final seminar presentation jan. 22 2014

20
Hydrodeoxygenation of Phenol Using Supported Ruthenium Catalysts Ashley Brooks January 22, 2014 Dr. Rachel Narehood Austin and Dr. Ryan Nelson Bates College, Department of Chemistry

Upload: ashley-brooks

Post on 20-Jan-2017

220 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Final Seminar Presentation Jan. 22 2014

Hydrodeoxygenation of Phenol Using Supported Ruthenium Catalysts

Ashley BrooksJanuary 22, 2014

Dr. Rachel Narehood Austin and Dr. Ryan Nelson Bates College, Department of Chemistry

Page 2: Final Seminar Presentation Jan. 22 2014

Project Overview

• Convert wood waste (mostly lignin) into usable economically viable alternative fuel

• The University of Maine, Bates and Bowdoin College

• Seven year Department of Energy Infrastructure Grant

Page 3: Final Seminar Presentation Jan. 22 2014

Pyrolysis oil Process:

• Thermal chemical conversion of biomass (lignin, cellulose, etc..) to bio - oil

• Rapid heating to 350 - 500°C without oxygen

Bio-oil Composition:• A mixture of over 300 compounds

• Energy density of 20 MJ/Kg

• 50 wt. % Oxygen

• Over time oil polymerizes

Vispute, T. P.; Zhang, H.; Sanna, A.; Xiao, R.; Huber, G. W., Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science 2010, 330, 1222-1227. Gregory, D. Howard College of Arts and Sciences Chemistry and Biochemistry.

http://howard.samford.edu/chemistry/bio.aspx?id=45097178667

Page 4: Final Seminar Presentation Jan. 22 2014

Improving oil properties “Upgrading”• Goals for final fuel:

• Energy densities greater than 45 MJ/kg.

• 1% or less weight of oxygen

• Hydrodeoxygenation (HDO):• Bio - oil put under high pressures of hydrogen as well as high temperatures

• Get about 10 wt. % of oxygen containing compounds thus far

• Heterogeneous supported catalysts are used

Biomass technology group http://www.btgworld.com/en/rtd/technologies/biofuels

Page 5: Final Seminar Presentation Jan. 22 2014

Hydrodeoxygenation of Phenol

Pyrolysis oil is about 2.6% phenol and 29.7% phenolic compounds

Phenol products are easily analyzed on GCMS

OH

OHO

H2

2 H2H2

DDO

HYD

H2OH2

H2O

Page 6: Final Seminar Presentation Jan. 22 2014

Our DDO catalyst process

• Strive for highly active catalysts (large % HDO) • Currently, unclear how to optimize

Design

Synthesis

TestingCharacterization

Redesign

Page 7: Final Seminar Presentation Jan. 22 2014

Catalysts Generations - % Major Products

Catalyst

CalcinedRuCl3/MCM-41

9.2 6.8 3.8 72.7

CalcinedRuCl3/TiO2

26.1 2.2 17.5 54.5

UncalcinedRuCl3/TiO2

86.2 1 1 10.8

OH O

Newman, C. Catalytic Activity of a Series of Supported Ru Hydrogeoxygenation Catalysts . 2011.Controlling hydrogenation vs. direct deoxygenation in supported ruthenium hydrodeoxygenation catalysts Cody Newmana,b, Xiaobo Zhoub, Ben Goundie I. Tyrone Ghampsonb,, Rachel A. Pollockb,, Zachery Rossa, M. Clayton Wheelerb, Robert W. Meulenberg, Rachel N.Austina, and Brian G. Frederick. under review in Applied Catalysis A

Page 8: Final Seminar Presentation Jan. 22 2014

Hypothesis1. Reducible supports work well

- CeO2 and TiO2

2. Ruthenium chloride precursor is poisoning catalyst by blocking active sites and preventing Ru3+ Ru0

Ruthenium(III) acetylacetonate

Ruthenium (III) chloride

Page 9: Final Seminar Presentation Jan. 22 2014

Thesis Objective

Test hypothesis

Replicate enough to understand variability

Optimize use of ruthenium

Page 10: Final Seminar Presentation Jan. 22 2014

Thesis Approach

Synthesize ruthenium catalysts on TiO2 and CeO2 varying percent ruthenium 0.5 3% with two replicates of each

Synthesis method: Incipient Wetness Impregnation (IWI)

Page 11: Final Seminar Presentation Jan. 22 2014

Experimental Design

RuCl3

ORRu(acac)3

CeO2

0.5%1%

1.5%3%

TiO2

0.5%1%

1.5%3%

= 32 total

Page 12: Final Seminar Presentation Jan. 22 2014

New Pretreatment Approach• Revision attempt to maximize

throughput of catalysts

• Reduce catalyst for 1.5 hours in reactor

• Flowing H2 for 0.5 hrs then 37.4 atm H2 for 1 hr at 300°C

Page 13: Final Seminar Presentation Jan. 22 2014

Hydrogenation via the Parr Reactor

• 5 g of Phenol with 0.1 g of catalyst

• Temperature: 300°C

• Pressure: 44.2 atm with H2

• Reaction time: 1 hour

• Sample analyzed by GC/MS

• Catalyst analyzed by ICP (pre & post reaction)

Page 14: Final Seminar Presentation Jan. 22 2014

Percent Major ProductsCatalyst

3% RuCl3/CeO2 (AB1231)

43.4 4.4 25.2 23.5

3% RuCl3/CeO2 (AB1232)

49.6 8.8 18.8 19.8

3% RuCl3/TiO2 (AB12315)

95.1 2.0 0.8 1.2

Page 15: Final Seminar Presentation Jan. 22 2014

Summary• New pretreatment approach works

• All catalysts synthesized

• Ruthenium on TiO2 yields the highest deoxygenated products and favors benzene

• Removal of chloride in precursor may increase benzene and reduce poisoning

• Experimental design is on track to successfully test hypothesis

To do- ICP analysis of ruthenium loading- GCMS analysis

Page 16: Final Seminar Presentation Jan. 22 2014

Acknowledgements

Dr. R. AustinDr. M. WheelerDr. R. NelsonPamela RuizMary Lewis

Ben Goundie Cody Newman Jayme Gough

DOE Grant

Page 17: Final Seminar Presentation Jan. 22 2014

`

Questions?

Ashley BrooksSenior Thesis Seminar

January 22, 2014

Page 18: Final Seminar Presentation Jan. 22 2014

Data analysis• Python

• Data was fit using a non negative least squares that was simultaneously fit to reference spectra

• Equation to right is solved for each mass spectra

Page 19: Final Seminar Presentation Jan. 22 2014

Heterogeneous Catalysts:Spillover

Falconer J.l, Conner W.C. Spillover in Heterogeneous Catalysis. Chem. Rev. 1995, 759-788.

• Ruthenium nanoparticles help dissociated the hydrogen

• Hydrogen diffuses to support to reduce Ti or Ce forming active sites

Page 20: Final Seminar Presentation Jan. 22 2014

References • Joseph, J.;Baker, C.; Mukkamala, s.;Beis, S.; Wheeler, M.C.; Desisto, W. J.;Jensen, B.L.; Frederick, B.G.,

Chemical shifts and lifetimes for Nuclear Magnetic Resonance (NMR) Analysis of biofuels. Energy Fuels 2010, 24, 5153-5162

• Tang,T.; Yin, C.; Xiao, N.; Guo, M.; Xiao, F. Catal Lett 2009,127, 400-405 • Shin, E,; Keane, M. A. Ind Eng Chem Res 2000, 39, 883-892. • Zahmakiran, M.; Kodaira, T.; Ozkar, S.; App Cat B: Envir 2010, 96, 533-540. • BRADSHAW, M. J. Global energy dilemmas: a geographical perspective. Geogr. J. 2010, 176, 275-290.• 2. Furimsky, E. Hydroprocessing challenges in biofuels production. Catalysis Today .• 3. Lin, Y.; Huber, G. W. The critical role of heterogeneous catalysis in lignocellulosic biomass conversion.

Energy & Environmental Science 2009, 2, 68-80.• 4. de Miguel Mercader, F.; Groeneveld, M.; Kersten, S.; Way, N.; Schaverien, C.; Hogendoorn, J.

Production of advanced biofuels: Co-processing of upgraded pyrolysis oil in standard refinery units. Applied Catalysis B: Environmental 2010, 96, 57-66.

• 5. Furimsky, E. Catalytic hydrodeoxygenation. Applied Catalysis A: General 2000, 199, 147-190.• 6. Yang, Y. Q.; Tye, C. T.; Smith, K. J. Influence of MoS2 catalyst morphology on the hydrodeoxygenation

of phenols. Catalysis Communications 2008, 9, 1364-1368.• 7. Mukkamala, S.; Wheeler, M. C.; van Heiningen, A. R.; DeSisto, W. J. Formate-Assisted Fast Pyrolysis of

Lignin. Energy Fuels 2012, 26, 1380-1384.• 8. Luo, Z.; Wang, S.; Liao, Y.; Zhou, J.; Gu, Y.; Cen, K. Research on biomass fast pyrolysis for liquid fuel.

Biomass Bioenergy 2004, 26, 455-462.