final report of the fourth meeting of scientific experts ... meeting of scientific experts on fish...

82
Page 1 of 82 Final Report of the Fourth Meeting of Scientific Experts on Fish Stocks in the Central Arctic Ocean January 2017

Upload: lamngoc

Post on 29-Mar-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page1of82

FinalReportoftheFourthMeetingofScientificExpertsonFishStocksintheCentralArcticOceanJanuary2017

Page2of82

TableofContentsListofAcronymsandAbbreviations………………………………………………………………...3ExecutiveSummary............................................................................................5Introduction.......................................................................................................8JointScientificResearchandMonitoringPlan(ToR2).....................................11AframeworkfortheImplementationPlan(ToR3)..........................................27Acknowledgements……………………………………………………………………………………..32AppendixA:ListofParticipants.......................................................................33AppendixB:SynthesisofKnowledge(ToR1)...................................................34AppendixC:Literaturecited............................................................................76AppendixD:4thScientificMeetingChairmans’Statement…………………………….80

Page3of82

ListofAcronymsandAbbreviations1D OneDimensional3D ThreeDimensionalADCP AcousticDopplerCurrentProfilerAZFP AcousticZooplanktonandFishProfilesC CelsiusCAFF ConservationofArcticFloraandFaunaCAO CentralArcticOceanCG CoordinationGroupcm CentimeterCO2 CarbonDioxideCPUE CatchPerUnitEffortCTD Conductivity,Temperature,andDepthDBO DistributedBiologicalObservatoryEBFM Ecosystem-basedFisheryManagementeDNA EnvironmentalDNAEEZ ExclusiveEconomicZoneESS EastSiberianSeaFDA FoodandDrugAdministrationFiSCAO FishStocksintheCentralArcticOceanha HectareIARM InventoryofArcticResearchandMonitoringIASC InternationalArcticScienceCommittee

ICESInternationalCouncilfortheExplorationoftheSeas

IEA IntegratedEcosystemAssessmentJSRMP JointScientificResearchandMonitoringPlankg Kilogramkm KilometerLME LargeMarineEcosystemm Meters

MOSAiC MultidisciplinarydriftingObservatoryfortheStudyofArcticClimate

mt MetricTonsNBC NorthernBering-ChukchiSeasnm NauticalMilesNPFMC NorthPacificFisheryManagementCouncilPACEO PacificArcticClimateEcosystemObservatoryPAG PacificArcticGroupPAME ProtectionoftheArcticMarineEnvironment

Page4of82

pCO2 PartialPressureofCarbonDioxidePICES NorthPacificMarineScienceOrganizationQA/QC QualityAssurance/QualityControlSAON SustainingArcticObservingNetworksTAC TotalAllowableCatchToRs TermsofReferenceU.S. UnitedStatesUSA UnitedStatesofAmericaWG WorkingGroup

WGICA ICES/PAMEWorkingGrouponIntegratedEcosystemAssessmentfortheCentralArcticOcean

Page5of82

ExecutiveSummary

FutureinternationalmanagementofpotentialfisheriesinthecentralArcticOcean(CAO)hasbeenaddressedataseriesofmeetingsofgovernmentsbeginningwithaninitialmeetingheldinOslo,NorwayinJune2010,andcontinuingthroughthemostrecentmeetingofmanagersheldinTorshaven,FaroeIslands,Denmark,inNovember-December20161.OfparticularrelevancetothesemeetingshasbeentheinterestbythegovernmentsinthedevelopmentofajointprogramofscientificresearchandmonitoringtoinformfuturepotentialfisheriesmanagementintheCAO.ThisledtoaninitialscientificmeetingheldinAnchorage,Alaska,USA,inJune2011.Thegeneralconclusionofthatmeetingwasthattherewasnourgency,but,giventhelimitedscientificknowledgeoftheCAO,therewasaneedtoestablishbaselinedata.AdditionalscientificmeetingswereheldinTromsø,Norway(October2013)andSeattle,USA(April2015).Participantsatthesemeetingsdevelopedastatus&gapsreport,apartialinventoryofresearch&monitoring,andadraftframeworkforaJointProgramofScientificResearch&Monitoring.Thereportfromthefirstscientificmeeting(June2011)noted:“WithintheArctic,currentinformationondistributionandabundanceofconcentrationsofthesespecies,uncertaintyintheecosystemeffectsoffishing,andthetechnicalandlogisticalchallengesofconductingfishingoperationsinremoteregionsallsuggestthatcommercialfisheriesarenotlikelytoemergeintheshortterm.”Thereportfromthesecondscientificmeeting(October2013)furtheremphasizedthatdemersalfishorshellfisharenotexpectedtoexpandintothedeepbasinoftheArcticOcean.Thereportfromthethirdscientificmeeting(April2015)upheldtheinitialconclusionsfromtheformermeetings.FollowingtheadoptionoftheDeclarationConcerningthePreventionofUnregulatedHighSeasFishingintheCentralArcticOceanamongthefiveArcticcoastalstatesinJuly2015,governmentrepresentativesmetinWashington,DC,USA,inDecember2015tofurtherdiscussmanagementofpotentialCAOfisheries.TheseparticipantsprovidedadditionalguidanceonthedevelopmentofaJointProgramofResearchandMonitoringtoaddressthefollowingquestions(whichrepresentarefinementofquestionsraisedinthe3rdscientificworkshopheldinApril2015):•Whatarethedistributionsandabundancesofspecieswithapotentialforfuture

commercialharvestsinthecentralArcticOcean?•Whatotherinformationisneededtoprovideadvicenecessaryforfuturesustainable

harvestsofcommercialfishstocksandmaintenanceofdependentecosystemcomponents?

•Whatarethelikelykeyecologicallinkagesbetweenpotentiallyharvestablefishstocks

1ThemeetinginTorshavenoccurredafterthescientificmeetinginTromsø.

Page6of82

ofthecentralArcticOceanandadjacentshelfecosystems?•Overthenext10-30years,whatchangesinfishpopulations,dependentspecies,and

thesupportingecosystemsmayoccurinthecentralArcticOceanandtheadjacentshelfecosystems?

Toanswerthesequestions,therepresentativesagreedtothreeTermsofReference(ToRs)forthefourthscientificmeeting:• ToR1:Completethesynthesisofknowledge• ToR2:DevelopadraftJointScientificResearchandMonitoringPlantoaddressthe

fourquestions• ToR3:ProvideaFrameworkfortheImplementationPlanInresponsetothemanager’srequest,NorwayhostedtheFourthScientificMeetingonCAOFishStocksinTromsø,Norway,during26-28September2016.Intotal,29participantsattendedthemeetingrepresenting10governments(Canada,People’sRepublicofChina,EuropeanUnion,theKingdomofDenmarkinrespectofGreenland,Iceland,Japan,theRepublicofKorea,theKingdomofNorway,RussianFederation,andUnitedStatesofAmerica)andinterestedbodies,includingtheArcticCouncil(ProtectionoftheArcticMarineEnvironment[PAME]/ConservationofArcticFloraandFauna[CAFF]),NorthPacificMarineScienceOrganization(PICES),InternationalCouncilfortheExplorationoftheSea(ICES),andthePacificArcticGroup(PAG).TheparticipatingscientistsandotherswereallfamiliarwithArcticscience,surveysandmodeling,andthesciencenecessarytosupportmanagementandconservationofmarinelivingresources.WithrespecttoToR1,priortothemeeting,participantscollectedexistingdataandanalysesoftheCAOavailablefromscienceorganizationsoftheparties.Thisdatacallallowedforthecompletionofthesynthesisandintegrationofanalysisof“wherewearenow”andidentifiedtheprioritiesforresearchandmonitoringgaps.Thus,onDay1,participantsdiscussedadraftsynthesisreport.Meetingparticipantsprovidedsuggestionsforthecollectionofadditionalinformation,whichareincorporatedintothefinalsynthesisreport(AppendixBhere).Thediscussionsalsonotedthatbecauseofthelowproductivityassociatedwithaseasonalseaicecoverandtheassociatedstrongverticaldensitystratification,fishdensitiesofcommercialinterestarenotlikelytooccurintheHighSeasinthenearfuture.However,participantsalsoemphasizedthatbaselineinformation,ecosystemunderstanding,andmonitoringtodetectfuturechangesareimportantissuesfortheHighSeasregion.Theprimaryobjectiveofthemeetingwas,however,tofocusondevelopingaJointScientificResearchandMonitoringPlan(Plan)toaddressthefourquestions(ToR2).AdraftversionofthePlanwaspreparedpriortothemeetingtoelicitdiscussion.ThisdraftPlanbuiltupontheoutcomesofthepreviousthreescientificmeetingsand

Page7of82

consideredtheneedforadditionalmodelingofecosystemrelationshipsforareasoftheCAOwithphysicalandbiologicaldatarelatingtocommercialfishspecies.Duringthemeeting,participantsbrokeintothreegroups(MappingandMonitoring,EcosystemConsiderations,ScenariostodealwithClimateChange)tofurtherdevelopthedraftPlan.MeetingparticipantsspentmostofDay2andthemorningofDay3inthediscussionofthesethreetopics.ParticipantsatthemeetingusedthediscussionoftheResearchandMonitoringPlan(ToR2)todevelopfourTracksasaframeworkforimplementationofthePlan(ToR3):1)MappingandMonitoring,2),ReferencePointsandIndicators,3)ModelingandScenariosand4)Coordination.ThefirstthreetracksidentifiedherespecificallyaddressToR2,andprovideguidancetoa2017workshop(the5thscientificmeeting).This5thmeetingwilldevelopanimplementationstrategyforthePlan,showingstageddevelopmentofresearchandmonitoringthataddressesgapsinabundance,distribution,andotherinformationprovidingadviceaboutthepotentialforsustainableharvestofcommercialspeciesintheCAO.DiscussionoftheCoordinationtrackfocusedonhowtoimplementtheResearchandMonitoringPlanthroughmeansotherthanbiennialsciencemeetings.ThisdiscussionprovidedsomeofthesubstancetodefineTermsofReferenceforacoordinatingbody.Meetingparticipantsalsodiscussedtheissueof“exploratory”fishing(alsoreferredtoasexperimentalfishingbymanyoftheparticipants).Manyoftheparticipantsraisedconcernsaboutthedamagethatcouldoccurasaresultofexploratoryfishingifitisconductedbeforewehavemorescientificdataabouttheregion,especiallythebottomconditions.SomeparticipantssuggesteddefiningparametersintheResearchandMonitoringPlanunderwhichexploratoryfishingcouldoccur.

Page8of82

I.IntroductionTheissueofinternationalmanagementoffisheriesintheHighSeasofthecentralArcticOcean(HighSeas;CAO)wasaddressedatameetingofgovernmentsofthecoastalstatestotheHighSeas(Canada,Norway,Greenland/Denmark,theRussianFederationandtheUnitedStates)heldinOslo,Norway,inJune2010.Akeyquestionraisedinthatmeetingwas“whatisthestatusofscience?”ThisledtoaninitialscientificmeetingheldinAnchorage,Alaska,USA,inJune2011.Thegeneralconclusionofthe2011scientificmeetingwasthattherewasnourgency,butthatgiventhelimitedscientificknowledgeoftheHighSeastherewasaneedtoestablishbaselinedata.ThefivegovernmentsnextmetinWashingtonD.C.,USA,duringApril-May2013.Akeyquestionraisedtherewas“whatweretheprospectsforcommercialfisheriesinareasoftheCAObeyondnationaljurisdiction”?Againthismeetingofpolicymakerswasfollowedbya2ndscientificmeetingheldinTromsø,Norway,October2013.ThegeneralconclusionofscientistsinattendancewasthattherewasnoneartermprospectsforcommercialconcentrationsoffishbutthereremainedaneedtoknowmoreaboutfishstockswiththepotentialtobeharvestedintheHighSeas.ThenextmeetingofthefivegovernmentswasheldinNuuk,Greenland,inFebruary2014.ThegovernmentsreachedelementsofagreementonHighSeas’fisheries,resultingintheDeclarationConcerningthePreventionofUnregulatedHighSeasFishingintheCentralArcticOceanof16July2015amongthefiveArcticcoastalstates,whichcallsforaJointProgramofScientificResearchandMonitoring.Thegovernmentsdevelopedtermsofreferenceatthismeetingforthe3rdscientificmeeting,whichwasheldinSeattle,Washington,USA,inApril2015.Atthe3rdscientificmeeting,participantsdevelopedastatus&gapsreport,apartialinventoryofresearch&monitoring,andadraftframeworkforaJointProgramofScientificResearch&Monitoring2.Participantsatthescientificmeetingidentifiedseveralnextsteps,includingtheneedfor:• Athoroughsynthesisandintegrationofanalysisof“wherewearenow”;• Large-scaleandcoordinatedmonitoring,aspossible,tocapturetemporalandspatial

variability;and• ContinueddevelopmentofaninternationalJointProgramofScientificResearchand

Monitoring.TheDeclarationConcerningthePreventionofUnregulatedHighSeasFishingintheCentralArcticOceanenvisionsabroaderprocess,and,inDecember2015,thefivegovernmentsofthecoastalstatestotheHighSeasmetwithrepresentativesfromthe2Thefullworkshopreportandassociatedreportsofthe3rdscientificmeetingareavailableontheInternetat:http://www.afsc.noaa.gov/Arctic_fish_stocks_third_meeting/default.htm.

Page9of82

governmentsofChina,theEuropeanUnion,Iceland,Japan,andKoreainWashington,D.C.,USA,tofurtherdiscussmanagementofpotentialfisheries.TheseparticipantsagreedupontheneedforthedevelopmentofaJointProgramofResearchandMonitoring.AdditionalmeetingsofthesetengovernmentsoccurredinApril2016inWashington,D.C.,USA,July2016inIqaluit,Nunavut,Canada,andNovember-December2016inTorshaven,FaroeIslands,Denmark3.ThesediscussionsledtothedevelopmentofthreeTermsofReference(ToRs)forthe4thscientificmeeting:• ToR1:Completethesynthesisofknowledge–Priortothemeetingtherewillbea

callforexistingdataandanalysesoftheHighSeasfromscienceorganizationsoftheparties.Thiswillbeusedtocompletethesynthesisandintegrationofanalysisof“wherewearenow”,andidentifytheprioritiesforresearchandmonitoringgaps.Mostofthissynthesisshouldbedonepriortotheworkshop.

• ToR2:DevelopaJointScientificResearchandMonitoringPlantoaddressthefourquestions–TheprimaryobjectiveofthemeetingshallbetodevelopajointResearchandMonitoringPlan.Thisplanshallbuildupontheoutcomesofthethreescientificmeetings,takethequestionsfromtheJointProgramofScientificResearchasthepointofdeparture,andconsidertheneedforadditionalmodelingofecosystemrelationshipsforareasoftheHighSeaswithphysicalandbiologicaldatarelatingtocommercialfishspecies.ParticipantsatthemeetingshalldevelopaSciencePlanforthenextfiveyearsshowingstageddevelopmentofresearchandmonitoringthataddressesgapsinabundance,distributionandotherinformationrequiredtoprovideadviceaboutthepotentialforsustainableharvestofcommercialspecies.Theplanshallinclude:

o Spatialandtemporalscope,objectivesandrationale;o Use,totheextentpossible,existingresearchandmonitoringprograms;o Incorporationofindigenousandtraditionalknowledge(ITK),whererelevant;o Methodology&scientificapproachincludingtheneedfornewresearch

cruisesintheHighSeas;o Appropriateecosystem(physical,biological,social)indicators;o Analysisandmodelingstrategy;ando DataandInformationsharingstrategies.

• ToR3:ProvideaFrameworkfortheImplementationPlan–ParticipantsatthemeetingshallusetheResearchandMonitoringPlandiscussiontodevelopthelistofconsiderationsforimplementationofthePlan.ThisFrameworkshalldevelopbroadoptionsforimplementationaddressing:

3ThemeetinginTorshavenoccurredafterthescientificmeetinginTromsø.

Page10of82

o Dataneedsandhowtheyaretobeacquired;o Additionalsurveysneededtosupplementexistingsurveys;o Assessment/synthesis;o Modeling;o Hostingofdata;ando Organizationofwork/Coordination.

TheToRsweredesignedtobuildontheresultsfromthefirstthreescientificmeetings.In response to the manager’s request, Norway hosted the 4th scientific meeting inTromsø,Norway,during26-28September2016. In total,29participantsattended themeeting representing 10 governments (Canada, People’s Republic of China, EuropeanUnion,theKingdomofDenmarkinrespectofGreenland,Iceland,Japan,theRepublicofKorea,theKingdomofNorway,RussianFederation,andUnitedStatesofAmerica)andinterested bodies, including the Arctic Council (Protection of the Arctic MarineEnvironment [PAME]/Conservation of Arctic Flora and Fauna [CAFF]), North PacificMarineScienceOrganization(PICES),InternationalCouncilfortheExplorationoftheSea(ICES),andthePacificArcticGroup(PAG).Theparticipatingscientistsandotherswereall familiar with Arctic science, surveys and modeling, and the science necessary tosupportmanagementandconservationoflivingmarineresources.ThedocumenttabledforToR1atthe4thscientificmeeting,SynthesisofKnowledgeonFisheriesScienceintheCentralArcticOcean2016(SoK,2016containedinAppendixBofthisreport),addressestheinformationcurrentlyavailabletosupportthePlan,asdothe summaries of available scientific information by Large Marine Ecosystem (LME)submittedbyparticipantsinthismeeting.ToR2 for the 4th scientific meeting asked the 10 states to develop a Joint ScientificResearchPlantoaddressthefollowingfourmainquestions:• What are the distributions and abundances of species with a potential for future

commercialharvestsintheHighSeas?• Whatotherinformationisneededtoprovideadvicenecessaryforfuturesustainable

harvests of commercial fish stocks and maintenance of dependent ecosystemcomponents?

• What are the likely key ecological linkages between potentially harvestable fishstocksoftheHighSeasandadjacentshelfecosystems?

• Overthenext10-30years,whatchangesinharvestablefishpopulations,dependentspecies,andtheirsupportingecosystemsmayoccurinthecentralArcticOceanandadjacentshelfecosystems?

Page11of82

Meetingparticipantswereabletorefertotwoweb-basedreferencesdevelopedaspartof the 3rd scientificmeeting: the Inventory of Arctic Research andMonitoring report(IARM)and the breakout group reporton the joint monitoring project. The IARMAppendiceshavelinkstoawealthofinformationontheArcticresearchandmonitoringprogramsofmostoftheArcticnationsthatwereatthemeeting.ToR 3, as addressed at the 4th meeting, began the discussion of an implementationstrategyforthePlan,whichwillbefurtherdiscussedatthe5thscientificmeetingtobeheldin2017.This reportdocuments theresultsof the4th scientificmeeting. Themainbodyof thereportcontainstwosections,addressingToR2andToR3.ThereportforToR1isincludedasanappendixtothemainworkshopreport.

II.JointScientificResearchandMonitoringPlan(ToR2)A. IntroductionandBackground

TheToRsforthefourthmeetingofscientificexpertsonFishStocksintheCentralArcticOcean (FiSCAO) held in Tromsø, Norway, 26-28 September 2016, were the result ofdiscussions among the Arctic coastal states and five other countries and entities inWashington,D.C.,inDecember2015.TheDecember2015meetingreaffirmedthatthestate of currently available scientific information needs to be improved in order toreducethesubstantialuncertaintiesassociatedwithArcticfishstocks. ToR2calledforthedevelopmentofaJointScientificResearchandMonitoringPlanfortheCAO,whichweinterpretastheHighSeasoftheArcticOceanandsurroundingwaters.ThegovernmentsrequestedtheplanbuildupontheresultsfromthefirstthreeFiSCAOmeetingsandconsidertheneedforadditionalecosystemmodellingintheregion.ThetimescalefortheSciencePlanis2018through2022,andtheplanismeanttobegintoaddress gaps in our knowledge regarding abundance, distribution, and processesneeded to provide advice on the potential for sustainable harvests of commercialspecies.ThissectionoftheworkshopreportcontainstheJointScientificResearchandMonitoringPlan,aproductofdiscussionsamongthe10statesduringthefourthFiSCAOmeeting.AsestablishedatearlierFiSCAOmeetings,thegeographicfocusisontheHighSeasandsurroundingwaters(Fig.1).ThecentralArcticLMEincludesonlythedeepArcticbasinsseparatedbyridgesandseamounts(Area13,redboundariesFig.1)whiletheHighSeasisthehatchedareabeyondnationalExclusiveEconomicZones(EEZs).Inadditiontothedeepbasins,theHighSeasareaincludesportionsofseveralcontinentalslopeandshelfregions,most notably theChukchi Borderland. However, to fully understand the fish

Page12of82

community components and their variability in theHigh Seas area,wemust also paysomeattention toportionsof theeight LMEsadjacent toor congruentwith theHighSeas LME, as well as the four major gateways to the Arctic (i.e., Bering Strait, FramStrait,theBarentsSeaandtheCanadianArcticArchipelago).

Figure1.Nationalboundaries(blue)andboundariesof theLMEs(red).TheHighSeas area (International waters) ishatched. Numbers refer to LMEsdefined by red boundaries: 13 CentralArctic LME, 5 Barents Sea LME, 6 KaraSea LME, 7 Laptev Sea LME, 8 EastSiberian Sea LME, 12 Northern Bering-Chukchi Seas LME, 14 Beaufort SeaLME, 15 Canadian High Arctic – NorthGreenland LME, 3 Greenland Sea LME(northernportiononly).

B. Objectivesandrationale

ThetermsofreferenceidentifiedthefollowingfourmainquestionstobeaddressedbythePlan(asdevelopedatthe3rdFiSCAOandrefinedattheDecember2015meetingofgovernments):• What are the distributions and abundances of species with a potential for future

commercialharvestsinthecentralArcticOcean?• Whatotherinformationisneededtoprovideadvicenecessaryforfuturesustainable

harvests of commercial fish stocks and maintenance of dependent ecosystemcomponents?

• What are the likely key ecological linkages between potentially harvestable fishstocksoftheHighSeascentralArcticOceanandadjacentshelfecosystems?

• Overthenext10-30years,whatchangesinharvestablefishpopulations,dependentspecies,andtheirsupportingecosystemsmayoccurinthecentralArcticOceanandadjacentshelfecosystems?

Page13of82

ParticipantsatthefourthFiSCAOmeetingreconfirmedtheprincipalaimoftheScientificResearchandMonitoringPlanneeds tobe thecollectionof information toassess thepotential for commercial fishing in the High Seas. Participants at the third FiSACOmeeting discussed the concept of ecosystem-based fishery management (EBFM; Link2010).Atthefourthmeeting,theparticipantsdecided,consistentwithecosystem-basedthinking,thefocusshouldnotbelimitedtopotentialcommercialspecies.Considerationshouldalsobegiventoenvironmentaldriversoffishandshellfishpopulations,aswellasto those organisms that are closely linked to the target species, prey, predators andcompetitors, and what effects harvesting commercial species might have on theselinked species. This includes non-commercial fish and invertebrate species, aswell asorganismsatthelowerendofthefoodchain,suchasphytoplanktonandzooplankton,andat theupperendof the foodweb, suchasmarinemammalsandseabirds (Fig.2).Suchinformationisessentialtoanswerthelatterthreequestionsidentifiedabove.

Figure1.SchematicofanArcticfoodwebinashelfecosystem

During breakout and group discussions, the participants identified more detailedscientific questions that need to be addressed in order to fully answer the fourmainquestionslistedabove.Theyare:• What are the distributions and abundances of species with a potential for future

commercialharvestsinthecentralArcticOcean?• WhatfishspeciesarecurrentlypresentintheHighSeas?• DofishableconcentrationsofcommercialspeciesexistintheHighSeas?• Whataretheirdistributionsandabundancepatterns?

Page14of82

• What are their local life-history strategies, habitat associations, anddemographicpatterns?

• Do these strategies, associations or patterns differ among regions in theArctic?

• Whatotherinformationisneededtoprovideadvicenecessaryforfuturesustainableharvests of commercial fish stocks and maintenance of dependent ecosystemcomponents?

• What are the trophic linkages among fishes and between fishes and othertaxonomicgroups(i.e.quantifyfoodweb(s))?

• How do fish species abundances and distributions vary as a function ofclimatevariability?

• Can the species be harvested sustainably with respect to both target fishstocksanddependentpartsoftheecosystem?Ifnot,whataretheprospectsforthedevelopmentoffisheriesinthefuture?

• What are the likely key ecological linkages between potentially harvestable fishstocksofthecentralArcticOceanandadjacentshelfecosystems?

• What are the connections between fish in the High Seas and those in theadjacentregions?

• Whatarethemechanismsthatestablishandmaintaintheselinkages?• HowmightfisheriesintheHighSeasaffectadjacentandcongruentportions

of shelf ecosystems, including fish stocks, fishable invertebrates (crabs,shrimp, mollusks), marine mammals, birds and fisheries-dependentcommunities (which include those communities that are dependent onsubsistenceharvestsoffish,invertebrates,birdsandmammals)?

• Overthenext10-30years,whatchangesinfishpopulations,dependentspeciesandthesupportingecosystemsmayoccurinthecentralArcticOceanandadjacentshelfecosystems?

• Whoarethe“winnersandlosers”inthenext10-30years?• Whatchangesinproductionandkeylinkagesareexpectedinthecoming10-

30years?• What northward population expansions are expected in the next 10-30

years?• What are the anticipated impacts of changes in ocean acidification in the

next10-30years?

Baseline information, especially on fish populations, is lacking for many parts of thecentral Arctic Ocean andmost notably for the High Seas region, hence a substantialmapping effort is initially required to begin to address the above questions. Here,mapping refers to the initial data collection and analysis in the areawith the aim ofcreatinganinitialsnapshotofthesystemtoassesswhatspeciesresideintheArcticHighSeas, their spatial variability, and whether abundance levels of potential commercialspecies could sustain a commercial fishery.Monitoring on the other hand, describes

Page15of82

data collection to assess temporal variability in abundance levels and variouscomponents of an ecosystem over time, which will be implemented after the initialmapping is completed in the High Seas. Research is needed to assess the data andevaluate mechanisms and changes and is relevant for all four main questions. Adescription of the mapping and monitoring plans is provided next, followed byadditionalresearchactivitiesneededtoanswerquestions3and4.C. What are the distributions and abundances of species … and what other

informationisneeded…

Weanticipateanswering the first twoquestions identifiedwill require themajorityofthe first five years of the Plan to focus onmapping,modeling and the intitation of amonitoringprogramsuitablefordetectingfurtherchanges.1.MappingofspecieswithpotentialforfuturecommercialharvestVery few published accounts of Arctic fishes actually refer to samples from the HighSeas.InasearchoftheliteratureprovidingspecificlocationsofcaptureandsimilardatasubmittedbytheParties,thepresenceofonly12fishspecies,andarguablynofishablemacroinvertebrates, could be confirmed for the High Seas area (Appendix B). Hence,available data and published descriptions are insufficient to establish the speciescompositions of the fish and invertebrates, let alone to specify the distributions andabundancesofpotentiallyharvestablefishstocksandinvertebratesintheHighSeas.Asynopticmappingsurveyshouldbecarriedout,coveringasmuchoftheHighSeasaspossible in order to characterize fish and invertebrate communities and their spatialvariability.Aone-yearsurveycoveringtheentireareawouldbeidealforcharacterizingspatialvariability.Iftheareacannotbesurveyedinasingleyear,itshouldbesurveyedinasfewyearsaspossible(i.e.onetothreeyearsintotal).Planning of the sampling strategy should involve survey design specialists, fisheriesscientists and oceanographers, as well as data analysts andmodelers, to ensure theappropriateandnecessarydataarecollected for the requiredanalysesandareusefulfor model calibration and validation. The survey should be a synoptic, multi-shipoperationwithasmanynationscontributingaspossibletoobtainthebestcoverageandcollaboration.Ifthesurveyisnotfullysynoptic,thentheindividualshipsurveysshouldoverlap in timeasmuchaspossibleorbe conductedclose in time ifnotoverlapping.Standardizeddatacollectionprogram,protocols,andreportingformatsarerequiredforall vessels involved in the survey to facilitate combining and comparing the data,especiallyforabundanceestimates.Thismayrequireinter-calibrationofnetsandotherinstrumentation, as well as revisiting sampling and measurement methods. Whereinternationallyagreed-tobestpracticesareavailable,theseshouldbeused.Ifnoneare

Page16of82

available, there should be agreement on the data collection methods and datatreatmentbeforesurveyscommence.Sampling of the biota will focus upon fish and shellfish, especially those speciesconfirmedtooccurintheHighSeasareathatarealsoconsideredpotentialcommercialspecies,e.g.Boreogadussaida (calledArcticorPolarcod),Arctogadus sp. (A.borisovi,knownas East Siberian cod;A.glacialis, (also calledArcticorPolar cod),Reinhardtiushippoglossoides (Greenland halibut). Although not confirmed as occurring in theHighSeas, Chionoecetes opilio (snow crab) is certainly of interest because it has beensampledfromdepthsnearbyintheBeaufortLMEandarealsofoundontheHighSeasportionsof theNorthernBering-ChukchiandEastSiberianLMEs. However, in lightofthe 133 potential commercial species that have been identified in adjacent LMEs(AppendixB),projectednorthwardshiftsinfishdistributions(Cheungetal.,2010),andthelistofspeciesthatHollowedetal.(2013)suggestedhavehighpotentialtomoveintothe Arctic [e.g. Hippoglossoides robustus (Bering flounder), Pleuronectesquadrituberculatus (Alaska plaice),Amblyraja hyperborea (Arctic skate), and Sebastesmentella(beakedredfish)],itisimportanttoadoptanadaptivestrategythatcanfocuson any species with potential for commercial exploitation. Among the invertebratespecies, theremay be the possibility of harvesting small pelagic crustaceans for theiromega-3(e.g.ThemistolibellullaintheArctic).Surveysofopenwaterareas(vessel-based)shouldbecarriedoutwhentheice-freeareais at or close to its maximum. These surveys should (1) use multiple types of fishsampling gear, e.g. longlines, traps, gillnets, etc.; (2) undertake hydroacoustic surveysforpelagicfishes,includinggroundtruthing;and(3)usebottomtrawlingonlyinsuitablehabitats. Environmental DNA (eDNA) samplingmay be pursued as a complementaryapproach to themappingexerciseandmayprovideamoreviableapproachgiven iceconditionsandknownvesselcapabilities.Shouldbottomtrawlingbeundertaken,itisadvisabletodetermineifsensitivebenthos(e.g.rarespecies,cold-watercorals)arepresentintheplannedtrawlarea.Thisshouldbe done using hydroacoustics, side-scan sonar, multi-beam echo-sounders, and/orautonomousvehiclesequippedwithvideorecorders. An internationallyagreedpolicyonwhat constitutes trawlableornon-trawlablebottomconditionswill beneeded. Innearice-coveredareas,surveysshoulduse(1)theappropriatefishsamplinggearfortheconditionsandlocation,suchaslonglines,gillnets,traps/pots,etc.,(2)SurfaceUnderIceTrawls, ifavailable, (3)acousticsonglidersorotherautonomousvehicles, ifavailable,thatcangoundertheice,and(4)eDNAsampling.Thespeciescomposition,distribution,andabundance(numbersandbiomass)estimatesof fishand shellfish specieswillbedetermined fromacombinationof catchdataandacoustics,dependingon species.Acousticdatawill provide informationon the spatial

Page17of82

scale of pelagic fish stocks, with net sampling ensuring correct identification of thespecies.However,oftheexpectedfourmaincommercialspecies,onlythegadids(e.g.,Boreogadus saida andArctogadus spp.),which have swim bladders,would be readilydetectablebyacoustics.Populationdemographics(maximumandmeanlength,weight,age, sex,maturity,and fecundity),aswellasdiet informationand trophic linkages forfishspecieswillbedeterminedfromstomachcontentsplusstableisotopeandfattyacidanalyses.Habitatusewillbedeterminedbycomparingfishcatcheswithenvironmentaldata.Mappingofecosystemvariablesformaintenanceofdependentecosystemcomponents-Tounderstandthedynamicsoffishandshellfishspeciesandtheirroleintheecosystemthey inhabit (mainquestion2),weproposeanobservationprogramthatalso includesseveral other ecosystemcomponents, includingphytoplankton, zooplankton, benthos,marine mammals, and seabirds. As much of these data will be collected on the fishsurveys as time will allow. Estimates of plankton and zooplankton biomass andnumbers will be made based upon net catches, as well as from acoustic data.Phytoplanktonandzooplanktonspecieswillbedeterminedfromnethauls.Duringthesurveys,on-boardobserverswillidentifyandcountmarinemammalsandseabirds.Forbenthichabitatsonthecontinentalshelfandslopeareasof theHighSeasandforsympagichabitats throughout theHighSeasandadjacentwaters, initialvideosurveysusingautonomousunderwatervehicleswillhelpidentifyappropriatesamplingmethods,criteria for stratification, and initial allocations of survey effort. In addition to visualsurveys, net samplingof sympagic habitats (David et al., 2015), and a combinationoflonglines,pots,dredgeandnetsforbenthichabitats,arelikelytobeappropriate.The environmental variables to be measured on the surveys should include sea ice,temperature, salinity, currents, dissolved oxygen, pH, pCO2, alkalinity, turbidity, lightlevels,nutrients,contaminantsandbottomtopographyandtype.Supplementarydataonseaicewillbeobtainedfromavailablesatelliteimagery(ontheweb),andsomedataon bottom topography and type will be available from previous bottom mappingsurveys. Inaddition,environmentaldatawillbecollectedfromlong-term(oneyearormore)moorings, includingCTD,nutrient, chlorophyll-a,AcousticZooplanktonandFishProfiles (AZFP) data, as well as Acoustic Doppler Current Profiler (ADCP) data. Also,backscatter from ADCP data will provide information on zooplankton and theirvariability. Acoustic sensors can also be deployed on the moorings, from whichinformation on marine mammal phenology (e.g. time when entering and exiting theArctic)canbeextracted.ThemooringsshouldbedeployedinstrategicareassuchastheArcticgateways,regionsofpotentialfishconcentrations,andareasofdeepbasin-shelfexchange.Deploymentofglidersandotherautonomousvehicleswillbeusedtocollectenvironmentaldataundertheiceandduringperiodswhentheshipsarenotoperating,thusextendingseasonalcoverage.

Page18of82

Data analysis and evaluation of mapping results - Upon completion of the mappingsurveys, the fish datawill bemergedwith any fish data collected by other programsduring the same year or time period in order to generate as complete a picture aspossible.Theseshouldbecomparedtoavailablehistoricaldatatoputthesurveyyearorperiodintoalonger-termperspective.Aworkshopwillthenbeconvenedtoreviewthe data and to determine if there are any fish or invertebrate stockswith sufficientbiomass/productivity/surplus production towarrantmore detailed surveys to supportfisherymanagementadvice(i.e.stockassessments.)Anumberofquantitativeindicatorswillbedevelopedfromthemeasurementscollectedduring themappingefforts. For thebiota, thesewill includecatchrateandcatchperunit effort (CPUE) for the dominant fish species, ratios of demersal to pelagic fishspecies in terms of both biomass and numbers, of piscivore to planktivores, and ofinfauna to epifauna, size spectra (slopes of community size spectra), taxonomicdiversity,sizeatmaturity,andtrophiclevelortrophicspectrum.Fromthephysicaldata,indicators will include vertical stratification, mixed-layer depth, light attenuation andnutrient ratios. Furtherwork in this regard shouldbe coordinatedwithother groupsinvolved in developing indicators such as PICES, the ICES/PAME Working Group onIntegrated Ecosystem Assessment (IEA) for the Central Arctic Ocean, and other ICESworkinggroups.Whilenewsurveysandmeasurementsareparamounttodeterminewhat,ifany,specieshave sufficient abundance and productivity to warrant a fishery and to improve ourknowledge of ecosystem structure and function in the High Arctic, we must takeadvantage of existing programs and platforms already operational in the Arctic. Thisincludeshavingvessels in theArctic collectingacousticdatacapableof fishdetection,havingmarinemammalandseabirdobserversplacedonotherArcticcruises,andbeingaware of the data collected by the Distributed Biological Observatory (DBO) in thePacific Sector of the Arctic, the German Hausgarten Observations in Fram Strait, theMultidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC), thePacificArcticClimateEcosystemObservatory(PACEO),Russianon-icesurveys,etc.Alistofexistingresearchandmonitoringprogramspresentlyunderwayshouldbedevelopedtogetherwiththetypesofdatatheycollectandwhere.Ifpotentiallyharvestablestocksareidentified-Ifitisdeterminedthatthereissufficientfish production to support harvesting of one ormore species in the High Seas, thenconventionalstockassessmentmonitoringsurveysshouldbeginimmediately.However,no fishery should commence until it is confirmed through a discussion with theappropriate group of managers that there is the necessary data on abundance andproductivitytoopenasustainablefishery.ThegeographicfocusofthesesurveysshouldbeintheareaofthetargetstockandnotonlytheHighSeas.Anequilibriumconditionisanormalassumptionofstockassessmentmethods.However,since it isexpectedthat

Page19of82

theHighSeaswillbeanon-equilibriumecosystem(e.g.duetopossiblespeciesinvasionsorclimatechange), thiswill requirespecialconsiderationforthesurveyandanalyticaldesigns. Still, there should be asmuch consistency as possible betweenmapping andmonitoring phases. Also, as much information as possible should be collected(oceanography, lower tropic levels, higher trophic levels) to be able to undertake anecosystemlevelassessment.Potentialbycatchwouldneedtobeconsideredwithinanyassessment. Research cruises to determine the life history characteristics of thetargetedspecies,aswellasthepopulationandstockdynamicsalsoneedtobecarriedout.Regularlyrecurringsurveysappropriateforgeneratingstockassessmentadvicetomanagementwithinanecosystemcontextshouldbeundertaken.Ifnoharvestablestocksareidentified-Ifitisconcludedaftercompletionofthemappingsurveys that there is not sufficient fish abundance and production in any species towarranta fishery, thenamonitoringplantodetecttriggers (indicesofchange)willbeestablishedtodeterminewhentore-sampletargetareasthatmayhaveincreasedfishstocks relative to the mapping phase. Examples of such triggers include: increasedprimary productivity in the High Seas based on remote sensing and mooring data;greatlyreduced icecover intheHighSeas;northwardexpansion indistributionof fishstockinanadjacentEEZwithreasonableextensionintoHighSeas(i.e.suitablehabitatpresent); significantly increased primary or fish productivity in an adjacent EEZ; orincreasedzooplanktonbiomass inHighSeasareasbasedonmooredAZFPsor inEEZs.The moorings established in the mapping phase should be maintained and newmoorings deployed if required. Suchmeasurements would have to cover a sufficientarea of the High Seas, and nations would need to be identified to carry out suchmonitoring. Also, therewould have to be agreement on themonitoredmetrics thatwould trigger a new survey, which should be determined by an international post-mappingphaseworkshop.TriggerswillberegularlymonitoredforatimelyresponsetochangesinconditionswithintheHighSeasoradjacentterritorialwaters.UseofTraditionalKnowledge -Traditionaland localknowledge isavaluablesourceofinformationrelevanttoArcticfisheries.However,itisanticipatedthattherewouldbelimited traditional/local knowledge specifically for the High Seas due to the distancebetween the High Seas and the nearest communities. Coastal communities can stillprovide valuable data from adjacent regions. In the coastal Arctic, communities arealready monitoring the environment and fish populations in some regions, andcooperative monitoring programs to combine these data with scientific survey datacould be developed where relevant. In terms of fisheries, local fishers can provideimportant information, especially in terms of community fish structure and thegeographicdistributionsoffishandmarinemammalspecies,andcouldcollectdataonfish demographics, as well as environmental data. Local communities could also behelpfulinobtainingdietdataandinformationontriggervariables.Wherepossibleand

Page20of82

relevant, nations should begin to contact local inhabitants of the Arctic to determinetheirinterestinparticipatinginsuchamonitoringprogram.2.MonitoringTheextentofthemonitoringwill,toalargedegree,dependuponwhatisfoundduringthemappingphase.IfpotentialcommercialstocksarediscoveredintheHighSeasarea,monitoring for stock assessment purposes will be required. If no commercialconcentrations of fish or shellfish are found, a minimal monitoring program can bedesigned with infrequent fish surveys but continued environmental monitoring,especiallyforthe“triggervariables”.Monitoring of environmental conditions relevant for the ecosystem will includemoorings augmented by satellite data on sea ice, near surface temperature, currentsthrough sea level elevation measurements, and chlorophyll-a concentrations whenthereisnoice.Long-termcurrentmooringsintheArcticgatewaysarealsorequiredtomonitor physical, chemical and biological fluxes into and out of the Arctic. Suchmoorings havebeenoperational in theBering Strait, FramStrait and theBarents SeaOpeningforonetotwodecades.Theseprogramsshouldcontinueandenhancethemifconsiderednecessary(e.g.higherspatialresolution,morebiologicalsensors,etc.)Wefurtherrecommendthatthestrategyincludeaseriesofacceptedfixedstationswithstandard protocols for biological, biogeochemical and physical sampling, such as thepresent DBO sites in the Pacific Sector of the Arctic. Ships are encouraged to takemeasurements at these sites if in the vicinity. Such sites aremost convenient in theArcticgatewaysas shipscan takemeasurementson theirway toand fromtheArctic.ThepresentDBOprogramshouldbeexpandedtoincludemoresites,withemphasisonestablishingsuchstationsintheAtlanticSectoroftheArctic,particularlyinFramStraitwherewe can take advantageof long-termnationalmonitoring sites that include theHausgarten Experiments (Germany) and current meter moorings (Germany andNorway).Inaddition,measurementsforfishandshellfishshouldbeencouragedatDBOsites(Fig.3).TheDBOsitesinthePacificsectoroftheArcticareoverseenbythePAG,an informal internationaleffortofscientistssupportedbygovernments in the formofgrantstothePAGsecretariat. AnArcticwidecoordinatingeffortsimilartothatwhichoverseestheDBOsisrecommended,orbarringthat,anArcticGroupformedtooverseeDBOsintheAtlanticsectoroftheArctic.

Page21of82

Figure3.DepictionofthecurrentDBOsites.3.ModellingIn parallel with the plans for in situ and remote monitoring of the Arctic, modellingeffortsneedtobeexpandedtohelpunderstandandexplainobservations.Modelscanalsohelpwiththedesignofobservationalefforts,suchasdeterminingcriticallocationsfor particular measurements or sampling frequency. Monitoring plans, on the otherhand,shouldensurethat theresultscanbeusedtohelpcalibrateandvalidatemodelresults. Thus, modellers and observationalists should discuss their necessaryrequirementstodevelopamutuallybeneficialsamplingstrategy.Thisshouldtakeplacepriortotheinitiationofthesamplingprogram.Oneofthepresentdifficultiesrelatedtofisheriesisthelackofmodelsthatincludefishwithin the High Seas. Exceptions are the environmental envelope models in whichfutureprojectionsofenvironmentalconditons(primarilytemperature)arecoupledwithpresentobserved thermal rangesofdifferent species.Themodelassumes the specieswill inhabit a similar thermal range in the future, so projections can bemade of thespecies’ future geographical distribution (Cheung et al., 2010). Thesemodels are not

Page22of82

mechanisticanddonotconsiderpotentialchallengessuchas linkagestopreyspecies,potentialforrecruitment,spawningsites,bottomtypefordemersalfishes,connectivitybetween life stages, etc. During the past several years, suchmechanistic end-to-endmodels have been developed for temperate and more southern regions that alsoinclude fish and even fisheries. Development and application of suchmodels for theHighSeasandadjacentregionsarerequired.This iscertainly true ifwearetoanswerthe question of how High Seas fisheries would affect adjacent shelf ecosystems,including fish stocks, marine mammals, birds and subsistence-based and fisheries-dependentcommunities.Improvedmodellingofpredator-preyrelationshipsisneededfor which diet data collected during fish surveys should help improve modelparameterizations. Zooplankton data collected during surveys and by otherinstrumentationshouldprovidebetterestimatesofzooplanktonabundanceandspatialdistributionsformodels.SomestockassessmentmodelshavebeendevelopedbytheArcticFisheriesWGofICES,andthePICESWG28 IFRAMEModelhasdevelopedecosystemswithreferencepoints.Thesemodels,orsimilarones,canbeusedoradapted ifsufficientabundancesof fishpopulationsarefoundintheHighArctic.However,nomodelshavebeendevelopedforsnowcrabintheArctic;modellingwillneedtobeundertakenifthereispotentialforafisheryonthisspecies.Models of carbon fluxes and lower trophic levels are presently operational and arebeingusedtoexaminedynamicprocesses,variabilityandinfluencesofclimate. Thesearecontinuingtobeimproved.Whilethisstrategicplandoesnotsuggestinvolvementinactualmodelling,theprogramshouldkeepabreastofnewdevelopmentsandthelatestresults.

D. What are the likely key ecological linkages between potentially harvestable fishstocksofthecentralArcticOceanandadjacentshelfecosystems?Keyecological linkagesbetweenharvestable fishstocksof theHighSeasandadjacentshelfecosystemscanariseowingto:migrationforthepurposesoffeedingorbreeding;larvaldrift;lifecyclestagesforsessilespecies;stockexpansionsthatcauseaspeciestomove into marginal habitats; a response to strong competition; changing physicalconditions; and ecological strategy of species based on their ability to adaptphysiologically. In addition, fishing pressure in adjacent areas could impact theabundances of fishes seen in the High Seas. To identify key ecological linkages, anevaluation of themechanisms at playwill be conducted. Thosemechanisms can alsoteach about how fisheries in the High Seas may affect adjacent shelf ecosystems,including fish stocks, marine mammals, birds, and fisheries-dependent communities(whichincludethosecommunitiesthataredependentonsubsistenceharvestsoffishes,birds,andmammals).Thedatawillbuildlargelyonthemappingandmonitoringactivityandconsiderallpartsoftheecosystem.Themethodologywillincludetheuseof,among

Page23of82

other things,ecosystem indicatorswith referencepoints,Arcticplanktonmodels, ICESArctic fisheries working group results as well as other fish stock assessmentmodels,carbonfluxmodels,biophysicalcoupledmodels(withtheneedto incorporateseaice)and the PICESWG 28 IFRAMEModel. It will also serve useful to plug in end-to-endmodelsfortheHighSeasandadjacentareas.

Todeterminethemechanismsresponsibleforlinkages,wealsorecommendestablishingtargetedresearchprojects.Itisunlikelytherewillbesufficienttimeduringfishsurveysto carry out all of the necessary sampling (at the appropriate spatial and temporalscales)toaddressthisquestion.Hence,thereisaneedfordedicatedresearchcruises.One additional mechanism to explore is the role of eddies that exist along thecontinentalslopeandcanentrainshelfwatersandtransportthewaterandorganismsinthewateroutintothecentralbasinsoftheArcticOcean(WatanabeandHasumi,2009;Watanabe, 2011). Dedicated research cruises are also needed to address otherdistributionalissues,suchasthelocationofspawningsitesandmigrationroutesofthestocksinquestion.Fundamental to fisheries and fisheries management is the question of populationstructure,forwhichwehavelittletonoinformationintheHighSeas.Todealwiththisissue,fishsamplesfromthesurveyscollectedatlocationsthroughouttheArcticshouldundergoDNAanalysistohelpdeterminestockstructure.Thisshouldbecarriedoutforthemajorspecies,especiallyanypotentialcommercialspecies.Ofparticularinterestiswhether Arctogadus in the Arctic is a single species or multiple species. Anotherexample iseelpouts(althoughunlikelytargetspeciesfor fisheries, theyarethoughttobe ecologically important in some areas), for which there is considerable taxonomicuncertainty in recent research. Taxonomic issues should be addressed using genetictechniques,aswellaspossiblyclassicalapproaches. It is importanttoknowiffisharefromdifferent stocksorpartofonepan-Arctic stock, aswell as connectionsbetweenfishstocksintheHighSeasandadjacentshelfareas.Samplesfromthelattercouldbeobtainedthroughnationalsurveys,whereavailable.Habitat utilization of species is a key issue both for understanding linkages andanticipating future changes, and the investigation will start with species that havepotential to move from adjacent areas into the High Seas. Identification of speciescharacteristicsandhabitatcharacteristics thatsupportmovementwillbe investigated.Target specieswill be species of potential commercial interest, but other species arealsoofconcern.

Page24of82

E. Over thenext10-30years,what changes in fishpopulations,dependent species,and the supporting ecosystemsmay occur in the central Arctic Ocean and adjacentshelfecosystems?Whoarethe“winnersandlosers”inthenext10-30years?-Withfurtherreductionsinsea-ice cover and associated environmental changes, some species will experiencestress,populationdeclineandpossiblybecomeextinctwhileothersmaytakeadvantageof changes. Reductions in sea ice will directly reduce the habitat available for ice-associated species of fish and marine mammals. Arctic grazers (fishes, seals, walrus,whales andbirds) canexperience significant changes if their traditional lipid richpreyspeciesarereplacedbymoreboreal,lipid-poorspecies.Increasedmigrationofforagingboreal/temperate species can have impact on existing arctic resources throughincreased competition. This issue should be addressed in a broad sense, not onlyfocusingontoday’scommercialspecies.Future decreases in the sympagic food web and increases in open-water planktonbiomasscanaffectspecies,aswellasothercomponentsoftheecosystem.Moreover,ashiftfromanice-influencedtightlycoupledpelagic-benthicsystemtoalesscoupledice-freesystemcanhaveconsequencesfordemersalfishesandbenthos.Otherexamplesofrelevanceare increased/decreasedcompetitionbetweenspecies, e.g.saffroncodandpolarcodintheChukchiSea,navagacodandpolarcodintheKaraSea,andcapelinandpolar cod in the Amundsen Gulf. There is a clear need for laboratory studies todetermine, for example, temperature-dependent growth rates for potential targetspecies. Such information is also critical for bioenergeticmodelling efforts.We notethat the general physiology of Arctic fish species is, as suggested by Farrell andSteffensen (2005), “woefully under-represented”. Indeed, there are only a fewlaboratoriesatpresentthatcanundertakeworkontemperature-dependentrates,andwe note that they have a hard time obtaining the necessary funding to remainoperational. This needs to be addressed. The investigations will include laboratorystudies,insitusamplingandmodellingstudiesforpredator-preyrelationships.Whatchangesinproductionandkeylinkagesareexpectedinthecoming10-30years?-Itisaregion’spotentialwithrespecttoprimaryandsecondaryproductivitythatformsthebasisforproductionathighertrophic levels.Measurementsofprimaryproductionin the Central Arctic LME show very low levels.With the reduction of sea ice underclimatechange,therearesuggestionsthatprimaryproductioncouldincrease.Thisissueshouldbeaddressedinabroadsense,focusingonbothlocalproductionintheCentralArctic LME and production on the surrounding shelves, taking into account primary,secondary and fish production, as well as the physical and chemical drivers of theproductionandadvectiveprocessesthatbringcarbonandnutrientsfromoutside.

Page25of82

The Central Arctic LME is characterized by stratified water masses, which causesnutrient limitation on biological production (Tremblay and Gagnon, 2009). With areducedandthinnersea-icecover,theproductiveperiodwillpossiblybeprolongedandmay result in amoderate increase in total yearly primary production (Slagstad et al.,2011). Strong vertical stratification due to seasonal icemelt is likely to limit nutrientsupply also in the future. However, increases in upwelling onto the shelves from thedeep basins due to the retraction of the ice edge beyond the continental slopemaysignificantly increase production in slope areas (Carmack and McLaughlin, 2011;Tremblayetal.,2011).TherearestilllargeunknownsregardingfutureproductionintheHigh Seas. Topics to be adressed include determining the levels of primary andsecondaryproductionthatexisttodayandforecastingwhatlevelswillbepresentinthefuture.Thesegoalsshouldbeachievedbycombiningproductioncalculationsusing14C,13C and changes in nutrient concentration with numerical modelling. It will also berelevant to calculatehowmuchproduction isneeded to sustain fishpopulationswithdensities interesting for commercial exploitation with sufficient surplus for marinemammals and birds. Changes in pelagic production (associated with future changesfrom benthic-dominated systems to pelagic systems) will be evaluated using sea-icecover as an indicator/trigger for pelagic production (although it still may be nutrientlimited).Timingoficemelt/breakupcouldbeanothertrigger/indicator.Regarding fish production in the High Seas, amajor question is whetherBoreogadus(polar cod) spawning is confined to the shelf areas. Although the High Seas regionincludessomeshelfandshelfbreakareas,themajorityofthearealiesoververygreatdepths. Thus, it is an important question whether polar cod is able to spawn withsuccess over deep water with future reductions in sea-ice cover and any associatedchanges in ocean circulation changes. To evaluate this topic, existing data of geneticstockstructureofpolarcodshouldbecomplementedwithnewsamplestoreveal thedispersalandthestructureofthestock/stocks.IsthereapopulationinthedeepwaterportionsoftheHighSeas,orisitjustspill-overfromshallowerareas?Currentspawningsitesmust be identified, andwhether polar codwill be able tomaintain a closed lifecycle with future changes in sea-ice cover and ocean circulation/sea-ice drift will beinvestigated using general circulation models in combination with individual basedmodelsoffishandecologicalmodels.Whatnorthwardpopulationexpansionsareexpectedinthenext10-30years-Previousstudies have projected shifts in bio-climatic habitats of marine fish species andconcluded that new species will colonize Arctic ecosystems at an accelerated raterelative toother regionsof theglobe (Cheungetal.,2010).Closerexaminationof theprocesses governing fish distributions revealed range expansions and successfulcolonizationofnewregionswilldependonacomplexsuiteoffactors(Walther,2010),includinghabitatsuitability,habitatqualityandpopulationsize(AusterandLink,2009).Arecentassessmentofthepotentialforfishorshellfishstocksorstockgroupstomove

Page26of82

fromthesub-ArcticareasintotheArcticOcean,revealedthatseverallifehistoryfactorsshouldbe consideredwhenassessing thepotentialof species tomove in response tochangingclimateconditions(Hollowedetal.,2013).Investigations are needed to monitor the Pacific and Atlantic gateways to detectmigrationsandtoidentifykeylinkagesfromtheshelvesanddeeperoceansoftheHighSeas, including modeling on a species basis. Sampling may be informed by modelpredictions of likely range extensions species are needed with respect to expectedenvironmental changes toevaluatewhether theywill becomeestablished in theHighSeasonayear-roundbasisorasseasonalmigrants.Themonitoringandmodelingwillevaluatewhatspecies(e.g.Atlanticherring,bluewhiting,mackerel,andcapelin)willbeseasonalmigrantsintotheAtlanticArtic,andintothePacificArctic(e.g.walleyepollock,Pacific cod, sand lance,Pacific salmon).An important issue isalso to investigatewhatdeterminestheboundariesoffishdistributions(habitatsuitability,etc.).Another issueofhighrelevancethatshouldbeof focus is the introductionof invasivespecieswithincreasingshiptraffic,aswellasthatclimatechangemayopenuparoutefor Pacific species to the AtlanticOcean and vice versa (Wisz et al., 2015). Bycatchesmightservesasusefulindicatorsforsuchspecies.What are the anticipated impacts of changes in ocean acidification in the next 10-30years? -The increase inatmosphericCO2andelevatedoceanicuptakeofatmosphericCO2areexpectedtoputstressonmarineorganisms(i.e.,copepods,pteropodsandfish),althoughcalcifiersareconsideredparticularlyvulnerable.IntheArcticOcean,enhancedfresheningandlossofsea-icecoverwillpromotefurthersolubilityandamplificationofoceanacidification.Changes in theArcticOceanhavealreadybeenobserved,and thepresenceofaragoniteunder-saturatedwatersonthefreshwater-influencedshelvesofthewestern Arctic Ocean in summer 2005 has been reported (Chierici and Fransson,2009).Thischangeoccurredsubstantiallysoonerthanwaspredictedbyrecentdynamicmodelsthatsuggesteditwouldnothappenuntil2030(Orretal.,2005;Steinacheretal.,2009).Given thepotentialecological consequences, studiesofprocessesaffecting thenaturalvariabilityofcalcium-carbonatesaturationlevelsintheArcticOceanareofgreatimportance in predicting the impact of increased atmospheric CO2 levels on thevulnerableecosystemsandcarbonflowsintheArcticOcean.So far investigations are inconclusive as to the extent of the effects of oceanacidification, but it has the possibility to have large impacts in the future, especiallygiventherapidrateofchangeinpHintheArctic.While it isnotrecommendedthatalarge research effort be initiatedwithin thepresent program, it is important that thegroupkeepuptodateonimpactsorpotentialimpacts.Thus,linkswithAMAPandthework they are doing must be forged. Laboratory studies on the effects of increasedoceanacidificationonsnowcrabshouldbeundertakenifthisspecies isfoundtohave

Page27of82

potential for commercial fishing and no other group is examining the role of oceanacidificationonsnowcrabshells.

III.AFrameworkfortheImplementationPlan(ToR3)Discussions on implementation produced a framework (Fig. 4) with four tracks thatwouldberequiredtoprovidethescientificadvicenecessarytosustainablymanagethecentralArcticOceanfishstocks:

Figure4.Schematicoftheimplementationplan

Such a framework can provide the structure (and ToRs) for discussions at the 5thmeetingofFishStocksinthecentralArcticOceanlaterin2017.A.MappingandMonitoringThistrackrepresentsthesurveyelementsoftheprogram,andweproposetoconductitinthreephases:

• AninitialMappingphase–synopticinitialsurveysconductedovertwotothreeyearstosurveyasmuchoftheHighSeasCAOaspossibleandcharacterizethepresenceof

Page28of82

demersal and shellfish stocks in the region. The product of thisworkwill be theidentificationofpotentiallyharvestablestocks(ifany).

• Monitoringphase-Ifnoharvestablestocksareidentifiedduringthemappingphasethen work will focus on monitoring for change (e.g., maintained monitoring andsamplingstations)byusingindicesortriggersidentifiedaspartofTrackB.

• Stock assessment survey phase – If the mapping phase identifies a potentiallyharvestablestockorthemonitoringphasetriggersaremet,thenitwillbenecessarytoconductfocusedassessmentrelatedsurveysforthespecificstock/area.Thiscouldleadtoannualsurveyappropriateforgeneratingtotalallowablecatch(TAC)advicewithin an ecosystem context. These surveys should be designed as ecosystemsurveys to help further clarify the trophic relationships that can affect theassessment.

Data from the mapping and monitoring phase should be ecosystem focused (e.g.,includedataonfishstocks,spawningareas,zooplankton,primaryproductivity,andfishconsumers).Circumpolargeneticstructureofrelevantfishstocks(e.g.polarcod)shouldbeusedtodefinestocks.Dataonenvironmentaldrivers(e.g.watercurrentsforlarvaldrift,whattriggerschangesinprimaryproduction,upwelling).Resultsfromlaboratoryexperiments with fish (bioenergetics, life history, temperature-related survival andgrowthrates)willbenecesssary.Dataonfood-webinteractions(whatthefishfeedon,competition, predator-prey relations, etc.) are needed. It is important to have thesurveyscoveringboththeshelfseasandthedeepocean(intotheHighseas)tobeabletoconsiderkeylinkagestoshelfseas.Existing surveys should be continued, but additional surveys will be needed. It isimportantthatallsurveys,particularlyinthemappingphase,becoordinatedtoensurefullcoverageofthearea.Newsamplingmethodsshouldbeconsidered.Forexample,useofeDNAmaymakethemappingphasesimplerasitwillnotrequiresurveyvesselstosetfishinggear.Undericesampling methods also need to be further developed using gliders and otherautonomousunderwatervehicles.Finally, implementation of the mapping and monitoring phase will require theestablishmentof somestandinggrouptocoordinate thesurveys,house thedata,etc.(seeCoordinationsectionbelow).B.ReferencePointsandIndicatorsAseparatetrackwillbenecessaryto identifythereferencepointsthatwillbeusedtomanagethefishery,andthentodeterminetheappropriatethresholdvaluesthatwould

Page29of82

invoke the formation of a Regional Fishery Management Organization and finally afishery. Appropriate biological reference points should be developed from existingsuccessful fishery management experience and discussed with policy makers todetermine which will be used. The menu of potential reference points should bedevelopedatthenextscientificmeetingonHighSeasfisheriesandpresentedtothe10statesattheirnextmeetingfordecision.Appropriatethresholdvaluesforthereferencepoints should be developed as a Management Strategy Evaluation conducted by aWorkingGroupofscientistsfromthe10states. Itwillbeamajorchallengetodevelopandcomputereferencepointsthatarerobusttothe very strong non-equilibrium conditions of the Arctic. The changes in stock'sproductivityinducedbyenvironmentalshiftsandmigrationswillneedtobetakenintoaccountinthedefinitionofthereferencepoints.Similarly, an evaluation of available ecosystem and fish stock indices should beconducted to provide themonitoring triggers (indices of change) that will determinewhen to re-sample target areas that may have increased fish stocks relative to themappingphase.Examplesinclude:• IncreasedprimaryproductivityintheHighSeas–remotesensingandmoorings.• ReducedicecoverintheHighSeas.• IncreasedfishstockinanadjacentEEZ.• IncreasedproductivityinanadjacentEEZ.• IncreasedzooplanktonbiomassinHighSeasorEEZ.While the development of the indices and triggers can be developed using theaforementionedWorkingGroup,thereremainsaneedforabodytomonitorthetrigger(seeCoordinationsectionbelow).Thiswouldincludeidentifyingthedegreeofchangeinthemonitoredmetricthatwouldtriggeranewsurvey,andthatthetriggerdataarebeingcollectedappropriatelyintimeandspace.C.ModelingandScenariosDevelopinganapproachtoassessmentmodelingwillbenecessarytomanageHighSeasfishstocks.Evenifthemappingexercisedoesnotdisclosestocksatharvestablelevels,it is important to broadly define the approach to stock assessment early on, so as toensure theappropriatedataarebeing collected. Itmaybeappropriate, given recentadvances inmodeling data limited stocks and in the use ofmultispeciesmodeling tomake a decision early on to explicitly incorporate an ecosystem based approach toprovidingadvice.Ecologicalmodels(e.g.Gadget,Ecopath,Atlantis),adapted/developedto Arctic Ocean conditions, should be considered to inform the stock assessmentmodeling.

Page30of82

GiventhecentralArcticOceanHighSeaswill continuetochangeas icecover retreatsandtheecosystemresponds,itisimportanttodirectlyincorporatethisevolvingsystemintothewaymanagementadviceisprovidedforHighSeasfishstocks.AscenariobasedapproachthatexploresdifferentalternativefuturesfortheHighSeascanprovidecrucialinsightsintohowstocksshouldbemanaged.Several approaches can be taken for exploring the impacts of these scenarios intoassessment advice, and itmay be that a suite of differentmodels will be needed toaddress changes for the next 10-30 years. Themodels could be simple 1Dmodels toinvestigate processes. 3D general circulation models with primary and secondaryproduction modules could be used to investigate future changes in primary andsecondary production. Fish and possibly also mammals (at least predation frommammals) shouldalsobe included.Suchmodelscouldbe forcedby IPCCscenarios toevaluate future changes. 3Dmodelswith a biogeochemicalmodule could be used toinvestigatefuturechangesinoceanacidification(incombinationwithfieldstudies).These continuing efforts should continue in parallel to the mapping and monitoringeffort.ExistingstudiessupportedbyotherArcticmarinesciencegroupsmaybehelpfulinthisregard.D.CoordinationIt is important that all countries involved in the coordinated research andmonitoringprogram are involved in any coordinating structures pertaining to scientific work. ACoordination Group (CG) for the survey and monitoring efforts, with representationfrom all involved parties, should be established. This group should facilitatestandardizationofmethodsand instrumentationamongallsurveyvessels. Linksneedtobemadewithothergroups(e.g.PacificArcticGroup,ArcticCouncil’sCAFFandPAME,ICES, PICES, joint Barents Sea Norwegian-Russian survey, other territorialsurveys/monitoring) to avoid duplication of effort and to share data. Also, the CGshould organize common data formats, data sharing procedures, data qualityassurance/qualitycontrol(QA/QC),etc.Asnotedabove,maintenanceofacontinuingscientificprogramforfisheriesintheHighSeaswillrequiresomeformofcoordinationoutsideofbiennialmeetings.Keyelementsthatthisneedstosupportinclude:• Organizeandmonitorthemappingandmonitoringprogram• SupportstandingWGonreferencepoints/indicatorsandmodeling• Hosting,maintainingstandards,andservingupofdata• Repositoryforreports• Providingscientificadvicetothemultilateralmanagementmeetings

Page31of82

Each of these is important to the responsible coordination of the High Seas fisheryscientificenterprise.Nationsshouldworktofindagreementondatamanagementpoliciesthatwouldpermitsharing of all monitoring and research data. Adhering to open data policies wouldenable the best and fastest scientific results. Potentially suitable data managementpolicies are already available (e.g., DBO, SAON and IASC, ICES). Such policies couldincludeguaranteesfordataQA/QC,standardformatsandproceduresformetadata,andprotocolsfordataexchange(interoperability)thatenabledataprocessingindependentof software and hardware limitations. Contributing nations would be asked toparticipateindevelopinga"distributed"datamanagementsystem.Distributedsystemsleavethedataandtheirmaintenancetotheoriginator.Distributedsystemshavesearchandquerycapabilitiesavailablethatcanquicklynavigatefisheriesandecosystemdatain order to aggregate data according to search criteria designed for specific analyticpurposes.Copiesof thedatabaseswouldbeheldbytheoriginator,andpotentiallybynational archives, and thirdparties such as ICES andAOOS. In the caseof thirdpartystorage, public data sharing limitations and protocols would be needed. Moreinformationondatamanagement isavailablefromthethirdFiSCAOmeeting(Pulsifer,2015).TherewasgeneralagreementthatexistingscientificbodiesworkinginthesubarcticandArctic could provide the support for this effort, though therewas not agreement onwhichof thesebodies (i.e.,PICES, ICES,ArcticCouncil)shouldbethehost. Still, therewasnosuggestionoftheneedforanewbodytobecreated.There was considerable discussion at the workshop about the ICES/PAME WorkingGrouponIntegratedEcosystemAssessment(IEA)fortheCentralArcticOcean(WGICA),and whether PICES could cohost the WG with ICES and PAME. PICES leadershipdiscussed the topic after the close of the meeting and agreed to join with ICES andPAMEtocohostthegroup.FurtherdefiningtheCoordinationstructureforthescientificenterpriseshouldbeoneoftheTermsofReferenceforthe5thScientificMeetingonFishStocksintheCentralArcticOcean.

Page32of82

Acknowledgements

TheWorkshop Chairs (Erlend Moksness and Richard Merrick) thank Ken Drinkwater,Kevin Hedges, Randi Ingvaldsen, Phil Mundy and Candace Nachman for theircontributionstothepreparationofthisreportandforleadinggroupdiscussionsatthemeeting.JianyeTangprovidedimportanteditsforthereport.AlfHåkonHoelprovidedinvaluable support for the meeting. We especially thank Candace Nachman for herincredible efforts to edit the report, and Norway’s Institute of Marine Research forhostingthemeeting.

Page33of82

AppendixA:ListofParticipants

Name e-mail Representing

PhilMundy [email protected]

USARichardMerrick [email protected]

CandaceNachman [email protected]

EdFarley [email protected]

KevinHedges [email protected]

CanadaBronwynKeatley [email protected]

AndrewMajewski [email protected]

SergeiGolovanov [email protected]

RussianFederation

HelleTorpChristensen [email protected] KingdomofDenmark

RandiB.Ingvaldsen [email protected]

KingdomofNorwayErlendMoksness [email protected]

HaraldGjøsæter [email protected]

KenDrinkwater [email protected]

OlafurSAstthorsson [email protected] Iceland

ErnestoJardim [email protected]

EuropeanUnionGerjanPiet [email protected]

PaulineS.Leijonmalm [email protected]

TakehiroOKUDA [email protected] Japan

JianyeTANG [email protected]

Peoples´RepublicofChinaGuopingZhu [email protected]

WeiYu [email protected]

Jae-bongLEE [email protected]

RepublicofKoreaHyoungChulSHIN [email protected]

AlfHåkonHoel [email protected] NorwegianMinistryofForeignAffairs

HeinRuneSkjoldal [email protected] PAME

JohnBengtson [email protected] PAME

HyoungChulShin [email protected] PAG

EskildKirkegaard [email protected] ICES

LauraRichards [email protected] PICES

Page34of82

AppendixB:SynthesisofKnowledgeonFisheriesScienceintheCentralArcticOceanandAdjacentWaters(ToR1)

SectionContentsMapofcentralArcticshowingboundariesoftheHighSeas(brown)inrelationtotheboundariesofthecongruentandcontiguousLargeMarineEcosystems,LMEs(red).................................................35MapofallArcticLargeMarineEcosystems,LMEs(URL)followedbytableofareasforthe9LMEscongruentorcontiguouswiththeHighSeas.............................................................................................36Foreword...................................................................................................................................................38Credits........................................................................................................................................................38ExecutiveSummary...................................................................................................................................39Introduction...............................................................................................................................................40

Background............................................................................................................................................40Originandpurposeofthesynthesis..................................................................................................40Geophysicalrealities..........................................................................................................................40

InformationLegacyofthe1st-3rdFiSCAO.............................................................................................41SynthesisofKnowledge.....................................................................................................................42GeographicandBiophysicalScope....................................................................................................42EcosystemBasedFisheryManagement............................................................................................43

IndigenousandLocalKnowledge..........................................................................................................43SpecieswithPotentialforFutureCommercialHarvests.......................................................................43

Occurrence,distribution,abundanceandphenologyofselectedfishspeciesofthecentralArcticOceanandAdjacentWaters......................................................................................................................44

Introduction...........................................................................................................................................44Occurrence............................................................................................................................................45Distribution............................................................................................................................................45

OverallDistributions..........................................................................................................................45TableA.SummarybyLMEoftotalnumberofspeciesandthenumberofpotentialfuturecommercialspeciesintheArcticLMEs..........................................................................................46

DistributionofPolarcod(Boreogadussaida)....................................................................................48DistributionofArcticcod(Arctogadusglacialis)................................................................................48DistributionofGreenlandhalibut(Reinhardtiushippoglossoides)...................................................49DistributionofArcticskate(Amblyrajahyperborea).........................................................................49

Abundance.............................................................................................................................................49AbundanceofPolarcod(Boreogadussaida).....................................................................................49AbundanceofArcticcod(Arctogadusglacialis)................................................................................51AbundanceofGreenlandhalibut(Reinhardtiushippoglossoides)....................................................51AbundanceofArcticskate(Amblyrajahyperborea)..........................................................................51

Phenology..............................................................................................................................................52PhenologyofPolarcod......................................................................................................................52PhenologyofArcticcod.....................................................................................................................53Researchgapsinphenology..............................................................................................................53

MarineFoodWebsoftheCentralArcticOceanandAdjacentWaters.....................................................53Biota.......................................................................................................................................................53

Page35of82

Sympagic............................................................................................................................................53Pelagic................................................................................................................................................54Benthic...............................................................................................................................................54

EnvironmentalDriversofFishProduction.............................................................................................54Oceanography....................................................................................................................................54Productionatthelowertrophiclevels..............................................................................................55Ecologicalknowledge/Ecosystem....................................................................................................56

LiteratureCited..........................................................................................................................................76Tables.........................................................................................................................................................59

Table1.SpeciesoffishdocumentedtooccurwithintheHighSeasareaidentifyingthespecieswithpotentialforfuturecommercialharvests......................................................................................59Table1.1SamplingsitesforfishspeciesontheHighSeasofthecentralArctic...................................60Table1.2.FishspeciesofdocumentedoccurrenceinLMEsadjacenttotheHighSeaspresentedinalphabeticalorderbyfamilyandscientificnamewithcommonnameandstatusofcommercialpotential........................................................................................................................61Table1.2A.InvertebratespeciesofdocumentedoccurrenceinLMEsadjacenttotheHighSeaspresentedinalphabeticalorderbyfamilyandscientificnamewithcommonnameandstatusofcommercialpotential........................................................................................................................68Table1.3.AlphabeticalListofFishandInvertebratesSpeciesKnownfromWatersSurroundingtheHighSeasoftheCentralArctic........................................................................................................69

MapofcentralArcticshowingboundariesoftheHighSeas(brown)inrelationtotheboundariesofthecongruentandcontiguousLargeMarineEcosystems,LMEs(red).

Page36of82

NumbersrefertoLMEsdefinedbyredboundaries:13CentralArcticLME,5BarentsSeaLME,6KaraSeaLME,7LaptevSeaLME,8EastSiberianSeaLME,12NorthernBering-ChukchiSeasLME,14BeaufortSeaLME,15CanadianHighArctic–NorthGreenlandLME,3GreenlandSeaLME(northernportiononly)MapofallArcticLargeMarineEcosystems,LMEs(URL)followedbytableofareasforthe9LMEscongruentorcontiguouswiththeHighSeas.

Page37of82

NumbersinthetablerefertothenumbersoftheLMEsinthemap.

No Name Area(millionskm2)

13 CentralArcticLME 3.335 BarentsSeaLME 2.0112 NorthernBering-ChukchiSeasLME 1.3614 BeaufortSeaLME 1.116 KaraSeaLME 1.007 LaptevSeaLME 0.928 EastSiberianSeaLME 0.6415 CanadianHighArctic–NorthGreenlandLME 0.603 GreenlandSeaLME(northernportiononly) ~0.40

Page38of82

ForewordThe current synthesis document is the foundation for the ideal synthesis that willbecome possible once the Parties develop a data management system that permitsassemblyofrelevantinformationinformatssuitabletosynthesis.Assuch,thesynthesisisaportal torelevantknowledge,and itprovidesasolid foundationofwhat isknownaboutthedistributionandoccurrenceoffishandinvertebratesintheArctic.Theinformationonfishandinvertebratesprovidedinthetablesofthesynthesisisnotavailable elsewhere in the published literature or from any one government agency.Thetablesarebasedonrecordscompiledfrompublishedandunpublishedsources,asprovidedby theParties and as acquired from theopen literature. Thedatabase fromwhichthetablesarebuiltisasourceofinformationontheoccurrenceanddistributionoffishandinvertebratesintheHighSeasofthecentralArctic(areasoutsidethe200nmzoneoftheArcticcoastalstates;mapsatfront)andintheCentralArcticLargeMarineEcosystem(LME)anditssurroundingLMEs(Mapsatfront).Thedatabaseisofcoursebynomeanscomplete;itcanbemadesoonlywiththefurthercooperationoftheParties.Thesynthesisprovides linkstooverathousandpublications, linkstoreportsonArcticresearch programs for the Parties, and its tables are based on an initial databasecontainingoverninethousandrecordsofcapturesof fishand invertebratesspecies intheCentralArcticLMEandthesurroundingLMEsoftheArctic.Therecordsofcapturesof fishand invertebratespeciescontain latitudeand longitudewhenavailable,amongother key information, such as the LME and method of capture. Each record has areference for its origin that can be used to access additional information about therecord. Data on species of fish and invertebrates from the surrounding LMEs areconsidered relevant as information about potential future distribution into the HighSeas.

CreditsRandiIngvaldsenandPhilMundy,ScientificCo-ChairsPhillipR.Mundy,RandiIngvaldsenandKnutSunnanå,EditorsContributing authors: Phillip R.Mundy, Knut Sunnanå , Randi Ingvaldsen, JenMarsh,TaylerJarvis,OlafurS.Astthorsson,AlfHåkonHoelContributing data: Libby Logerwell, BrendaNorcross, Ed Farley, Ron Heintz, JohannaVollenweider,HeinRuneSkjoldal,OlafurS.Astthorsson,KevinHedges,HaraldGjøsæterDatabase:TaylerJarvisandPhillipR.MundyPeerreview:LibbyLogerwell,FranzMueter

Page39of82

ExecutiveSummaryWhat are the distributions and abundances of species with a potential for futurecommercialharvestsinthecentralArcticOcean?

Specieswithapotentialforfuturecommercialharvestsinthe[HighSeas]centralArcticOceanhavebeenidentifiedintermsofspeciesofoccurrenceintheHighSeas area (Table 1) or surrounding waters (Tables 1.2 and 1.2A) that have ahistory of commercial exploitation. The presented numbers are based on thecurrentversionoftheFishStocksintheCentralArcticOcean(FiSCAO)database.Thelikelihoodthatanyspeciessoidentifiedwouldeventuallyhavethebiomassand growth rate in biomass to sustain commercial harvest is impossible toevaluate with the available data. The presently apparently low primary andsecondaryproductivityontheHighSeasaretheresultof fundamentalphysicaland chemical limitations on annual biological production that indefinitelyprecludefutureprospectsforsustainablecommercialharvestopportunities.

What other information is needed to provide advice necessary for future sustainableharvests of commercial fish stocks and maintenance of dependent ecosystemcomponents?

Toprovideadvicenecessary for sustainableharvestof any fishor invertebratespecies,itisnecessarytoestimatethefishablebiomassandthegrowthratesofthebiomasses.Toprovideadviceonmaintenanceofdependentecosystemsitisnecessarytoidentifyandmeasurethetrophiclinkagesamongthecommerciallytargetedspecies,itspreyanditspredatorspecies.

WhatarethelikelykeyecologicallinkagesbetweenpotentiallyharvestablefishstocksofthecentralArcticOceanandadjacentshelfecosystems?

The principal key ecological linkages to be monitored are the migrations ofpotentialcommercialfishandinvertebratespeciesandtheirpredatorsandpreyfromnearbyshelfandshelfbreakareasintotheHighSeasarea,aswellasothertransports of carbon, such as advection of planktonic species, and addition ofatmosphericcarbon.AstheshallowwaterareasadjacenttotheHighSeaswarm,the rates of transport of heat and salt (salinity) into the High Seas must bemonitoredtounderstandimpactsonbiologicalproduction.

Overthenext10-30years,whatchangesinfishpopulations,dependentspecies,andthesupporting ecosystemsmay occur in the central Arctic Ocean and the adjacent shelfecosystems?

PotentialcommercialfishandinvertebratespeciesandtheirpredatorsandpreyfromnearbyshelfandshelfbreakareascanmoveintoadjacentHighSeasareas,especiallyfordemersalspeciesintorelativelyshallow(60m–1000m)HighSeasareas, as physical and trophic circumstances permit. Pelagic species are notnecessarily limited in their distributions by depth. The rate of movement can

Page40of82

only be determined by research and monitoring, as the impacts of climatechangeonbiologicalsystemsarenot linear, involvingmanybiological feedbackloopsyettobeidentified.

IntroductionBackgroundOriginandpurposeofthesynthesisThissynthesisisintendedtosupportdiscussionsthathavebeenongoingsince2010onpreventingtheemergenceofunregulatedfishingintheHighSeasoftheCentralArcticOcean beyond the boundaries of the 200 nm zones of jurisdiction of the adjacentcoastal states. The areas of national jurisdiction are often termed Exclusive EconomicZones, EEZ (Maps at front). The ten parties to the discussion as of December 2015(Canada,Denmark/Greenland,Iceland,Norway,EuropeanUnion,Russia,UnitedStates,China, Korea, Japan), the Parties, called for a synthesis of knowledge (see Terms ofReference 4th FiSCAO in Table of Contents) to serve as the basis for designing a jointscientific research and monitoring program (JSRMP). To consider the synthesis, andothermatters, the Parties convened the FourthMeeting of Scientific Experts on FishStocks in the centralArcticOcean (4th FiSCAO) in September2016. Thediscussionsofthe4thFiSCAOandtheinformationsubmittedbythePartieshavebeenintegratedwithaccumulated information from the first three scientific meetings to complete thesynthesis presented here. The synthesis provides an entry portal to address the fourbasic questions posed by the Parties, and it serves as a starting point for the JSRMPunderconsiderationforadoptionbytheParties. Thepriorities for fillingresearchandmonitoringgapsmaybeestablishedbythePartiesfromtheinformationinthesynthesisandtheJSRMP.GeophysicalcontextSomegeographicalandbiophysicalaspectsneedtobementionedhere,astheyprovidecontext essential to understanding the information presented. First, the term, “HighSeasof the centralArcticOcean” also encompassesparts of theChukchi Sea and theEastSiberianSea,aswellasasmallportionoftheLaptevSea(seeMapsatfront).Theprecision in language describing the High Seas is important because it underlies acriticallyimportantgeophysicalreality;thePacificArcticandtheAtlanticArcticareverydifferentinwaysthathaveprofoundconsequencesforthedistributionandabundanceoffloraandfaunaintheHighSeasandsurroundingwaters.Differencesinthefisheries,species and ecosystemsof theAtlantic and thePacific sideswill be explored in somedetailelsewhereinthesynthesis;however,afewessentialdetailsareprovidedheretosetthestage.

Page41of82

Betweenthelongitudesof129°Wand165°E,the“Atlantic”side,theboundariesofthe200nmzonesofCanada,Greenland/Denmark,NorwayandRussialieatlatitudesof80°Norhigher,andthesezonesextendwellbeyondthecontinentalshelfandshelfbreak.Consequently,ontheAtlanticside,thedepthsoftheHighSeasareprofound,measuringmorethan1000mneartheboundaries.ThesilldepthbetweentheCentralArcticOceanandtheGreenlandSeaisabout2500m,providingadeepentrancetotheCentralArcticOceanforwatersandpelagicspecies.Betweenthelongitudesof165°Eand129°W,the“Pacific” side, the boundaries of the 200 nm zones of Canada, theUnited States andRussia lie at latitudes of less than 80° N to just above 73° N, and they cross overcontinentalshelfandshelfbreakfeatures.Consequently,onthePacificside,thedepthsof someportionsof theHighSeasare relatively shallow,measuring less than60m insomelocationsnearthesouthernboundariesofthePacificsideoftheHighSeas.ThepresentsummericeconditionsarealsoverydifferentontheAtlanticsidecomparedtothePacificside.CurrentsummericereductionontheAtlanticsideismuchlessthanonthePacificsidewhilelargereductionsareobservedinwinterseaiceextent,whereasonthePacificsidethesummer-fallicehasretreatedfartowardsthenorth,leavingtheChukchiplateauattimesmostlyfreeofice.Lookingatthebiologicalaspectsofthesetwogeographicareas,traditionalcommercialfisheries in theBarents Seaextendnorth to almost 81°degrees asof today,whereascommercialfisheriesonthePacificsidedonotoccurabove65°Nlatitude.Investigationsattheshelfslopeabove80°N,northofSvalbardandFranzJosefLandrevealcommercialfishspeciestobepresentinthesloperegion;however,theseareaslieoutsidetheHighSeas,beingwellwithinthe200nmzonesofNorwayandRussia. InvestigationsonthePacific side have documented the presence of commercial species on the shelf slopeabove72°N,muchofwhichlieswithintheboundariesoftheHighSeas.InformationLegacyofthe1st-3rdFiSCAOMeetings of scientific experts on fish stocks in the central Arctic Oceanwere held in2011, 2013 and 2015. The successive reports of the meetings reflected a growingawareness of the rapid growth of scientific knowledge in the Arctic, along with therealizationofthelimitednatureoftheinformationontheoccurrence,abundanceanddistributionoffishandinvertebratesintheHighSeas.Thethreetermsofreferenceandthe four basic questions for the 4th FiSCAO were derived from the report of the 3rdFiSCAO. The report of the 3rd FiSCAO represents a first attempt to set the basicparameters of geographic scope, geographic organization and types of scientificinformation to be included for the synthesis of knowledge (ToR1 4th FiSCAO). Alsoaddressedinthe3rdreportweretheJSRMP(ToR24thFiSCAO),andtheapproachtotheresearchframework(ToR34thFiSCAO).

Page42of82

Summarizing the main conclusions from the earlier reports show that types of dataavailablefromtheCentralArcticOceanaremainlyonenvironmentandabioticfactors,andtheknowledgeoffishandshellfishspecies isvery limited.Substantial informationon fish and shellfish from the adjacent LMEs are presented in these three reports, inparticular, in the last report from the3rd FiSCAO. The report is clearon theneed formorescientific investigations intheCentralArcticOceandirectlyfocusingonpotentialpresence of commercial fish and shellfish species. This should lead to a possibility tomakeaninventoryofknowledgerelevanttofishandshellfishdistributionintheCentralArcticOcean.During the time frame of the FiSCAOmeetings there is also a substantial amount ofreports and publications focusing on climate change and the possible northwardsmovementoffishandshellfishcommunities,astheborealhabitatsforcesthearcticfishandshellfishhabitatsnorthwards(Hollowedetal.,2013;Fossheimetal.,2015;McBrideetal.,2016).TheArcticfisheriesWGofICESproducesamajorreportwhichisupdatedannually,andNOAAproducestheArcticReportcard.Also,thereareearlierattemptsatcomprehensive assessments, such as the oceans and fisheries chapters of the ArcticClimate Impact Assessment (2005), and the Fisheries chapter (Christiansen and Reist,2013).SynthesisofKnowledgeoffishandshellfishThe3rdFiSCAO(April2015)producedawealthofrelevantinformation,includingasetofbibliographies and a web-based reference that serves as the entry point to theinformationsupportingthissynthesis,theInventoryofArcticResearchandMonitoringreport (IARM). The IARM Appendices have links to National Summaries and ReviewReports on Arctic Research and Monitoring programs of Canada, China,Greenland/Denmark, Iceland, Japan, Korea, Norway, Russia and the United States.Unfortunately, a complete inventory couldnotbeproducedby the3rd FiSCAOdue todata management challenges that are yet to be overcome by the Parties. Theconclusionsof the3rd FiSCAOmade clear the resources to assembleall thenecessaryinformation on fish and their ecosystems in formats that enable analysis are notcurrently available. Accordingly, the current synthesis document focuses on theimmediateneedforassemblingandanalyzingfishandinvertebratedatafromliteraturesources,inadditiontodatasubmittedbytheParties.

GeographicandBiophysicalScopeHowhaveArcticecosystemsbeendefined?TheconceptofLargeMarineEcosystemwasdiscussedatthe3rdFiSCAOasastartingpointindefiningtheecosystemsthatarehometothelivingmarineresourcesoftheArcticOcean.TheArcticLargeMarineEcosystems(LMEs)were identifiedbyagenciesofthememberstatesoftheArcticCouncil in2013(SeeMapsatfront).TheHighSeasareaislargelycongruentwiththeecosystemoftheCentralArcticLME(SeeMapsat front)withsome importantexceptionsonthePacific

Page43of82

side. Recognizing that biological and physical linkages between the High Seas, theCentral Arctic LME and the ecosystems in adjacent LMEs exist, the starting point forgeographic scoping at the 3rd FiSCAO also included the LMEs contiguous with theCentralArcticLME(SeeMapsatfront).EcosystemBasedFisheryManagement(EBFM)The biophysical aspects of management are further influenced by the informationrequirementsofanecosystemapproachtofisheriesmanagement.The3rdFiSCAOalsorecognized the principles of EBFM (Link, 2010) as appropriate and important forapproachinganyregulationoffishing intheHighSeas.Boththegeographicscopeandthe types of biological and physical observations (data) relevant to developinginformation products to support the management of Arctic fishes and invertebratesshouldreflecttheprinciplesandpracticeofEBFM.InordertoimplementEBFMontheHigh Seas andadjacentwaters, it is important to routinely gather informationon theabundance and occurrence of species of fish and invertebrates, mammals, birds andhuman populations that depend on the food webs of which the species of fish andinvertebratesareintegralparts.SuchaninformationgatheringeffortisherecalledtheJointScientificResearchandMonitoringProgram(JSRMP).IndigenousandLocalKnowledgeMonitoringneeds to take intoaccount that future fisheriesmayaffect the indigenousandotherlocalpeoplebyalteringtheecosystemsonwhichtheirfoodsecurityisbased.Incorporatingindigenousandlocalknowledgealsohelpstoachieveunderstandingandcooperation inthe implementationofanyregulatorymeasuresthatmaybenecessarytolimithumanactivitiesinordertoachievesustainability.SpecieswithPotentialforFutureCommercialHarvestsThe presently low intrinsic primary productivitywhich is symptomatic of the physicalandchemicallimitationsonannualbiologicalproductionontheHighSeasoftheArcticplacestheprospectsforsustainablecommercialharvestopportunitiesintheindefinitefuture. Nonetheless, the effects of climate have brought about rapid changes inseasonal ice cover on theHigh Seas over thepast twodecades, bringing theneed toidentify and monitor fish and invertebrates species that may have the potential tosupportcommercialharvestsontheHighSeasinthefuture.Indesignatingaspeciesashavingthepotential forfuturecommercialharvestontheHighSeasoftheArctic, it isimportanttohaveacarefullydefinedapproachandterminology.Theterm"commercialfishing"isdefinedas"fishinginwhichthefishharvested,eitherin whole or in part, are intended to enter commerce through sale, barter or trade"(NOAAFisheries).FishspeciesdocumentedtooccurintheArcticthathavebeenobjectsofcommerceareconsideredputativepotentialfuturecommercialspecies.

Page44of82

Theterm,putative,isappliedtobeclearthatthedesignationofaspeciesaspotentiallycommercialdoesnotmeanitisnecessarilyacommerciallyviablespecies.Inadditiontobeing demonstrably marketable, a commercially viable species must demonstrate agrowthrateinitsoverallbiomasssufficienttoprovideasustainableharvestablesurplus,and the magnitude of the harvestable surplus must have market value sufficient tojustify the allocation of capital to secure its harvest. Knowing biomasses and growthratesofbiomassesforputativepotentialcommercialspeciesatanypointinthefuturewillrequirearesearchandmonitoringprogram.Recordsofwhichspeciesarepotentialobjectsofcommerceareavailable.IntheUnitedStates, the Food and Drug Administration (FDA), in cooperation with the NationalMarineFisheriesService,publishesaconvenientlysearchabledatabaseofspeciesthatcurrentlyare,orhavebeen,commerciallymarketedintheUnitedStates,knownastheSeafood List. Pending recommendations for other consistent, objective means ofdetermining commercial potential, the Seafood List is adopted as the source for thisinformation.TheSeafoodListwassearchedforeachofthe339speciespresentinthecurrentversionoftheFiSCAOdatabasefromtheHighSeasorcontiguousLMEs(Table1).OnlyspeciesknowntooccurontheHighSeasorcontiguousLMEsalsolistedascommercialspeciesbytheUnitedStatesFDAaredesignatedaspotentialfuturecommercialspeciesinthissynthesis.

Occurrence, distribution, abundance and phenology of selected fishspeciesofthecentralArcticOceanandAdjacentWatersIntroductionThe informationpresentedbelow isbased inpartonanalysisof 9,405 recordsof fishand invertebrate speciescaptured in theArctic LMEswhichwereassembled fromthepublished literatureand from information submittedby scientistsof theParties. Eachrecord contains the following fields: Binomial scientific species name; presence orabsenceinsamplesfromtheHighSeas(XCAO);CommercialstatusaccordingtoUnitedStates FDA; Latitude; Longitude; Source of data and sampling station; Large MarineEcosystem;Family;Commonname;Depthofsamplinglocation(m);andsamplinggeartype. Nomenclature for binomials and common names followed the usage of thesources cited, however, when authorities did not agree, the accepted scientific andEnglishcommonnamesweretakenfromtheWorldRegisterofMarineSpecies.Noteveryfield ineveryrecordcontains information. Forexample,8,534ofthe9,405recordshave latitudeand longitude information. Onlyrecordscontaining latitudeandlongitudefromwithintheareaoftheHighSeasofthecentralArcticOceanarereportedinthelistsofspeciespresentedinTablesA,1.1and1.1A.Theterm“fish”referstoboth

Page45of82

bony fish and cartilaginous fishes (sharks, skates, rays), and the term “invertebrate”referstospeciesofsquid,crabandshrimp.Asmorerelevantpublicationsareidentifiedand new information is published, and as additional information is submitted by theParties,theunderstandingofthespeciespresentandtheirgeographicdistributionsontheHighSeasandadjacentwatersisexpectedtoexpand.

OccurrenceThere are 12 species of fish in the current version of the FiSCAO database that havebeen sampled from locations that can be verified to lie in the High Seas area of thecentral Arctic Ocean (Table 1). No invertebrates of potential commercial usage arecurrentlypresentinthedatabasefromtheHighSeasarea.OfthefishspeciessampledfromtheHighSeas,threespeciesarepotentiallyofcommercialinterest,thatis,listedinthe United States FDA database over species that are or have been commerciallymarketedintheUnitedStates:Arcticcod(Arctogadusglacialis),Polarcod(Boreogadussaida),andGreenlandhalibut(Reinhardtiushippoglossoides)(Table1).There are 339 species of fish and invertebrates in the current version of the FiSCAOdatabasefromtheLMEssurroundingtheHighSeas(Tables1.2,1.2Aand1.3).Thetotalnumberof specieswithin theHighSeasarea is likely to increaseasmore informationbecomesavailableandastaxonomicstatusofspeciesisfurtherclarified.DistributionOverallDistributionsThenumbersof speciesof fishand invertebrates in thecurrentversionof theFiSCAOdatabasefromeachoftheLMEscongruentwithorcontiguoustotheHighSeasofthecentralArcticOcean specieshavebeen identified (TableA). TheBarents Sea LMEhasthe highest number of fish and invertebrate species of any Arctic LME, 171 in thecurrentversionofthedatabase,and220documentedelsewhere(Wienerroitheretal.,2011;Fossheimetal.,2015). Sixty-fourareclassifiedaspotential commercial speciesaccordingtotheUnitedStatesFDA.SecondintermsofnumbersofspeciesisthePacificentry portal to the Arctic, the Northern Bering – Chukchi Seas (NBC) LME, with 135speciesoffish,including52potentialcommercialspecies.TheBeaufortSeaLMEtotheeast of theNBC LME has almost asmany potential commercial fish and invertebratespecies as the adjacent NBC, 47, out of a smaller total number of species (113). TheGreenlandSeaLMEcoverswatersofAtlanticinfluencesinthesouthandArcticareasinthenorth,sothelistforthissynthesiswaslimitedto76northernspeciesidentifiedbyMøller et al. (2010) of which 21 were classified as potentially commercial. The EastSiberianSeaLME(ESS)has44speciesofwhich18maybeofcommercial interest.TheCentral Arctic LME has 34 species with only 6 species of commercial interest. TheCanadianHighArctic–NorthGreenlandLMEhas30totalfishandinvertebratespecies,including 6 species of potential commercial use. The smallest number of speciesreportedarereportedforthenorthernEurasiancoastwestoftheESSLMEwherethe

Page46of82

KaraSeaLMEhas11 total speciesallpotentiallycommercial,and theadjacentLaptevSeaisreportedtohave14reportedspeciesofwhich13maybepotentiallycommercial.TableA.SummarybyLMEoftotalnumberoffishandinvertebratespeciesinthecurrentversionoftheFiSCAOdatabaseandthenumberofpotentialfuturecommercialspeciesintheArcticLMEs.NotethatmanyofthespeciesoccurinmorethanoneLME.ThetotalnumberofspeciesinthecurrentversionofthedatabaseinallnineLMEsis339(seeTable1.3)andofthosea littlemore than a third, 133, have a history of commercial use (see Tables 1.2 and1.2A).

LME Total Number ofSpecies PotentialCommercialSp.

BarentsSea,BarS 1714 64

NorthernBering–ChukchiSeas,NBC 135 52

BeaufortSea,BeauS 113 47GreenlandSea(northern),nGS 76 21EastSiberianSea,ESS 44 18CentralArctic,CA 34 6Canadian High Arctic N Greenland,CHANG 30 6

LaptevSea,LS 14 13KaraSea,KS 11 11

Asageneralrule,forpelagicandbenthichabitatsacrossallLMEsadjacenttotheHighSeas,mostfishandinvertebratespeciesareconcentratedontheshelfareas,becomingdecreasingly common as depth increases approaching the central Arctic Ocean.However, exceptionsare found in theGreenlandSeaandFramStrait, forexample, inpelagichabitatsrelatedtodeepsealayersthatsupportavarietyofspecies.The waters near the boundary of the High Seas on the Atlantic side are quite a bitdeeperthanthoseoftheboundaryareasonthePacificside. DepthsofwatersoftheHighSeasareasonthePacificsidehaveaminimumdepthofabout60m,whereastheminimumdepthontheAtlanticboundaryexceeds1000m.ThesilldepthinFramStraitisabout2500m,thusprovidingapossibledeepgatewaytotheCentralArcticOceanforpelagic species in the Greenland Sea. Unlike the Atlantic side, the Pacific side hasextendedshelfareasadjacenttotheHighSeasboundarywithwaterslessthan60mintheLMEsonthePacificside(NBC,ESS,LaptevSea).Mostoftheareaslessthan1000m4220documentedbyWienerroitheretal.(2011)andFossheimetal.(2015)

Page47of82

intheHighSeasareadjacenttoNBCandESSandtoalesserextenttheLaptevSea,LS.Hence,thePacificArctichasasubstantialnumberofpotentialcommercialdemersalfishand invertebrate species in proximity to waters of the High Seas that are shallowenough toprovidehabitat for futureexpansionof thesecommercial species,allotherdetermining factors of distribution aside. The combinationof bathymetry andbiologyfavorabletofutureexpansionofcommercialfishandinvertebratespeciesintotheHighSeasislocatedtowardthewesternAmericanandeasternEurasiancontinentalareas.DepthisalsocloselyrelatedtoseasonalicecoveronthePacificside,withtheshallowerareasmoreoftenbeingicefreeforpartoftheyear.Asaconsequence,knowledgeaboutfishandinvertebratesinpelagicandbenthichabitatsofdeeperwatersislimited.Largerbenthic fish and the sharks and rays appear to be distributed roughly inverselyproportionaltodepth,butthelackofeffectivesamplingmethods(i.e.longlineandpotgear)thatisicebreakerdeployableconstitutesasubstantialgapinessentialinformation.Fish distribution on the Atlantic side of the Arctic is known from the joint Russian-Norwegian ecosystem surveys from 2003 until present and also from the exploratoryNorwegiansurveysinanongoingstrategicinitiativetoexploretheArctic,undertakenbytheInstituteofMarineResearchinNorway.Theseobservationsareinadditiontoalonghistoric record established through research surveys conducted by scientists fromNorwayandRussiasincethe1960s.Asaconsequence,thebiotaandecosystemsintheBarentsarethebestknownofthenineArcticLMEsinthissynthesisduetothepresenceofthelongtimeseriesofinformationgeneratedbytheannualscientificsurveys.Some fish species are found only in the northern areas of the Barents Sea shelf, andsome other species are found to have an expanding northerly distribution. RecentobservationsofGreenlandshark(Somniosusmicrocephalus) indicatethisspeciestobeanimportanttoppredatorintheArcticwaters.Severalskates(Amblyrajahyperborea,A.radiate, Rajella fyllae) are also found in northern waters. Several species of smallmesopelagic fishes (Benthosema glaciale, Lampanyctus macdonaldi and Notosepeluskroyeri) are found close to the bottom in the northern slope of the Svalbard shelf.Severalspeciesofgrenadiers(e.g.Macrorurusberglax)arefoundatthenorthernslope,as are rocklings (e.g.Gaidropsarus argentatus), and sculpins (Gymnocanthus tricuspis,Icelus spp., Triglops nybelini), poachers (Leptagonus spp.), lumpfishes (Eumicrotremusspinosus) and a number of snailfish species (e.g. Liparis fabricii, Paraliparis bathybius,Rhodctys regina), and finally a large number of eelpout species (Lycodes spp.) andblennies(Lumpenusspp.).Asmentionedearlier,anumberof commercial species in theBarentsSeaareseen toexpandtheirdistributionnorthward,andsomeofthesespeciesmaybecandidatesforexpandingtheirdistributionintotheCentralArcticLMEandpossiblyfarthernorthintotheHighSeas.Greenlandhalibutisclearlyseentoexpanditsjuveniledistributiontothe

Page48of82

northern side of the Svalbard shelf, and it is observed in the pelagic at considerabledepthsnorthofSvalbard.Also,pelagicfishspeciesareobservedfartothenorth,and,inparticular,thedistributionofmackerel,herringandbluewhitingextendsurprisinglyfarnorthinthelateryears.Semi-pelagicfishessuchasbeakedredfish(Sebastesmentella)are observed with distribution north of Svalbard, and this speciesmay be related todeepseabiotic layersandmayextend itsdistributionfurthernorth.Codandhaddockarealsoseenfarnorth,andcodisobservedwellabovethebottomindeepwatersnorthofSvalbard.BothpolarcodandArcticcodareobservedfarnorth,howeverwithoutanyclear signal of changing distribution. In addition to fish species, the northern shrimp(Pandalusborealis)isfoundonthenorthernsideoftheSvalbardshelf,atconsiderabledepths.On both the Pacific and Atlantic sides of the Arctic LMEs (Table 1) the lack ofobservationsondistributionoffishandinvertebratesinice-coveredbenthichabitatsisadded to the lack of systematic scientific observations on the distribution of fish inunder-ice pelagic habitats. Anecdotal accounts from nuclear submariners from the1950sand1960sdescribeschoolsoffishofunknownspeciesthatextendforkilometersin thepelagic areas under the ice of theHigh Seaswithin 300nmof theNorth Pole.Methods of sampling fish under the ice in sympagic, pelagic andbenthic habitats areessential to successful research andmonitoring efforts in theHigh Seas and adjacentwaters.

DistributionofPolarcod(Boreogadussaida)BoreogadussaidahaveanArcticcircumpolardistribution,occurringintheNorthPacific,ArcticandNorthAtlanticOceans(CatherineW.Mecklenburg,Møller,&Steinke,2011).ThesouthernrangeoftheirdistributionextendsjustsouthofBristolBay intheBeringSea(Allen&Smith,1988)andontheAtlanticsideintheGulfofSt.Lawrence,HudsonBay, IcelandandsouthofGreenland(CatherineW. Mecklenburgetal.,2011). Tothenorth, they occur in the central Arctic Ocean (David et al., 2016; I. A. Melnikov &Chernova, 2013). Boreogadus saida have been observed in brackish lagoons, rivermouthsand in theocean todepthsof731m.Theyareoftenassociatedwith iceandhave been observed in wedges of water within ice floes (David et al., 2016; R. R.Gradinger&Bluhm,2004).Largeschoolsofadultshavebeenobservedinshallowwaterinthelatesummer(Crawford&Jorgenson,1996). Often,Boreogadussaidaarefoundsegregatedby ageover continental slope regionswith adults at depthsof 150-400mandyoungerfishinshallowerdepths(Benoit,Simard,&Fortier,2008;Geoffroy,Robert,Darnis,&Fortier,2011;Parker-Stetter,Horne,&Weingartner,2011).DistributionofArcticcod(Arctogadusglacialis)Arctogadus glacialis also have an Arctic circumpolar distribution, but their range issmallerthanBoreogadussaida.ArctogadusglacialishavebeenobservedintheBeaufortSea northeast of Barrow (Frost& Lowry, 1983) throughout theArctic towestern and

Page49of82

easternGreenland,BarentsSeatoEastSiberianSeaandinthecentralArcticOceanasfar north as near 81°24ʹ N, 178°16ʹ E (Andriyashev, Mukhomediayarov, & Pavshtiks,1980)and81°41'N,29°01ʹE(Aschanetal.,2009).UnlikeBoreogadussaida,Arctogadusglacialis do not extend down into the eastern Chukchi Sea, though they have beenoccasionally observed in the western Chukchi Sea (Catherine W Mecklenburg,Mecklenburg,&Thorsteinson,2002).Theyhavebeencaughtatdepths fromthenearsurfacedownto930m(Jordan,Møller,&Nielsen,2003).IntheEuropeanArctic,theyaremostcommonlyfoundatdepthsof300-400m(Aschanetal.,2009).DistributionofGreenlandhalibut(Reinhardtiushippoglossoides)Greenlandhalibuthaveacircumpolardistribution,occurring inbothArcticandborealwaters.Theyhavebeenfound inthehighArctic,as farnorthas75°NontheChukchislopeand77°NoffGreenland (CatherineW. Mecklenburgetal.,2011).They inhabitdepths from 20–2000 m with a preferred depth range of 400-1000 m (Bowering &Nedreaas, 2000). In the northeast Atlantic in Arctic latitudes, spawning grounds arealongthecontinentalslopenearSvalbardandnorthernNorway(McBrideetal.,2016).DistributionofArcticskate(Amblyrajahyperborea)ArcticskateshaveanArctic(andpossiblyAntarctic)circumpolardistribution(CatherineW. Mecklenburgetal.,2011).Theirdepth range is140–2500m,usually300–1500mand are found in temperatures < 4°C (Dolgov, Drevetnyak, & Gusev, 2005; Peklova,Hussey,Hedges,Treble,&Fisk,2014).Specimenswereobservedbyremotelyoperatedvehiclesat74°20’Nat1,800mdepth intheCanadaBasin(Stein,Felley,&Vecchione,2005). Although samples of Arctic skate with known latitude and longitude are notavailable,ArcticskatearealmostcertainlypresentintheHighSeasarea,andtheskatesare potential future commercial species, having documented histories of commercialuse.AbundanceAbundanceofPolarcod(Boreogadussaida)ThestockbiomassofBarentsSeaBoreogadussaidahasbeenestimatedthroughannualacoustic surveys since 1986. Biomass estimates have ranged between 0.1-1.9 millionmetric tons (mt) with most recent estimates in 2012, 2013 and 2014 declining fromroughly0.5millionmtto0.34millionmtto0.24millionmt(ICES,2015).Inthe1950s,aBoreogadus saida fishery developed in the Barents Sea (Andrii�a�shev, 1964).Concentrations of Boreogadus saida are fished in late autumn during southwardspawningmigrationsalong thecoastwithpelagic trawls.However, therehasbeennofisherysince2012duetolowinterest(McBrideetal.,2016).In2011,Russiaharvested19,600mtintheBarentsSeainICESstatisticalareaI(ICES,2012,p.31).In the U.S. Chukchi Sea, Boreogadus saida area-weighted biomass and abundanceestimates were 31,500 mt and 2.6 billion individuals based on a 2012 bottom trawl

Page50of82

survey(Goddard,Lauth,&Armistead,2014;NorthPacificFisheryManagementCouncil(NPFMC), 2009). Recent biomass estimates were slightly higher than the 27,000 mtestimatebasedon1990bottomtrawlsurveydata (Barber,Smith,Vallarino,&Meyer,1997;NorthPacificFisheryManagementCouncil(NPFMC),2009).However,thesurveyareausedinthebiomassestimatewasroughlyhalfthesurveyareaof2012.Also,2012and 2013 summer acoustic survey estimates of age-0 Boreogadus saida in the U.S.ChukchiSeawere80billionand240billionindividuals,respectively(DeRobertis,Taylor,Wilson,&Farley,2016).Thereisapossiblemismatchbetweenthehighabundancesofage-0s and apparently relatively low adult abundance. On the Russian side of theChukchiSea,biomassestimatesofBoreogadussaidahave ranged from674,200mt in2003 to a low of 12,600mt in 2008, andmost recently, 45,700mt in 2010 (Datsky,2015).BoreogadussaidaisthemostabundantfishspeciesintheBeaufortSeaLME(Benoitetal.,2008;Geoffroyetal.,2011;Lowry&Frost,1981;Parker-Stetteretal.,2011;Rand&Logerwell, 2011). Different age groups of Boreogadus saida have been observed tosegregate by depth (Geoffroy et al., 2015; Parker-Stetter et al., 2011). In the UnitedStatesBeaufortage-1+Boreogadussaidadominatedthepelagicbiomasswithacousticsurvey estimated peak densities of 155,000 fish/ha, near the bottom at depths from100-350 m, while age-0 Boreogadus saida had peak densities of 160,000 fish/ha atbottomdepthsof20-75mandusuallyformedschoolsbetween20-40m(Parker-Stetteret al., 2011). In the United States Beaufort, the Boreogadus saida biomass wasestimatedtobe15,000mtbasedona2008bottomtrawlsurvey(NorthPacificFisheryManagementCouncil(NPFMC),2009;Rand&Logerwell,2011).In theLancasterSoundregion (97,698km2)of theCanadianHighArcticLME,acousticsurveyassociatedmeandensity estimatesofBoreogadus saidawere22 fish/ha, 6000mtextrapolatedtotheentireregion,which istoo lowtosupportthemarinemammalandseabirdpopulations(Welchetal.,1992).The lowestimateswereattributedtoanabsenceof schoolsobserved in the survey (Welchet al., 1992). Largeaggregationsofadult Boreogadus saida, with up to 670 million individuals (density 307 fish/m3)weighing>23,000mthavebeenobserved inashallowbay(10-25m) intheCanadianHighArctic(Crawford&Jorgenson,1996).Boreogadussaidahavebeenobservedunderthe ice intheCentralArcticLME.DuringAugustandSeptember2012,themedianabundancewasestimatedas50individuals/hainthesurface layer (0-2m)directlyunderthe iceofprimarilyage-1Boreogadussaida(Davidetal.,2016).Boththesea-iceformedandBoreogadussaidaoriginatedfromtheLaptev Sea LME and the Kara Sea LME, and these areas likely serve as importantrecruitmentgroundsfortheobservedcod(Davidetal.,2016).Inthewinter(startinginOctoberwithlargesteventsinNovemberandDecember),large(qualitativelydescribedasdense schools beingobservedat thehydro-hole for 1-3days at a time) swarmsof

Page51of82

Boreogadus saida have been observed under Russian drifting stations North Pole-16(NP-16) in 1968-1969 (Andriyashev et al., 1980) and under NP-37 in 2009-2010 (I. A.Melnikov&Chernova,2013).AbundanceofArcticcod(Arctogadusglacialis)Arctogadusglacialisaremorecommon in theAtlanticArctic than in thePacificArctic.LowryandFrost(1981)caughtoneArctogadusglacialisatadepthof150mduringtheir1977 survey of theU.S. Beaufort Sea.NoArctogadus glacialiswere caught in a 2008survey of Beaufort Sea (Rand& Logerwell, 2011).Arctogadus glacialiswere themostcommonfishsampledundertheNP-16driftingstationin1968-1969inthecentralArctic(Andriyashevetal.,1980),butnoneweresampledunder theNP-37driftingstation in2009-2010 (I. A. Melnikov & Chernova, 2013). Also, Arctogadus glacialis were thedominant fishcaught (796total)duringabottomtrawlsurvey (depths110-490m)ontheshelftothenortheastofGreenland(Sufke,Piepenburg,&vonDorrien,1998),andArctogadusglacialisareoftenobservedinfjordsonthenortheasternsideofGreenland(Christiansen, Hop, Nilssen, & Joensen, 2012). Overall, it appears that ArctogadusglacialisaremuchlessabundantthanBoreogadussaidainArcticwaters.AbundanceofGreenlandhalibut(Reinhardtiushippoglossoides)Greenland halibut aremuchmore abundant in Arctic latitudes of the Atlantic Oceancompared to thePacificOcean. In theU.S.Chukchi Sea, ameanCPUEof0.01 fish/hawasobservedduring the2012bottomtrawlsurvey (Goddardetal.,2014). In theU.S.BeaufortSea,ameanCPUEof four fish/haand0.4kg/hawasobservedduringa2008bottom trawl survey (Rand & Logerwell, 2011). The low numbers and absence inichthyoplanktonsurveys indicates that theobservedGreenlandhalibut likelyspawn intheBeringSeaandaretransportednorthtotheChukchiandBeaufortSeas(Logerwelletal.,2015).IntheAtlanticOcean,GreenlandhalibutspawninArcticlatitudes.FisheriesoccurintheBarents Sea and in the Canadian Eastern Arctic-West Greenland LME. In the Barents,overthelast10years,averageannualcatchhasbeenaround17,000mt(McBrideetal.,2016).ThemajorityofthecatchissplitbetweenNorwegianandRussiangillnet,longlineand trawl fleets (ICES2015).Currently, there isnoacceptedassessment,andbiomassestimates are based on fishery data and independent surveys (ICES, 2015). The 2014exploitablebiomassestimateforGreenlandhalibut(>45cminlength)isapproximately650,000mtwithanabundanceof380millionindividuals(ICES,2015,page558).IntheCanadian Eastern Arctic-West Greenland LME (NAFO Subareas 0 and 1) the 2015biomassestimateforGreenlandhalibutisroughly190,000mt(NAFO,2016).AbundanceofArcticskate(Amblyrajahyperborea)ArcticskatesarecommonbycatchinAtlanticArcticbottomtrawlandlonglinefisheries.IntheBarentsSea,theirbycatchratesareupto60–100kgperhourhauland>50fish

Page52of82

per 1,000 hooks (Dolgov, Grekov, Shestopal, & Sokolov, 2005). Stock abundance andbiomass estimates from the autumn/winter trawl survey in the Barents Sea are 2.6millionskatesandabiomassof3,500mt,respectively(Dolgov,Drevetnyak,etal.,2005).ThesurveycatchofArcticskatesincreasedwithdepth,andthemaximumdepthofthesurvey is 800 m, which does not include the full preferred depth range (Dolgov,Drevetnyak,etal.,2005).PhenologyPhenologyofPolarcod(Boreogadussaida)Little is known about the geographic phenology of Polar cod, especially during thewintermonths.Polarcodreachamaximumlengthof40cm(Craig,Griffiths,Haldorson,&McElderry,1982),butusuallyare lessthan30cm(Bradstreet,1986).Themaximumrecordedageiseightyears(Gillispieetal.,1997).BecausePolarcodspawninthewinterunder the ice, little is known about spawning locations and whether they spawnnearshoreand/orindeeperwaters.TwopotentiallocationshavebeenidentifiedintheBarents Sea: east of Svalbard (inferred fromegg and larval drift (HopandGjosaester,2013)andPechoraSea(Rass,1968).Typically,malesreachmaturityearlierthanfemales(Andriyashev,1954;Craigetal.,1982; (Nahrgangetal.,2014);(Nahrgangetal.,2016).On average, females reachmaturity at three (Barents Sea andAlaskanArctic) to four(Russia)yearsofage(Andriyashev,1954).Ageoffirstmaturitycanoccurasearlyasoneyear of age formales and two years of age for females in the coastal waters of theBeaufort Sea (Craig et al., 1982). Time of spawning ranges fromDecember toMarchwithpeakspawntimingoccurring in JanuaryandFebruary in theBarentsSeaandtheU.S. Arctic (Rass, 1968; Craig et al., 1982; Lowry and Frost, 1981; Korshunova, 2012).Polar cod are believed to be complete broadcast spawners (Korshunova, 2012),investing high levels of energy in reproduction and can lose up to 50% of their bodyweight while spawning (H. Hop, Graham, & Trudeau, 1995). Most of the eggdevelopment takes place in the ice-water interface (Rass, 1968). EmbryonicdevelopmentofArctic cod ranges from26 to90dayswith shorter timesoccurring inwarmer temperatures (Aronovich, Doroshev, Spectorova, andMakhotin (1975); Rass,1968;GrahamandHop,1995;(Ponomarenko,2000).HatchingseasonstartsinJanuaryinareaswith freshwater inputand favorable temperatureconditions (Laptev,Siberianand Beaufort seas and Hudson Bay) and in April in areaswith little freshwater input(Canadian Archipelago, North Baffin Bay and Northeast Water) and ends in July(Bouchard & Fortier, 2011). In the Canadian Beaufort Sea, Geoffrey et al. (2015)observeda year roundvertical segregationof age-0 inwaters<100mandage1+atdepthsof200–600m.StartinginSeptember,theage-0sstarttotransitiondowntothemesopelagic.StartinginlateJanuaryandpeakinginApril,Benoitetal.(2008)observedlargeaggregationsofadult,possiblyspentandfasting,Polarcodinice-coveredFranklinBay in the Canadian Beaufort in the lower part of the Pacific Halocline. Benoit et al.(2008)hypothesizedthatcodmayhavepassivelydriftedfromtheAmundsenGulfand

Page53of82

were seeking refuge at depth fromdiving ringed seals ormetabolically advantageouswatertemperature.PhenologyofArcticcod(Arctogadusglacialis)Very little is knownabout the lifehistoryandphenologyofArctic cod.Themaximumageisat least11years(Boulva,1979),andmaximumlengthis60cm(Mecklenburgetal.,2002), so theyare longer-livedandgrow larger thanpolarcod.Early life stagesofPolarandArcticcodsaremorphometricallysimilar(Bouchardetal.,2014). Withintheliterature, thereare contradictory statementsabout spawn timing. Sufkeet al. (1998)and Bouchard et al. (2014) suggest winter spawning, while other evidence suggestssummerspawning(Jordanetal.,2003;Aschanetal.,2009). IntheCanadianBeaufort,Polar andArctic cods have a similar hatching season, spatiotemporal distribution andgrowth rates, but higher survival (Bouchard et al., 2014), which supports winterspawning.Jordanetal.(2003)speculatesthatArcticcodspawninshore,andthejuveniledevelopmentmaytakeplaceoffshorewherelargenumbersofmedium-sizedfishhavebeenobserved(e.g.,NortheastWateroffGreenlandinvonDorrienetal.,1991).ResearchgapsinphenologyFewstudieshavesurveyedArcticandpolarcodundertheiceinwinter,therefore,littleis known about their spawning ecology, shoaling behavior, seasonal movements,abundanceanddistribution.Even less isknownaboutArcticandPolarcods inhabitingthe central Arctic, which is currently ice covered year round. For a fishery stockassessment, we need a good estimate of total biomass, natural mortality, predationmortality,ageofmaturity, fecundity,adetailedagestructure,etc.There isaneedforlargesystematicannualorbiennialsurveys(e.g.,annualacousticsurveysofArcticcodinBarentsSeasince1981(ICES,2012).

MarineFoodWebsoftheCentralArcticOceanandAdjacentWatersBiotaSympagicCommunities of plants animals and other organisms depend on sea ice as habitat,feedingground,refuge,andbreedingground.Thespecializediceinhabitantsareknownas sympagic (or ice associated). Sympagic diversity contributes considerably to totalArctic diversity. Sympagic biota range frommicrobes to megafauna (H Hop, Bluhm,Daase,Gradinger,&Poulin,2013).Primaryproducers,suchasdiatoms,areconsideredthemostsignificantsympagicspecies.OtherspeciestoinhabittheArcticseaiceincludenematodes, cnidarians, copepods, rotifers, polychaetes, euphausiids, and amphipods.AmphipodsproduceamajorfoodsourceforArctogadusglacialis,whoalsooccurwithinseaiceandactasamajorlinkbetweentheice-relatedfoodwebandsealsandwhales(R.Gradingeretal.,2010).Boreogadussaidaareknowntooccurinnarrowwedgesof

Page54of82

seawater along the edges of melting ice sheets in schools of 1-28 per wedge whereamphipodsarealsoknowntooccur(R.R.Gradinger&Bluhm,2004).Seaicehabitatsappeartobeundergoingchangeregardingsuitabilityandavailabilityfortheassociatedbiotaduringtheirentirelifecycles.Thischangeisindicatedbyregionaldeclines in their abundance and biomass. Asmultiyear ice habitat declines, pressureridges in first-year icemaybecomemore importantas refuge for sympagic species (HHopetal.,2013).PelagicPelagic communities in the Arctic are coupled to the seasonal cycles of the pelagicprimary production and the seasonal downward flux of ice-algae during breakup (R.Gradinger et al., 2010). Pelagic biota consists of mainly phytoplankton, bacteria,heterotrophic protists, copepods, euphausiids, mysids, larvaceans, chaetognaths, andcnidarians (R. Gradinger et al., 2010). Arctic fishes such as Pacific cod (Gadusmacrocephalus) and the black snailfish (Paraliparis bathybius) are present in thewesternArctic. Other fish species present, for example, arewalleye pollock, veteranpoachers, Arctic cod, Polar cod, whitefish, saffron cod, capelin, Greenland halibut,Atlanticherring,andothers(Bluhm&Gradinger,2008;R.Gradingeretal.,2010).

BenthicRecentmeasurementsofbenthicbiologicalproductionintheArctichaveshownthatthecentral Arctic Ocean is not as barren as originally thought (Vanreusel et al., 2000).Nematodeshavebeenshowntooccurasthenumericallydominantspeciesinnumeroussampled stations (Vanreusel et al., 2000). Other small-sized sediment-inhabitingorganisms of the central Arctic Ocean include bacteria, flagellates, protozoans, andforaminiferans(Schewe,2001).Severalfishspeciesalsoinhabitthebenthicareasofthecentral Arctic Ocean. Among these demersal fish species are Arctic cod, Polar cod,eelpouts, Greenland halibut, sculpin species, and walleye pollock (Lin et al., 2012;CatherineWMecklenburg&Steinke,2015;I.Melnikov,1997).EnvironmentalDriversofFishProductionOceanographyThePacificArcticmarineecosystemconsistsofinflowshelvesfromthenorthernBeringandChukchiseas,alongwiththeinteriorshelvesoftheEastSiberianandBeaufortseas(Moore & Stabeno, 2015). Each of these domains possesses different biophysicscharacteristics(Carmack&Wassmann,2006). TheflowthroughtheBeringStrait linksthePacificandArcticoceansandimpactstheoceanicconditionsintheChukchiSeaandWesternArctic (Kinneyet al., 2014). One impact includes largeamountsofheat andfreshwaterbeingdeliveredannuallyintotheChukchiSeafromtheBeringStrait(Kinneyetal.,2014).TheinteriorshelvesareinfluencedbytheoutflowofwarmerfreshwaterfromArcticrivers(Carmack&Wassmann,2006).

Page55of82

In the Atlantic Arcticmarine ecosystem, the surface layer is characterized by a largescale flow pattern of sea ice from the Siberian shelves across the deep basin andtowardstheNorthAtlanticthroughFramStrait.Belowthis,theAtlanticArcticisstronglyinfluencedbytheinflowofAtlanticWater(Schaueretal.,2002).Thisflowoccursintwobranches:oneacrosstheshallowBarentsSeaandoneinthedeeperFramStraittothewest and north of Svalbard. The Atlantic Water follows the edges and ridges in theArcticOcean influencing all basins but at different depths. It also supplies the regionwithnutrientsanddriftingorganismslikezooplankton(Kosobokova&Hirche,2009)andmicronekton (Knutsen et al., in press). This advective regime fuels life in the ArcticOcean(Wassmannetal.,2015;Bluhmetal.,2015).Over the last threedecades, theAtlanticWaterhasbecomeexceptionallywarm,withnoanalogy since the1950sorprobably in thehistoryof instrumentalobservations inthe Arctic Ocean (Polyakov et al., 2012). In addition, the sea ice cover in the regiondecreased substantially in both summer andwinter (Onarheimet al., 2014). A strongandrelativelydeepwarmingovertheareaswithstrongestdecayofseaiceinsummerhas also been observed, with warming up to 3–4°C above the freezing point in thewatersthatremainedice-freeforthelongestperiodsoftime.ProductionatthelowertrophiclevelsItistheregion’spotentialwithregardtoprimaryandsecondaryproductivitythatformsthebasisfortheproductionathighertrophiclevels.TheArcticOceanischaracterizedbystratifiedwatermassesandthereforenutrientlimitationsonbiologicalproductionexist.Thismaybeanimportantfactorinregulatingtheplanktonicproduction(e.g.,TremblayandGagnon,2009).TheinflowofAtlanticwatermayalterthedynamicsofstratification,buttheeffectsofthisarelargelyunknown.Withareducedandthinnersea-icecoverintheArcticOcean,theproductiveperiodwillpossiblybeprolongedandmayresult inamoderate increase in totalyearlyprimaryproduction (Slagstadetal.,2011).However,theexistingstrongverticalstratificationlimitsnutrientavailabilityandislikelytodosointhefuture(TremblayandGagnon,2009).Hence,thecentralArcticOceanmayremainalowproductionregion(Wassmann,2011).Incontrast,alongthecontinentalshelfandslope adjacent to the central Arctic Ocean, the productivity responsewill depend onlocal to regional conditions. For example, an increased inflow of Atlantic Water willprobablyenhancesea-icemelt,andasea-icereductionbeyondtheshelf-breakwillmostcertainly enhance wind- and ice-forced shelf-break upwelling. This will result inincreasedsolarradiationandnutrientavailability,thusincreasingproductivity(CarmackandMcLaughlin,2011;Tremblayetal.,2011).TheEurasianparameterhasbeenfoundtohavethegreatestpotentialincreasesinprimaryproductioninthefutureArcticOcean(Slagstadetal.,2015).For the timebeing, large researcheffortsarebeing invested intheseproblems.Also,researchonthe“Polarnight”, i.e.productiontakingplaceinthedark winter time, is investigated. Results up to now may indicate that there is an

Page56of82

accountableproductioneveninwintertime(Kraftetal.,2013;Lastetal.,2016;Bergeetal., 2015). Wassmann et al. (2015) suggests these new results may overthrow ourcurrentunderstandingof theArctic ecosystems, and, inparticular, adduncertainty tohowthesystemswillchangeinthefuture.Ecologicalknowledge/EcosystemBetween 2004 and 2013, ecosystems of the Pacific Arctic have changed dramatically(Woodetal.,2015). TheleadingindicatorofthisdramaticchangeisthelossofArcticsea ice in the summer (Perovich et al., 2013). Changes in the environment due toclimate change may occur when resident biological populations respond eitherpositively or negatively to altered timing of events in the annual cycle that coincideswith increased temperature, light, and altered sea ice regime (Hopcroft et al., 2008).This ultimately leads to changes in abundance, distribution, and productivity of alltrophiclevels,whichinreturnleadstochangesinthefunctioningoftheecosystemandthe way energy flows in to upper trophic levels such as fish, sea birds, and marinemammals(Hopcroftetal.,2008). Communitiesofbenthicmacrofaunaontheshallowcontinental shelves of the Pacific Arctic collect high biomass in response to the highlevels of pelagic production advected into the system from upstream primaryproduction(Grebmeier&Maslowski,2014). These“hotspots”ofbenthiccommunitiesprovide prey to other organisms, such as marine mammals and diving seabirds(Grebmeier&Maslowski,2014).Themost essential attributes ofmarine ecosystems are their communities associatedspecies composition, along with their specific abundance and biomass (Bluhm,Gradinger,&Hopcroft,2011).ThemarinefoodwebofthePacificArctic ismadeupofshort linkages that lead fromprimaryproductions tohumans. The linkages typicalofthe Arctic ecosystem rely on the underlying biophysical complexity of the system,specifically,processessuchasupwellingandlateraltransport(Moore&Stabeno,2015).For species such as marine fishes, birds, and mammals, they must adapt toenvironmentalvariability. Atbroadtemporalandspatialscales,snowcrabsandfishesseemtobemovingnorthinresponsetoawarmerclimate(Mooreetal.,2014).Whenlookingatmore regional scales,mammalsandmarinebirdshavechanged featuresoftheirbody,condition,productivity,anddietastheyarerespondingtothevariabilityinseaiceandpreyavailability(Mooreetal.,2014).AttheAtlanticsideoftheArcticOcean,mostofthechangesgoingonmaybeseentolead to limited space for Arctic communities when the boreal communities expandnorthwards.TheseeventsaretakingplacedrivenbytheincreasedflowofAtlanticwaterintoareascoveredbyArcticwateronlyafewyearsago.Thecorrespondingmovementofborealspeciesnorthwardsislimitedbythenortherncontinentalshelfslopes,andtheresulting situation seems to be one of limitedmovement of species into the CentralArctic Ocean. However, Haug et al. (submitted) give a description of possible future

Page57of82

harvest development of some commercial species with a potential tomove into theopen Arctic Ocean. In particular, Greenland halibut, redfish species and northernshrimparenamedpotentialspeciesfornorthwardexpansion.Bothredfishandcapelinmayhave the largest futurepotential of northern expansion.As has beenmentionedaboutPolarcodintheotherareas,thereislargeuncertaintyastotheresponseofPolarcodtothefuturechangeshere.AsthefrontofinflowingAtlanticwaterischangingrapidlyonweeklyandlongerscales,theecosystemsofthesefrontareasaredifficulttodescribe.However,observationsofsea mammals along with measurement of large plankton blooms may indicate thatproductioninthesefrontareasmaybesubstantial,andbiomassmayverywelldriftintotheCentralArcticOceanwiththewarmwatercurrents.Towhatdegreetheseplanktonorganismswillhavemultipleannualcyclesisunknown.Thepositionofseaice isalsodependentontheprevailingwindsintheareasnorthofSvalbard,thusmakingthedivisionbetweensympagicandborealhabitatsveryvariable,makingitdifficulttogiveprecisegeographicalpositioningofthetypesofecosystemsinthisarea.TheareamayverywellbedescribedasatransitionzonebetweenAtlanticandArcticecologicalconditions.AlthoughthebenthicsystemintheArcticOceanisoneoflargedepths,thepotentialofharvestingbottomdwellingorganismsshouldnotbeignored.Thebenthicsystemisanintegralpartofthefoodweb,andchangestakingplaceintheice-influencedareasoftheArctic affect the biomasses at large depths due to the fact that large portions of theproductionmaysinkdowninthewatermasses.TheinletthroughtheDavisStraitmayalsobevisitedbythelargestocksofpelagicfishspeciesintheNordicSeas(herring,capelin,bluewhitingandmackerel),andtheareaoffeeding migration for these stocks may include parts of the Arctic Ocean. Theirmovement would then be closely related to movement of sea mammals utilizingproductionbloomsonvariousgeographicalscales.Historically, marine mammals are known to inhabit large parts of the northernmostwaters,andthismaywellbethesituationalsoinawarmingArcticOcean.Inparticular,bowheadwhalesareendemicspeciestotheArcticandmaybenefit fromtheevolvingclimaticsituation.Falk-Petersenetal.(2014)havepointedtosimilaritiestotheperiodofhistoricwhalehuntingintheyears1690to1790andthatthepresentclimaticsituationmaybefavorablefortheArcticwhales.Concerningthelargestocksofcod-fishesintheBarentsSea,whichhavebeensubjecttocommercialexploitationforcenturiesandaremanagedbytheNorway–Russiafisheriescommission, it is assumed that the cod and haddock are already found at the

Page58of82

northernmostborderoftheirdistribution.Thereis,however,apotentialforeastwardsmovementalongtheshelfborderingthecentralArcticOcean(Hollowedetal.,2013).AlltogetherthesituationisnotoneleadingtoeconomicallyprofitablefishdistributionsintheArcticOcean,althoughsomevisitingbymigratingspeciesmayoccur.Several fishatlases (Wienerroitheretal.,2011)andpublicationsdescribingchanges indistributionof important species in theAtlantic inlet to theArcticOcean (CertainandPlanque,2014)havebeenpresentedlately.

Page59of82

TablesTable1.SpeciesoffishdocumentedtooccurwithintheHighSeasareaidentifyingthespecieswithpotentialforfuturecommercialharvests.

NSpecies Binomial Commonname

PotentialFuture

Commercial1 Anisarchusmedius Stouteelblenny No2 Arctogadusglacialis Arcticcod Yes3 Artediellusatlanticus Atlantichookearsculpin No4 Boreogadussaida Arcticcod Yes5 Careproctusreinhardti Seatadpole No6 Cottunculusmicrops Polarsculpin No7 Liparisfabricii Gelatinousseasnail No8 Lycodesadolfi Adolf'seelpout No9 Lycodespolaris Canadianeelpout No10 Lycodessaggittarius Archereelpout No11 Lycodesseminudus Longeareelpout No12 Reinhardtiushippoglossoides Greenlandhalibut Yes

Sourceoflocalityinformationforspecies:Davidetal.,2015;Linetal.,2012;Mecklenburg,2015;Melnikov,1997;Melnikov,I.A.,andChernova,N.V.,2013;Melnikov,I.A.,andChernova,N.V.,2013.SourceofcommercialpotentialistheSeafoodList.

Page60of82

Table1.1SamplingsitesforfishspeciesontheHighSeasofthecentralArctic.

References:Davidetal.,2015,Linetal.,2012,Mecklenburgetal.,2015,Melnikov,1997,Melnikov,I.A.,andChernova,N.V.,2012,andMelnikov,I.A.,andChernova,N.V.,2013

Page61of82

Table1.2.FishspeciesofdocumentedoccurrenceinLMEsadjacenttotheHighSeasinthecurrentversionoftheFiSCAOdatabasepresentedinalphabeticalorderbyfamilyandscientificnamewithcommonnameandstatusofcommercialpotential.

Page62of82

Table1.2(cont).FishspeciesofdocumentedoccurrenceinLMEsadjacenttotheHighSeasinthecurrentversionoftheFiSCAOdatabasepresentedinalphabeticalorderbyfamilyandscientificnamewithcommonnameandstatusofcommercialpotential.Continued.

Page63of82

Table1.2(cont).FishspeciesofdocumentedoccurrenceinLMEsadjacenttotheHighSeasinthecurrentversionoftheFiSCAOdatabasepresentedinalphabeticalorderbyfamilyandscientificnamewithcommonnameandstatusofcommercialpotential.Continued.

Page64of82

Table1.2(cont).FishspeciesofdocumentedoccurrenceinLMEsadjacenttotheHighSeasinthecurrentversionoftheFiSCAOdatabasepresentedinalphabeticalorderbyfamilyandscientificnamewithcommonnameandstatusofcommercialpotential.Continued.

Page65of82

Table1.2(cont).FishspeciesofdocumentedoccurrenceinLMEsadjacenttotheHighSeasinthecurrentversionoftheFiSCAOdatabasepresentedinalphabeticalorderbyfamilyandscientificnamewithcommonnameandstatusofcommercialpotential.Continued.

Page66of82

Table1.2(cont).FishspeciesofdocumentedoccurrenceinLMEsadjacenttotheHighSeasinthecurrentversionoftheFiSCAOdatabasepresentedinalphabeticalorderbyfamilyandscientificnamewithcommonnameandstatusofcommercialpotential.Continued.

Page67of82

Table1.2(cont).FishspeciesofdocumentedoccurrenceinLMEsadjacenttotheHighSeasinthecurrentversionoftheFiSCAOdatabasepresentedinalphabeticalorderbyfamilyandscientificnamewithcommonnameandstatusofcommercialpotential.Continued.

Page68of82

Table1.2A.InvertebratespeciesofdocumentedoccurrenceinLMEsadjacenttotheHighSeasinthecurrentversionoftheFiSCAOdatabasepresentedinalphabeticalorderbyfamilyandscientificnamewithcommonnameandstatusofcommercialpotential.

Page69of82

NSpecies Binomial Commonname1 Acantholumpenusmackayi Blacklineprickleback2 Acipenserbaeristenorhynchus Siberiansturgeon3 Acipensermedirostris Greensturgeon4 Acipensersturio Sturgeon5 Agonuscataphractus Hooknose6 Agyropelecushemigymnus Halfnakedhatchedfish7 Alectriasalectrolophus Stonecockscomb8 Alepocephalusagassizii Agassiz´slickhead9 Alosaagone Twaiteshad10 Alosasapidissima Americanshad11 Amblyrajahyperborea Arcticskate12 Amblyrajaradiata Starryskate13 Ammodytesdubius Northernsandlance14 Ammodyteshexapterus Pacificsandlance15 Ammodytesmarinus Lessersandeel16 Anarhichasdenticulatus Northernwolffish17 Anarhichaslupus Atlanticcatfish18 Anarhichasminor Spottedwolfeel19 Anarhichasorientalis Beringwolffish20 Anisarchusmedius Stouteelblenny21 Anoplopomafimbria Sablefish22 Aptocyclusventricosus Smoothlumpsucker23 Arctogadusborisovi Toothedcod24 Arctogadusglacialis Arcticcod25 Arctozenusrisso Whitebarracudina26 Argentinasilus Greaterargentine27 Argentinasphyraena Argentine28 Argyropelecusolfersi Olfer'shatchetfish29 Artediellusatlanticus Atlantichookearsculpin30 Artedielluscamchaticus Kamchatkansculpin31 Artediellusgomojunovi Spinyhooksculpin32 Artediellusochotensis Okhotskhookearsculpin33 Artedielluspacificus Hookhornsculpin34 Artediellusscaber Hamecon35 Artediellusuncinatus Arctichookearsculpin36 Aspidophoroidesmonopterygius Alligatorfish37 Aspidophoroidesolrikii Arcticalligatorfish38 Atheresthesstomias Arrowtoothflounder39 Bathylaguseuryops Goiterblacksmelt40 Bathyrajaparmifera Alaskaskate41 Bathyrajaspinicauda Spinetailray42 Belonebelone Garfish43 Benthalbellainfans Zugmayer´spearleye44 Benthosemaglaciale Glacierlanternfish45 Berryteuthismagister Magistratearmhooksquid46 Blepsiasbilobus Crestedsculpin47 Boreogadussaida Polarcod48 Brosmebrosme Tusk49 Careproctusderjugini Deryugin'stadpole50 Careproctusdubius Doubtfulsnailfish

Table1.3.AlphabeticalListofFishandInvertebratesSpeciesfromWatersSurroundingtheHighSeasoftheCentralArcticinthecurrentversionoftheFiSCAOdatabase

Page70of82

NSpecies Binomial Commonname51 Careproctuskidoi Kido’ssnailfish52 Careproctusknipowitschi Knipowitsch'stadpole53 Careproctuslongipinnis Longfinsnailfish54 Careproctusmacrophthalmus Large-eyedtadpole55 Careproctusmicropus Small-eyesnailfish56 Careproctusphasma Spectralsnailfish57 Careproctusranula Scotiansnailfish58 Careproctusreinhardti Seatadpole59 Careproctussolidus None60 Careproctusspectrum Stippledsnailfish61 Careproctustapirus Tapirtadpole62 Careproctustelescopus Telescopetadpole63 Catostomuscatostomus Longnosesucker64 Centroscymnuscoelolepis Portugesedogfish65 Cetorhinusmaximus Baskingshark66 Chauliodusmacouni Pacificviperfish67 Chimaeramonstrosa Rabbitfish68 Chionoecetesopilio Snowcrab69 Chirolophisascanii Yarrell'sblenny70 Chirolophisdecoratus Decoratedwarbonnet71 Chirolophissnyderi Beardedwarbonnet72 Chlamydoselachusanguineus Frilledshark73 Ciliatamustela Fivebeardrockling74 Ciliataseptentrionalis Northernrockling75 Clupeaharengus Atlanticherring76 Clupeaharengus Atlanticherring77 Clupeapallasii Pacificherring78 Clupeapallasiisuworowi Chosaherring79 Coelorinchuslabiatus Spearsnoutedgrenadier80 Coregonusautumnalis Arcticcisco81 Coregonusclupeaformis Lakewhitefish82 Coregonuslaurettae Beringcisco83 Coregonuslavaretus Europeanwhitefish84 Coregonusmuksun Muksun85 Coregonusnasus Broadwhitefish86 Coregonuspeled Peled87 Coregonuspidschian Humpbackwhitefish88 Coregonussardinella Leastcisco89 Coregonustuguntugun Tugun90 Coryphaenoidesrupestris Roundnosegrenadier91 Cottunculusmicrops Polarsculpin92 Cottunculusmicrops Polarsculpin93 Cottunculussadko Sadkosculpin94 Cottuscognatus Slimysculpin95 Cottusricei Spoonheadsculpin96 Cyclopteropsisjordani Smoothlumpfish97 Cyclopteropsismcalpini Arcticlumpsucker98 Cyclopteruslumpus Lumpsucker99 Dendrobranchiataspunk Shrimps100 Diastobranchuscapensis basketworkeel

Table1.3(cont).AlphabeticalListofFishandInvertebratesSpeciesfromWatersSurroundingtheHighSeasoftheCentralArctic.ContinuedinthecurrentversionoftheFiSCAOdatabase

Page71of82

NSpecies Binomial Commonname101 Dipteruslinteus Sailray102 Dipturusbatis Blueskate103 Dipturuslinteus Sailray104 Dipturusoxyrinchus Longnosedskate105 Doryteuthispealeii Longfinsquid106 Eleginusgracilis Saffroncod107 Eleginusnavaga Navaga108 Enchelyopuscimbrius Fourbeardrockling109 Enophrysdiceraus Antleredsculpin110 Enophryslucasi Leistersculpin111 Entelurusaequoreus Snakepipefish112 Entosphenustridentatus Pacificlamprey113 Esoxlucius Northernpike114 Etmopterusspinax Velvetbelly115 Eumesogrammuspraecisus Fourlinesnakeblenny116 Eumicrotremusandriashevi Pimpledlumpsucker117 Eumicrotremusderjugini Leatherfinlumpsucker118 Eumicrotremusderjugini Leatherfinlumpsucker119 Eumicrotremusorbis Pacificspinylumpsucker120 Eumicrotremusspinosus Atlanticspinylumpsucker121 Eurymengyrinus Smoothcheeksculpin122 Eutriglagurnardus Greygurnard123 Gadiculusargenteus Silverypout124 Gaduschalcogrammus Walleyepollock125 Gadusmacrocephalus Pacificcod126 Gadusmorhua Atlanticcod127 Gadusmorhua Atlanticcod128 Gadusogac Greenlandcod129 Gaidropsarusargentatus Arcticrockling130 Gaidropsarusargentatus Arcticrockling131 Gaidropsarusensis Threadfinrockling132 Galeorhinusgaleus Topeshark133 Galeusmelastomus Black-mouthedcatshark134 Gasterosteusaculeatus Threespinestickleback135 Gasterosteusaculeatus Three-spinedstickleback136 Glyptocephaluscynoglossus Witchflounder137 Gymnelusandersoni None138 Gymnelusesipovi None139 Gymnelushemifasciatus Halfbarredpout140 Gymnelusretrodorsalis Auroraunernak141 Gymnelustaeniatus None142 Gymnelusviridis Fishdoctor143 Gymnocanthusgaleatus Armorheadsculpin144 Gymnocanthuspistilliger Threadedsculpin145 Gymnocanthustricuspis Arcticstaghornsculpin146 Hemilepidotusjordani YellowIrishlord147 Hemilepidotuspapilio Butterflysculpin148 Hexagrammosdecagrammus Kelpgreenling149 Hexagrammoslagocephalus RockGreenling150 Hexagrammosoctogrammus Maskedgreenling

Table1.3(cont).AlphabeticalListofFishandInvertebratesSpeciesfromWatersSurroundingtheHighSeasoftheCentralArcticinthecurrentversionoftheFiSCAOdatabase.

Page72of82

NSpecies Binomial Commonname151 Hexagrammosstelleri Whitespottedgreenling152 Hippoglossoideselassodon Flatheadsole153 Hippoglossoidesplatessoides Long-roughdab154 Hippoglossoidesrobustus Beringflounder155 Hippoglossushippoglossus Atlantichalibut156 Hippoglossusstenolepis Pacifichalibut157 Hyasaraneus Greatspidercrab158 Hypomesusolidus Pondsmelt159 Hypsagonusquadricornis Fourhornpoacher160 Icelusbicornis Twohornsculpin161 Icelusspatula Spatulatesculpin162 Icelusspiniger Thornysculpin163 Icelusspp. Unknownsculpin164 Lamnaditropis Salmonshark165 Lamnanasus Porbeagle166 Lampanyctusmacdonaldi Rakerybeaconlamp167 Lepidopsettabilineata Rocksole168 Lepidopsettapolyxystra Northernrocksole169 Lepidorhombuswhiffiagonis Megrim170 Leptagonusdecagonus Atlanticpoacher171 Leptagonusdecagonus Atlanticpoacher172 Leptoclinusmaculatus Daubedshanny173 Leptoclinusmaculatus Spottedsnakeblenny174 Lethenteroncamtschaticum Arcticlamprey175 Leucorajafullonica Shagreenskate176 Limandaaspera Yellowfinsole177 Limandalimanda Commondab178 Limandaproboscidea Longheaddab179 Limandasakhalinensis Sakhalinsole180 Liopsettaglacialis Arcticflounder181 Liopsettaglacialis Arcticflounder182 Liparisbathyarcticus None183 Lipariscallyodon Spottedsnailfish184 Liparisfabricii Gelatinousseasnail185 Liparisgibbus Variegatedsnailfish186 Liparisliparis Stripedsnailfish187 Liparismarmoratus Festivesnailfish188 Liparismontagui Montague'ssnailfish189 Liparisochotensis Okhotsksnailfish190 Liparistunicatus Kelpsnailfish191 Lophiuspiscatorius Angler192 Lotalota Burbot193 Lumpenusfabricii Slendereelblenny194 Lumpenuslampretaeformis Snakeblenny195 Lumpenusmaculatus Daubedshanny196 Lumpenussagitta Snakeprickleback197 Lycenchelyskolthoffi Checkeredwolfeel198 Lycenchelysmuraena Morayeelpout199 Lycenchelysplatyrhina None200 Lycenchelyssarsii Sars'wolfeel

Table1.3(cont).AlphabeticalListofFishandInvertebratesSpeciesfromWatersSurroundingtheHighSeasoftheCentralArcticinthecurrentversionoftheFiSCAOdatabase.Continued

Page73of82

NSpecies Binomial Commonname201 Lycenchelyssarsii Sars'wolfeel202 Lycodesadolfi Adolf’seelpout203 Lycodesbrevipes Shortfineelpout204 Lycodesesmarkii Esmark'seelpout205 Lycodeseudipleurostictus Doublelineeelpout206 Lycodesfrigidus Glacialeelpout207 Lycodesgracilis Commoneelpout208 Lycodesjugoricus Shulupaoluk209 Lycodesluetkenii Luetken'seelpout210 Lycodesmarisalbi Whiteseaeelpout211 Lycodesmcallisteri McAllister'seelpout212 Lycodesmucosus Saddledeelpout213 Lycodespaamiuti Paamiuteelpout214 Lycodespalearis Wattledeelpout215 Lycodespallidus Paleeelpout216 Lycodespolaris Canadianeelpout217 Lycodesraridens Marbledeelpout218 Lycodesreticulatus Arcticeelpout219 Lycodesrossi Threespoteelpout220 Lycodessaggittarius Archereelpout221 Lycodesseminudus Longeareelpout222 Lycodessquamiventer Skjellålebrosme223 Lycodesterraenovae Atlanticeelpout224 Lycodesturneri Polareelpout225 Lycodesvahlii Vahl'seelpout226 Lycodonusflagellicauda Pointedsoletusk227 Macrourusberglax Roughheadgrenadier228 Mallotuscatervarius Pacificcapelin229 Mallotusvillosus Capelin230 Maurolicusmuelleri Mueller'spearlside231 Megalocottusplatycephalus Belligerentsculpin232 Melanogrammusaeglefinus Haddock233 Merlangiusmerlangus Whiting234 Merlucciusmerluccius Europeanhake235 Micrenophryslilljeborgii Norwaybullhead236 Microcottussellaris Brightbellysculpin237 Micromesistiuspoutassou Bluewhiting238 Microstomuskitt Lemonsole239 Molvadipterygia Blueling240 Molvamolva Ling241 Myctophidspunk Lanternfish242 Myoxocephalusjaok Plainsculpin243 Myoxocephaluspolyacanthocephalus Greatsculpin244 Myoxocephalusquadricornis Fourhornsculpin245 Myoxocephalusscorpioides Arcticsculpin246 Myoxocephalusscorpius Shorthornsculpin247 Nanseniagroenlandica Large-eyedargentine248 Nautichthyspribilovius Eyeshadesculpin249 Notoscopeluskroyeri Lancetfish250 Occelladodecaedron Beringpoacher

Table1.3(cont).AlphabeticalListofFishandInvertebratesSpeciesfromWatersSurroundingtheHighSeasoftheCentralArcticinthecurrentversionoftheFiSCAOdatabase.Continued

Page74of82

NSpecies Binomial Commonname251 Oncorhynchusgorbuscha Pinksalmon252 Oncorhynchusketa Chumsalmon253 Oncorhynchuskisutch Cohosalmon254 Oncorhynchusmykiss Rainbowtrout255 Oncorhynchusnerka Sockeyesalmon256 Oncorhynchustshawytscha Chinooksalmon257 Osmerusdentex Arcticrainbowsmelt258 Osmeruseperlanus Europeansmelt259 Osmerusmordax Rainbowsmelt260 Pallasinabarbata Tubenosepoacher261 Pandalusborealis Northernshrimp262 Paralepiscoregonoides Sharochinbarracudina263 Paraliparisbathybius Blackseasnail264 Paraliparisviolaceus None265 Paralithodesplatypus Bluekingcrab266 Pasiphaeamultidentata Pinkglassshrimp267 Pasiphaeasivado Whiteglassshrimp268 Pasiphaeatarda Crimsonpasiphaeid269 Percisjaponica Dragonpoacher270 Petromyzonmarinus Sealamprey271 Pholisfasciata Bandedgunnel272 Pholisgunnelus Rockgunnel273 Phrynorhombusnorvegicus Norwegiantopknot274 Phycisblennoides Greaterforkbeard275 Platichthysstellatus Starryflounder276 Pleurogrammusmonopterygius Atkamackerel277 Pleuronectesplatessa Europeanplaice278 Pleuronectesquadrituberculatus Alaskaplaice279 Podothecusaccipenserinus Sturgeonpoacher280 Podothecusveternus Veteranpoacher281 Pollachiuspollachius Europeanpollock282 Pollachiusvirens Saithe283 Pontophilusnorvegicus Norwegianshrimp284 Porocottusmednius Poredsculpin285 Porocottusquadrifilis Europeanplaice286 Prionaceglauca Blueshark287 Prosopiumcylindraceum Roundwhitefish288 Protomyctophumarcticum Arctictelescope289 Psychrolutesparadoxus Tadpolesculpin290 Psychrolutessubspinosus None291 Pungitiuspungitius Ninespinestickleback292 Rajaclavata Thornbackskate293 Rajellafyllae Roundray294 Reinhardtiushippoglossoides Greenlandhalibut295 Rhodichthysregina Threadfinseasnail296 Rhodymenichthysdolichogaster Stippledgunnel297 Salmosalar Atlanticsalmon298 Salmotrutta Browntrout299 Salvelinusalpinus Arcticchar300 Salvelinusandriashevi Chukotchar

Table1.3(cont).AlphabeticalListofFishandInvertebratesSpeciesfromWatersSurroundingtheHighSeasoftheCentralArcticinthecurrentversionoftheFiSCAOdatabase.Continued

Page75of82

NSpecies Binomial Commonname301 Salvelinusczerskii Cherskii'schar302 Salvelinusdrjagini Drjagin'schar303 Salvelinusmalma Dollyvarden304 Salvelinusnamaycush Laketrout305 Salvelinustaimyricus TaymyrLakechar306 Salvelinustaranetzi Taranetzchar307 Sarritorfrenatus Sawbackpoacher308 Schedophilusmedusophagus Cornishblackfish309 Sclerocrangonboreas Sculpturedshrimp310 Sclerocrangonferox Spikeshrimp311 Scomberscombrus Atlanticmackerel312 Scorpaenidspunk Scorpionfishes313 Sebastesalutus Pacificoceanperch314 Sebastesborealis Shortrakerrockfish315 Sebastesmarinus Goldenredfish316 Sebastesmentella Beakedredfish317 Sebastesnorvegicus Goldenredfish318 Sebastesviviparus Norwayredfish319 Sergestesarcticus Panaeidprawn320 Somniosusmicrocephalus Greenlandshark321 Somniosuspacificus Pacificsleepershark322 Squalusacanthias Spinydogfish323 Squalussuckleyi Pacificspinydogfish324 Stenodusleucichthys Inconnu325 Stichaeuspunctatus Arcticshanny326 Taurulusbubalis Longspinedsculpin327 Telmessuscheiragonus Helmetcrab328 Theragrafinmarchica Norwaypollock329 Thymallusarcticus Arcticgrayling330 Thymalluspallasii EastSiberiangrayling331 Trachipterusarcticus Dealfish332 Trichocottusbrashnikovi Hairheadsculpin333 Trichodontrichodon Pacificsandfish334 Triglopsmurrayi Moustachesculpin335 Triglopsnybelini Bigeyesculpin336 Triglopspingelii Ribbedsculpin337 Triglopsisquadricornis Fourhornsculpin338 Trisopterusesmarkii Norwaypout339 Zaprorasilenus Prowfish

Table1.3(cont).AlphabeticalListofFishandInvertebratesSpeciesfromWatersSurroundingtheHighSeasoftheCentralArcticinthecurrentversionofFiSCAO.

Page76of82

AppendixC:LiteratureCitedAllen,M.J.,&Smith,G.B.(1988).AtlasandzoogeographyofcommonfishesintheBeringSea

andnortheasternPacific.Andrii�a�shev,A.(1964).FishesofthenorthernseasoftheUSSR:(RybysevernykhmoreiSSSR):

IsraelProgramforScientificTranslations.Andriyashev,A.,Mukhomediayarov,B.,&Pavshtiks,E.(1980).Onmasscongregationsofthe

cryopelagiccodfishes(BoreogadussaidaandArctogadusglacialis)incircumpolararcticbasins.BiologyoftheCentralArcticBasin.ShirovInstituteofOceanology,AcademyofSciences,196,211.

Aronovich,T.M.,Doroshev,S.I.,Spectorova,L.V.,&Makhotin,V.M.(1975).Eggincubationandlarvalrearingofnavaga(Eleginus-navagapall),Polarcod(Boreogadus-saidalepechin)andArcticflounder(Liopsetta-glacialispall)inlaboratory.Aquaculture,6(3),233-242.doi:10.1016/0044-8486(75)90043-5

Aschan,M.,Karamushko,O.V.,Byrkjedal,I.,Wienerroither,R.,Borkin,I.V.,&Christiansen,J.S.(2009).RecordsofthegadoidfishArctogadusglacialis(Peters,1874)intheEuropeanArctic.PolarBiology,32(7),963-970.doi:10.1007/s00300-009-0595-4

Barber,W.E.,Smith,R.L.,Vallarino,M.,&Meyer,R.M.(1997).DemersalfishassemblagesofthenortheasternChukchiSea,Alaska.FisheryBulletin,95(2),195-209.

Benoit,D.,Simard,Y.,&Fortier,L.(2008).HydroacousticdetectionoflargewinteraggregationsofArcticcod(Boreogadussaida)atdepthinice-coveredFranklinBay(BeaufortSea).JournalofGeophysicalResearch-Oceans,113(C6).doi:10.1029/2007jc004276

Bluhm,B.A.,&Gradinger,R.(2008).RegionalvariabilityinfoodavailabilityforArcticmarinemammals.EcologicalApplications,18(sp2).

Bluhm,B.A.,Gradinger,R.,&Hopcroft,R.R.(2011).Editorial-Arcticoceandiversity:synthesis.MarineBiodiversity,41(1),1-4.

Bouchard,C.,&Fortier,L.(2011).Circum-arcticcomparisonofthehatchingseasonofpolarcodBoreogadussaida:Atestofthefreshwaterwinterrefugehypothesis.ProgressinOceanography,90(1-4),105-116.doi:10.1016/j.pocean.2011.02.008

Bowering,W.R.,&Nedreaas,K.H.(2000).AcomparisonofGreenlandhalibut(Reinhardtiushippoglossoides(Walbaum))fisheriesanddistributionintheNorthwestandNortheastAtlantic.Sarsia,85(1),61-76.

Bradstreet,M.S.(1986).AspectsofthebiologyofArcticcod(Boreogadussaida)anditsimportanceinArcticmarinefoodchains:DepartmentofFisheriesandOceans,CentralandArcticRegion.

Carmack,E.,&Wassmann,P.(2006).Foodwebsandphysical–biologicalcouplingonpan-Arcticshelves:unifyingconceptsandcomprehensiveperspectives.ProgressinOceanography,71(2),446-477.

Christiansen,J.S.,Hop,H.,Nilssen,E.M.,&Joensen,J.(2012).TrophicecologyofsympatricArcticgadoids,Arctogadusglacialis(Peters,1872)andBoreogadussaida(Lepechin,1774),inNEGreenland.PolarBiology,35(8),1247-1257.doi:10.1007/s00300-012-1170-y

Craig,P.,Griffiths,W.,Haldorson,L.,&McElderry,H.(1982).EcologicalstudiesofArcticcod(Boreogadussaida)inBeaufortSeacoastalwaters,Alaska.CanadianJournalofFisheriesandAquaticSciences,39(3),395-406.

Page77of82

Crawford,R.E.,&Jorgenson,J.K.(1996).QuantitativestudiesofArcticcod(Boreogadussaida)schools:ImportantenergystoresintheArcticfoodweb.Arctic,49(2),181-193.

Datsky,A.(2015).FishfaunaoftheChukchiSeaandperspectivesofitscommercialuse.JournalofIchthyology,55(2),185-209.

David,C.,Lange,B.,Krumpen,T.,Schaafsma,F.,vanFraneker,J.A.,&Flores,H.(2016).Under-icedistributionofpolarcodBoreogadussaidainthecentralArcticOceanandtheirassociationwithsea-icehabitatproperties.PolarBiology,39(6),981-994.doi:10.1007/s00300-015-1774-0

DeRobertis,A.,Taylor,K.,Wilson,C.D.,&Farley,E.V.(2016).AbundanceanddistributionofArcticcod(Boreogadussaida)andotherpelagicfishesovertheUSContinentalShelfoftheNorthernBeringandChukchiSeas.DeepSeaResearchPartII:TopicalStudiesinOceanography.

Dolgov,A.,Drevetnyak,K.,&Gusev,E.(2005).ThestatusofskatestocksintheBarentsSea.JournalofNorthwestAtlanticFisheryScience,35,1-13.

Dolgov,A.,Grekov,A.,Shestopal,I.,&Sokolov,K.(2005).By-catchofskatesintrawlandlong-linefisheriesintheBarentsSea.JournalofNorthwestAtlanticFisheryScience,35,357-366.

Falk-Petersen,S.,Pavlov,V.,Cottier,F.,Berge,J.,Kovacs,K.,&Lydersen,C.(2014).Attherainbow’send—productivityhotspotsduetoupwellingalongArcticshelves.PolarBiol.doi,10,1007.

Frost,K.J.,&Lowry,L.F.(1983).DemersalfishesandinvertebratestrawledinthenortheasternChukchiandwesternBeaufortseas1976–1977NOAATechnicalReportNMFS-SSRF-764(pp.27):U.S.DepartmentofCommerce,NationalOceanicandAtmosphericAdministration,NationalMarineFisheriesService.

Geoffroy,M.,Majewski,A.,LeBlanc,M.,Gauthier,S.,Walkusz,W.,Reist,J.D.,&Fortier,L.(2015).Verticalsegregationofage-0andage-1+polarcod(Boreogadussaida)overtheannualcycleintheCanadianBeaufortSea.PolarBiology,1-15.

Geoffroy,M.,Robert,D.,Darnis,G.,&Fortier,L.(2011).Theaggregationofpolarcod(Boreogadussaida)inthedeepAtlanticlayerofice-coveredAmundsenGulf(BeaufortSea)inwinter.PolarBiology,34(12),1959-1971.doi:10.1007/s00300-011-1019-9

Goddard,P.,Lauth,R.,&Armistead,C.(2014).Resultsofthe2012ChukchiSeabottomtrawlsurveyofbottomfishes,crabs,andotherdemersalmacrofauna.USDep.Commer.NOAATech.Memo.NMFS-AFSC,278,110.

Gradinger,R.,Bluhm,B.A.,Hopcroft,R.R.,Gebruk,A.V.,Kosobokova,K.,Sirenko,B.,&Wesławski,J.M.(2010).MarinelifeintheArctic.LifeintheWorld’sOceans:Diversity,DistributionandAbundance.Wiley-Blackwell,Oxford,183-202.

Gradinger,R.R.,&Bluhm,B.A.(2004).In-situobservationsonthedistributionandbehaviorofamphipodsandArcticcod(Boreogadussaida)undertheseaiceoftheHighArcticCanadaBasin.PolarBiology,27(10),595-603.doi:10.1007/s00300-004-0630-4

Grebmeier,J.M.,&Maslowski,W.(2014).ThePacificArcticregion:ecosystemstatusandtrendsinarapidlychangingenvironmentDordrecht;NewYorkSpringer.

Hop,H.,Bluhm,B.,Daase,M.,Gradinger,R.,&Poulin,M.(2013).NorwegianPolarInstitute,FramCentre,Tromsø,Norway2SchoolofFisheriesandOceanSciences,UniversityofAlaskaFairbanks,Fairbanks,AK,USA3ResearchandCollectionsDivision,CanadianMuseumofNature,Ottawa,ON,Canada.

Page78of82

Hop,H.,Graham,M.,&Trudeau,V.L.(1995).SpawningenergeticsofArcticcod(Boreogadussaida)inrelationtoseasonaldevelopmentoftheovaryandplasmasexsteroid-levels.CanadianJournalofFisheriesandAquaticSciences,52(3),541-550.doi:10.1139/f95-055

Hopcroft,R.,Bluhm,B.,Gradinger,R.,Whitledge,T.,Weingartner,T.,Norcross,B.,&Springer,A.(2008).Arcticoceansynthesis:AnalysisofclimatechangeimpactsintheChukchiandbeaufortseaswithstrategiesforfutureresearch.

Jordan,A.,Møller,P.R.,&Nielsen,J.G.(2003).RevisionoftheArcticcodgenusArctogadus.JFishBiol,62(6),1339-1352.

Kinney,J.C.,Maslowski,W.,Aksenov,Y.,deCuevas,B.,Jakacki,J.,Nguyen,A.,...Zhang,J.(2014).OntheflowthroughBeringStrait:AsynthesisofmodelresultsandobservationsThePacificArcticRegion(pp.167-198):Springer.

Kraft,A.,Graeve,M.,Janssen,D.,&Falk-Petersen,S.(2013).Frompolarnighttomidnightsun:lipidcompositionandfeedingstrategiesofArcticpelagicamphipods.

Lin,L.,Liao,Y.,Zhan,J.,Zheng,S.,Xiang,P.,Yu,X.,...Shao,K.(2012).CompositionanddistributionoffishspeciescollectedduringthefourthChineseNationalArcticResearchExpeditionin2010AdvancesinPolarScience,23(2),116-127.doi:doi:10.3724/SP.J.1085.2012.00116

Logerwell,E.,Busby,M.,Carothers,C.,Cotton,S.,Duffy-Anderson,J.,Farley,E.,...Horne,J.(2015).FishcommunitiesacrossaspectrumofhabitatsinthewesternBeaufortSeaandChukchiSea.ProgressinOceanography,136,115-132.

Lowry,L.F.,&Frost,K.J.(1981).Distribution,growth,andfoodsofArcticcod(Boreogadussaida)intheBering,Chukchi,andBeaufortSeas.CanadianField-Naturalist.

McBride,M.,Hansen,J.,Korneev,O.,Titov,O.,Stiansen,J.,Tchernova,J.,...Ovsyannikov,A.(2016).JointNorwegian-Russianenvironmentalstatus2013.

Mecklenburg,C.W.,Mecklenburg,T.A.,&Thorsteinson,L.K.(2002).FishesofAlaska.Mecklenburg,C.W.,Møller,P.R.,&Steinke,D.(2011).Biodiversityofarcticmarinefishes:

taxonomyandzoogeography.MarineBiodiversity,41,109-140.doi:DOI10.1007/s12526-010-0070-z

Mecklenburg,C.W.,&Steinke,D.(2015).IchthyofaunalbaselinesinthePacificArcticregionandRUSALCAstudyarea.Oceanography,28(3),158-189.

Melnikov,I.(1997).TheArcticseaiceecosystem.AntarcticScience,9(4),457-458.Melnikov,I.A.,&Chernova,N.V.(2013).Characteristicsofunder-iceswarmingofpolarcod

Boreogadussaida(Gadidae)intheCentralArcticOcean.JournalofIchthyology/VoprosyIkhtiologii,53(1),7-15.doi:DOI:http://dx.doi.org/10.1134/S0032945213010086

Møller,P.R.,Nielsen,J.G.,Knudsen,S.W.,Poulsen,J.Y.,Sünksen,K.,&Jørgensen,O.A.(2010).AchecklistofthefishfaunaofGreenlandwaters.Zootaxa,2378,1-84.

Moore,S.E.,Logerwell,E.,Eisner,L.,FarleyJr,E.V.,Harwood,L.A.,Kuletz,K.,...Quakenbush,L.T.(2014).Marinefishes,birdsandmammalsassentinelsofecosystemvariabilityandreorganizationinthePacificArcticregionThePacificArcticRegion(pp.337-392):Springer.

Moore,S.E.,&Stabeno,P.J.(2015).SynthesisofArcticResearch(SOAR)inmarineecosystemsofthePacificArctic.ProgressinOceanography(136),1-11.

Nahrgang,J.,Dubourg,P.,Frantzen,M.,Storch,D.,Dahlke,F.,&Meador,J.P.(2016).Earlylifestagesofanarctickeystonespecies(Boreogadussaida)showhighsensitivitytoawater-solublefractionofcrudeoil.EnvironPollut,218,605-614.

Page79of82

Nahrgang,J.,Varpe,O.,Korshunova,E.,Murzina,S.,Hallanger,I.G.,Vieweg,I.,&Berge,J.(2014).GenderSpecificReproductiveStrategiesofanArcticKeySpecies(Boreogadussaida)andImplicationsofClimateChange.PLoSOne,9(5).doi:10.1371/journal.pone.0098452

NorthPacificFisheryManagementCouncil(NPFMC).(2009).FisheryManagementPlanforFishResourcesoftheArcticManagementArea(pp.147).Anchorage,AK:NorthPacificFisheryManagementCouncil(NPFMC).

Parker-Stetter,S.L.,Horne,J.K.,&Weingartner,T.J.(2011).Distributionofpolarcodandage-0fishintheUSBeaufortSea.PolarBiology,34(10),1543-1557.doi:10.1007/s00300-011-1014-1

Peklova,I.,Hussey,N.E.,Hedges,K.J.,Treble,M.A.,&Fisk,A.T.(2014).Movement,depthandtemperaturepreferencesofanimportantbycatchspecies,ArcticskateAmblyrajahyperborea,inCumberlandSound,CanadianArctic.EndangeredSpeciesResearch,23(3),229-240.

Perovich,D.,Gerland,S.,Hendricks,S.,Meier,W.,Nicolaus,M.,Richter-Menge,J.,&Tschudi,M.(2013).SeaIce[inArcticReportCard2013].ArcticReportCard2013.

Ponomarenko,V.(2000).Eggs,larvae,andjuvenilesofpolarcodBoreogadussaidaintheBarents,Kara,andWhiteSeas.JournalofIchthyology,40(2),165-173.

Rand,K.M.,&Logerwell,E.A.(2011).ThefirstdemersaltrawlsurveyofbenthicfishandinvertebratesintheBeaufortSeasincethelate1970s.PolarBiology,34(4),475-488.doi:10.1007/s00300-010-0900-2

Schewe,I.(2001).Small-sizedbenthicorganismsoftheAlphaRidge,centralArcticOcean.Internationalreviewofhydrobiology,86(3),317-335.

Stein,D.L.,Felley,J.D.,&Vecchione,M.(2005).ROVobservationsofbenthicfishesintheNorthwindandCanadaBasins,ArcticOcean.PolarBiology,28(3),232-237.

Sufke,L.,Piepenburg,D.,&vonDorrien,C.F.(1998).Bodysize,sexratioanddietcompositionofArctogadusglacialis(Peters,1874)(Pisces:Gadidae)intheNortheastWaterPolynya(Greenland).PolarBiology,20(5),357-363.doi:10.1007/s003000050314

Vanreusel,A.,Clough,L.,Jacobsen,K.,Ambrose,W.,Jivaluk,J.,Ryheul,V.,...Vincx,M.(2000).MeiobenthosofthecentralArcticOceanwithspecialemphasisonthenematodecommunitystructure.DeepSeaResearchPartI:OceanographicResearchPapers,47(10),1855-1879.

Welch,H.E.,Bergmann,M.A.,Siferd,T.D.,Martin,K.A.,Curtis,M.F.,Crawford,R.E.,...Hop,H.(1992).Energy-flowthroughthemarineecosystemoftheLancasterSoundRegion,ArcticCanada.Arctic,45(4),343-357.

Wood,K.R.,Bond,N.A.,Danielson,S.L.,Overland,J.E.,Salo,S.A.,Stabeno,P.J.,&Whitefield,J.(2015).AdecadeofenvironmentalchangeinthePacificArcticregion.ProgressinOceanography,136,12-31.

Page80of82

AppendixD:Chairman’sStatementontheFourthMeetingofScientificExpertsonFishStocksintheCentralArcticOcean

TheissueoftheinternationalmanagementoffisheriesinthecentralArcticOcean(CAO)hasbeenaddressedataseriesofmeetingsofgovernmentsbeginningwithaninitialmeetingheldinOslo,NorwayinJune2010,andcontinuingthroughthemostrecentmeetingofmanagersheldinIqaluit,NunavutTerritory,CanadainJuly2016.OfparticularrelevancetothesemeetingshasbeentheinterestbythegovernmentsinthedevelopmentofajointprogramofscientificresearchandmonitoringtoinformfuturepotentialfisheriesintheCAO.ThisledtoaninitialscientificmeetingheldinAnchorage,AK,USAinJune2011.Thegeneralconclusionofthatmeetingwasthattherewasnourgency,butgiventhelimitedscientificknowledgeoftheCAOtherewasaneedtoestablishbaselinedata.AdditionalscientificmeetingswereheldinTromsø,Norway(October2013)andSeattle,USA(April2015).Participantsatthesemeetingsdevelopedastatus&gapsreport,apartialinventoryofresearch&monitoring,andadraftframeworkforaJointProgramofScientificResearch&Monitoring.GovernmentrepresentativesmetinWashington,DC,USAinDecember2015tofurtherdiscussmanagementofpotentialCAOfisheries.TheseparticipantsprovidedadditionalguidanceonthedevelopmentofaJointProgramofResearchandMonitoringtoaddressthefollowingquestions(whichrepresentarefinementofquestionsraisedinthe3rdscientificworkshopheldinApril2015):

•WhatarethedistributionsandabundancesofspecieswithapotentialforfuturecommercialharvestsinthecentralArcticOcean?•Whatotherinformationisneededtoprovideadvicenecessaryforfuturesustainableharvestsofcommercialfishstocksandmaintenanceofdependentecosystemcomponents?•WhatarethelikelykeyecologicallinkagesbetweenpotentiallyharvestablefishstocksofthecentralArcticOceanandadjacentshelfecosystems?•Overthenext10-30years,whatchangesinfishpopulations,dependentspecies,andthesupportingecosystemsmayoccurinthecentralArcticOceanandtheadjacentshelfecosystems?

Toanswerthesequestions,therepresentativesagreedtothreeTermsofReference(ToR)forthefourthscientificmeeting:

ToR1:CompletethesynthesisofknowledgeToR2:DevelopadraftJointScientificResearchandMonitoringPlantoaddressthefourquestionsToR3:ProvideaFrameworkfortheImplementationPlan

Page81of82

Inresponsetothemanager’srequest,NorwayhostedtheFourthScientificMeetingonCAOFishStocksinTromsø,Norwayduring26-28September2016.Intotal,29participantsattendedthemeetingrepresenting10governments(Canada,People’sRepublicofChina,EuropeanUnion,theKingdomofDenmarkinrespectofGreenland,Iceland,Japan,theRepublicofKorea,theKingdomofNorway,RussianFederation,andUnitedStatesofAmerica)andinterestedbodies,includingtheArcticCouncil(PAME/CAFF),PICES,ICES,andthePacificArcticGroup(PAG).TheparticipatingscientistsandotherswereallfamiliarwithArcticscience,surveysandmodeling,andthesciencenecessarytosupportmanagementandconservationofmarinelivingresources.WithrespecttoToR1,priortothemeeting,participantscollectedexistingdataandanalysesoftheCAOavailablefromscienceorganizationsoftheparties.Thisdatacallallowedforthecompletionofthesynthesisandintegrationofanalysisof“wherewearenow”andidentifiedtheprioritiesforresearchandmonitoringgaps.Thus,onDay1adraftsynthesisreportwastabledanddiscussed.Suggestionsforthecollectionofadditionalinformationwereprovidedandwillbeincorporatedintothefinaldraftsynthesisreport.Theprimaryobjectiveofthemeetingwas,however,tofocusondevelopingaJointScientificResearchandMonitoringPlan(Plan)toaddressthefourquestions.AdraftversionofthePlanwaspreparedpriortothemeetingtoelicitdiscussion.ThisdraftPlanbuiltupontheoutcomesofthepreviousthreescientificmeetingsandconsideredtheneedforadditionalmodelingofecosystemrelationshipsforareasoftheCAOwithphysicalandbiologicaldatarelatingtocommercialfishspecies.Duringthemeeting,participantsbrokeintothreegroups(MappingandMonitoring,EcosystemConsiderations,ScenariostodealClimateChanges)tofurtherdevelopthedraftPlan.MeetingparticipantsspentmostofDay2andthemorningofDay3inthediscussionofthesethreetopics.ParticipantsatthemeetingusedthediscussionoftheResearchandMonitoringPlantodevelopthelistofconsiderationsforimplementationofthePlan(ToR3).Thedesireherewastoprovideguidancetoa2017workshop(orworkshops)whichwilldevelopanimplementationstrategyforthePlanshowingstageddevelopmentofresearchandmonitoringthataddressesgapsinabundance,distributionandotherinformationrequiredtoprovideadviceaboutthepotentialforsustainableharvestofcommercialspeciesintheCAO.MeetingparticipantssignificantlyexpandedupontheoriginaldraftPlan,andthesematerialswillbecombinedwithmaterialsinthedraftPlantoproduceacompletedraft.ThisdraftPlanwillbeprovidedtothemeeting’sparticipantsfortheirreviewbycorrespondence.

Page82of82

ThisdraftwillthenbetabledfordiscussionatthenextmeetingbythetengovernmentsonmanagementofCAOfisheriesscheduledforNovember2016intheFaroeIslands.Itwillbefinalizedpriortothe2017scientificworkshop(s)(whichwillbechargedwithdevelopingdraftImplementationPlansforResearchandMonitoring).