final draft.docx

28
 2014 TY-CERRIG FIELD SURVEY REPORT STUDENT ID: 200890546 (SOEE 5141M: NEAR SURFA CE GEOPHYSICS

Upload: naufal-noori

Post on 04-Oct-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/13/2019 final draft.docx

    1/28

    2014 TY-CERRIG FIELD SURVEY REPORT

    STUDENT ID: 200890546

    (SOEE 5141M: NEAR SURFACE GEOPHYSICS

  • 7/13/2019 final draft.docx

    2/28

    STUDENT ID: 200890546

    A!STRACT

    A refraction seismic survey has been conducted on 24 October 2014 at Morfa Harlech,

    Gwynedd, North ales !"NGR: 258570.1 easting, 334298.7 northing# to determine the

    de$th and to$o%ra$hy of the &aleo'oic roc( surface, and the overlayin% e)tension of

    *uaternary and +ertiary sediments A seismic refraction line with 1--m s$read has been

    set u$ with 4- %eo$hones and 4m s$acin% A shorter .m s$read line with 24 %eo$hones

    and 02/m s$acin% has been set u$ later to cover the direct wave +he totals of -

    forwardreverse shots at different offset $ositions have been conducted to determine the

    to$o%ra$hy layers of the subsurface A 40(% elastic wei%htdro$ has been used for

    offsets shots while a hammer is used for the shorter .m s$read +he result is then

    analy'ed by collectin% the first brea( $ic( time from the raw 3G data and $lotted

    a%ainst %eo$hone s$acin% +he slo$es for the $lot are retrieved and the velocity and

    interce$t time are used to derive the de$th of the layer from the critical an%le e5uation

    6or undulatin% boundary, the General 7eci$rocal Method !G7M# is used to analy'e the

    de$th and velocity of the layer +he seismic refraction survey result shows the de$th for

    the first layer is 18 9 01m and the corres$ondin% velocity is 022 9 01 m:ms +he

    avera%e de$th for the second layer is ;2 9 01m and the corres$ondin% velocity is1/89

    00/ m:mswhile the velocity for the third layer is 4.8 9 00; m:ms +he velocity cross

    reference shows the first layer consists of the unconsolidated weatherin% soils, the

    second layer is *uaternary sediments, and the third layer is weathered unconsolidated

  • 7/13/2019 final draft.docx

    3/28

    STUDENT ID: 200890546

    CONTENTS LIST

    C"#$%#$&

    A!STRACT...................................................................................................................................2

    CONTENTS LIST..........................................................................................................................3

    1'0 INTRODUCTION................................................................................................................4

    1'1 PURPOSE.......................................................................................................................4

    1'2 GEOLOGICAL !ACGROUND.................................................................................4

    1') THEORY........................................................................................................................10

    2'0 PROCEDURES................................................................................................................15

    2'1 SURVEY DESIGN........................................................................................................15

    2'2 INSTRUMENTATION...................................................................................................16

    2') SHOTS TECHNI*UE..................................................................................................16

    )'0 RESULTS..........................................................................................................................19

    )'1 T+% D,%.$ /% (S+"$ ID: FFID1110....................................................................20

    )'2 T+% H% /% (S+"$ ID: FFID 11013 11043 11063 1103 1108.........................20

    )') THE UNDULATING !OUNDARY.............................................................................21

    4'0 DISCUSSIONS.................................................................................................................23

    4'1 SU!-SURFACE CROSS SECTION..........................................................................23

    4'2 THE *UARTENARY SECOND LAYER...................................................................24

    4') THE UNDULATING !OUNDARY.............................................................................26

    4'4 DATA *UALITY............................................................................................................26

    5'0 CONCLUSION.................................................................................................................27

    6'0 REFERENCES.................................................................................................................28

    '0 APPENDI.. 29

    3

  • 7/13/2019 final draft.docx

    4/28

    STUDENT ID: 200890546

    1'0 INTRODUCTION

    1'1 PURPOSE

    +he $ur$ose of the seismic survey is to determine and inter$ret the %eo$hysical

    measurement ie de$th and subsurface to$o%ra$hy of the *uaternary and +ertiary

    sediments over &aleo'oic

  • 7/13/2019 final draft.docx

    5/28

    STUDENT ID: 200890546

    FIGURE 1A: T+% ".$,"# "7 $+% &% % $ N"$+ /%&' L".$,"# British National

    Grid of 258570.1 easting and 334298.7' (S".% ;: +$$;:

  • 7/13/2019 final draft.docx

    6/28

    STUDENT ID: 200890546

    FIGURE 1!: T+% ".$,"# "7 $+% &% % $ M"7 H%.+' L".$,"# British National

    Grid of 258570.1 easting and 334298.7' (S".% ;:+$$;:

  • 7/13/2019 final draft.docx

    7/28

    STUDENT ID: 200890546

    FIGURE 1C: T+% =%""=,. ;";%$ "7 M"7 H%.+' N"$% $+% ?" M".+& 7$

    ,,%& $+% %=,"# ,#$" @,$+ &%,%#$ % "# $+% @%&$ # C,# "$."; ,# $+%

    %&$' S% % ,& %#"$% ,# % &B%' (Map soure! http!""digi#ap.edina.a.u$"%

    7

    http://digimap.edina.ac.uk/http://digimap.edina.ac.uk/
  • 7/13/2019 final draft.docx

    8/28

    STUDENT ID: 200890546

    FIGURE 1D: T+% ".$,"# "7 T-C%,= ,# M"7 H%.+3 G@#%3 N"$+ /%&' T+%

    ".$,"# ,& ".$% $ !,$,&+ N$,"# G, "7 25850'1 %&$,#= # ))4298' #"$+,#= ,#

    & % %.$#=' (M; &".%: +$$;:

  • 7/13/2019 final draft.docx

    9/28

    STUDENT ID: 200890546

    181#"y findin% the %lacial com$osites li(e silt and clay from the *uaternary a%e over a

    di$$in% valleysha$ed &aleo

  • 7/13/2019 final draft.docx

    10/28

    STUDENT ID: 200890546

    FIGURE ): T+% 7,=% &+"@& $+% $";"=;+ ; "7 &%,&,. &% ."#.$% ,# 201) $

    $+% ;%,"& M".+& "%+"%' N"$% $+% M".+& 7$ ,,%& $+% P%"-C, ".>$" $+% %&$ # .%$,#= $+% ,7$ &,# &&$% %;"&,$% *$%# &%,%#$& $" $+%

    @%&$' T+,& ;"%& $+% %,&$%#.% "7 .+##% # &"$+@ .%$% 7# %&$ ,#=

    M%&"",. # *$%# ;%," (A%# %$ '3 19853 H%&&%" %$ '3 201)'

    1') THEORY

    +he refraction method measures the seismic waves travel times %enerated by an

    im$ulsive ener%y source such as hammer or wei%ht dro$ +he wave is refracted based

    on the nells Baw where diffraction occurred at certain an%le when $ro$a%atin% throu%h

    different density layers +herefore, the density associated with the layer %overns the

    s$eed of the $ro$a%atin% wave E*UATION 1 shows the relationshi$ between the

    refracted an%le and s$eed of the waveC

    10

  • 7/13/2019 final draft.docx

    11/28

    STUDENT ID: 200890546

    !E*UATION 1#

    where D1 is the an%le of incidence wave and D2 is the an%le of refracted wave +he

    ener%y carried by the wave refracted is then detected by %eo$hones, am$lified, and

    recorded by s$ecial e5ui$ment desi%ned for this $ur$ose called %eodes +he instant of

    the ener%y reachin% the device is recorded as arrivin% $ulses +he raw data consist of

    travel times and distances, is then mani$ulated to derive the velocity variations with

    de$th !Ban(ston, 1880# +he $rocess of the wave $ro$a%ation till the recordin% is

    illustrated in FIGURE 4

    FIGURE 4: T+% 7,=% &+"@& $+% $%,#= @% ;";=$%& $+"=+ ,77%%#$ %& @,$+

    ,77%%#$ &;%%' T+% @% ,& %7.$% # %%#$ %7%.$% .> $" $+% &7.%' T+%

    =%";+"#%& ;,.> $+% %#%= %7.$% # &$"% $+% & $% $,% ,;&%'

    (S".%: +$$;:

  • 7/13/2019 final draft.docx

    12/28

    STUDENT ID: 200890546

    6rom the direct wave, the information about the velocity of the first layer can be derived

    usin% E*UATION 2

    !E*UATION 2#

    where m is the slo$e of the line and re$resentin% the slowness of the direct wave 6or

    the refraction survey, the critical an%le !minimum an%le for refractions to ta(e $lace# is

    the fundamental value to derive the formula relatin% the s$eed of wave $ro$a%ation and

    de$th As such, the critically refracted wave is $resumed to travels alon% the boundary

    between two layers with different velocity $ro$erties As it travels, the wave releases the

    ener%y to the u$$er layer in form of seismic wave, travellin% u$ward at critical an%le and

    detected as the first arrival in each %eo$hones +hese first arrivals are widely (nown as

    the head wave !7ed$ath, 18;# +here will be distinctive slo$es a$$ear at any %iven

    refractor in the seismic records associated with the head wave arrival which more

    information such as time interce$ts and slowness !inverse of velocity# can be derived

    +he de$th of the layer with the res$ective velocity can be calculated based on the

    E*UATION ).

    !E*UATION )#

    where + is the interce$t time for the nth refractor layer En is the s$eed of the nth layer, EF

    is the velocity for n1 layer, hF is the de$th for n layer and ) is the calculated de$th 6rom

    e5uation ;, the de$th can be determined when all $arameters involved derived from the

    head wave slo$e

    Overall, the $recedin% cases a$$ly on the assum$tion that the boundary layer consists

    of infinite hori'ontal $lanar However, not all boundaries in the real world consist of

    infinite hori'ontal $lanar @n fact, most boundary layers dealt in the real world consist of

    undulatin% boundary which needs s$ecific rule in dealin% with them as $ortrayed in

    12

  • 7/13/2019 final draft.docx

    13/28

    STUDENT ID: 200890546

    E*UATION 4 and E*UATION 5 +he derivations of these e5uations come from the

    sim$le numerical method called &almer Generali'ed 7eci$rocal Method !G7M#

    !&almer, 18-1#

    !E*UATION 4#

    !E*UATION 5#

    where tvis the time velocity function which corres$onds to the time ta(en for wave to

    travels from the surface refractor to the %eo$hones and t%is the corrected time de$th for

    any %iven s$acin% and a$$arent velocity +he travellin% wave time over the refractor

    layer are better de$icted in FIGURE 5

    FIGURE 5: T+% GRM ,& %$+" $" 7,# $+% ";$, Y &;.,#= 7" $+% ."%&;"#,#=

    $,%-%;$+ 7#.$,"# 7" $+% #$,#= "#' T+% $ # $= % ;"$$% # $+%

    &$,=+$%&$ .% 7" $."%&;"#& $" $+% ";$, Y' F" $+% .%3 $+% ;;%#$

    %".,$ # ,& %$%,#% ,#%&,#= $+% &";%' $# $=;%$%& %'=' $!1# $A2%

    "$,#% 7" $+% &%,&,. &+"$ $,% & "77&%$ (C>3 2014'

    13

  • 7/13/2019 final draft.docx

    14/28

    STUDENT ID: 200890546

    E*UATION 4 and E*UATION 5are the manifest of one of the most im$ortant tool

    when dealin% with undulatin% boundary +he G7M delineates the undulatin% refractors

    by recordin% forward and reverse travel time +hese travel times will be used to find the

    o$timum s$acin% !%eo$hones s$acin%# which the u$ward travellin% rays%eometrically emer%e from a sin%le

  • 7/13/2019 final draft.docx

    15/28

    STUDENT ID: 200890546

    2'0 PROCEDURES

    2'1 SURVEY DESIGN

    +he survey is conducted to determine the de$th and strati%ra$hy of the *uaternary

    Meso'oic sedimentary over &aleo'oic

  • 7/13/2019 final draft.docx

    16/28

    STUDENT ID: 200890546

    FIGURE shows the instruments setu$ for the refraction survey +he survey uses two

    24channel %eodes !seismic recorder# to records the seismic si%nal from the

    %eo$hones A software $ac(a%e called Multile Geo!e "erating #o$t%are!MGO# is

    used to o$erate the Geodes T% 1lists out all the e5ui$ments needed to conduct thesurvey

    INSTRUMENT *UANTITY

    Geodes 2Geo$hones 4-+ri%%er cable and stri(e $late 1+owed 3lastic ei%ht ro$ 40(% 1eismic

  • 7/13/2019 final draft.docx

    17/28

    STUDENT ID: 200890546

    F,=% : T+% &%$; "7 $+% ,#&$%#$& ,#= $+% &% (U#>#"@#3 2014

    17

  • 7/13/2019 final draft.docx

    18/28

    STUDENT ID: 200890546

    F,=% 8: T+% &+"$& ".$,"# @,$+ $+% %&;%.$,% SEG-Y 7,% ID (C>3 2014

    SHOT SHOT TYPE!G SOURCE COORDINATES

    (E&$,#=3 N"$+,#=

    FFID 1101 Jero offset 2/-/012, ;;428-.8

    FFID 1109 6ar Offset 2/-480, ;;428-

    FFID 1108 *uarter len%th offset 2/-.1-, ;;42881

    FFID 1106 Mid offset 2/-...4-, ;;4288/2

    FFID 110 7everse 5uarter len%th offset 2/-101, ;;42888

    FFID 1104 7everse 'ero offset 2/-/-., ;;4;00;1

    FFID 1105 7everse far offset 2/--;8, ;;4;01

    FFID 1110 hort $read 2/-...4-, ;;4288/2

    T% 2: T+% $% &+"@& $+% &+"$ ID @,$+ $+% %&;%.$,% ".$,"# ."",#$%

    18

  • 7/13/2019 final draft.docx

    19/28

    STUDENT ID: 200890546

    )'0 RESULTS

    +he results are divided into ; $arts to ease the derivation of the time interce$t and

    slowness "ased on FIGURE 9, all shots from the first $ic(s show ; observable layers

    which have distinctive slo$es

    FIGURE 9: T+% =;+ &+"@& $+% 7,&$ , ;,.>& 7" $+% &%,&,. $' T+% 7,&$ ,

    ;,.>& % %#"$% @,$+ $+%, %&;%.$,% &+"$ ID' T+% % %=,"# &+"@& $+% 7,&$ ;,.> 7"

    $+% 7,&$ %3 $+% %"@ %=,"# ,& $+% 7,&$ ;,.>& 7" $+% &%."# % # $+% % %=,"#

    ,& $+% 7,&$ ;,.>& 7" $+% $+, % (C>3 2014 (R@ SEG-Y $ % ,# A;;%#,'

    19

  • 7/13/2019 final draft.docx

    20/28

    STUDENT ID: 200890546

    )'1 THE DIRECT /AVE (S+"$ ID: FFID1110

    0 1 2 3 4 5 6

    0

    10

    20

    30

    f(x) = 4.64x

    Ty Cerrig 14-15 4m spacing spread Direct Wave:

    Shot FFID 1110 v1 slope

    coordinate along prole !m"

    time !ms"

    F,=% 10: T+% =;+ &+"@& $+% 7,&$ , ;,.>& FFID 1110' T+% &+"$ ,& $>%# @,$+ 0'25

    Y &;.,#= $" %,% ?&$ $+% ,%.$ @% 7" $+% &%' F" %B$,"# 23 $+% %".,$7" $+% 7,&$ % ,& %B,%#$ $" 0'22 0'1 & FFID 11013 FFID 11063 FFID 1103 #

    FFID 1108' T+% &";% 7" $+% +% @% ,& %,% 7" $+% 7,&$ ;,.>& $" %&% $+%

    %".,$ "7 $+% &%."# % "7 $+% &% %' T+% 4 &";%& $ %#"$% & *13 *23 *)3

    # *4 % 0'61 &

  • 7/13/2019 final draft.docx

    21/28

    STUDENT ID: 200890546

    FIGURE 11!: T+% &"$% %=% &";% 7" 4 &";%& $ %#"$% & *13 *23 *)3 #

    *4 % 0'22 &3 2014

    (R@ SEG-Y $ % ,# A;;%#,'

    21

  • 7/13/2019 final draft.docx

    22/28

    STUDENT ID: 200890546

    +he third layer first brea( $ic(s show the unconformity layout of the surface refractor

    which have been $ortrayed by uneven slo$e in forwardreverse far offset shots +hese

    undulatin% refractor conditions are treated with the Generali'ed 7eci$rocal Method

    !G7M# to find each common mid$oint !

  • 7/13/2019 final draft.docx

    23/28

    STUDENT ID: 200890546

    4'0 DISCUSSIONS

    4'1 SU!-SURFACE CROSS SECTION

    "ased on the data analysis, the cross sections of the subsurface for the ; layers

    boundary are shown in FIGURE 14

    FIGURE 14: T+% ) % &-&7.% &%;$% $+% %7.$" "#' T+% %".,$ 7"

    %.+ % # $+% ."%&;"#,#= %;$+ % &+"@# ,# $+% MATLA! =;+,. =%#%$"'

    +he analysis of the strati%ra$hy is conducted and the velocity for each layer is

    com$ared with the antici$ated velocity from the %eolo%ical bac(%round of the surveyed

    area FIGURE 15 shows the com$arison between the antici$ated velocity and the

    velocity from the survey

    +he e)istence of the di$$in% subsurface between the sedimentary second layer and

    third layer to$

  • 7/13/2019 final draft.docx

    24/28

    STUDENT ID: 200890546

    F,=% 15: T+% %".,$ %&$ 7" &%% % ,& .";% @,$+ $+% $ &%$ 7" $+%

    %,% %;"$' T+% %".,$ 7" %.+ % ,# $+% %7.$,"# &% $.+%& $+% %".,$

    ;%,.$% (!LUNDELL %$ '3 1964' T+% % &B% &+"@& $+% ;;",$% ".$,"# 7"

    $+% .%#$ %7.$,"# &% $" $+% %&$ "7 $+% 7$' T+% 7,&$ % ,& %.% $" %

    #."#&",$% @%$+%,#= &",& @+,.+ $+% %".,$ 0'22 & 0.17

  • 7/13/2019 final draft.docx

    25/28

    STUDENT ID: 200890546

    s$acin% $roves the $resence of few hidden layers within layer 2 +he Mochras borehole

    result in FIGURE 2shows few layers consist of sand and %ravels, boulder clay, and

    varved clay intertwined to create the *uaternary succession

  • 7/13/2019 final draft.docx

    26/28

    STUDENT ID: 200890546

    4') THE UNDULATING !OUNDARY

    +he de%laciation $rocess few millennia bac( de$osited boulder and till clay durin%

    *uaternary $eriod +he de$osition and %laciation $rocess durin% *uaternary $eriod also

    eroded the surface of to$

  • 7/13/2019 final draft.docx

    27/28

    STUDENT ID: 200890546

    5'0 CONCLUSION

    @n summary, the survey $rovesC

    +he e)tension of *uaternary sediments over the &aleo'oic

  • 7/13/2019 final draft.docx

    28/28

    STUDENT ID: 200890546