALUATION 

Select  bedrock  core  samples  collected  during  GZA’s  investigations were  submitted  for  laboratory  testing  to support an assessment of  the  in‐situ bedrock mass with  focus on strength, average RQD,  joint roughness, dip angle, spacing, aperture, number of joint sets, and joint alteration. Using detailed bedrock core data obtained in the test borings, GZA developed engineering parameters for the bedrock mass, which are summarized below:  

Average RQD = 70 (Typical range from 40 to 87) 

Minimum Unconfined Compressive Strength (σu,r) = 4.1 ksi 

Rock Mass Rating (RMR) = 44 (Fair Rock Quality) 

Semi‐empirical rock quality constants, m = 0.458, s = 0.00009 (for Fair Rock Quality) 

The RMR was used to calculate nominal and  factored bearing resistance  for spread  footings bearing on  intact bedrock, in accordance with LRFD Table 10.4.6.4‐1. The current (7th Edition) of AASHTO does not include the RMR formulation  included  in the previous version (6th Edition). However, Articles C10.4.6.4 and 10.6.2.6.2 of the 7th Edition refer to RMR‐based design procedures for footings on rock, therefore, the 6th Edition methodology was followed.  Footings designed to bear on intact bedrock should be designed for a nominal bearing resistance, qn, of 45 kips per square foot (ksf).  At the strength limit state, footings should be designed for a maximum factored bearing resistance of 20 ksf.  A bearing resistance of 20 ksf should be used for service limit state design.  

Page 6: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

March 27, 2018 Vermont Agency of Transportation 

04.0190389.07  Page | 6 

 

 

LRFD Article 10.6.2.4.4 indicates that footings bearing on rock with an RMR‐based rock quality of Fair or better and designed using LRFD methods are generally anticipated to experience ½ inch or less of elastic settlement. 

LATERAL EARTH PRESSURE 

Lateral  earth  pressures  should  be  determined  in  accordance with  the  requirements  of  the  latest  edition  of AASHTO.  Passive earth pressure should be estimated based on a Kp equal to 3.54. This value assumes that VTrans Item 704.08 (Granular Backfill for Structures) is used for backfill material and that deflections are sufficient to fully mobilize passive pressure. A unit weight (γ) equal to 140 pcf and an assumed friction angle of 34 degrees can be used to calculate earth loadings behind wing and culvert walls.  RECOMMENDATIONS 

SEISMIC CONSIDERATIONS 

In accordance with  LRFD Section 4.7.4.2  seismic analysis  is not  required  for  single‐span bridges  regardless of seismic zone. 

EMBANKMENT DESIGN CONSIDERATIONS 

Embankment side slopes should generally be designed with typical slope angles of 2H:1V or less, and should be provided with loam and seed for permanent erosion protection. Steeper (1.5H:1V) slopes are proposed behind the culvert headwalls and the roadway shoulder.  For the steeper slopes, stone fill should be used to stabilize the slope  and  should  consist  of  hard,  blasted,  angular  rock meeting  the  gradation  requirements  of VTrans  Item 706.04(d), Type IV Stone Fill.  GZA recommends that the stone fill be underlain by a separation fabric laid on the embankment subgrade to mitigate the potential for loss of fines into the underlying stone fill.   GENERAL RECOMMENDATIONS FOR SHALLOW FOUNDATIONS 

The bedrock  surface  should be dry  and  free of  loose  soil or  rock  at  the  time of  concrete placement  for subfooting concrete or the footing. Bearing surface preparation should be in accordance with the construction recommendations presented below.   

For sliding analysis, we recommend a sliding resistance  factor, ϕτ, of 0.7 be applied to the nominal sliding resistance for cast‐in‐place concrete on sound rock assuming the bedrock surface will be prepared in‐the‐wet and some amount of sediment will remain on the bedrock surface. A sliding resistance factor, ϕτ, of 0.80 may be applied to the nominal sliding resistance for spread footings on bedrock if the bedrock surface is prepared in‐the‐dry and cleaned with high pressure water and air prior to placing footing concrete. 

When the rock subgrade is prepared in‐the‐wet, some amount of sediment is expected to remain on the rock surface and GZA recommends that the sliding computations for resistance of spread footings to lateral loads should assume a maximum  frictional coefficient of 0.60 at  the bedrock‐concrete  interface.  If  the bedrock surface is prepared in‐the‐dry and cleaned with high pressure water and air prior to placing footing concrete, sliding computations for resistance of footings may assume a maximum frictional coefficient of 0.70 at the bedrock‐concrete interface. 

Anchoring, doweling, benching or other means of improving sliding resistance are recommended at locations where the prepared bedrock surface is steeper than 4H:1V in any direction. The dowels should be grouted a 

Page 7: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

March 27, 2018 Vermont Agency of Transportation 

04.0190389.07  Page | 7 

 

 

minimum of 2 feet below any potential sliding plane in the bedrock mass and embedded at least 2 feet into concrete. 

A geotechnical engineer  should be provided  the opportunity  to  review  the exposed bedrock  surface and participate in developing and reviewing any measures proposed to enhance sliding resistance.   

Spread  footings  founded on bedrock  should be  checked  for eccentricity  in accordance with  LRFD Section 10.6.3.3.  Eccentricity  of  the  footing  reaction  at  the  strength  limit  state  should  be  limited  such  that  the resultant reaction on the base of the footing is no further than 0.45B from the centerline of the footing, where B  is the principal dimension of the footing perpendicular to the axis of rotation. GZA recommends passive resistance of soil backfill at the toe of footings should be neglected for resistance of sliding and overturning. 

Since the footings are anticipated to bear directly on bedrock, there is no minimum embedment required for frost protection. 

CONSTRUCTION CONSIDERATIONS 

BEDROCK PREPARATION 

GZA  anticipated  that  the  bedrock  bearing  surface will  be  variable  in  terms  of  elevation,  slope  and  localized weathering. Depending on the depth of bedrock excavation, a combination of standard excavation equipment and  hydraulic  hoe‐ramming may  be  needed  to  remove  the  overburden,  fractured/weathered  rock,  or  intact bedrock.  Based on our understanding of the proposed culvert, the bedrock type, and the RQD of rock samples recovered during drilling, it is anticipated that mechanical methods for removal will be sufficient and that blasting will not be required to remove bedrock.    The nature and extent of variation in the existing bedrock surfaces will not be evident until the existing overburden soils and weathered and fractured rock are removed. Bearing surfaces should be prepared  in accordance with VTrans Standard Specification Section 204.06 Preparation of Foundation. In general, the bedrock surface should be  exposed,  and  all  loose material  removed  using  pressurized  air  and water,  under  the  observation  of  the Geotechnical Engineer. Where necessary, concrete fill may be used locally to raise and level the bedrock surface to the bottom of footing elevation. The bearing surfaces should be clean and dry when concrete is placed. Cast‐in keyways, dowels, or other means should be used to enhance the bond between the concrete fill and the bottom of footing. 

EXCAVATION, TEMPORARY LATERAL SUPPORT AND DEWATERING 

We anticipate that excavation for the proposed culvert will encounter overburden soils consisting of gravel, sand and silt. Cobbles, boulders, and weathered bedrock should be expected within these deposits, but it is expected that these can be excavated using conventional earth moving equipment. The existing concrete culvert reportedly bears directly on bedrock and may require a mechanical ram to break the existing concrete down for excavation and removal.  Temporary  construction  dewatering  may  be  required  to  control  groundwater  inflow  in  excavations  for construction  of  the  culvert  footings. Where  space  and  groundwater  conditions  permit,  excavations may  be achieved using sloped, open‐cut techniques provided they comply with OSHA excavation safety requirements. It is anticipated that the  inflow of groundwater and  infiltration to excavations can be handled by open pumping from sumps installed at the bottom of excavations.   

Page 8: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

March 27, 2018 Vermont Agency of Transportation 

04.0190389.07  Page | 8 

 

 

The contractor should be responsible for controlling groundwater, surface runoff, infiltration and water from all other  sources by methods which preserve  the undisturbed  condition of  the  subgrade and permit  foundation construction  in‐the‐dry.  Discharge  of  pumped  groundwater  should  comply with  all  local,  state,  and  federal regulations.   

FILL MATERIAL AND PLACEMENT RECOMMENDATIONS 

Backfill for the proposed culvert walls should consist of VTrans Item 704.08, Granular Backfill for Structures. Fill should be placed in accordance with VTrans Standard Specifications for Construction, Section 203.    If crushed stone is used as a substitute for Granular Backfill for Structures or where used for foundation drainage, then the crushed stone should be wrapped with filter fabric to limit migration of fine‐grained soil particles into the crushed stone. 

REUSE OF ON‐SITE MATERIALS 

Laboratory results, included on the test boring logs in Appendix B and in Appendix C, indicate that the existing on‐site materials are not suitable for reuse as Granular Backfill for Structures.  If  it meets the requirements for VTrans  Item 703.02,  Earth  Borrow,  it may  be  used  in  embankment  side  slopes  or  in  landscaped  areas. GZA recommends that the excavated soils be stockpiled and assessed by a qualified geotechnical engineer to assess suitability prior to reuse. 

CLOSING 

We appreciate  the opportunity  to work with you on  this project, and we would be pleased  to work with you through design and construction.   In the meantime, if you have any questions regarding the recommendations contained in this report or require additional information, please contact us.  

Very truly yours, 

GZA GEOENVIRONMENTAL, INC.    Blaine M. Cardali, EIT                  Jennifer R. Baron Project Engineer                    Project Manager    Dave G. Lamothe, P.E.                  James V. Errico, P.E. Associate Principal                    Consultant/Reviewer  BMC/JRB/DGL/JVE: p:\04jobs\0190300s\04.0190389.00 ‐ vtran on‐call geotech\04.0190389.07 ‐ berkshire culvert\report\final 190389.07 berkshire culvert design recommendations 3 27 18.docx 

 

Attachments:  Figure 1 – Locus Plan          Figure 2 – Boring Location Plan 

Appendix A – Limitations         Appendix B – Test Boring Logs 

Appendix C ‐ Laboratory Test Results 

Page 9: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

  

   

 

 

Figures   

Page 10: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

Copyright:© 2013 National Geographic Society, i-cubed

PROJ. MGR.: JRBDESIGNED BY: BMCREVIEWED BY: JRBOPERATOR: ADM

DATE: 03-15-2018

LOCUS PLAN

BERKSHIRE STP SCRP (23)BERKSHIRE, VERMONT

JOB NO.

FIGURE NO.

SOURCE : THIS MAP CONTAINS THE ESRI ARCGIS ONLINE USA TOPOGRAPHICMAP SERVICE, PUBLISHED DECEMBER 12, 2009 BY ESRI ARCIMS SERVICESAND UPDATED AS NEEDED. THIS SERVICE USES UNIFORM NATIONALLYRECOGNIZED DATUM AND CARTOGRAPHY STANDARDS AND A VARIETY OFAVAILABLE SOURCES FROM SEVERAL DATA PROVIDERS. THIS MAP ALSOCONTAINS THE ESRI ARCGIS ONLINE USA COUNTIES WHICH PROVIDES DETAILEDBOUNDARIES THAT ARE CONSISTENT WITH THE TRACT, BLOCK GROUP, ANDSTATE DATA SETS AND ARE EFFECTIVE AT REGIONAL AND STATE LEVELS.

Data Supplied by :

1

04.0190389.07

USGSQUADRANGLELOCATION

0 2,000 4,000 6,0001,000

SCALE IN FEET

4

© 2

018

- GZA

Geo

Envi

ronm

enta

l, In

c. Z

:\04J

obs\

0190

300s

\04.

0190

389.

00 -

VTR

AN O

n-C

all G

eoTe

ch\0

4.01

9038

9.07

- Be

rksh

ire C

ulve

rt\Fi

gure

s-C

AD\G

IS\F

igur

e1-L

ocus

Plan

1.m

xd, 3

/15/

2018

, 1:5

3:32

PM

, bla

ine.

card

ali

SITE

Page 11: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

NOTES

PLAN

25 0 25 50

Scale

BORING LOCATION PLAN LEGEND

to the degree implied by the method used.

handheld GPS. This data should be considered accurate only

determined by taped ties to existing structures and a

2) The as-drilled locations of the test borings were

provided by Vtrans on March 14, 2018.

(z17d050bor.dgn, z17d050nu1.dgn, and z170d050top.dgn)

1) Base map developed from electronic files

conducted at the locations shown on the plan.

GZA personnel. (PR) indicates hand probe

February 12 and 14, 2018 and observed by

Boring Contractors of Derry, NH between

Indicates borings performed by New England

EASTING NORTHINGBORING ID

B-1 885824.28

B-2 885878.39

B-3 885872.82

885828.92

B-4 885924.08

885922.92

B-3A (PR)

B-5 (PR)

AS-DRILLED BORING LOCATIONS

1591555.51

1591566.07

1591534.82

1591507.13

1591551.64

1591601.84

B-1

C2

014 -

GZ

A

Geo

Envir

on

mental, In

c.

GZA GeoEnvironmental, Inc.

Engineers and Scientists

PREPARED BY: PREPARED FOR:

www.gza.com

PROJECT NO.DATE: REVISION NO.

NO. ISSUE/DESCRIPTION DATEBY

DESIGNED BY:

PROJ MGR:

DRAWN BY:

REVIEWED BY: CHECKED BY:

SCALE:

SHEET NO.

FIG-OR-DWG

VT ROUTE 118

BERKSHIRE, VERMONT

BORING LOCATION PLAN

BMC

JRB

BMC

DGL

2

JRB

MARCH 2018 04.00190389.07 --

AS SHOWN

1-OF-1

BERKSHIRE STP SCRP (23)

VERMONT AGENCY OF TRANSPORTATION

299

+00

300

+00

301+00

97+0098+00

99+00100+00 101+00

102+00

103+00

EXISTING ROW

EXISTING ROW

N

VT S

TAT

E

PLA

NE

GRID

False Northing: 0.0000

False Easting: 1640416.6667

Origin Latitude: 42°30'00.0000"N

Central Meridian: 72°30'00.0000"W

US Survey Foot

Transverse Mercator

NAD83 Vermont State Planes

VT83

B-3

B-4

B-2

B-5 (PR)

B-3A (PR)

440

440

440

440

440

440

450

450

450450

450

450

450

450

450

450

450

450

460

460

460

460

460

460

PC 99+56.51

PT 101+97.25

99+76.75 AH

PI 100+77.01 BK

N 65°45'00.38" W

N 72°19'06.36" W

B-1

Page 12: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

  

   

 

 

Appendix A – Limitations

Page 13: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

  

   

 

 

GEOTECHNICAL LIMITATIONS  Use of Report 

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and  location(s)  identified  in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party’s sole risk, and without any liability to GZA.  

Standard of Care 2. GZA’s findings and conclusions are based on the work conducted as part of the Scope of Services set forth in 

GZA’s  Proposal  for  Services  and/or  Report,  and  reflect  our  professional  judgment.  These  findings  and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. If conditions other than those described in this report are found at the subject location(s), or the design has been altered in any way, GZA shall  be  so  notified  and  afforded  the  opportunity  to  revise  the  report,  as  appropriate,  to  reflect  the unanticipated changed conditions.     

3. GZA’s  services  were  performed  using  the  degree  of  skill  and  care  ordinarily  exercised  by  qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made.    

Subsurface Conditions 4. The generalized soil profile(s) provided in our Report are based on widely‐spaced subsurface explorations 

and  are  intended  only  to  convey  trends  in  subsurface  conditions.  The  boundaries  between  strata  are approximate and idealized, and were based on our assessment of subsurface conditions.  The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs.  

5. In preparing this report, GZA relied on certain information provided by the Client, state and local officials, and other parties referenced therein which were made available to GZA at the time of our evaluation.  GZA did  not  attempt  to  independently  verify  the  accuracy  or  completeness  of  all  information  reviewed  or received during the course of this evaluation.   

6. Water level readings have been made in test holes (as described in the Report) at the specified times and under the stated conditions.  These data have been reviewed and interpretations have been made in this Report.  Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The water table encountered in the course of the work may differ from that indicated in the Report.   

7. GZA’s services did not include an assessment of the presence of oil or hazardous materials at the property. Consequently, we did not consider the potential impacts (if any) that contaminants in soil or groundwater may have on construction activities, or the use of structures on the property.  

Page 14: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

  

   

 

 

 8. Recommendations for foundation drainage, waterproofing, and moisture control address the conventional 

geotechnical  engineering  aspects  of  seepage  control.  These  recommendations  may  not  preclude  an environment that allows the infestation of mold or other biological pollutants.  

Compliance with Codes and Regulations 9. We used reasonable care in identifying and interpreting applicable codes and regulations. These codes and 

regulations are subject to various, and possibly contradictory, interpretations.  Compliance with codes and regulations by other parties is beyond our control.  

Cost Estimates 10. Unless otherwise stated, our cost estimates are only for comparative and general planning purposes.  These 

estimates may  involve  approximate  quantity  evaluations.   Note  that  these  quantity  estimates  are  not intended  to be  sufficiently accurate  to develop  construction bids, or  to predict  the actual  cost of work addressed in this Report. Further, since we have no control over either when the work will take place or the labor and material costs required to plan and execute the anticipated work, our cost estimates were made by relying on our experience, the experience of others, and other sources of readily available information.  Actual costs may vary over time and could be significantly more, or less, than stated in the Report.   

Additional Services 11. GZA  recommends  that we be  retained  to provide  services during any  future:  site observations, design, 

implementation activities, construction and/or property development/redevelopment.   This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations. 

Page 15: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

  

   

 

 

 Appendix B – Test Boring Logs   

Page 16: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

Page 1 of 3

BORING LOGS

BORING LOG LEGEND

Stab. Time = Stabilization Time for groundwater reading NAD = North American Datum

NAVD = North American Vertical Datum WOH = Weight of Hammer

S.S. = Split Spoon ` WOR = Weight of Rods

C = Rock Core T = Undisturbed Tube Sample

SOIL DESCRIPTIONS Soil samples are described on the exploration logs by the “Modified Burmister Soil Identification System”. The following

provides a brief description of the Modified Burmister System.

1. Major and minor components of the soil matrix are identified as gravel, sand or fines. The relative amounts of

these constituents are proportioned as:

Component Proportional Term Percent by Weight of Total

Major Greater than percentage of other components

Minor And

Some

Little

Trace

35-50

20-35

10-20

1-10

2. The nature of “fines” is defined by using the following guidelines:

Degree of Plasticity Identity Plasticity Index

Non-plastic

Slight

Low

Medium

High

Very High

SILT

Clayey SILT

SILT & CLAY

CLAY & SILT

Silty CLAY

CLAY

0

1-5

5-10

10-20

20-40

40 and Greater

3. For boring logs, relative density or consistency is identified based on standard penetration resistance, using the

following table.

Non-Plastic Soils Plastic Soils

Blows/ft “N” Relative Density Blows/ft “N” Consistency

0-4

4-10

10-30

30-50

>50

Very Loose

Loose

Medium Dense

Dense

Very Dense

<2

2-4

4-8

8-15

15-30

>30

Very Soft

Soft

Medium Stiff

Stiff

Very Stiff

Hard

The soil classification symbol corresponding to the Unified Soil Classification System (USCS) is also presented on the logs

for each sample based on ASTM Standards D 2487 (Standard Test Method for Classification of Soils for Engineering

Purposes) and D 2488 (Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)). Standard

D 2487 is based on laboratory testing results, whereas Standard D 2488 is based on visual and manual field procedures.

BEDROCK DESCRIPTIONS

Rock samples described on the exploration logs are generally based on the International Society of Rock Mechanics (ISRM)

System, as generally described on the following page. Each rock sample was generally described using the following

guideline, in the order presented:

Page 17: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

Page 2 of 3

1. Field hardness: very hard, hard, moderately hard, medium, soft, very soft (where applicable, hardness descriptions

have been modified to reflect the laboratory results of unconfined compressive strength testing)

2. Weathering: fresh, very slight, slight, moderate, moderately severe, severe, very severe, complete

3. Rock continuity (fracturing): extremely, moderately, slightly, sound

4. Texture: amorphous, fine, medium, coarse, very coarse

5. Color

6. Rock type

7. Fractures, Bedding, and Foliation, Spacing and Attitude

8. Rock Quality Designation (RQD)

Field Hardness: A measure of resistance to scratching or abrasion.

Very Hard Cannot be scratched with knife or sharp pick. Breaking of hard specimens

requires several hard blows of geologist’s pick.

Hard Can be scratched with knife or pick only with difficulty. Hard blow of a

hammer required to detach hand specimen.

Moderately Hard Can be scratched with knife or pick. Gouges or grooves to ¼ in. deep can be

excavated by hard blow of point of a geologist’s pick. Hand specimens can

be detached by moderate blow.

Medium Can be grooved or gouged 1/6 in. deep by firm pressure on knife or pick

point. Can be excavated in small chips to pieces about 1 in. maximum size by

hard blows of the point of a geologist’s pick.

Soft Can be gouged or grooved readily with a knife or pick point. Can be

excavated in chips to pieces several inches in size by moderate blows of a

pick point. Small thin pieces can be broken by finger pressure.

Very Soft Can be carved with knife. Can be excavated readily with point of pick.

Pieces 1 in. or more in thickness can be broken with finger pressure. Can be

scratched readily by fingernail.

Weathering: The action of the elements in altering the color, texture, and composition of the rock matrix.

Fresh Rock fresh, crystals bright, few points may show staining. Rock rings under

hammer if crystalline.

Very Slight Rock generally fresh, joints stained, some joints may show think clay

coatings, crystals in broken face show bright. Rock rings under hammer if

crystalline.

Slight Rock generally fresh, joints stained, and discoloration extends into rock up to

1 in. Joints may contain clay. In granitoid rocks some occasional feldspar

crystals are dull an discolored. Crystalline rocks ring under hammer.

Moderate Significant portions of rock show discoloration and weathering effects. In

granitoid rocks, most feldspars are dull and discolored; show some clay.

Rock has dull sounde under hammer and shows significant loss of strength as

compared with fresh rock.

Moderately Severe All rock except quartz discolored or stained. In granitoid rocks, all feldspars

are dull and discolored and majority show kaolinization. Rock shows severe

loss of strength and can be excavated with geologist’s pick. Rock goes

“clunk” when struck.

Severe All rock except quartz discolored or stained. Rock “fabric” clear and evident,

but reduced in strength to strong soil. In granitoid rocks, all feldspars

kaolinized to some extent. Some fragments of strong rock usually left.

Very Severe All rock except quartz discolored or stained. Rock “fabric” discernible, but

mass effectively reduced to “soil” with only fragments of strong rock

remaining.

Complete Rock reduced to “soil”. Rock “fabric” not discernible or discernible only in

small locations. Quartz may be present as dikes or stringers.

Page 18: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

Page 3 of 3

Rock Continuity: Any break in a rock matrix whether or not it has undergone relative displacement.

Extremely fractured Drill core stem less than 2 in.

Moderately fractured Drill core stem 2 in. to 1 ft

Slightly fractured Drill core stem 1 ft to 2 ft

Sound Drill core stem greater than 2 ft

Texture: Terminology used to identify size, shape and arrangement of constituent elements.

Aphanitic Too small to be seen with naked eye.

Fine grained Barely seen with naked eye.

Medium grained Barely seen with naked eye to 1/8 in.

Coarse grained 1/8 to ¼ in.

Very coarse grained > ¼ in.

Discontinuities: Surfaces representing breaks or fractures separating the rock mass into discrete units.

Crack A partial or incomplete fracture.

Fracture A complete break within a rock mass, with no measurable displacement.

Joint A simple fracture along which no shear displacement has occurred, but an

aperture can be measured. May form joint sets.

Shear A fracture along which differential movement has taken place parallel to the

surface to produce slickensides, striations or polishing. May be

accompanied by a zone of fractures between a few to several inches wide.

Fault A major fracture along which there has been appreciable and measureable

displacement, accompanied by gouge and/or a severely fractured adjacent

zone, or zones.

Shear zone A band or zone of planer, sub-parallel, very closely to closely spaced,

contiguous shears/joints/fractures.

Fault zone A zone of planar/irregular, parallel/non-parallel, very close to closely spaced,

contiguous shears/joints/fractures with observable displacement.

FRACTURES, BEDDING AND FOLIATION, SPACING AND ATTITUDE

Fractures Bedding and Foliation Spacing (1) Attitude Angle (deg)

Very close Very thin < 2 in Horizontal 0 -5

Close Thin 2 in - 1 ft Sub-horizontal 5 - 35

Moderately close Moderately thick 1 ft – 3 ft Moderately dipping 35 - 55

Wide Thick 3 ft – 10 ft Sub-vertical 55 - 85

Very wide Very thick > 10 ft Vertical 85 -90

Note 1: Spacing refers to axial length along the rock core measured in the field between natural joints/fractures.

Rock Quality Designation (RQD): indicated in percent and is equal to the sum of the length of the core of pieces 4 in. or

longer divided by the length of the core run. RQD should not be reported for severely and completely weathered rock or

core runs with length of 2 ft or less recovery.

Rock Recovery: indicated in percent and is equal to the sum of recovered core divided by the length of the core run.

Additional Characteristics to Further Evaluate the Rock include: Name, color, cavities and voids, secondary

mineralization, fossils, swelling and slaking properties, etc. Visual-manual descriptions consist of the following factors in

the order presented.

Example: Hard, slightly weathered, medium grained, gray ARGILLITE with very thin, moderately dipping foliation: rough

to smooth, very close to moderately closely spaced, moderately dipping, iron-oxide stained, joints/fractures.

Page 19: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

1-2-3-7(5)

5-100/2"(R)

16.5 13.5 30.9 55.6

Visual Description, (Modified Burmister), S-1 (0-2'): Loose, brownand gray, SILT, little fine Sand, trace Gravel (A-1). Moist, Rec. = 0.9ft, TOPSOIL2.0 ft - 4.0 ft, GLACIAL TILL

Visual Description, (Modified Burmister), S-2 (4-4.7'): Very dense,gray, SILT, some fine to medium Sand, trace Gravel (A-4). Wet,Rec. = 0.5 ft, GLACIAL TILL4.7 ft - 5.5 ft, BEDROCK5.5 ft - 10.5 ft, C-1: Medium hard to hard, fresh to weathered, fine tomedium grained, gray-green, SCHIST. Joints are very close tomoderately spaced, moderately dipping to high angle, rough,undulating to planar, fresh to weathered, wide to partially open.-UNDERHILL FORMATION-10.5 ft - 15.5 ft, C-2: Medium hard to hard, fresh, fine to mediumgrained, gray-green, SCHIST. Joints are close to moderatelyspaced, moderately dipping to high angle, rough to smooth, planarto undulating, fresh to discolored, partially open to open.-UNDERHILL FORMATION-

Hole stopped @ 15.5 ft

C-1

C-2

95(40)

100(72)

6

4

5

6

12

3

8

4

4

5

Remarks:1. HSA to 4.0 ft, then advanced 4" casing to 4.7 ft after split spoon refusal. Roller cone to 5.5 ft and set up to core.2. Bedrock testing completed on C-1 (9.0 to 10.0 ft): UCS = 4,865 psi; unit weight = 174.5 pcf. It was noted that the samplefailed along a foliation in the rock sample.

STATE OF VERMONTAGENCY OF TRANSPORTATION

MATERIALS & RESEARCH SECTIONSUBSURFACE INFORMATION

BORING LOG

Vermont Rt. 118 CulvertSTP SCRP (23)

Dep

th(f

t)

5

10

15

20

25

30

35

Berkshire, Vermont

Boring Crew: Walter Hoekele, (NEBC), B. Cardali (GZA)

Date Started: 2/13/18 Date Finished: 2/14/18

VTSPG NAD83: N 885828.72 ft E 1591578.92 ft

Ground Elevation: 445.0 ft

Boring No.: B-1

Page No.: 1 of 1

Pin No.: 17D050

Checked By: J. Baron

Blo

ws/

6"(N

Val

ue)

Date Depth(ft)

Notes

Notes:

Hammer Fall:Hammer Wt:I.D.:Type:

02/13/18 3.5 End of Drilling

CE = 1.0

Moi

stur

eC

onte

nt %

Rig: Diedrich D50Hammer/Rod Type: Safety/AWJ

SS1.38 in140 lb.30 in.

H.S.A. & WB4 in

300 lb.24 in.

Casing Sampler

Offset: 45' Left

Gra

vel %

San

d %

Fin

es %

Groundwater Observations

CLASSIFICATION OF MATERIALS(Description) R

un(D

ip d

eg.)

Cor

e R

ec. %

(RQ

D %

)

Dril

l Rat

em

inut

es/ft

Str

ata

(1)

Station: 99+76

1. Stratification lines represent approximate boundary between material types. Transition may be gradual.2. N Values have not been corrected for hammer energy. CE is the hammer energy correction factor.3. Water level readings have been made at times and under conditions stated. Fluctuations may occur due to other factors than those present at the time measurements were made.

BO

RIN

G L

OG

04.

0190

389

.07

VT

RA

NS

RT

11

8 C

ULV

ER

T B

ER

KS

HIR

E.G

PJ

VE

RM

ON

T A

OT

.GD

T 3

/27/

18

Page 20: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

FROZEN

FROZEN

77-94-57-25(151)29-56-60-33(116)23-24-21-22(45)

21-24-28-22(52)

7-6-4-3(10)

3-6-3-11(9)

5.2

8.2

15.5

30.5

13.7

3.4

56.7

53.9

30.0

12.8

32.4

66.6

0.0 ft - 0.4 ft, ASPHALTVisual Description, (Modified Burmister), S-1 (0.4-0.5'): Frozen,brown, fine to coarse SAND, trace Silt (A-1). Dry, Rec. = 0.0 ft, FILLVisual Description, (Modified Burmister), S-2 (2-2.4'): Frozen, brown,fine to coarse SAND, some Gravel, little Silt (A-2-4). Dry, Rec. = 0.3ft, FILLVisual Description, (Modified Burmister), S-3 (4-6'): Very dense,brown, fine to coarse SAND, some Gravel, little Silt (A-2-4). Dry,Rec. = 1.5 ft, FILLVisual Description, (Modified Burmister), S-4 (6-8'): Very dense,brown, fine to coarse SAND, some Gravel, little Silt (A-2-4). Dry,Rec. = 1.0 ft, FILLVisual Description, (Modified Burmister), S-5 (8-10'): Dense, brown,fine to coarse SAND, some Silt, little Gravel (A-2-4). Moist, Rec. =1.2 ft, FILLVisual Description, (Modified Burmister), S-6 (10-12'): Top 11": Verydense, brown, fine to coarse SAND, some Silt, trace Gravel (A-2-4).Moist, Rec. = 1.1 ft, FILLBottom 2": Brown, SILT, some fine to coarse Sand, little Gravel(A-4). Moist, 10.9 ft - 12.0 ft, GLACIAL TILLVisual Description, (Modified Burmister), S-7 (12-14'): Mediumdense, brown, fine to coarse SAND, some Silt, trace Gravel (A-2-4).Moist, Rec. = 0.4 ft, GLACIAL TILLVisual Description, (Modified Burmister), S-8 (14-16'): Loose, brown,fine to coarse SAND, some Silt, trace Gravel (A-2-4). Moist, Rec. =0.4 ft, GLACIAL TILL17.0 ft - 18.0 ft, BEDROCK18.0 ft - 23.0 ft, C-1: Medium hard, fresh to slightly weathered, fineto medium grained, gray-green, SCHIST with few quartz seams.Joints are close to moderately spaced, low angle to moderatelydipping, undulating, rough, partially open to open, fresh todiscolored.-UNDERHILL FORMATION-23.0 ft - 28.0 ft, C-2: Medium hard, fresh to slightly weathered, fineto medium grained, gray-green, SCHIST with few quartz seams.Joints are close to moderately spaced, low angle to moderatelydipping, undulating, rough, partially open to open, fresh todiscolored, undulating.-UNDERHILL FORMATION-

Hole stopped @ 28.0 ft

C-1

C-2

100(62)

100(83)

5

5

5

5

5

5

5

5

4

4

Remarks:1. S-1: No recovery, grab sample from auger used for visual description.2. HSA to 14 ft. then advanced 4" casing to refusal at 17.0 ft. Roller cone to 18.0 ft and set up to core.

STATE OF VERMONTAGENCY OF TRANSPORTATION

MATERIALS & RESEARCH SECTIONSUBSURFACE INFORMATION

BORING LOG

Vermont Rt. 118 CulvertSTP SCRP (23)

Dep

th(f

t)

5

10

15

20

25

30

35

Berkshire, Vermont

Boring Crew: Walter Hoekele, (NEBC), B. Cardali (GZA)

Date Started: 2/12/18 Date Finished: 2/12/18

VTSPG NAD83: N 885879.79 ft E 1591562.45 ft

Ground Elevation: 459.0 ft

Boring No.: B-2

Page No.: 1 of 1

Pin No.: 17D050

Checked By: J. Baron

Blo

ws/

6"(N

Val

ue)

Date Depth(ft)

Notes

Notes:

Hammer Fall:Hammer Wt:I.D.:Type:

02/12/18 17.5 End of Drilling

CE = 1.0

Moi

stur

eC

onte

nt %

Rig: Diedrich D50Hammer/Rod Type: Safety/AWJ

SS1.38 in140 lb.30 in.

H.S.A. & WB4 in

300 lb.24 in.

Casing Sampler

Offset: 10' Right

Gra

vel %

San

d %

Fin

es %

Groundwater Observations

CLASSIFICATION OF MATERIALS(Description) R

un(D

ip d

eg.)

Cor

e R

ec. %

(RQ

D %

)

Dril

l Rat

em

inut

es/ft

Str

ata

(1)

Station: 99+88

1. Stratification lines represent approximate boundary between material types. Transition may be gradual.2. N Values have not been corrected for hammer energy. CE is the hammer energy correction factor.3. Water level readings have been made at times and under conditions stated. Fluctuations may occur due to other factors than those present at the time measurements were made.

BO

RIN

G L

OG

04.

0190

389

.07

VT

RA

NS

RT

11

8 C

ULV

ER

T B

ER

KS

HIR

E.G

PJ

VE

RM

ON

T A

OT

.GD

T 3

/27/

18

Page 21: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

FROZEN

29-63-81-58(144)67-81-50-21(131)28-41-32-17(73)

7-7-4-3(11)

5-9-11-8(20)

2-2-1-2(3)

3-2-2-2(4)

5-4-2-3(6)

1-2-3-3(5)

6.0

33.8

39.5

5.1

53.9

52.1

6.6

42.8

0.0 ft - 0.4 ft, ASPHALTVisual Description, (Modified Burmister), S-1 (0.4-2'): Frozen, brown,fine to coarse SAND, little Gravel, trace Silt. Dry, Rec. = 0.0 ft, FILLVisual Description, (Modified Burmister), S-2 (2-4'): Very dense,brown, fine to coarse SAND, some Gravel, trace Silt (A-1-b). Dry,Rec. = 1.5 ft, FILLVisual Description, (Modified Burmister), S-3 (4-6'): Very dense,brown, fine to coarse SAND, some Gravel, trace Silt (A-1-b). Dry,Rec. = 1.6 ft, FILLVisual Description, (Modified Burmister), S-4 (6-8'): Very dense,brown, fine to coarse SAND, little Gravel, little to trace Silt (A-2-4).Dry, Rec. = 0.8 ft, FILLVisual Description, (Modified Burmister), S-5 (8-10'): Medium dense,brown, fine to coarse SAND, some Gravel, trace Silt (A-1-b). Moist,Rec. = 0.8 ft, FILLVisual Description, (Modified Burmister), S-6 (10-12'): Mediumdense, brown, fine to coarse SAND, some Silt, little to trace Gravel(A-2-4). Moist, Rec. = 0.8 ft, FILLVisual Description, (Modified Burmister), S-7 (12-14'): Very loose,brown, fine to coarse SAND, some to little Silt, trace Gravel (A-2-4).Moist, Rec. = 1.1 ft, FILLVisual Description, (Modified Burmister), S-8 (14-16'): Top 2":Loose, brown, fine to coarse SAND, some to little Silt, trace Gravel(A-2-4). Moist, Rec. = 1.4 ft, FILLBottom 15": Loose, brown, SILT, little fine to coarse Sand (A-4).Moist to wet, 14.2 ft - 16.0 ft, GLACIAL TILLVisual Description, (Modified Burmister), S-9 (16-18'): Loose, brownand gray, fine to coarse SAND and Silt, some Gravel (A-4). Wet,Rec. = 1.3 ft, GLACIAL TILLVisual Description, (Modified Burmister), S-10 (18-20'): Loose,brown, fine to medium SAND and Silt, trace Gravel, with a clayseam (A-4). Wet, Rec. = 1.5 ft, GLACIAL TILL22.4 ft - 24.0 ft, BEDROCK24.0 ft - 29.0 ft, C-1: Medium hard to hard, fresh, fine to mediumgrained, gray-green, SCHIST with some quartz veins and seams.Joints are close to moderately spaced, moderately dipping to highangle, fresh, rough, undulating, open.-UNDERHILL FORMATION-

29.0 ft - 33.0 ft, C-2: Medium hard to hard, fresh, fine to mediumgrained, gray-green, SCHIST with quartz seams and veins. Jointsare close to widely spaced, low angle, fresh, rough, undulating toplanar, partially open to open. One high angle joint.-UNDERHILL FORMATION-

Hole stopped @ 33.0 ft

C-1

C-2

100(87)

100(75)

7

4

5

5

6

4

4

5

4

Remarks:1. Road subgrade frozen, grab sample from auger used for visual description.2. 4.25" HSA to 18 feet, then advanced 4" casing. Increasing resistance at 20.6 ft. Refusal at 22.4 ft. Roller cone to 24.0 ftand set up to core.

STATE OF VERMONTAGENCY OF TRANSPORTATION

MATERIALS & RESEARCH SECTIONSUBSURFACE INFORMATION

BORING LOG

Vermont Rt. 118 CulvertSTP SCRP (23)

Dep

th(f

t)

5

10

15

20

25

30

35

Berkshire, Vermont

Boring Crew: Walter Hoekele, (NEBC), B. Cardali (GZA)

Date Started: 2/13/18 Date Finished: 2/13/18

VTSPG NAD83: N 885884.59 ft E 1591533.98 ft

Ground Elevation: 458.0 ft

Boring No.: B-3

Page No.: 1 of 1

Pin No.: 17D050

Checked By: J. Baron

Blo

ws/

6"(N

Val

ue)

Date Depth(ft)

Notes

Notes:

Hammer Fall:Hammer Wt:I.D.:Type:

02/13/18 14.9 End of Drilling

CE = 1.0

Moi

stur

eC

onte

nt %

Rig: Diedrich D50Hammer/Rod Type: Safety/AWJ

SS1.38 in140 lb.30 in.

H.S.A. & WB4 in

300 lb.24 in.

Casing Sampler

Offset: 7' Left

Gra

vel %

San

d %

Fin

es %

Groundwater Observations

CLASSIFICATION OF MATERIALS(Description) R

un(D

ip d

eg.)

Cor

e R

ec. %

(RQ

D %

)

Dril

l Rat

em

inut

es/ft

Str

ata

(1)

Station: 100+15

1. Stratification lines represent approximate boundary between material types. Transition may be gradual.2. N Values have not been corrected for hammer energy. CE is the hammer energy correction factor.3. Water level readings have been made at times and under conditions stated. Fluctuations may occur due to other factors than those present at the time measurements were made.

BO

RIN

G L

OG

04.

0190

389

.07

VT

RA

NS

RT

11

8 C

ULV

ER

T B

ER

KS

HIR

E.G

PJ

VE

RM

ON

T A

OT

.GD

T 3

/27/

18

Page 22: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

1-1-2-3(3)

4-8-9-8(17)

17.9 54.7 18.6 26.7

Visual Description, (Modified Burmister), S-1 (0-2'): Very loose,brown, fine to coarse SAND and Silt, trace Gravel (A-2-4). Wet, Rec.= 0.3 ft, TOPSOIL2.0 ft - 4.0 ft, GLACIAL TILL

Visual Description, (Modified Burmister), S-2 (4-6'): Medium dense,brown and gray, GRAVEL, some Silt, little fine to coarse Sand(A-2-4). Wet, Rec. = 0.3 ft, GLACIAL TILL

8.6 ft - 9.0 ft, BEDROCK9.0 ft - 14.0 ft, C-1: Medium hard to hard, fresh, fine grained,gray-green, SCHIST. Joints are very close to moderately spaced,low angle to moderately dipping, fresh to discolored, rough tosmooth, undulating to planar, tight to open.-UNDERHILL FORMATION-

14.0 ft - 19.0 ft, C-2: Medium hard to hard, fresh, fine grained,gray-green, SCHIST. Joints are close to widely spaced, moderatelydipping, fresh to discolored, rough to smooth, undulating to planar,open to partially open.-UNDERHILL FORMATION-

Hole stopped @ 19.0 ft

C-1

C-2

100(68)

100(75)

6

7

6

7

8

7

8

8

7

7

Remarks:1. Increased casing resistance at 6.6 feet. Refusal at 8.6 feet. Roller bit to 9.0 feet and set up to core.2. Bedrock testing completed on C-1 (9.4-10.3 ft) sample, UCS = 4,162 psi, unit weight = 179.9 pcf. It was noted that thesample failed along a foliation in the rock sample.

STATE OF VERMONTAGENCY OF TRANSPORTATION

MATERIALS & RESEARCH SECTIONSUBSURFACE INFORMATION

BORING LOG

Vermont Rt. 118 CulvertSTP SCRP (23)

Dep

th(f

t)

5

10

15

20

25

30

35

Berkshire, Vermont

Boring Crew: Walter Hoekele, (NEBC), B. Cardali (GZA)

Date Started: 2/14/18 Date Finished: 2/14/18

VTSPG NAD83: N 885922.86 ft E 1591542.88 ft

Ground Elevation: 444.0 ft

Boring No.: B-4

Page No.: 1 of 1

Pin No.: 17D050

Checked By: J. Baron

Blo

ws/

6"(N

Val

ue)

Date Depth(ft)

Notes

Notes:

Hammer Fall:Hammer Wt:I.D.:Type:

02/14/18 1.5 End of Drilling

CE = 1.0

Moi

stur

eC

onte

nt %

Rig: Diedrich D50Hammer/Rod Type: Safety/AWJ

SS1.38 in140 lb.30 in.

WASH BORE4 in

300 lb.24 in.

Casing Sampler

Offset: 46' RIght

Gra

vel %

San

d %

Fin

es %

Groundwater Observations

CLASSIFICATION OF MATERIALS(Description) R

un(D

ip d

eg.)

Cor

e R

ec. %

(RQ

D %

)

Dril

l Rat

em

inut

es/ft

Str

ata

(1)

Station: 100+19

1. Stratification lines represent approximate boundary between material types. Transition may be gradual.2. N Values have not been corrected for hammer energy. CE is the hammer energy correction factor.3. Water level readings have been made at times and under conditions stated. Fluctuations may occur due to other factors than those present at the time measurements were made.

BO

RIN

G L

OG

04.

0190

389

.07

VT

RA

NS

RT

11

8 C

ULV

ER

T B

ER

KS

HIR

E.G

PJ

VE

RM

ON

T A

OT

.GD

T 3

/27/

18

Page 23: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

  

   

 

 

Appendix C – Laboratory Test Results 

Page 24: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

State of VermontAgency of Transportation

Construction and Materials BureauCentral Laboratory

Report on Soil Sample

Distribution list

Lab number: E180189 Corrected copy: N/A 3/8/2018 8:19:15 AReport Date:

Site: VT-118 CulvertProject: Berkshire Number: STP SCRP(23)

Quantity:

Comment: S-2

Received: 2/20/2018

Submitted by: J. Baron

Tested by: J. Daigneault

Station: Offset:

Date sampled: Tested: 2/21/2018

Hole: B-1 Depth: 4 to: 4.7FT FT

Field description: Si Sa, gry, M

Address:

Sample type: Split Barrel

Sample source/Outside agency name: GZA

Location used: Examined for: MC, GS

Test Results

Gr: 13.5%

Sa: 30.9%

Si: 55.6%

D2487: ML

M145: A-4

Reviewed by: Stephen P. Madden, Geotechnical Engineer

Sandy Silt

Comments:

75 mm (3.0"):

37.5 mm (1.5"):

19 mm (3/4"):

9.5 mm (3/8"): 95.4%

4.75 mm (#4): 92.3%

2.00 mm (#10): 86.5%

850 µm (#20): 82.2%

425 µm (#40): 78.2%

250 µm (#60): 73.4%

150 µm (#100): 67.4%

75 µm (#200): 55.6%

T-88 % Passing

Sieve Analysis

Total Sample

Hydrometer Analysis

Particles smaller % total sample

0.05 mm:

0.02 mm:

0.005 mm:

0.002 mm:

0.001 mm:

T-265 Moisture content: 16.5%

T-89 Liquid Limit:

T-90 Plastic Limit:

T-90 Plasticity Index: NP

Maximum density:

Optimum moisture:

Method:Test method: T-180

Limits

Moisture Density

pcf

T-100 Specific Gravity:

Page 25: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

State of VermontAgency of Transportation

Construction and Materials BureauCentral Laboratory

Report on Soil Sample

Distribution list

Lab number: E180189 Corrected copy: N/A 3/8/2018 8:19:41 AReport Date:

Site: VT-118 CulvertProject: Berkshire Number: STP SCRP(23)

Hole: B-1 Depth: 4 4.7FT FT-

T-88 Particle size analysis

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.010.1110100

Particle size, mm

Pct smaller

Page 26: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

State of VermontAgency of Transportation

Construction and Materials BureauCentral Laboratory

Report on Soil Sample

Distribution list

Lab number: E180190 Corrected copy: N/A 3/8/2018 8:19:17 AReport Date:

Site: VT-118 CulvertProject: Berkshire Number: STP SCRP(23)

Quantity:

Comment: S-3

Received: 2/20/2018

Submitted by: J. Baron

Tested by: J. Daigneault

Station: Offset:

Date sampled: Tested: 2/21/2018

Hole: B-2 Depth: 4 to: 6FT FT

Field description: Si Sa, brn, Moist

Address:

Sample type: Split Barrel

Sample source/Outside agency name: GZA

Location used: Examined for: MC, GS

Test Results

Gr: 30.5%

Sa: 56.7%

Si: 12.8%

D2487: SM

M145: A-2-4

Reviewed by: Stephen P. Madden, Geotechnical Engineer

Gravelly Sand

Comments:

75 mm (3.0"):

37.5 mm (1.5"):

19 mm (3/4"): 95.7%

9.5 mm (3/8"): 83.6%

4.75 mm (#4): 76.0%

2.00 mm (#10): 69.5%

850 µm (#20): 64.5%

425 µm (#40): 55.8%

250 µm (#60): 40.4%

150 µm (#100): 26.0%

75 µm (#200): 12.8%

T-88 % Passing

Sieve Analysis

Total Sample

Hydrometer Analysis

Particles smaller % total sample

0.05 mm:

0.02 mm:

0.005 mm:

0.002 mm:

0.001 mm:

T-265 Moisture content: 5.2%

T-89 Liquid Limit:

T-90 Plastic Limit:

T-90 Plasticity Index: NP

Maximum density:

Optimum moisture:

Method:Test method: T-180

Limits

Moisture Density

pcf

T-100 Specific Gravity:

Page 27: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

State of VermontAgency of Transportation

Construction and Materials BureauCentral Laboratory

Report on Soil Sample

Distribution list

Lab number: E180190 Corrected copy: N/A 3/8/2018 8:19:42 AReport Date:

Site: VT-118 CulvertProject: Berkshire Number: STP SCRP(23)

Hole: B-2 Depth: 4 6FT FT-

T-88 Particle size analysis

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.010.1110100

Particle size, mm

Pct smaller

Page 28: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

State of VermontAgency of Transportation

Construction and Materials BureauCentral Laboratory

Report on Soil Sample

Distribution list

Lab number: E180191 Corrected copy: N/A 3/8/2018 8:19:17 AReport Date:

Site: VT-118 CulvertProject: Berkshire Number: STP SCRP(23)

Quantity:

Comment: S-6 Top 11 inches

Received: 2/20/2018

Submitted by: J. Baron

Tested by: J. Daigneault

Station: Offset:

Date sampled: Tested: 2/21/2018

Hole: B-2 Depth: 10 to: 12FT FT

Field description: Sa, brn, Moist

Address:

Sample type: Split Barrel

Sample source/Outside agency name: GZA

Location used: Examined for: MC, GS

Test Results

Gr: 13.7%

Sa: 53.9%

Si: 32.4%

D2487: SM

M145: A-2-4

Reviewed by: Stephen P. Madden, Geotechnical Engineer

Silty Sand

Comments:

75 mm (3.0"):

37.5 mm (1.5"):

19 mm (3/4"):

9.5 mm (3/8"): 99.4%

4.75 mm (#4): 93.9%

2.00 mm (#10): 86.3%

850 µm (#20): 74.6%

425 µm (#40): 61.3%

250 µm (#60): 50.5%

150 µm (#100): 42.5%

75 µm (#200): 32.4%

T-88 % Passing

Sieve Analysis

Total Sample

Hydrometer Analysis

Particles smaller % total sample

0.05 mm:

0.02 mm:

0.005 mm:

0.002 mm:

0.001 mm:

T-265 Moisture content: 8.2%

T-89 Liquid Limit:

T-90 Plastic Limit:

T-90 Plasticity Index: NP

Maximum density:

Optimum moisture:

Method:Test method: T-180

Limits

Moisture Density

pcf

T-100 Specific Gravity:

Page 29: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

State of VermontAgency of Transportation

Construction and Materials BureauCentral Laboratory

Report on Soil Sample

Distribution list

Lab number: E180191 Corrected copy: N/A 3/8/2018 8:19:42 AReport Date:

Site: VT-118 CulvertProject: Berkshire Number: STP SCRP(23)

Hole: B-2 Depth: 10 12FT FT-

T-88 Particle size analysis

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.010.1110100

Particle size, mm

Pct smaller

Page 30: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

State of VermontAgency of Transportation

Construction and Materials BureauCentral Laboratory

Report on Soil Sample

Distribution list

Lab number: E180192 Corrected copy: N/A 3/8/2018 8:19:17 AReport Date:

Site: VT-118 CulvertProject: Berkshire Number: STP SCRP(23)

Quantity:

Comment: S-6 Bottom 2 inches

Received: 2/20/2018

Submitted by: J. Baron

Tested by: J. Daigneault

Station: Offset:

Date sampled: Tested: 2/21/2018

Hole: B-2 Depth: 10 to: 12FT FT

Field description: Si Sa, brn, Moist

Address:

Sample type: Split Barrel

Sample source/Outside agency name: GZA

Location used: Examined for: MC, GS

Test Results

Gr: 3.4%

Sa: 30.0%

Si: 66.6%

D2487: ML

M145: A-4

Reviewed by: Stephen P. Madden, Geotechnical Engineer

Sandy Silt

Comments:

75 mm (3.0"):

37.5 mm (1.5"):

19 mm (3/4"):

9.5 mm (3/8"):

4.75 mm (#4): 98.4%

2.00 mm (#10): 96.6%

850 µm (#20): 92.6%

425 µm (#40): 85.3%

250 µm (#60): 79.5%

150 µm (#100): 75.0%

75 µm (#200): 66.6%

T-88 % Passing

Sieve Analysis

Total Sample

Hydrometer Analysis

Particles smaller % total sample

0.05 mm:

0.02 mm:

0.005 mm:

0.002 mm:

0.001 mm:

T-265 Moisture content: 15.5%

T-89 Liquid Limit:

T-90 Plastic Limit:

T-90 Plasticity Index: NP

Maximum density:

Optimum moisture:

Method:Test method: T-180

Limits

Moisture Density

pcf

T-100 Specific Gravity:

Page 31: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

State of VermontAgency of Transportation

Construction and Materials BureauCentral Laboratory

Report on Soil Sample

Distribution list

Lab number: E180192 Corrected copy: N/A 3/8/2018 8:19:42 AReport Date:

Site: VT-118 CulvertProject: Berkshire Number: STP SCRP(23)

Hole: B-2 Depth: 10 12FT FT-

T-88 Particle size analysis

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.010.1110

Particle size, mm

Pct smaller

Page 32: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

State of VermontAgency of Transportation

Construction and Materials BureauCentral Laboratory

Report on Soil Sample

Distribution list

Lab number: E180193 Corrected copy: N/A 3/8/2018 8:19:18 AReport Date:

Site: VT-118 CulvertProject: Berkshire Number: STP SCRP(23)

Quantity:

Comment: S-5

Received: 2/20/2018

Submitted by: J. Baron

Tested by: J. Daigneault

Station: Offset:

Date sampled: Tested: 2/21/2018

Hole: B-3 Depth: 8 to: 10FT FT

Field description: Gr Sa, brn, M

Address:

Sample type: Split Barrel

Sample source/Outside agency name: GZA

Location used: Examined for: MC, GS

Test Results

Gr: 39.5%

Sa: 53.9%

Si: 6.6%

D2487: SP-SM

M145: A-1-b

Reviewed by: Stephen P. Madden, Geotechnical Engineer

Gravelly Sand

Comments:

75 mm (3.0"):

37.5 mm (1.5"):

19 mm (3/4"):

9.5 mm (3/8"): 79.5%

4.75 mm (#4): 68.7%

2.00 mm (#10): 60.5%

850 µm (#20): 53.5%

425 µm (#40): 45.0%

250 µm (#60): 31.1%

150 µm (#100): 16.7%

75 µm (#200): 6.6%

T-88 % Passing

Sieve Analysis

Total Sample

Hydrometer Analysis

Particles smaller % total sample

0.05 mm:

0.02 mm:

0.005 mm:

0.002 mm:

0.001 mm:

T-265 Moisture content: 6.0%

T-89 Liquid Limit:

T-90 Plastic Limit:

T-90 Plasticity Index: NP

Maximum density:

Optimum moisture:

Method:Test method: T-180

Limits

Moisture Density

pcf

T-100 Specific Gravity:

Page 33: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

State of VermontAgency of Transportation

Construction and Materials BureauCentral Laboratory

Report on Soil Sample

Distribution list

Lab number: E180193 Corrected copy: N/A 3/8/2018 8:19:42 AReport Date:

Site: VT-118 CulvertProject: Berkshire Number: STP SCRP(23)

Hole: B-3 Depth: 8 10FT FT-

T-88 Particle size analysis

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.010.1110100

Particle size, mm

Pct smaller

Page 34: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

State of VermontAgency of Transportation

Construction and Materials BureauCentral Laboratory

Report on Soil Sample

Distribution list

Lab number: E180194 Corrected copy: N/A 3/8/2018 8:19:18 AReport Date:

Site: VT-118 CulvertProject: Berkshire Number: STP SCRP(23)

Quantity:

Comment: S-10

Received: 2/20/2018

Submitted by: J. Baron

Tested by: J. Daigneault

Station: Offset:

Date sampled: Tested: 2/21/2018

Hole: B-3 Depth: 18 to: 20FT FT

Field description: Si Sa, brn, Moist

Address:

Sample type: Split Barrel

Sample source/Outside agency name: GZA

Location used: Examined for: MC, GS, AL

Test Results

Gr: 5.1%

Sa: 52.2%

Si: 42.8%

D2487: SM

M145: A-4

Reviewed by: Stephen P. Madden, Geotechnical Engineer

Silty Sand

Comments: Lab Note: A layer of clay and a small amount of organic material were noticeable within sample. Sample tested non-plastic.

75 mm (3.0"):

37.5 mm (1.5"):

19 mm (3/4"):

9.5 mm (3/8"): 98.3%

4.75 mm (#4): 97.4%

2.00 mm (#10): 94.9%

850 µm (#20): 89.6%

425 µm (#40): 81.6%

250 µm (#60): 71.0%

150 µm (#100): 58.8%

75 µm (#200): 42.8%

T-88 % Passing

Sieve Analysis

Total Sample

Hydrometer Analysis

Particles smaller % total sample

0.05 mm:

0.02 mm:

0.005 mm:

0.002 mm:

0.001 mm:

T-265 Moisture content: 33.8%

T-89 Liquid Limit:

T-90 Plastic Limit:

T-90 Plasticity Index: NP

Maximum density:

Optimum moisture:

Method:Test method: T-180

Limits

Moisture Density

pcf

T-100 Specific Gravity:

Page 35: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

State of VermontAgency of Transportation

Construction and Materials BureauCentral Laboratory

Report on Soil Sample

Distribution list

Lab number: E180194 Corrected copy: N/A 3/8/2018 8:19:42 AReport Date:

Site: VT-118 CulvertProject: Berkshire Number: STP SCRP(23)

Hole: B-3 Depth: 18 20FT FT-

T-88 Particle size analysis

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.010.1110100

Particle size, mm

Pct smaller

Page 36: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

State of VermontAgency of Transportation

Construction and Materials BureauCentral Laboratory

Report on Soil Sample

Distribution list

Lab number: E180195 Corrected copy: N/A 3/8/2018 8:19:19 AReport Date:

Site: VT-118 CulvertProject: Berkshire Number: STP SCRP(23)

Quantity:

Comment: S-2

Received: 2/20/2018

Submitted by: J. Baron

Tested by: J. Daigneault

Station: Offset:

Date sampled: Tested: 2/21/2018

Hole: B-4 Depth: 4 to: 6FT FT

Field description: Si Gr, brn-gry, Moist

Address:

Sample type: Split Barrel

Sample source/Outside agency name: GZA

Location used: Examined for: MC, GS

Test Results

Gr: 54.7%

Sa: 18.6%

Si: 26.7%

D2487: GM

M145: A-2-4

Reviewed by: Stephen P. Madden, Geotechnical Engineer

Silty Gravel

Comments:

75 mm (3.0"):

37.5 mm (1.5"):

19 mm (3/4"): 85.4%

9.5 mm (3/8"): 55.3%

4.75 mm (#4): 51.3%

2.00 mm (#10): 45.3%

850 µm (#20): 41.0%

425 µm (#40): 38.0%

250 µm (#60): 34.6%

150 µm (#100): 31.2%

75 µm (#200): 26.7%

T-88 % Passing

Sieve Analysis

Total Sample

Hydrometer Analysis

Particles smaller % total sample

0.05 mm:

0.02 mm:

0.005 mm:

0.002 mm:

0.001 mm:

T-265 Moisture content: 17.9%

T-89 Liquid Limit:

T-90 Plastic Limit:

T-90 Plasticity Index: NP

Maximum density:

Optimum moisture:

Method:Test method: T-180

Limits

Moisture Density

pcf

T-100 Specific Gravity:

Page 37: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

State of VermontAgency of Transportation

Construction and Materials BureauCentral Laboratory

Report on Soil Sample

Distribution list

Lab number: E180195 Corrected copy: N/A 3/8/2018 8:19:42 AReport Date:

Site: VT-118 CulvertProject: Berkshire Number: STP SCRP(23)

Hole: B-4 Depth: 4 6FT FT-

T-88 Particle size analysis

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.010.1110100

Particle size, mm

Pct smaller

Page 38: FINAL 190389.07 Berkshire Culvert Design Recommendations 3

1 of 102.23.18

Boring No. Sample No.Depth

(ft)

Laboratory

No.

Mohs

Hard-

ness

Length

(in)

(1) Unit

Weight

(PCF)

Bulk

Gs

(3)

Other

Tests

(4)

Strength

PSI

(5)

Strain %

(6) E sec

PSI

EE+06

(7)

Poisson's

Ratio

st

PSI

Is50

PSI

(8)

sc

PSI

B-1 C-19.0-10.0 R-1 4.800 174.5 U 4865

Gray Schist; broke along foliation

B-4 C-19.4-10.3 R-2 4.880 179.9 U 4162

Gray Schist; broke along foliation

Reviewed By Date Reviewed: 02.26.18

195 Frances Avenue Client Information: Project Information:Cranston RI, 02910 GZA GeoEnvironmental VT Route 118 Culvert

Phone: (401)-467-6454 Bedford, NH Berkshire, VTFax: (401)-467-2398 PM: Jen Baron, P.E. GZA Project Number: 04.0190389.07

Summary Page:Let's Build a Solid Foundation Collected By: B. Cardali Report Date:

Compressive Strength Tests

http://www.thielsch.com Assigned By: Jen Baron

LABORATORY TESTING DATA SHEET

Specimen Data

Rock Formation or

Description or RemarksDiameter

(in)

1.956

1.962

(2) Wet

Density

(PCF)

(1) Volume Determined By Measuring Dimensions

Note

s

(3) PLD=Point Load (diametrical),

(8) Estimated UCS from Table 1 of ASTM D5731 for NX cores (Is x 24)

Note

s

(5) Strain at Peak Deviator Stress

(2) Determined by Measuring Dimensions and PLA= Point Load (Axial) ST= Splitting Tensile (6) Represents Secant Modulus at 50% of Total Failure Stress

Weight of Saturated Sample U= Unconfined Compressive Strength (7) Represents Secant Poisson's Ratio at 50% of Total Failure Stress

(4) Taken at Peak Deviator Stress

Page 39: FINAL 190389.07 Berkshire Culvert Design Recommendations 3
Page 40: FINAL 190389.07 Berkshire Culvert Design Recommendations 3
Page 41: FINAL 190389.07 Berkshire Culvert Design Recommendations 3
Page 42: FINAL 190389.07 Berkshire Culvert Design Recommendations 3
Page 43: FINAL 190389.07 Berkshire Culvert Design Recommendations 3
Page 44: FINAL 190389.07 Berkshire Culvert Design Recommendations 3
Page 45: FINAL 190389.07 Berkshire Culvert Design Recommendations 3
Page 46: FINAL 190389.07 Berkshire Culvert Design Recommendations 3
Page 47: FINAL 190389.07 Berkshire Culvert Design Recommendations 3