find the inverse z-transform of z2 z g z) = z2 z 3 g z+ 2moudgalya.org/digital-slides/freq.pdf · 0...

32
1. Inverse Z-transform - Partial Fraction Find the inverse Z-transform of G(z )= 2z 2 +2z z 2 +2z - 3 G(z ) z = 2z +2 (z + 3)(z - 1) = A z +3 + B z - 1 Multiply throughout by z +3 and let z = -3 to get A = 2z +2 z - 1 z =-3 = -4 -4 =1 Digital Control 1 Kannan M. Moudgalya, Autumn 2007

Upload: others

Post on 13-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

1. Inverse Z-transform - Partial Fraction

Find the inverse Z-transform of

G(z) =2z2 + 2z

z2 + 2z − 3G(z)

z=

2z + 2

(z + 3)(z − 1)

=A

z + 3+

B

z − 1Multiply throughout by z+3 and let z = −3 to get

A =2z + 2

z − 1

∣∣∣∣z=−3

=−4

−4= 1

Digital Control 1 Kannan M. Moudgalya, Autumn 2007

Page 2: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

2. Inverse Z-transform - Partial Fraction

G(z)

z=

A

z + 3+

B

z − 1

Multiply throughout by z − 1 and let z = 1 to get

B =4

4= 1

G(z)

z=

1

z + 3+

1

z − 1|z| > 3

G(z) =z

z + 3+

z

z − 1|z| > 3

↔ (−3)n1(n) + 1(n)Digital Control 2 Kannan M. Moudgalya, Autumn 2007

Page 3: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

3. Partial Fraction - Repeated Poles

G(z) =N(z)

(z − α)pD1(z)

α not a root of N(z) and D1(z)

G(z) =A1

z − α +A2

(z − α)2+ · · ·+ Ap

(z − α)p+G1(z)

G1(z) has poles corresponding to those of D1(z).Multiply by (z − α)p

(z − α)pG(z) = A1(z − α)p−1 +A2(z − α)p−2 + · · ·+Ap−1(z − α) +Ap +G1(z)(z − α)p

Digital Control 3 Kannan M. Moudgalya, Autumn 2007

Page 4: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

4. Partial Fraction - Repeated Poles

(z − α)pG(z) = A1(z − α)p−1 +A2(z − α)p−2 + · · ·+Ap−1(z − α) +Ap +G1(z)(z − α)p

Substituting z = α,

Ap = (z − α)pG(z)|z=α

Differentiate and let z = α:

Ap−1 =d

dz(z − α)pG(z)|z=α

Continuing, A1 =1

(p− 1)!

dp−1

dzp−1(z − α)pG(z)|z=α

Digital Control 4 Kannan M. Moudgalya, Autumn 2007

Page 5: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

5. Repeated Poles - an Example

G(z) =11z2 − 15z + 6

(z − 2)(z − 1)2=

A1

z − 1+

A2

(z − 1)2+

B

z − 2

× (z − 2), let z = 2, to get B = 20. × (z − 1)2,

11z2 − 15z + 6

z − 2= A1(z − 1) +A2 +B

(z − 1)2

z − 2

With z = 1, get A2 = −2.Differentiating with respect to z and with z = 1,

A1 =(z − 2)(22z − 15)− (11z2 − 15z + 6)

(z − 2)2

∣∣∣∣z=1

= −9

G(z) = − 9

z − 1− 2

(z − 1)2+

20

z − 2

Digital Control 5 Kannan M. Moudgalya, Autumn 2007

Page 6: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

6. Important Result from Differentiation

Problem 4.9 in Text: Consider

1(n)an↔ z

z − a =∞∑n=0

anz−n,∣∣az−1

∣∣ < 1

Differentiating with respect to a,

z

(z − a)2=∞∑n=0

nan−1z−n, nan−11(n)↔ z

(z − a)2

Substituting a = 1, can obtain the Z-transform of n:

n1(n)↔ z

(z − 1)2

Through further differentiation, can derive Z-transforms of n2,n3, etc.Digital Control 6 Kannan M. Moudgalya, Autumn 2007

Page 7: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

7. Repeated Poles - an Example

G(z) = − 9

z − 1− 2

(z − 1)2+

20

z − 2

zG(z) = − 9z

z − 1− 2z

(z − 1)2+

20z

z − 2

↔ (−9− 2n+ 20× 2n)1(n)

Use shifting theorem:

G(z)↔ (−9− 2(n− 1) + 20× 2n−1)1(n− 1)

Digital Control 7 Kannan M. Moudgalya, Autumn 2007

Page 8: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

8. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

ua(t) = A cos (2πFt+ θ), −∞ < t <∞A: amplitudeΩ: frequency in rad/sθ: phase in radF : frequency in cycles/s or Hertz

Ω = 2πF

Tp =1

FDigital Control 8 Kannan M. Moudgalya, Autumn 2007

Page 9: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

9. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

ua(t) = A cos (2πFt+ θ), −∞ < t <∞With F fixed, periodic with period Tp

ua[t+ Tp] = A cos (2πF (t+1

F) + θ)

= A cos (2π + 2πFt+ θ)

= A cos (2πFt+ θ) = ua[t]

Digital Control 9 Kannan M. Moudgalya, Autumn 2007

Page 10: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

10. Properties of Cont. Time Sinusoidal Signals

Cont. signals with different frequencies are different

u1 = cos

(2πt

8

), u2 = cos

(2π

7t

8

)

0 0.5 1 1.5 2 2.5 3 3.5 4−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

cosw

t

Different wave forms for different frequencies.Can increase f all the way to∞ or decrease to 0.Digital Control 10 Kannan M. Moudgalya, Autumn 2007

Page 11: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

11. Discrete Time Sinusoidal Signals

u(n) = A cos (wn+ θ), −∞ < n <∞w = 2πf

n integer variable, sample numberA amplitude of the sinusoidw frequency in radians per sampleθ phase in radians.f normalized frequency, cycles/sample

Digital Control 11 Kannan M. Moudgalya, Autumn 2007

Page 12: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

12. Discrete Time Sinusoids - Identical Signals

Discrete time sinusoids whose frequencies are sepa-rated by integer multiple of 2π are identical, i.e.,

cos ((w0 + 2π)n+ θ) = cos (w0n+ θ), ∀n• All sinusoidal sequences of the form,uk(n) = A cos (wkn+ θ),wk = w0 + 2kπ, −π < w0 < π,are indistinguishable or identical.

• Only sinusoids in −π < w0 < π are different

−π < w0 < π or − 1

2< f0 <

1

2Digital Control 12 Kannan M. Moudgalya, Autumn 2007

Page 13: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

13. Sampling a Cont. Time Signal - Preliminaries

Let analog signal ua[t] have a frequency of F Hz

ua[t] = A cos(2πFt+ θ)

Uniform sampling rate (Ts s) or frequency (Fs Hz)

t = nTs =n

Fsu(n) = ua[nTs] −∞ < n <∞

= A cos (2πFTsn+ θ)

= A cos

(2πF

Fsn+ θ

)4= A cos(2πfn+ θ)

Digital Control 13 Kannan M. Moudgalya, Autumn 2007

Page 14: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

14. Sampling a Cont. Time Signal - Preliminaries

In our standard notation,

u(n) = A cos (2πfn+ θ)

It follows that

f =F

Fsw =

Ω

Fs= ΩTs

Reason to call f normalized frequency, cycles/sample.Apply the uniqueness condition for sampled signals

− 1

2< f <

1

2−π < w < π

Fmax =Fs

2Ωmax = 2πFmax = πFs =

π

TsDigital Control 14 Kannan M. Moudgalya, Autumn 2007

Page 15: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

15. Properties of Discrete Time Sinusoids - Alias

• As w0 ↑, freq. of oscillation ↑, reaches maximumat w0 = π

• What if w0 > π?

w1 = w0

w2 = 2π − w0

u1(n) = A cosw1n = A cosw0n

u2(n) = A cosw2n = A cos(2π − w0)n

= A cosw0n = u1(n)

w2 is an alias of w1

Digital Control 15 Kannan M. Moudgalya, Autumn 2007

Page 16: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

16. Properties of Discrete Time Sinusoids - Alias

u1[t] = cos (2πt

8), u2[t] = cos (2π

7t

8), Ts = 1

u2(n) = cos (2π7n

8) = cos 2π(1− 1

8)n

= cos (2π − 2π

8)n = cos (

2πn

8) = u1(n)

0 0.5 1 1.5 2 2.5 3 3.5 4−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

cosw

t

Digital Control 16 Kannan M. Moudgalya, Autumn 2007

Page 17: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

17. Fourier Transform of Aperiodic Signals

X(F ) =

∫ ∞−∞

x(t)e−j2πFtdt

x(t) =

∫ ∞−∞

X(F )ej2πFtdF

If we let radian frequency Ω = 2πF

x(t) =1

∫ ∞−∞

X[Ω]ejΩtdΩ,

X[Ω] =

∫ ∞−∞

x(t)e−jΩtdt

x(t), X[Ω] are Fourier Transform PairDigital Control 17 Kannan M. Moudgalya, Autumn 2007

Page 18: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

18. Frequency Response

Apply u(n) = ejwn to g(n) and obtain output y:

y(n) = g(n) ∗ u(n) =∞∑

k=−∞g(k)u(n− k)

=∞∑

k=−∞g(k)ejw(n−k) = ejwn

∞∑k=−∞

g(k)e−jwk

Define Discrete Time Fourier Transform

G(ejw)4=

∞∑k=−∞

g(k)e−jwk =∞∑

k=−∞g(k)z−k

∣∣∣∣∣∣z=ejw

= G(z)|z=ejw

Provided the sequence converges absolutelyDigital Control 18 Kannan M. Moudgalya, Autumn 2007

Page 19: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

19. Frequency Response

y(n) = ejwn∞∑

k=−∞g(k)e−jwk = ejwnG(ejw)

Write in polar coordinates: G(ejw) = |G(ejw)|ejϕ - ϕ isphase angle:

y(n) = ejwn|G(ejw)|ejϕ = |G(ejwn)|ej(wn+ϕ)

1. Input is sinusoid⇒ output also is a sinusoid with followingproperties:

• Output amplitude gets multiplied by the magnitude ofG(ejw)

• Output sinusoid shifts by ϕ with respect to inputDigital Control 19 Kannan M. Moudgalya, Autumn 2007

Page 20: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

2. At ω where |G(ejw)| is large, the sinusoid gets amplifiedand at ω where it is small, the sinusoid gets attenuated.

• The system with large gains at low frequencies and smallgains at high frequencies are called low pass filters

• Similarly high pass filters

Digital Control 20 Kannan M. Moudgalya, Autumn 2007

Page 21: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

20. Discrete Fourier Transform

Define Discrete Time Fourier Transform

G(ejw)4=

∞∑k=−∞

g(k)e−jwk =∞∑

k=−∞g(k)z−k

∣∣∣∣∣∣z=ejw

= G(z)|z=ejw

Provided, absolute convergence∞∑

k=−∞|g(k)e−jwk| <∞⇒

∞∑k=−∞

|g(k)| <∞

For causal systems, BIBO stability. Required for DTFT.

Digital Control 21 Kannan M. Moudgalya, Autumn 2007

Page 22: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

21. FT of Discrete Time Aperiodic Signals - Defi-nition

U(ejω)4=

∞∑n=−∞

u(n)e−jωn

u(m) =1

∫ π

−πU(ejω)ejωmdω

=

∫ 1/2

−1/2

U(f)ej2πfmdf

Digital Control 22 Kannan M. Moudgalya, Autumn 2007

Page 23: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

22. FT of a Moving Average Filter - Example

y(n) =1

3[u(n+ 1) + u(n) + u(n− 1)]

y(n) =∞∑

k=−∞g(k)u(n− k)

= g(−1)u(n+ 1) + g(0)u(n) + g(1)u(n− 1)

g(−1) = g(0) = g(1) =1

3

G(ejw)

=∞∑

n=−∞g(n)z−n|z=ejw

=1

3

(ejw + 1 + e−jw

)=

1

3(1 + 2 cosw)

Digital Control 23 Kannan M. Moudgalya, Autumn 2007

Page 24: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

23. FT of a Moving Average Filter - Example

G(ejω)

=1

3(1 + 2 cosw), |G (ejw) | = |1

3(1 + 2 cosw)|

Arg(G) =

0 0 ≤ w < 2π

3

π 2π3≤ w < π

1 / / U p d a t e d ( 1 8 − 7 − 0 7 )

2 / / 5 . 3

3

4 w = 0 : 0 . 0 1 : %pi ;

5 subplot ( 2 , 1 , 1 ) ;

6 plot2d1 ( ” g l l ” ,w, abs(1+2∗cos (w) ) / 3 , s t y l e = 2 ) ;

7 l a b e l ( ’ ’ , 4 , ’ ’ , ’ Magnitude ’ , 4 ) ;

8 subplot ( 2 , 1 , 2 ) ;

9 plot2d1 ( ” g l n ” ,w, phasemag(1+2∗cos (w) ) , s t y l e = 2 , r e c t =[0.01 −0.5 10 2 0 0 ] ) ;

10 l a b e l ( ’ ’ , 4 , ’w ’ , ’ Phase ’ , 4 )

Digital Control 24 Kannan M. Moudgalya, Autumn 2007

Page 25: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

24. FT of a Moving Average Filter - Example

|G (ejw) | = |13(1 + 2 cosw)|,

Arg(G) =

0 0 ≤ w < 2π

3

π 2π3≤ w < π

10−2

10−1

100

101

10−3

10−2

10−1

100

Mag

nitu

de

10−2

10−1

100

101

0

50

100

150

200

w

Pha

se

Digital Control 25 Kannan M. Moudgalya, Autumn 2007

Page 26: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

25. Additional Properties of Fourier Transform

Symmetry of real and imaginary parts for real valued sequences

G(ejw)

=∞∑

n=−∞g(n)e−jwn

=∞∑

n=−∞g(n) coswn− j

∞∑n=−∞

g(n) sinwn

G(e−jw

)=

∞∑n=−∞

g(n)ejwn

=∞∑

n=−∞g(n) coswn+ j

∞∑n=−∞

g(n) sinwn

Re[G(ejw)]

= Re[G(e−jw

)]Im

[G(ejw)]

= −Im [G(e−jw

)]Digital Control 26 Kannan M. Moudgalya, Autumn 2007

Page 27: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

26. Additional Properties of Fourier Transform

Recall

G(ejw)

= G∗(e−jw

)Symmetry of magnitude for real valued sequences

|G (ejw) | = [G(ejw)G∗(ejw)]1/2

=[G∗(e−jw

)G(e−jw

)]1/2= |G(e−jw)|

This shows that the magnitude is an even function. Similarly,

Arg[G(e−jw

)]= −Arg [G (ejw)]

⇒ Bode plots have to be drawn for w in [0, π] only.

Digital Control 27 Kannan M. Moudgalya, Autumn 2007

Page 28: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

27. Sampling and Reconstruction

u(n) = ua(nTs), −∞ < n <∞Fast sampling:

Fs

2Ts

Ft

−B B

−Fs

2−32Fs

32Fs

Ua(F )

ua(nT ) = u(n) U(

FFs

)

1

Fs

ua(t)

t F

Fs

2

F0 + Fs

F0 − Fs

F0

Digital Control 28 Kannan M. Moudgalya, Autumn 2007

Page 29: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

28. Slow Sampling Results in Aliasing

FtTs

−Fs

2Fs

2

u(n)

FtTs

−Fs

2Fs

2

t F−B B

ua(t)Ua(F )

Fs

Fs

U(

FFs

)

U(

FFs

)

Digital Control 29 Kannan M. Moudgalya, Autumn 2007

Page 30: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

29. What to Do When Aliasing Cannot be Avoided?

Ua(F )

1Fs

U(

FFs

)

Ua(F )Ua(F + Fs) Ua(F − Fs)

U ′a(F − Fs)

U ′a(F )

1Fs

U ′(

FFs

)

Ua(F )U ′a(F + Fs)

Digital Control 30 Kannan M. Moudgalya, Autumn 2007

Page 31: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

30. Sampling Theorem

• Suppose highest frequency contained in an analogsignal ua(t) is Fmax = B.

• It is sampled at a rate Fs > 2Fmax = 2B.

• ua(t) can be recovered from its sample values:

ua(t) =∞∑

n=−∞ua(nTs)

sinπTs

(t− nTs)

πTs

(t− nTs)• If Fs = 2Fmax, Fs is denoted by FN , the

Nyquist rate.

• Not causal: check n > 0Digital Control 31 Kannan M. Moudgalya, Autumn 2007

Page 32: Find the inverse Z-transform of z2 z G z) = z2 z 3 G z+ 2moudgalya.org/digital-slides/freq.pdf · 0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 t coswt Di erent

31. Rules for Sampling Rate Selection

• Minimum sampling rate = twice band width

• Shannon’s reconstruction cannot be implemented,have to use ZOH

• Solution: sample faster

– Number of samples in rise time = 4 to 10

– Sample 10 to 30 times bandwidth

– Use 10 times Shannon’s sampling rate

– ωcTs = 0.15 to 0.5, where,ωc = crossover frequency

Digital Control 32 Kannan M. Moudgalya, Autumn 2007