finite symplectic matrix groups - rwth aachen universitymarkus.kirschmer/symplectic/thesis.pdf ·...

149
Finite symplectic matrix groups Von der Fakult¨ at f¨ ur Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Mathematiker Markus Kirschmer aus Giengen Berichter: Universit¨atsprofessorin Dr. Gabriele Nebe Universit¨ atsprofessor Dr. Wilhelm Plesken Tag der m¨ undlichen Pr¨ ufung: 24. M¨ arz 2009 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verf¨ ugbar.

Upload: others

Post on 25-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

Finite symplectic matrix groups

Von der Fakultat fur Mathematik, Informatik und Naturwissenschaftender RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Mathematiker

Markus Kirschmer

aus Giengen

Berichter: Universitatsprofessorin Dr. Gabriele NebeUniversitatsprofessor Dr. Wilhelm Plesken

Tag der mundlichen Prufung: 24. Marz 2009

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek onlineverfugbar.

Page 2: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und
Page 3: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

Contents

1 Introduction 5

2 Methods 92.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Symplectic matrix groups . . . . . . . . . . . . . . . . . . . . . 92.1.2 Primitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.1.3 Generalized Bravais groups . . . . . . . . . . . . . . . . . . . . . 182.1.4 General outline of the classification . . . . . . . . . . . . . . . . 20

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.2.1 Normal subgroups of index 2k . . . . . . . . . . . . . . . . . . . 212.2.2 Primitive, normalized and normal critical lattices . . . . . . . . 222.2.3 Fields as endomorphism rings (m-parameter argument) . . . . . 252.2.4 Quaternion algebras as endomorphism rings . . . . . . . . . . . 28

2.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.4 Some notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.5 Some tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.1 Candidates for the layer . . . . . . . . . . . . . . . . . . . . . . 372.5.2 Candidates for the Fitting subgroup . . . . . . . . . . . . . . . . 392.5.3 Tables for number fields . . . . . . . . . . . . . . . . . . . . . . 39

3 Some infinite s.i.m.f. families 433.1 Some subgroups of Spp−1(Q) . . . . . . . . . . . . . . . . . . . . . . . . 433.2 Some subgroups of Spp+1(Q) . . . . . . . . . . . . . . . . . . . . . . . . 443.3 The group QD2n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.4 The group 21+2n

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.5 The group p1+2n

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 The classification 494.1 Dimension 2p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504.2 Dimension 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504.3 Dimension 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Irreducible cyclic subgroups . . . . . . . . . . . . . . . . . . . . 514.3.2 Proof of Theorem 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Dimension 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534.5 Dimension 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.1 Irreducible cyclic subgroups . . . . . . . . . . . . . . . . . . . . 554.5.2 Proof of Theorem 4.5.1 . . . . . . . . . . . . . . . . . . . . . . . 57

3

Page 4: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4 CONTENTS

4.6 Dimension 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644.7 Dimension 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7.1 Irreducible cyclic subgroups . . . . . . . . . . . . . . . . . . . . 664.7.2 Proof of Theorem 4.7.1 . . . . . . . . . . . . . . . . . . . . . . . 67

4.8 Dimension 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.9 Dimension 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.9.1 Irreducible cyclic subgroups . . . . . . . . . . . . . . . . . . . . 814.9.2 The case O17(G) = 1 and O5(G) 6= 1 . . . . . . . . . . . . . . . 874.9.3 The case O17(G) = O5(G) = 1 and O3(G) 6= 1 . . . . . . . . . . 924.9.4 The case Op(G) = 1 for all odd primes p . . . . . . . . . . . . . 98

4.10 Dimension 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054.11 Dimension 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.11.1 Irreducible cyclic subgroups . . . . . . . . . . . . . . . . . . . . 1104.11.2 Proof of Theorem 4.11.1 . . . . . . . . . . . . . . . . . . . . . . 111

4.12 Dimension 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A Invariant Forms 119A.1 Dimension 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120A.2 Dimension 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120A.3 Dimension 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120A.4 Dimension 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121A.5 Dimension 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122A.6 Dimension 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122A.7 Dimension 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125A.8 Dimension 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125A.9 Dimension 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135A.10 Dimension 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136A.11 Dimension 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Nomenclature 145

References 147

Page 5: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

Chapter 1

Introduction

The finite subgroups of GLm(Q) are those subgroups that fix a full lattice in Q1×m

together with some positive definite symmetric form (see Chapter 2 for precise defini-tions).

A subgroup of GLm(Q) is called symplectic, if it fixes a nondegenerate skewsymmetricform. Such groups only exist if m is even. A symplectic subgroup of GLm(Q) is calledmaximal finite symplectic if it is not contained in another finite symplectic subgroupof GLm(Q).

This thesis classifies all conjugacy classes of maximal finite symplectic matrix groupsin GLm(Q) for m ≤ 22.

Such classifications have a long tradition. Minkowski [Min87] gave upper boundson the orders of finite subgroups of GLm(Q) using the theory of quadratic forms.Later, Schur [Sch05] gave bounds on the orders of finite subgroups of GLm(C) havingrational traces using character theory. Serre extended this work to arbitrary fields(see [GTT07]). In [Bli17] Blichfeldt classified all finite subgroups of PGL2(C) andPGL3(C). The finite (quasiprimitive) subgroups of GLm(C) for m ≤ 10 have beendetermined by Blichfeld, Brauer, Lindsey, Wales and Feit (see [Fei76]). These resultsdo not depend on the classification of all finite simple groups. Using the classification ofall finite simple groups, the maximal finite subgroups of GLm(Q) have been determinedin [BBNZ77, Ple91, NP95, Neb95, Neb96] for m ≤ 31. Similarly, the maximal finitesubgroups of GLm(Q) have been classified in [Neb98a] for all totally definite quaternionalgebras Q with m · dimQ(Q) ≤ 40.

Each conjugacy class of symplectic matrix groups contains a representative G inSp2n(Q) = {g ∈ GL2n(Q) | gJngtr = Jn} where Jn =

„0 In

−In 0

«. So one might

ask how the orbit {Gx | x ∈ GL2n(Q) such that Gx < Sp2n(Q)} decomposes intoSp2n(Q)-conjugacy classes. If the commuting algebra of G is a quadratic number field,then Lemma 2.1.12 shows that there exists a parametrization of these classes usingnorm groups. In particular, it turns out that each orbit decomposes into infinitelymany Sp2n(Q)-conjugacy classes. Hence only GL2n(Q)-conjugacy classes of symplec-tic matrix groups are considered in this thesis.

The natural representation of a maximal finite symplectic matrix group is a sum ofpairwise nonisomorphic rationally irreducible representations that yield maximal finite

5

Page 6: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

6 CHAPTER 1. INTRODUCTION

symplectic matrix groups. Thus it suffices to classify only the (conjugacy classes of)symplectic irreducible maximal finite (s.i.m.f.) matrix groups.

Each s.i.m.f. group G < GL2n(Q) is contained in a rationally irreducible maximalfinite (r.i.m.f.) group H ≤ GL2n(Q). But in practice, this fact cannot be used toclassify all s.i.m.f. groups by computing proper subgroups of such groups H since theindex [H : G] can be very large. For example, the s.i.m.f. group QD64 < GL16(Q) iscontained in the r.i.m.f. group Aut(B16) < GL16(Q) with index 210 · 16!.

Hence one has to proceed as in the classification of the r.i.m.f. matrix groups. Ther.i.m.f. or s.i.m.f. matrix groups are full automorphism groups of some lattices. Further,two such groups are conjugate if and only if certain lattices are isometric.

The concept of primitivity is the key ingredient to these classifications since it has someimportant consequences. A symplectic matrix group is called symplectic primitive ifit is not contained (up to conjugacy) in a wreath product of some symplectic matrixgroup. The restriction of the natural character of a symplectic primitive irreduciblemaximal finite (s.p.i.m.f.) matrix group G < GL2n(Q) to a normal subgroup N is amultiple of a single rationally irreducible character of N . Furthermore, if G is s.p.i.m.f.then there exists a finite list of candidates (depending only on n) for the generalizedFitting subgroup F ∗(G) of G. The possible Fitting subgroups are given by a theoremof Hall. The possible layers (central products of quasisimple groups) can be taken fromHiss and Malle [HM01] which is based of the atlas of finite simple groups [CCN+85].So the completeness of this list depends on the classification of the finite simple groups.

Then it remains to construct all possible extensions G of F ∗(G) up to conjugacy.There are several shortcuts to find G or at least a large (normal) subgroup of G. Avery useful tool is the so-called generalized Bravais group. If N is a normal subgroupof a s.p.i.m.f. matrix group G < GL2n(Q), then the generalized Bravais group Bo(N)contains N and can be computed directly from N . Further, N and Bo(N) have thesame commuting algebras and Bo(N) is a normal subgroup of G.

It turns out that, like in the classification of r.i.m.f. matrix groups, the number ofconjugacy classes of s.i.m.f. subgroups of GL2n(Q) varies greatly depending on whethern is divisible by a large power of 2 or not. This is due to the fact that the list ofpossible Fitting subgroups is much larger in the first case. For example, there are 91conjugacy classes of s.i.m.f. groups in GL16(Q), but there are only 5 conjugacy classesin dimension 14.

This classification relies on calculations (computations of automorphism groups andinvariant forms, ideal arithmetic, . . . ) that require the use of a computer algebrasystem. All these calculations were performed in MAGMA [BCP97] since this sys-tem is extensible and it provides almost all necessary algorithms for lattices, grouptheory, number fields and (quaternion) algebras. In particular, MAGMA containsan implementation of the algorithm of Plesken and Souvignier [PS97] for computingautomorphism groups and isometries of lattices.

This thesis is organized as follows. Section 2.1 starts with basic definitions and gives afirst overview of symplectic matrix groups. It also recalls the definition of generalizedBravais groups and elaborates the general outline of the classification. Section 2.2

Page 7: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

7

explains the so-called “m-parameter argument” which allows us to construct all s.i.m.f.supergroups of a given irreducible matrix group U whose commuting algebra is afield. We also give an algorithm which computes all s.i.m.f. supergroups G of Uif the commuting algebra of U is a quaternion algebra provided that U E G and[G : U ] is a power of 2. This section also contains some methods that can be used torule out several candidates for normal subgroups. Section 2.3 explains the sublatticealgorithm. Section 2.4 describes several constructions and notational conventions formaximal finite matrix groups. Finally, Section 2.5 contains a complete list of allpossible generalized Fitting subgroups of s.p.i.m.f. matrix groups up to dimension2n = 22.

Chapter 3 describes some infinite families of s.i.m.f. matrix groups. In particular, alls.i.m.f. subgroups of GLp−1(Q) and GLp+1(Q) whose orders are divisible by a primep ≥ 5 are determined.

Chapter 4 deals with the classification of the s.i.m.f. subgroups of GL2n(Q) for1 ≤ n ≤ 11. For each dimension, the classification of the conjugacy classes of s.i.m.f.subgroups is given as a table. For each class, it contains a name that describes how arepresentative of that class can be constructed (from p-subgroups, quasisimple groupsor smaller maximal finite matrix groups by taking generalized Bravais groups, tensorproducts, wreath products or group extensions). The table also contains the followinginvariants of each conjugacy class: group order, commuting algebra, number of isomor-phism classes of invariant lattices and further information on certain invariant lattices.Together these invariants provide an easy method for recognizing the conjugacy classof a given s.i.m.f. matrix group.

For each conjugacy class, the appendix contains a symmetric positive definite and askewsymmetric form such that the automorphism group of the standard lattice withrespect to these two forms represents that particular class. These forms are alsoavailable in a MAGMA [BCP97] readable format from

http://www.math.rwth-aachen.de/~Markus.Kirschmer/symplectic/.

First of all, I would like to express my deepest gratitude to Prof. Dr. Gabriele Nebe.This thesis would have been impossible without her guidance and advice.

I want to thank the Deutsche Forschungsgesellschaft for my scholarship in the researchtraining group “Hierarchie und Symmetrie in mathematischen Modellen”.

Furthermore, I would like to thank my colleagues especially Dr. Matthias Kunzer,Annika Gunther, Elisabeth Nossek, Georg Deifuss, Kristina Schindelar and MoritzSchroer for numerous discussions and social events.

Page 8: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

8 CHAPTER 1. INTRODUCTION

Page 9: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

Chapter 2

Methods

2.1 Definitions

2.1.1 Symplectic matrix groups

This thesis classifies the conjugacy classes of all maximal finite symplectic subgroupsof GLm(Q) for 1 ≤ m ≤ 22. Two very important tools for the classification are theform spaces and the commuting algebras:

Definition 2.1.1 Let G ≤ GLm(Q).

(a) The Q-space of G-invariant forms is given by

F(G) := {F ∈ Qm×m | gFgtr = F for all g ∈ G} .

Further Fsym(G), F>0(G) and Fskew(G) denote the subset of symmetric, sym-metric positive definite and skewsymmetric G-invariant forms respectively.

The group G is called symplectic if Fskew(G) contains an invertible element andG is said to be uniform if dimQ(Fsym(G)) = 1.

(b) The enveloping algebra G of G is the subspace ofQm×m generated by the matricesin G. Further

End(G) := CQm×m(G) := {X ∈ Qm×m | Xg = gX for all g ∈ G}

is the endomorphism ring or commuting algebra of G.

Remark 2.1.2 Let G < GLm(Q).

(a) If F ∈ F(G) is invertible, then End(G) → F(G), e 7→ eF is an isomorphism ofQ-spaces. Its inverse is given by F(G)→ End(G), F ′ 7→ F ′F−1.

(b) If G is finite, then∑

g∈G ggtr ∈ F>0(G). In particular, F(G)'End(G).

9

Page 10: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

10 CHAPTER 2. METHODS

Remark 2.1.3 Let Jn :=

(0 In−In 0

)∈ GL2n(Q).

(a) If G < GLm(Q) is symplectic, them m is even.

(b) Sp2n(Q) := {g ∈ GL2n(Q) | gJngtr = Jn} is a subgroup of SL2n(Q).

(c) An invertible matrix S ∈ GL2n(Q) is skewsymmetric if and only if S = Jxn forsome x ∈ GL2n(Q). In particular, a finite subgroup G < GL2n(Q) is symplecticif and only if there exists some x ∈ GL2n(Q) such that Gx < Sp2n(Q).

Proof: See for example [Art57, Theorems 3.7 and 3.25]. �

So any conjugacy class of (maximal) finite symplectic subgroups of GL2n(Q) has arepresentative in Sp2n(Q).

The most important computational tool for the enumeration of the maximal finitesubgroups of GLm(Q) are the G-invariant lattices and automorphism groups. Theyare defined as follows.

Definition 2.1.4 Let R be a Dedekind ring such that its quotient field K is a numberfield.

(a) An R-lattice is a finitely generated R-module in some vector space over K.

(b) An R-order is a subring of a finite dimensional K-algebra that is also an R-lattice.

(c) If Λ is a Z-order in Qm×m then

Z(Λ) := {L ⊂ Q1×m | L is Z-lattice of rank m with Lx ⊆ L for all x ∈ Λ}

denotes the set of all Λ-invariant lattices.

Similarly if G < GLm(Q), then

Z(G) := {L ⊂ Q1×m | L is a Z-lattice of rank m with Lx ⊆ L for all x ∈ G}

is the set of all G-invariant lattices.

(d) For a Z-lattice L ⊂ Q1×m of rank m, a set F ⊆ Qm×m and some subfield K ofQm×m let

AutK(L,F) = {g ∈ GLm(Q) | Lg = L, gFgtr = F, gc = cg for all F ∈ F , c ∈ K}

be the group of K-linear automorphisms of L with respect to F . If F = {F}consists only of one form, we write AutK(L, F ) instead of AutK(L, {F}) and ifK 'Q, we will omit the subscript K.

Note that, if F contains a positive definite symmetric matrix, then

AutK(L,F) = Aut(L, {xF | x ∈ K,F ∈ F})

and we will switch frequently between these two notations in the sequel.

Page 11: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

2.1. DEFINITIONS 11

We are now ready to give a characterization of (maximal) finite rational matrix groups.

Remark 2.1.5

(a) Let L ⊆ Q1×m be a Z-lattice of rank m and F ∈ Qm×m be symmetric andpositive definite. Then Aut(L, F ) is finite.

(b) A group G < GLm(Q) is finite if and only if F>0(G) and Z(G) are nonempty.

(c) If G < GLm(Q) is finite then S := {Aut(L, F ) | (L, F ) ∈ Z(G) × F>0(G)}contains all maximal finite supergroups of G.

In particular, G is maximal finite if and only if S = {G}. The maximal finitesubgroups of GLm(Q) have been classified in [BBNZ77, Ple91, NP95, Neb95,Neb96] for all m < 32.

Proof: (a) The norm induced by F on R1×m is equivalent to the maximum norm. Sothere exist only finitely many vectors in L of a given length. Hence there exist onlyfinitely many possible images for some fixed basis vectors of L under an automorphism.(b) If G is finite then

∑g∈G gg

tr ∈ F>0(G) and∑

g∈G Lg ∈ Z(G) for any Z-lattice Lof rank m. Conversely, if (L, F ) ∈ Z(G)×F>0(G) then G ≤ Aut(L, F ) is finite. �

In the same spirit, we want to characterize the maximal finite symplectic subgroupsof GL2n(Q). First we will give this characterization for rationally irreducible matrixgroups, where irreducibility is defined as follows:

Definition 2.1.6 A matrix group G < GLm(K) is called K-irreducible (or just irre-ducible) if the natural representation of G is irreducible over K. In the case K = Qwe also use the phrase “rationally irreducible”.

As Remark 2.1.2 shows, there is a tight connection between the form space F(G) andthe commuting algebra End(G). In particular, symplectic matrix groups can also becharacterized by their endomorphism rings as Lemma 2.1.9 shows.

But before we state this lemma, we recall two well known facts.

Definition and Remark 2.1.7 Let G < GLm(Q) be irreducible and finite. ThenE := End(G) is a skewfield of dimension e := dimQ(E) say. Suppose that S ⊆ E is asimple subalgebra with s := dimQ(S). By the double centralizer property, we have asequence of Q-algebra monomorphisms

G = CQm×m(E)'(Eo)me×m

e ↪→ (So)ms×m

s4Q

↪→ Qm×m

where the superscript o denotes the opposite algebra. Let 4S be the composition ofthe first two morphisms. Then the character of 4S(G) < GLm

s(So) is not uniquely

determined by G, but the composition 4Q ◦ 4S is conjugation by some x ∈ GLm(Q)according to the Skolem-Noether theorem. In particular, G and 4Q(4S(G)) are con-jugate and 4S(G) is irreducible.

Page 12: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

12 CHAPTER 2. METHODS

Remark 2.1.8 Let K be a number field of degree d = dimQ(K). Further let H1, H2 <GLm(K) be irreducible and finite. IfH1 andH2 are conjugate in GLm(K) then4Q(H1)and 4Q(H2) are also conjugate in GLmd(Q). Conversely, if 4Q(H1) and 4Q(H2) areconjugate then the natural characters of H1 and H2 must be algebraically conjugate.

Lemma 2.1.9 Let G < GLm(Q) be irreducible and finite. Further let E := End(G)and denote by K the center of E.

(a) Let F ∈ F>0(G) and e ∈ E. If eF ∈ F(G) is symmetric (skewsymmetric) thenthe subfield Q(e) ≤ E is totally real (totally complex).

Conversely, if Q(e) ≤ K is totally real, then eF is symmetric.

(b) The following statements are equivalent:

(1) G is symplectic.

(2) E contains a (minimal) totally complex subfield.

(3) There exists a (minimal) totally complex number field K ′ of degree d | mand some H < GLm

d(K ′) such that G is conjugate to 4Q(H) in GLm(Q).

In particular, G is a symplectic irreducible maximal finite (s.i.m.f.) subgroup ofGLm(Q) if and only if G = AutK′(L, F ) for all (L, F ) ∈ Z(G)×F>0(G) and forall minimal totally complex subfields K ′ of End(G).

(c) Each F ∈ F>0(G) induces involutions on E, G and K via x 7→ x◦ := F xtrF−1.

The involutions on G and K do not dependent on the form F and the fixed fieldof ◦ : K → K is the maximal totally real subfield K+ of K.

Further, K is either totally real or a CM-field (i.e. K is totally complex and[K : K+] = 2). In particular, ◦ is the (unique) complex conjugation on K.

Proof:

(a) If eF is symmetric, then eF = Fetr shows that e is a selfadjoint automorphismof the Euclidean space (R1×m, F ). So it generates a totally real field. A similarargument holds for skewsymmetric forms.

Suppose now e ∈ K is totally real. Since F(G) is closed under taking transposes,it decomposes into Fsym(G) ⊕ Fskew(G). Hence eF = e1F + e2F with e1Fsymmetric and e2F skewsymmetric. In particular e1 is totally real and e2 totallycomplex by the above. But e2 = e − e1 ∈ Q(e, e1) is contained in a totally realfield. So e2 = 0.

(b) Part (a) shows (1) ⇒ (2). For the converse fix F ∈ F>0(G) and note thatE⊗QR cannot be a sum of copies of R. Thus G fixes at least one real valuedskewsymmetric form. Hence Fskew(G) ⊂ {eF | e ∈ E} contains a nonzeroelement, S say. Since E is a skewfield, the form S is already invertible. So G issymplectic. For (2) ⇒ (3) one can choose H := 4K′(G) where K ′ is a minimaltotally complex subfield of E. For the converse, note that End(4Q(H))'E hasa subfield isomorphic to K ′.

Page 13: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

2.1. DEFINITIONS 13

(c) It is clear that ◦ is an involution on G and E. Thus it is an automorphism onE ∩G = K. Since any F ∈ F>0(G) is of the form eF for some e ∈ E, it followsthat ◦ : G→ G does not depend on F . By part (a) it also follows that K+ is thefixed field of ◦ : K → K.

The field K is the character field of some complex constituent of the naturalrepresentation of G. So K/Q is Galois. In particular, if K has an embeddinginto R then all embeddings K → C would be real. So K is either totally real ortotally complex and the index [K : K+] equals the order of ◦ : K → K. �

From this result, we immediately obtain the following corollary. It shows that we onlyhave to classify the conjugacy classes of s.i.m.f. matrix groups to get the classificationof the conjugacy classes for all maximal finite symplectic matrix groups.

Corollary 2.1.10 If G < GLm(Q) is maximal finite symplectic, then the natural rep-resentation 4 : G→ GLm(Q) splits into a sum of pairwise nonisomorphic irreduciblerepresentations 4i : G→ GLmi

(Q) and each group 4i(G) is s.i.m.f..

Proof: We have a decomposition 4 =∑s

i=1 ni4i into irreducible and pairwise non-isomorphic representations 4i : G → GLmi

(Q). Hence we may assume that G <{Diag(x1, . . . , xm) | xi ∈ GLnimi

(Q)}. Hence End(G) and thus F(G) are given byblock diagonal matrices and each group ni4i(G) is maximal finite symplectic since Gfixes an invertible skewsymmetric form S.Suppose now ni > 1 for some i. If ni > 2 then (ni − 2)4i(G) is symplectic. This isclearly true if 4i(G) fixes a skewsymmetric form. In the other case, Ei := End(4(G))is a totally real field and S is the tensor product of an invertible skewsymmetric matrixin Eni×ni

i with some F ∈ F>0(4i(G)). Thus ni is even and (ni−2)4i(G) is symplectic.So we may suppose that ni = 2. But then 24i(G) is properly contained in H :=⟨24i(G),

(0 ζ1 0

)⟩where ζ ∈ Ei is a torsion unit of maximal order. One checks that H

is irreducible and thus symplectic by the previous lemma since its endomorphism ringcontains a cyclotomic subfield. �

Remark 2.1.11 Suppose K is a minimal totally complex number field. Lemma 2.1.9and Remark 2.1.8 show that the classification of all s.i.m.f. subgroups of GLm dimQ(K)(Q)yields all conjugacy classes of maximal finite K-irreducible subgroups H < GLm(K)satisfying End(4Q(H))'K. If K 6'End(4Q(H)), then two problems may arise:

• If H < GLm(K) is K-irreducible and maximal finite then 4Q(H) might bereducible over Q as the example H = 〈±1〉 < GL1(Q(

√−d)) for every squarefree

d ∈ Z>0 \ {1, 3} shows.

• Even if H < GLm(K) is K-irreducible and maximal finite such that 4Q(H) isrationally irreducible, it might not be maximal finite symplectic, as the followingexample shows:

Let Q∞,2 be the quaternion algebra over Q that is only ramified at 2 andthe infinite place. Denote by M a maximal order (it is unique up to conju-gacy). Then the torsion subgroup M∗,1 is isomorphic to SL2(3). We denote

Page 14: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

14 CHAPTER 2. METHODS

by ∞,2[SL2(3)]1 := 4Q(M∗,1) the corresponding subgroup of Sp4(Q). By The-orem 4.3.1 this group has (up to conjugacy) three s.i.m.f. supergroups namely

i[(D8⊗C4).S3]2, √−2[GL2(3)]2 and ∞,2[SL2(3)]1 ◦ C3. These groups have Q(i),

Q(√−2) and Q(

√−3) as commuting algebras respectively. Let K = Q(

√−d) be

any splitting field of Q∞,2 such that d /∈ {1, 2, 3} (for example K = Q(√−5)).

Then H := 4K(M∗,1) is a K-irreducible maximal finite subgroup of GL2(K)but ∞,2[SL2(3)]1 = 4Q(H) has Q∞,2 as commuting algebra and this group is nots.i.m.f..

By Remark 2.1.3 any conjugacy class of maximal finite symplectic matrix groupscontains a representative in Sp2n(Q) for some n ∈ Z. So one might ask to find all(maximal) finite subgroups of Sp2n(Q) up to conjugacy in Sp2n(Q). The followingremark shows that there are infinitely many of these classes:

Lemma 2.1.12 Let G < Sp2n(Q) be finite such that E := End(G) is a field. Denoteby E+ its maximal totally real subfield.

(a) Let t1, . . . , ts be representatives of NGL2n(Q)(G)/ 〈G,E∗〉 ≤ Out(G). For 1 ≤ i ≤s let ei := tiJnti

trJ−1n ∈ (E+)∗. Then S :=

⋃si=1 ei NrE/E+(E∗) is independent of

the choice of the ti.

(b) Let H := {x ∈ GL2n(Q) | Gx ≤ Sp2n(Q)}. Then ϕ : H → (E+)∗, x 7→ xJnxtrJ−1

n

is surjective.

(c) Let x ∈ H. Then G and Gx are conjugate in Sp2n(Q) if and only if ϕ(x) ∈ S.

(d) Suppose E is an imaginary quadratic number field. Then H and S are groups andϕ is a homomorphism of groups. Let x, y ∈ H. Then Gx and Gy are conjugatein Sp2n(Q) if and only if ϕ(x)S = ϕ(y)S.

Moreover, the GL2n(Q) conjugacy class of G intersected with Sp2n(Q) (i.e. theset {Gx | x ∈ H}) decomposes into infinitely many Sp2n(Q) conjugacy classesand there is a bijection between these classes and Q∗/S.

Proof:

(a) Each ti normalizes G, thus it acts on Fskew(G) = {eJn | e ∈ E+}. Hence ei ∈ E+.Moreover if t′i and ti represent the same coset, then t′i = geti for some g ∈ G ande ∈ E. In particular t′iJnt

′itr = geeiJne

trgtr = ei NrE/E+(e)Jn.

(b) Let x ∈ GL2n(Q). Then x ∈ H if and only if Jn ∈ Fskew(Gx) = {x−1eJnx−tr |

e ∈ E+}. Thus x ∈ H implies ϕ(x) ∈ (E+)∗. So ϕ is well defined. Finally, itfollows from Remark 2.1.3(c) and the above that ϕ is surjective.

(c) Suppose Gx = Gy for some y ∈ Sp2n(Q). Then xy−1 normalizes G. Soxy−1 = egti for some 1 ≤ i ≤ s, e ∈ E and g ∈ G. Then ϕ(x)Jn = xJnx

tr =egtiyJny

trtitrgtretr = NrE/E+(e)eiJn shows that ϕ(x) ∈ S.

Conversely, if ϕ(x) ∈ S then ϕ(x) = NrE/E+(e)ei for some 1 ≤ i ≤ s ande ∈ E. Hence xJnx

tr = etiJntitretr implies that y := t−1

i e−1x ∈ Sp2n(Q). Further

Gy = (Gt−1i e−1

)x = Gx.

Page 15: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

2.1. DEFINITIONS 15

(d) Since E+ = Q consists only of scalar matrices, one checks then H and S aregroups and ϕ is a morphism. Further Gx = (Gy)z for some z ∈ Sp2n(Q) if andonly if ϕ(xz−1y−1) ∈ S. Since ϕ(z) = 1 this is equivalent to ϕ(x)S = ϕ(y)S.It remains to show that Q∗/S is infinite. This follows from [S : NrE/Q(E∗)] ≤|Out(G)| and the fact that Q∗/NrE/E+(E∗) is always an infinite group. A proofof this statement is given in [Ste89, pg. 208] and I would like to thank HansOpolka for pointing out this reference. �

From now on, conjugacy means conjugacy in GL2n(Q). Further, since we want toclassify the conjugacy classes of maximal finite symplectic matrix groups, we mayw.l.o.g. suppose that a given symplectic matrix group is contained in Sp2n(Q). I.e. wewrite G < Sp2n(Q) to indicate that G < GL2n(Q) is symplectic.

2.1.2 Primitivity

To classify all maximal finite symplectic matrix groups, it suffices to classify onlys.i.m.f. matrix groups as Corollary 2.1.10 shows. In this section we will reduce thenumber of groups to consider even further.

Definition 2.1.13 Let K be a number field. A K-irreducible subgroup G < GLm(K)is called primitive, if G is not conjugate to a subgroup of the wreath product

H o Sk :=⟨Diag(h1, . . . , hk), P ⊗ Im

k| hi ∈ H,P a k × k permutation matrix

⟩for some H < GLm

k(K) where k is a divisor of m.

Similarly, a Q-irreducible symplectic subgroup G < GL2n(Q) is called symplectic prim-itive, if G is not conjugate to a subgroup of H oSk for some H < Sp 2n

k(Q) where k | n.

Remark 2.1.14 A rationally irreducible symplectic subgroup G < GL2n(Q) is sym-plectic primitive if and only if 4K(G) is primitive for all minimal totally complexsubfields K of End(G).

The concept of primitivity is a key ingredient in the determination of all irreduciblefinite matrix groups. It has some important consequences for normal subgroups.

Theorem 2.1.15 ([NP95, Lemma (III.1)]) Let G < GLm(K) be a rationally irre-ducible primitive matrix group and N E G. Then 〈N〉K ≤ Km×m is a simple algebraor equivalently, the natural KN-module K1×m splits into a direct sum of k isomorphicKN-modules of dimension m

k.

Page 16: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

16 CHAPTER 2. METHODS

Proof: The group G acts on N by conjugation. Hence it also acts on the set of centralprimitive idempotents of 〈N〉K . Thus G permutes the homogeneous components ofthe natural KN -module K1×m. But since G is primitive, there can only be one suchcomponent. �

Corollary 2.1.16 ([NP95, (III.1)-(III.3)]) Let G < GL2n(Q) be rationally irre-ducible and symplectic primitive. Further let p be a prime divisor of |G|.

(a) If N EG then N ≤ Q2n×2n is a simple subalgebra.

(b) If Op(G) 6= 1 then there exists some k ≥ 0 such that pk(p− 1) divides 2n.

(c) All abelian characteristic subgroups of Op(G) are cyclic.

Proof:

(a) Let K < End(G) be any minimal totally complex subfield. Let {f1, . . . , fr} and{e1, . . . , es} be the central primitive idempotents of the enveloping algebras Nand 〈G〉K respectively. Let χi denote the character corresponding to a simple〈G〉K ei module and let L = Q(χ1, . . . , χs) ⊆ K be their character field. Then

L/Q is Galois and ei = χi(1)|G|∑

g∈G χi(g−1)g ∈ 〈G〉L. Since G is irreducible,

{e1, . . . , es} is a Galois orbit under Gal(L/Q). For any 1 ≤ j ≤ r there ex-ists some i such that eifj 6= 0. Since fj ∈ N is fixed under Gal(L/Q), weget that eifj 6= 0 for all i, j. The enveloping algebra 〈4K(G)〉K is isomorphicto 〈G〉K ei for some i. Now {eif1, . . . , eifr} is a set of central idempotents of〈N〉K ei'〈4K(N)〉K . But 4K(G) is primitive and therefore 〈4K(N)〉K is asimple algebra by Theorem 2.1.15. This shows r = 1, since no eifj vanishes.

(b) By (a), Op(G) has a rationally irreducible representation of degree d for somedivisor d of 2n. But for any p-group, d is of the form pk(p− 1) for some k ≥ 0.

(c) Any characteristic subgroup U of Op(G) is a normal subgroup of G. Thus by(a), the abelian group U admits a faithful irreducible representation. ThereforeU is cyclic. �

Suppose N is a normal subgroup of an irreducible and symplectic primitive groupG < GL2n(Q). Then the natural character χ of N is sufficient to recover the conjugacyclass of N . If N has several Q-irreducible faithfull representations, we will use thephrase “G contains N with character χ” to distinguish the conjugacy classes of matrixgroups isomorphic to N .If N < GLm(Q) denotes an Q-irreducible constituent of N , we will identify N with Nsince the precise notation N ⊗ I 2n

mis not very handy.

The following theorem of Philip Hall classifies all finite p-groups whose abelian char-acteristic subgroups are cyclic. In particular, together with the above result, thisclassifies all possibible candidates for the Fitting subgroups of symplectic primitiveirreducible maximal finite (s.p.i.m.f.) matrix groups.

Page 17: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

2.1. DEFINITIONS 17

Theorem 2.1.17 (P. Hall) If P is a finite p-group with no noncyclic abelian char-acteristic subgroups, then P is the central product of subgroups P1 and P2 where

(a) P1 is an extraspecial 2-group and P2 is either a cyclic, dihedral, quasidihedral orgeneralized quaternion 2-group.

(b) p is odd and P1 is an extraspecial p-group of exponent p and P2 is cyclic.

Proof: See for example [Hup67, Satz 13.10, p. 357]. �

We close this section by showing that symplectic imprimitive matrix groups can easilybe recognized. Further, the wreath products of symplectic primitive irreducible max-imal finite (s.p.i.m.f.) matrix groups are usually again maximal finite symplectic. Sowe can restrict the classification to s.p.i.m.f. matrix groups.

Definition 2.1.18 Let F be a nonempty family of bilinear forms on Rn. A lattice L inRn is called indecomposable w.r.t. F , if L cannot be written as a direct sum L = L1⊕L2

where b(L1, L2) = {0} for all b ∈ F . A vector x ∈ L is called indecomposable in Lw.r.t. F if it cannot be written as x = y+ z with y, z ∈ L \ {0} and b(y, z) = 0 for allb ∈ F .

Theorem 2.1.19 Let F be a family of bilinear forms on Rn that contains at least onepositive definite form f . Then each lattice L in Rn admits a decomposition L = ⊕ki=1Liwhere each Li is indecomposable w.r.t. F and b(Li, Lj) = {0} for all b ∈ F and all1 ≤ i < j ≤ k. This decomposition is unique up to permutation of the Li.

Proof: We adapt [Kne02, Satz (27.2)] slightly. Let L = ⊕li=1L′i be any decomposition

such that b(L′i, L′j) = 0 for all b ∈ F and all i 6= j. If x ∈ L is indecomposable w.r.t. F

then x ∈ L′i for some i. Thus two indecomposable elements x and y with b(x, y) 6= 0for some b ∈ F are in the same component L′i. Two indecomposable elements x, y ∈ Lare said to be equivalent if and only if there exists some indecomposable elementsx = x1, . . . , xr = y ∈ L and some b1, . . . , br ∈ F such that bi(xi, xi+1) 6= 0 for all1 ≤ i < r. This defines an equivalence relation on the set of indecomposable elementsof L. Since the equivalence classes give rise to a orthogonal decomposition of theEuclidean space (Rn, f) there are at most n such classes K1, . . . , Kk say. Denote by Lithe sublattice of L generated by Ki. For 1 ≤ i < j ≤ k we have b(Li, Lj) = {0} for allb ∈ F by construction. Further, every nonzero x ∈ L can be written as a finite sum ofindecomposable elements in L. If x is decomposable, we find some r, s ∈ L such thatx = r+s and b(r, s) = 0 for all b ∈ F . In particular 0 < f(r, r), f(s, s) < f(x, x). Hencethis decomposition procedure must end. Therefore L = ⊕ki=1Li is a decomposition of Lwhich has the desired properties. Each component Li is indecomposable and containedin L′j for some j.To proof the uniqueness, assume that all L′j are also indecomposable. For 1 ≤ j ≤ llet Ij = {1 ≤ i ≤ k | Li ⊆ L′j} and set Mj := ⊕i∈IjLi ⊆ L′j. We are done if we can

show L′j = Mj for all j since then |Ij| = 1. Let x ∈ L′j. Write x =∑l

i=1 xi withxi ∈Mi ⊆ L′i for all i. Since ⊕li=1L

′i = L this implies xi = 0 for all i 6= j. So Mj = L′j

as claimed. �

Page 18: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

18 CHAPTER 2. METHODS

Remark 2.1.20 Let G < GLm(Q) be finite and L ∈ Z(G) . Then every auto-morphism in Aut(L,F(G)) permutes the components of the unique indecomposableorthogonal decomposition of L wrt. F(G).Hence a finite irreducible subgroup G < Sp2n(Q) is symplectic primitive if and only ifeach L ∈ Z(G) is indecomposable w.r.t. F(G).

Lemma 2.1.21 ([Ple91, Proposition II.7]) Let H < Sp2n(Q) be s.p.i.m.f. suchthat E := End(H) is a minimal totally complex number field. If the 2-modular trivialBrauer character is no constituent of the natural 2-modular character of H, then thewreath product H o Sk < Sp2nk(Q) is s.i.m.f. for all k ≥ 1.

Proof: Since −In ∈ H we have End(H o Sk) = {Ik⊗ c | c ∈ E}'E and F(H o Sk) ={Ik⊗F | F ∈ F(H)}.Let L = L1 ⊕ · · · ⊕ Lk for some Li ∈ Z(G). View the Li as a H-module whereH is the direct product of k copies of H. By our assumption Li and Lj have nocommon p-modular constituent for i 6= j as H-modules. By [Ple78, Theorem I.1] weget Z(H) = {⊕ki=1Li | Li ∈ Z(H)}. Hence Z(H o Sk) = {⊕ki=1L | L ∈ Z(H)}. Theresult now follows since E'End(H o Sk) is minimal totally complex and H o Sk =Aut(L,F(H o Sk)) for all L ∈ Z(H o Sk). �

The assumption on the 2-modular constituents is necessary. The group H :=〈( 0 1−1 0 )〉 < Sp2(Q) is s.p.i.m.f. but H o S2 ≤ Sp4(Q) is not maximal finite (see Theo-

rem 4.3.1). In fact, this is the only example that we will encounter.

2.1.3 Generalized Bravais groups

If N is a normal subgroup of a s.p.i.m.f. matrix group G then

Bo(N) := {x ∈ G | x centralizes End(N)}

is also a normal subgroup of G which contains N . We will show that Bo(N) can becomputed from the group N without knowledge of G.

The natural N -module Q1×m decomposes into a direct sum of copies of a single irre-ducible N -module V as we have seen in Corollary 2.1.16.

The Z-span Λ1(N) := 〈N〉Z is invariant under conjugation by G and we recursivelydefine an ascending chain of orders in N having the same property. This is the socalled radical idealizer process :

• If Λi(N) has already been defined, then let Ri be the arithmetic radical of Λi(N)i.e. the intersection of all maximal ideals of Λi(N) that contain the (reduced)discriminant of Λi(N).

• Let Λi+1(N) be the right order of Ri in N .

Page 19: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

2.1. DEFINITIONS 19

If Λi(N) is G-invariant then Ri is also G-invariant by definition. So g ∈ G andx ∈ Λi+1(N) imply Ri(g

−1xg) = g−1Rixg ⊆ Ri. This shows that Λi+1(N) is G-invariant as claimed.

Like any ascending chain of orders having full rank in N , this chain stabilizes at someorder Λ∞(N) say. It follows from [Rei03, Theorems (39.11), (39.14) and (40.5)] thatthe above chain stabilizes at Λi(N) if and only if Λi(N) is hereditary. So in particularΛ∞(N) is hereditary.

Since Λ∞(N) is G-invariant, G acts on Z(Λ∞(N)). Thus G fixes at least one of theΛ∞(N)-lattices. This leads to the following definition.

Definition 2.1.22 With the above notation, let F ∈ F>0(N). The generalized Bra-vais group of N is

Bo(N) := {g ∈ N | Lig = Li for all 1 ≤ i ≤ s and gFgtr = F}

where {L1, . . . , Ls} represents the isomorphism classes of Λ∞(N)-lattices in V .

By construction Bo(N) is a finite subgroup of N∗

containing N . Moreover N andBo(N) have the same commuting algebras and thus the same invariant forms. Inparticular, Bo(N) does not depend on the choice of F .

Lemma 2.1.23 Let G < Sp2n(Q) be s.p.i.m.f.. If N EG then

(a) N E Bo(N)EG

(b) If X < N∗

is a finite subgroup such that N EX then X ≤ Bo(N).

(c) Bo(N) = {x ∈ G | x centralizes End(N)}

Proof: The parts (a) and (b) are proven in [NP95, Proposition II.10, p. 82]. Part (c)follows from (a), (b) and the double centralizing property. �

Part (b) can be used to find a large subgroup of Bo(N). Part (a) rules out somenormal subgroups. For example, suppose G < Sp10k is s.p.i.m.f. such that G containsa normal subgroupN 'Alt5 where the character ofN is a multiple of the 5-dimensionalirreducible character of Alt5. Then (by Table 2.5.1) N 5 Bo(N)'C2 × Alt6 gives acontradiction.

Page 20: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

20 CHAPTER 2. METHODS

2.1.4 General outline of the classification

We recall the definition of the generalized Fitting subgroup and its self-centralizingproperty. In this section, let G be a finite group.

Definition 2.1.24 A finite perfect group H is called quasisimple if H/Z(H) is simple.A component of G is a subnormal quasisimple subgroup of G. The subgroup generatedby all components of G is called the layer of G and is denoted by E(G). Finally, thegeneralized Fitting subgroup F ∗(G) of G is the subgroup generated by the layer E(G)and the Fitting subgroup F (G) =

∏p||G|Op(G).

Lemma 2.1.25 The layer E(G) is a central product of its components. The general-ized Fitting subgroup F ∗(G) is the central product of F (G) and E(G).

Proof: See for example [Asc00, 31.7 and 31.12]. �

Theorem 2.1.26 The generalized Fitting subgroup F ∗(G) is self-centralizing in G. Inparticular, G/F ∗(G) is isomorphic to a subgroup of Out(F ∗(G)).

Proof: See for example [Asc00, 31.13]. �

Remark 2.1.27 The general outline of the classification of the s.i.m.f. subgroups ofSp2n(Q) is now as follows:

(a) The symplectic imprimitive matrix groups come from the classifications ofSp2d(Q) where d runs through all divisors of n. These groups are usually s.i.m.f.(see Lemma 2.1.21). Suppose now G < Sp2n(Q) is s.p.i.m.f..

(b) There are only finitely many candidates for the Fitting subgroup F (G) accordingto Theorem 2.1.17. These are listed in Table 2.5.2.

(c) There are only finitely many candidates for the layer E(G). These are describedin [HM01] which is based on the ATLAS [CCN+85] and listed in Table 2.5.1 upto n = 11. (Note that this step depends on the completeness of the classificationof all finite simple groups).

(d) For two such candidates F (G) and E(G) we know that G/F ∗(G) is isomorphicto a subgroup of Out(F ∗(G)). So we have to find all such possible extensions ofF ∗(G) up to conjugacy in GL2n(Q).

The last step is the crucial one. Although it is a cohomological task to find all abstractextensions G, we are interested in finding all matrix group extension of F ∗(G). Ofcourse, one can always replace F ∗(G) by its generalized Bravais group.

In the next section, we will describe methods that construct G from F ∗(G) undercertain assumptions on F ∗(G). We will also give some more criteria that eliminatesome candidates for F ∗(G).

Page 21: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

2.2. METHODS 21

2.2 Methods

2.2.1 Normal subgroups of index 2k

For many s.i.m.f. matrix groups G the quotient G/Bo(F ∗(G)) is an elementary abelian2-group as Tables 2.5.1 and 2.5.2 show. Thus we give two results that rule out somecandidates for normal subgroups N having index 2k in G.

Part (c) of the next lemma is an analogon to [NP95, Corollary III.4]. It will be usedfrequently in the classification.

Lemma 2.2.1 Let N C G with [G : N ] = 2 where G < Sp2n(Q) is irreducible andsymplectic primitive. Let g ∈ G \N and suppose that N is reducible in GL2n(Q).

(a) The restriction 4|N of the natural representation of G onto N splits into 41+4g1

where 41 : N → GLn(Q) is irreducible.

(b) dimQFskew(41(N)) = 0.

(c) L := End(41(N)) ⊆ Qn×n is a totally real number field.

Proof: (a) By Clifford theory.

(b) If dimQFskew(41(N)) > 0 then all nonzero elements in Fskew(41(N)) are in-vertible, since 41 is irreducible. Thus 41(N) is symplectic. The representation4 is induced by 41, hence we may suppose that 4(N) is given by blockdiagonal

matrices and 4(g) =

(0 In

41(g2) 0

). But then G ≤ 41(N) o C2 is symplectic

imprimitive.

(c) 41 can also be seen as a real representation δ : N → GLn(R). Let δ decom-pose into R-irreducible representations δ1, . . . , δs say. Then dimRFskew(δ(N)) =dimQFskew(41(N)) = 0 and hence dimRFskew(δi(N)) = 0 for all i.

So EndR(δi(N))'R for all i. Thus EndR(δ(N))'R⊗Q L'⊕si=1R shows that Lmust be a ring direct sum of totally real number fields. Since L is simple, theresult follows. �

Lemma 2.2.2 Let A be a simple Q-algebra. Suppose that α ∈ AutQ(A) is a Q-algebra automorphism of order 2. If A+ := {x ∈ A | α(x) = x} is a simple ring, thendimQ(A) = 2 dimQ(A+).

Proof: Let A− = {x ∈ A | α(x) = −x}. Then A = A+ ⊕ A−. The automorphism αmaps the center K of A onto itself and hence induces an automorphism of K. If α|Kis not trivial, there exists some x ∈ K such that x 6= α(x). But then a := x− α(x) ∈K∗ ∩ A−. In particular, A+ → A−, x 7→ ax is an isomorphism of Q-spaces and theresult follows.So we may now suppose that α ∈ AutK(A). In particular, A+ is a central simpleK-algebra and by Skolem-Noether, α is conjugation by some invertible g ∈ A+. The

Page 22: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

22 CHAPTER 2. METHODS

Wedderburn theorem allows us to identify A with Qn×n for some skewfield Q withcenter K. Let s := g2 ∈ K. If s ∈ K2, then we may assume that g2 = 1 thus g isconjugate to Diag(Ik,−Il) in Kn×n for some k+ l = n. But then A+ = Qk×k⊕Ql×l issimple if and only if g is central. This contradicts the assumptions. So K := K(

√s) is

a proper extension of K. Let g := 1√sg and A := A⊗K K. Again, since A is a central

simple K-algebra, we may assume that A = Qn×n for some skewfield Q with centerK. As above g := 1√

sg is conjugate to Diag(Ik,−Il) in K n×n with k + l = n. Thus

A+ = CA(g) = Qk×k ⊕ Ql×l. But on the other hand, e := 12(1 + g) and f := 1

2(1− g)

are (the unique) central primitive idempotents of A+. Let 〈σ〉 = Gal(K/K)'C2. Byacting on the structure constants of A+, σ extends to an K-algebra automorphism ofA+ such that σ(

√s) = −

√s and σ(x) = x for all x ∈ A+. In particular σ(e) = f .

Thus σ interchanges the ring direct summands Qk×k and Ql×l. This shows k = l = n2

and the result follows, since dimK(A+) = dimK(A+) = n2

2·dimK(Q) = 1

2dimK(A) =

12

dimK(A). �

If n is not a power of 2, the following corollary is used to rule out some candidates fornormal subgroups. See [Neb95, (III.4)] for a similar result in GLn(Q).

Corollary 2.2.3 Let G < Sp2n(Q) be irreducible and symplectic primitive. If N CGwith |G/N | = 2k, then dimQ(End(G)) = 2l dimQ(End(N)) for some 0 ≤ l ≤ k.

Proof: Let N = N1 C N2 C . . . Nr−1 C Nr = G be a normal series of G such thatNi+1/Ni'C2. By Corollary 2.1.16 all the commuting algebras Ei := End(Ni) aresimple. Let g ∈ N2 \N1. Then g induces an automorphism on E2 of order at most 2.So by the result above, E2 = CE1(g) either equals E2 or has dimension 1

2dimQ(E1).

The result follows by induction. �

2.2.2 Primitive, normalized and normal critical lattices

Suppose G < GLm(Q). To find the r.i.m.f. or s.i.m.f. supergroups of G, one has toconsider automorphism groups of (L, F ) ∈ Z(G) × F(G). Since the number of suchpairs (L, F ) is infinite, we have to reduce this number. In this section we start withsome general results that do not depend on End(G).

The following definitions will be used frequently in the sequel.

Definition 2.2.4 Let L′, L ⊂ Q1×m be Z-lattices of full rank and let F ′, F ∈ Qm×m

be symmetric and positive definite.

(a) L#,F := {x ∈ Q1×m | xFytr ∈ Z for all y ∈ L} is the dual lattice of L wrt. F .

(b) F is said to be integral on L if L ⊆ L#,F .

Page 23: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

2.2. METHODS 23

(c) F is said to be primitive on L if L ⊆ L#,F but L * kL#,F for all k ∈ Z>1.

(d) (L, F ) is normalized if L ⊆ L#,F and the abelian group L#,F/L is of squarefreeexponent with rank at most m

2.

(e) The pairs (L, F ) and (L′, F ′) are said to be isometric if there exists some x ∈GLm(Q) such that L′ = Lx and F ′ = x−1Fx−tr. In this case x is called anisometry between L and L′.

The next remark shows that every finite matrix group G fixes a normalized pair (L, F ).

Remark 2.2.5 Let G < GLm(Q) be finite.

(a) The set Z(G) is closed under the following operations

(1) Z(G)×F>0(G)→ Z(G), (L, F ) 7→ L#,F

(2) Z(G)× End(G)∗ → Z(G), (L, c) 7→ Lc

(3) Z(G)×Z(G)→ Z(G), (L,L′) 7→ L+ L′

(4) Z(G)×Z(G)→ Z(G), (L,L′) 7→ L ∩ L′

(5) Z(G)×NGLm(Q)(G)→ Z(G), (L, h) 7→ Lh

(b) Let F ∈ F>0(G) be integral on L ∈ Z(G). If (L, F ) is not normalized, then thereexist some prime divisor p of det(L, F ) such that (L ∩ pL#,F , 1

pF ) is an integral

lattice of smaller determinant. In particular, iterating this process results insome normalized (L′, 1

dF ) ∈ Z(G)×F>0(G) with d | det(L, F ).

Now we want to reduce the number of lattices L that we have to consider.

Remark 2.2.6 If Λ is a Z-order in Qm×m then L,L′ ∈ Z(Λ) are isomorphic as Λ-right modules if and only if there exists some x ∈ CQm×m(Λ) such that Lx = L′. Thenumber of isomorphism classes is finite by the Jordan-Zassenhaus theorem (see [Rei03,Chapter 26]).

Let G < GLm(Q) be finite. Then (L, F ) ∈ Z(G)×F(G) is isometric to (Lx, x−1Fx−tr)for all x ∈ End(G)∗. Since isometric pairs have conjugate automorphism groups, it suf-fices to consider pairs (L, F ) where L runs through a (finite) system of representativesof the isomorphism classes of Z(G).

If one wants to find all r.i.m.f. or s.p.i.m.f. groups that contain G as a normal subgroup,one can usually reduce the number of lattices L that one has to consider even further.

Definition 2.2.7 Let G < GLm(Q) be finite. A finite subset S ⊂ Z(G) is calledG-normal critical, if for every finite supergroup H < GLm(Q) with GEH there existssome x ∈ GLm(Q) such that Z(Hx) ∩ S 6= ∅. If S = {L}, then L is called G-normalcritical.

Page 24: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

24 CHAPTER 2. METHODS

Remark 2.2.8 Let G < GLm(Q) be finite such that E := End(G) is a field. Whenone wants to find a set of G-normal critical lattices, one usually has to deal with oneof the following situations:Let Λ := 〈G,ZE〉Z. The fractional ZE-ideals act on Z(Λ). Let L1, . . . , Ls representthe orbits.

(a) If there exists some 1 ≤ i ≤ s such that every h ∈ NGLm(Q)(G) of finite orderfixes the set Li := {Lia | a a fractional ZE-ideal} then S = {Lia | [a] ∈ Cl(ZE)}is G-normal critical.

This situation can arise as follows:

(1) Suppose there exists some 1 ≤ i ≤ s such that for all j 6= i and all fractionalideals a of ZE the determinant of a base change matrix from Li to Lja doesnot equal ±1. Then Li has the above property.

(2) Choose one of the following options to definite mi and Mi for 1 ≤ i ≤ s:

• Let Λ′ be either Λ or 〈G〉Z. Let mi be the number of minimal Λ′-invariant sublattices of Li whose index in Li has only prime divisors ina given fixed set.

• Let mi = |{L ∈ Z(G) \ Z(Λ) | L a minimal sublattice of Li}|.Similarly one defines M1, . . . ,Ms by taking superlattices in the definitionsabove. If there exists some 1 ≤ i ≤ s such that (mi,Mi) 6= (mj,Mj) for allj 6= i then Li has the above property.

(b) Suppose that s = 4 and suppose that the Li can be chosen such that L1 = L2+L3,L4 = L2∩L3 and there are no elements of Z(Λ) between L1/Li, Li/L4 for i = 2, 3.Then S = {Lia | i ∈ {1, 2}, [a] ∈ Cl(ZE)} is a G-normal critical set.

Proof: Let H < NGLm(Q)(G) be finite.

(a) Let O := Li ·H be the orbit of Li under the action of H. Then L :=∑

L′∈O L′ ∈

Z(Λ). By the assumption, O ⊂ Li. So for each L′ ∈ O there exists a fractionalZE-ideal aL′ such that L′ = LiaL′ . But then L = Lia for a =

∑L′∈O aL′ . So S is

G-normal critical.

Part (a1) is obvious since det(h) ∈ {±1} for all h ∈ H and (a2) follows from thefact that the action of H on Z(G) preserves inclusions, endomorphism rings andthe index of sublattices.

(b) Summing over H shows that H fixes Lia for some fractional ZE-ideal a and some1 ≤ i ≤ 4. If i = 4 then H fixes L1a = L2a + L3a since L2a and L3a are theunique minimal superlattices of L4a in Z(Λ) which are not of the form L4a

′ forsome fractional ZE-ideal a′. Using the same argument one shows that if H fixesL3a then it also fixes L2a. �

Page 25: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

2.2. METHODS 25

2.2.3 Fields as endomorphism rings (m-parameter argument)

In this section, we give an algorithm (the so called m-parameter argument) that con-structs all r.i.m.f. or s.i.m.f. supergroups G of an irreducible matrix group U if End(U)is a field. In particular, this includes irreducible cyclic matrix groups U .

By the previous section, the problem is to reduce the number of forms that one hasto consider. To do so, we need all possible prime divisors of |G|. If we have no otherassumptions on G, we can always fall back on the Minkowski bound:

Lemma 2.2.9 (Minkowski’s bound, [Min87]) The least common multiple of theorders of all finite subgroups of GLn(Q) is given by∏

p

pbn

(p−1)c+b np(p−1)c+

jn

p2(p−1)

k+...

where the product is taken over all primes p ≤ n+ 1.

Further, the m-parameter argument needs a set of primes Π(End(U), |G|) dependingon End(U) and |G| as follows:

Definition 2.2.10 Let K be an algebraic number field.

(a) Let σi : K → R (1 ≤ i ≤ d) be the real embeddings of K. If we fix the order ofthe σi, we get a group homomorphism

s : K∗ → Fm2 , x 7→ (x1, . . . , xd) where xi =

{0 if σi(x) > 0,

1 if σi(x) < 0.

(b) For k ∈ Z define Π(k) to be the set of all primes dividing k.

(c) We define a finite set of primes Π(K) such that

(1) In each class of Cl(ZK) there exists an integral ideal which contains∏p∈Π(K)

pap with some ap ∈ N0.

(2) The group s(K∗) is generated by s(x1), . . . , s(x`) for some xi ∈ ZK satisfyingΠ(NrK/Q(xi)) ⊆ Π(K).

(d) For k ∈ Z set Π(K, k) := Π(k) ∪⋃F≤K

Π(F ) where the union is taken over all

subfields F of K. Note that this set is not unique.

We follow [Neb95, Satz III.2, p. 16] to give an algorithm which constructs all r.i.m.f.or s.i.m.f. supergroups of a given irreducible matrix group of the same dimension.

Page 26: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

26 CHAPTER 2. METHODS

Theorem 2.2.11 Let G < GLn(Q) be finite and irreducible. Let L be a ZG-lattice.Assume that C := CQn×n(G) is either commutative or a positive definite quater-nion algebra. Then there exists a F ∈ F>0(G) such that F is primitive on L andΠ(det(L, F )) ⊆ Π(K) ∪ Π(|G|) where K denotes the maximal real subfield of Z(C).

Proof: If C is commutative, a proof is given in [Neb95, Satz III.2, p. 16]. So we mayassume that C is a positive definite quaternion algebra. Choose any F ∈ F>0(G)which is primitive on L. Suppose that there exists some prime p /∈ Π(K) such thatp | det(L, F ) but p - |G|. It suffices to show that there exists some c ∈ K suchthat cF is integral on L and the primes dividing det(L, cF ) are contained in (Π(|G| ·det(L, F )) ∪ Π(K))) \ {p}.Let p1, . . . , p` be the prime ideals of ZK over p. Then Kp := K ⊗QQp =

⊕`i=1 Kpi

.Denote by ε1, . . . , ε` the primitive Idempotents of Kp such that Kpεi = Kpi

.

Let Lp := L⊗Z Zp and Cp := C ⊗QQp. Since p - |G|, p is not ramified in G and theorder Λp := 〈G〉Zp

is maximal in (G)p (see [Rei03, Theorems 41.1 and 41.7]). Therefore

EndΛp(Lp) is maximal in Cp and p is not ramified in Cp. Hence Cp'⊕`

i=1K2×2pi

.

So each Λp-lattice Lpεi decomposes into two irreducible Λp-lattices Xi,1 ⊕Xi,2. Fromεi ∈ K ⊆ Z(C) we get εiF (1 − εi)

tr = 0 which shows that the lattices Lpεi areorthogonal to each other.

Since EndKpiG(Xi,1)'Kpi

, there exists no symmetric G-invariant nonzero form onXi,1. Hence F induces an embedding ϕi : Xi,1 ↪→ Xi,2

∗, x 7→ Fxtr for each i. So thereexists some ki ∈ Z such that ϕi(Xi,1) = pki · Xi,2

∗. Therefore the Gram matrix of(Lp, F ) is of the form diag(pk1G1, . . . , p

k`G`) for some Gi ∈ GLni(Zp) (wrt. a proper

choice of a basis).

By property (1) of the definition of Π(K), there exists some ZK-ideal ai whose normis only divisible by primes in Π(K) and some yi ∈ K such that pi · ai = yiZK . Thenpi = 〈p, yi〉 since this identity holds locally everywhere. In particular yi ∈ ZK andΠ(NrK/Q(yi)) ⊆ {p} ∪ Π(K). By property (2) of the definition of Π(K), there exists

some x ∈ K such that NrK/Q(x) ∈ Π(K) and y := x ·∏`

i=1 y−kii is totally positive.

Let F ′ := y · F . Then yiεi and pεi are both primitive elements of Kpi. Hence (Lp, F

′)is self-dual. It might happen that F ′ is no longer integral on L. But then there existssome k ∈ N such that kF ′ is primitive on L and the primes dividing k are divisors of|G|. �

From this theorem we finally obtain

Corollary 2.2.12 (m-parameter argument, [Neb95, Korollar III.3, p. 17])Let U ≤ G < GLn(Q) be finite subgroups such that C := End(U) is a either a fieldor a positive definite quaternion algebra. Suppose L ∈ Z(G) ⊆ Z(U). Then thereexists some F ∈ F>0(G) that is primitive on L with Π(det(L, F )) ⊆ Π(K, |G|) whereK denotes the maximal real subfield of the center of C.

Proof: The maximal totally real subfield K ′ of the center of End(G) is contained inK. By the theorem above, there exists some F ∈ F>0(G) such that F is primitive onL and Π(det(L, F )) ⊆ Π(K ′, |G|) ⊆ Π(K, |G|). �

Page 27: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

2.2. METHODS 27

The following rather technical remark shows how this corollary will be used later.

Remark 2.2.13 Let U < GLm(Q) be finite such that C := End(U) is a field. Denoteby K the maximal totally real subfield of C. Further suppose that L1, . . . , Ls representthe isomorphism classes of U -invariant lattices. Finally fix Fi ∈ F>0(U) and let Ri =EndZU(Li) ⊆ ZC (in most cases Ri = ZC and there exists at least one i where equalityholds). Denote by R+

i := Ri ∩K. The following algorithm finds (up to conjugacy) allfinite supergroups G of U of order dividing a given ` ∈ N:

For 1 ≤ i ≤ s let

Ni := {x ∈ NGLm(Q)(U) | Lix = Li and xFixtrF−1

i ∈ R∗i } and

Pi := {aR+i | a ∈ K>0, (Li, aFi) is normalized and Π(det(Li, aFi)) ⊆ Π(K, `)} .

Then the group Ni acts on C, K and Ri via conjugation. Moreover, Pi consists of fullorbits under this action. Let Si be a set of representatives of these orbits.

Finally let Ui be a coset of (R+i )∗>0/NrC/K(R∗i ) and let

S := {(Li, uaFi) | u ∈ Ui, aR+i ∈ Si, a ∈ K>0, 1 ≤ i ≤ s} .

Then every finite supergroup of U of order dividing ` is conjugate in NGLm(Q)(U) tosome group that fixes one of the lattices in the finite set S.

In particular, the r.i.m.f. supergroups of U are elements of {Aut(L, F ) | (L, F ) ∈ S}and the s.i.m.f. supergroups of U are elements of {AutKj

(L, F ) | (L, F ) ∈ S, 1 ≤ j ≤ r}where K1, . . . , Kr denote the minimal totally complex subfields of C.

Proof: Let G < GLm(Q) be a finite supergroup of U with |G| dividing `. By Corol-lary 2.2.12, the group G fixes some (L′, F ′) ∈ Z(U)×F>0(U) such that F ′ is integralon L′ and Π(det(L′, F ′)) ⊆ Π(K, `). Applying the process described in Definition 2.2.4yields a normalized lattice (L′, F ′) with Π(det(L′, F ′)) ⊆ Π(K, `).

Now L′ = Lic for some 1 ≤ i ≤ s and c ∈ C. After replacing G by Gc−1, G fixes

(Li, F ) where F := cF ′ctr. So there exists some aR+i ∈ Pi such that F = aFi (and

thus a ∈ K>0). By definition, there exists some x ∈ Ni such that axR+i ∈ Si. After

replacing G by Gx−1, it fixes Lix

−1 = Li and xaFixtr = ax

−1(xFix

trF−1i )Fi = aFi for

some a ∈ K>0 with aR+i = aR+

i . Now a or a are defined by the ideal aR+i only up

to some element of (R+i )∗>0. For y ∈ R∗i it follows from Lemma 2.1.9 that Gy−1

fixes(Liy

−1, yaFiytr) = (Li,NrC/K(y)aFi).

So we have shown that G is conjugate (in NGLm(Q)(U)) to some group that fixes alattice in the set S.

The result now follows, if we can show that S is finite. The set Ui is finite by Dirichlet’sunit theorem (note that if K 6= C then (R+

i )2 ≤ NrC/K(R∗i )). The number of isomor-phism classes of ZU -invariant lattices is finite by the Jordan-Zassenhaus theorem.

So it remains to prove that Pi is finite: Fix bR+i ∈ Pi and let Ji := AnnR+

i(L#,bFi

i /Li).

If x ∈ K>0 such that xbFi is integral on Li, then LixJi ⊆ L#,bFi

i Ji ⊆ Li. Thusx ∈ J−1. �

Page 28: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

28 CHAPTER 2. METHODS

To simplify the definition of the Ni in the previous remark, one can use the following

Remark 2.2.14 Assume the situation of the previous remark.

(a) If Fi is integral on Li and det(Li, Fi) = 1 then

{F ∈ F>0(U) | (Li, F ) is integral} = {cFi | c ∈ Ri ∩K>0} .

(b) If {F ∈ F>0(U) | (Li, F ) is integral} = {cFi | c ∈ Ri ∩K>0} then

Ni = NGLm(Q)(U) ∩GL(L) = {x ∈ NGLm(Q)(U) | Lix = Li} .

Proof:

(a) Suppose c ∈ K>0 such that cFi is integral on Li. Then xcFiytr ∈ Z for all

x, y ∈ Li. Hence Lic ⊆ L#,Fi

i = Li and therefore c ∈ Ri.

(b) Let x ∈ NGLm(Q)(U) ∩ GL(L). Then xFixtr ∈ F>0(U). Hence there exists some

c ∈ K>0 such that xFixtr = cFi. Now xFxtr is integral on Lix

−1 = Li. Thisshows c ∈ R+

i . From det(c) = 1 it follows that NrK/Q(c) = 1 and thus c ∈ (R+i )∗.

This proves x ∈ Ni. �

Note that there does not always exist some Fi such that the condition of (b) holds.

2.2.4 Quaternion algebras as endomorphism rings

We now turn to the case where a s.i.m.f. matrix group G contains an irreducible normalsubgroup N such that End(N) is a quaternion algebra Q with center K.

If N = F ∗(G), then Q will frequently be a totally definite quaternion algebra (i.e. Qis ramified at all infinite places of K). In this case the structure of G is rather limited.

Theorem 2.2.15 Let G < Sp2n(Q) be s.p.i.m.f.. Suppose that E := End(F ∗(G)) isa totally definite quaternion algebra with center K. Then G acts on E and K byconjugation. Let

S := {g ∈ G | gx = xg for all x in K} and

B := Bo(F ∗(G)) = {g ∈ G | gx = xg for all x in E}

be the kernels of these actions. Then

1E F ∗(G)EB E S EG .

Further G/S is isomorphic to a subgroup of Gal(K/Q) and S/B has exponent 1 or 2(and is abelian).

Page 29: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

2.2. METHODS 29

Proof: Only the claim that S/B has exponent 1 or 2 is not obvious. The proof givenin [Neb98b, Theorem 4] applies mutatis mutandis. �

With the notation from above, the next lemma can be used to extend B by someelement from S.

Lemma 2.2.16 Let N = Bo(N) < GLm(Q) be finite such that Q := End(N) is aquaternion algebra with center K. Suppose x, y ∈ GLm(Q) induce the same outerautomorphism on N and x2, y2 ∈ N . If x commutes with K then

(a) End(〈N, x〉) = CQ(x)'K[X]/(X2 − d) for some d ∈ K.

(b) There exist some g ∈ N and c ∈ Q such that y = gcx. In particular, y commuteswith K. Then End(〈N, y〉)'K[X]/(X2 − nrQ/K(c)d) where nrQ/K denotes thereduced norm on Q. Further nrQ/K(c) is a root of unity in ZK.

(c) If CQ(x) is a field and nrQ/K(c) ∈ (Z∗K)2 then 〈N, x〉 and 〈N, y〉 are conjugate.

Proof:

(a) For any z ∈ Q we have zx ∈ End(Nx) = End(N) = Q. Hence x induces a K-automorphism on Q. By the Skolem-Noether theorem there exists some a ∈ Q∗such that za = zx for all z ∈ Q. It follows from x /∈ CGLnQ(Q) that

K ( K[a] ⊆ CQ(a) = CQ(x) ( Q .

Thus K[a] = CQ(x). Since x2 ∈ N , it induces the identity on Q. Hence a2 ∈ Kand therefore K[a] ∼= K[X]/(X2 − d) where d := − nrQ/K(a) ∈ K.

(b) Since yx−1 induces an inner automorphism on N , it is contained in NQ∗. Itfollows from part (a) that

End(〈N, y〉) = End(〈N, cx〉)'K[X]/(X2 + nrQ/K(ca))

as claimed.

Further cxcx−1 ∈ (g−1y)2x−2 ∈ N has finite order. Hence the reduced normnrQ/K(c)2 = nrQ/K(c · (xcx−1)) ∈ K∗ also has finite order.

(c) Let u ∈ Z∗K such that nrQ/K(c) = u2. Thus u ∈ Z∗K has finite order which impliesu ∈ Bo(N) = N . By the above, both a and u−1ca have vanishing traces. SonrQ/K(u−1c) = 1 implies that a and u−1ca have the same minimal polynomial(over K). It follows from the Skolem-Noether theorem that there exists somet ∈ Q∗ such that at = u−1ca. Finally

xt = t−1xtx−1x = t−1ata−1x = u−1caa−1x = (gu)−1y

shows 〈N, x〉t = 〈N, (gu)−1y〉 = 〈N, y〉. �

Page 30: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

30 CHAPTER 2. METHODS

In most cases, we will apply this result to the following situation.

Remark 2.2.17 Let N < Sp2n(Q) be finite such that Q := End(N) is a quaternionskewfield with center K. If Bo(N) is not s.p.i.m.f., then the above lemma allows usto construct (up to conjugacy) all s.p.i.m.f. supergroups G B N satisfying one of thefollowing conditions:

• CG(N) 6⊆ Bo(N)

• Bo(N) has even index in {g ∈ G | gx = xg for all x ∈ K}.(Note that this condition holds for example if N = F ∗(G) is assumed and Q isa totally definite quaternion algebra over Q as Theorem 2.2.15 shows).

More precisely, one can use the following algorithm:

(a) Set X := ∅.

(b) If N = F ∗(G) is assumed skip this step. Otherwise let M1, . . . ,Mr be rep-resentatives of the conjugacy classes of maximal ZK-orders in Q. Further letM∗.1

i = {x ∈Mi | nrQ/K(x) = 1} be the torsion subgroup of M∗i . (See [KV] for

algorithms to compute these objects).

Include to the set X all elements x ∈M∗,1i whose order is a prime power greater

than 2, provided that X does not already have an element of the same order.

(c) Let U be the torsion subgroup of Z∗K ∩ nrQ/K(Q∗). For any uU2 in U/U2 findsome cu with u = nrQ/K(c). Let C be the set of the cu. (In most cases, Q willbe a totally definite quaternion algebra, so one can choose C = {1}).

(d) For each class of outer automorphisms in Out(N) that is not realized in Bo(N)but its square is, compute one x ∈ GL2n(Q) that realizes this automorphism.

If such an x exists, then include {cx | c ∈ C} to X.

(e) Each group G satisfying the hypothesis contains (up to conjugacy) a subgroup〈N, x〉 for some x ∈ X.

Since End(〈Bo(N), x〉) is a field, one can use the m-parameter argument (Corol-lary 2.2.12) to construct a representative of the conjugacy class of G.

Proof: We have to show that each G satisfying the hypothesis contains a subgroupconjugate to 〈Bo(N), x〉 for some x ∈ X.Suppose first that there exists some g ∈ CG(N) = CG(Bo(N)) such that g /∈ Bo(N).Taking appropriate powers, we can assume that the order of g is a prime power differentfrom 2 since −I2n ∈ Bo(N). So g is conjugate (in Q) to some x ∈ X. Hence 〈Bo(N), g〉and 〈Bo(N), x〉 are conjugate in Q.Suppose now CG(N) = CG(Bo(N)) ⊆ Bo(N). Then by the assumption, there existssome g ∈ G \ Bo(N) that commutes with K and g2 ∈ Bo(N). So the claim followsfrom Lemma 2.2.16. �

Page 31: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

2.3. ALGORITHMS 31

2.3 Algorithms

LetG < GLm(Q) be finite. After a change of bases, we may suppose thatG < GLm(Z).We first explain how to compute representatives for the isomorphism classes of G-invariant lattices. Clearly Z(G) is closed under taking sums and intersections.Suppose L′ ⊆ L ∈ Z(G). Let M1, . . . ,Ms be the nontrivial p-Sylow groups of L/L′.Then G acts on L/L′ as automorphisms of groups. In particular L′ =

⋂si=1 Li is the

intersection of the G-invariant lattices Li = ⊕j 6=i(L′+Mj) whose index in L is a primepower. Moreover, this intersection is unique.

Algorithm 2.3.1 ([PH84]) Let Λ ⊆ Zm×m be a Z-order in a simple subalgebra Aof Qm×m. Further let L = Z1×m be the natural Λ-lattice. This algorithm returns allΛ-invariant sublattices of L that contain Lpk for some k ≥ 1 and a fixed prime p.Input: Generators of the natural representation of Λ and a prime p.

(a) Using the meataxe (see [Par84]), find all p-modular constituents of the naturalrepresentation of Λ and the corresponding simple Λ/pΛ-modules S1, . . . , Sk.

(b) For each Λ - invariant lattice M found so far, compute all maximal Λ - invariantsublattices of M as kernels of Λ/pΛ-epimorphisms M → Si for some 1 ≤ i ≤ s.

(c) One continues the algorithm with these newly constructed lattices, provided theyare not a scalar multiple of a lattice computed before.

Remark 2.3.2 ([Neb95, III.11]) In general, the above algorithm does not termi-nate. One has to specify some additional stopping conditions as follows.

Let Λ := 〈G〉Z for some finite rationally irreducible subgroup G < GLm(Z) whereE := End(G) is a field. Since Λ′ := 〈Λ,ZE〉Z is an order, there exists some L ∈ Z(G)such that EndΛ(L) = ZK . So without loss of generality L = Z1×m.

Denote by p1, . . . , ps the prime divisors of |G| and let pi,1, . . . , pi,nibe the prime ideals

over piZK . These prime ideals act on the Λ′-invariant sublattices of L whose index isa power of pi. Using the above algorithm, we find representatives Li,1, . . . , Li,mi

of thecorresponding orbits.

Let a1, . . . , ah be representatives of Cl(ZK). Then

S ′ := {( s⋂i=1

Li,ji)aj | 1 ≤ j ≤ h, 1 ≤ ij ≤ mi}

is finite and it contains a system of representatives for the isomorphism classes ofΛ′-invariant lattices.

Using the above algorithm again, for each L′ ∈ S ′ one computes the finite set

Zo(L′) := {M =s⋂i=1

Mi |Mi ∈ Z(G),Mi ≤ L′, L′/Mi a pi-group and MZE = L′} .

Then S :=⋃L′∈S′ Zo(L′) contains a representative of each isomorphism class of Z(G).

Page 32: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

32 CHAPTER 2. METHODS

Proof: By the Jordan-Zassenhaus theorem ([Rei03, Chapter 26]) the number of iso-morphism classes of Λ′-invariant lattices is finite. So S ′ is finite. Suppose L′ ≤ L isΛ′-invariant, then [Rei03, Theorems 41.1 and 41.7] show that each prime p not dividing|G|, does not split G and the completion Λ′p := Λ′⊗Z Zp is a maximal order. Hencethe completions L′⊗Z Zp and L⊗Z Zp are locally isomorphic. So there exists somefractional ideal a of ZE such that L′a ≤ L and |L/L′a| is a product of the pi. Then itfollows from the definition of S ′ that L′a is isomorphic to some lattice in S ′.Suppose now L′ ∈ S ′ and M ∈ Zo(L′). Then there are only finitely many isomorphismclasses of such lattices M . Further x ∈ E satisfies Mx ∈ Zo(L′) if and only if x ∈ Z∗E.Since [Z∗E : EndΛ(M)∗] is finite, it follows that Zo(L′) is finite.Suppose now L′ ∈ Z(G). Then there exists some x ∈ E such that L′ZEx ∈ S ′.Furthermore |L′ZEx/L′x| is a product of the pi since EndΛp(L′p) is maximal for allprimes p not dividing |G|. Hence L′x ∈ Zo(L′ZEx) ⊆ S as claimed. �

In [PS97], Plesken and Souvignier describe an algorithm which computes automor-phism groups of lattices. Together with the Minkowski bound (see Lemma 2.2.9), them-parameter argument (see Remark 2.2.13) and the above algorithm we can thus find(up to conjugacy) all r.i.m.f. or s.i.m.f. supergroups of any finite matrix group G whereEnd(G) is a field. Provided that we can test whether two given groups are conjugate:

Algorithm 2.3.3 The following algorithm tests whether two given s.i.m.f. groupsG1, G2 < Sp2n(Q) are conjugate. If so, it returns some x ∈ GL2n(Q) such thatG2 = Gx

1 . For i = 1, 2 let Ei := End(Gi).

• Let d := min{det(L, F ) | F ∈ F>0(G1) is primitive on L ∈ Z(G1)} and fix someprimitive pair (L, F ) ∈ Z(G1)×F>0(G1) such that det(L, F ) = d.

• Let L′1, . . . , L′s be representatives the isomorphism classes of Z(G2).

• Two elements in

L′ :=s⋃

1=1

{(L′i, F ′) | F ′ ∈ F>0(G2) is primitive on L′i and det(L′i, F′) = d}

are said to be equivalent if there exists some isometry t between them such thatEt

2 = E2. Let S be a set of representatives of the equivalence classes.

• If there exists some isometry x between (L, F ) and some element of S such thatEx

1 = E2 then return x otherwise return false.

An algorithm for the required isometry tests is also given in [PS97].

Proof: It follows from the proof of Remark 2.2.13 that L′ is finite. Thus the al-gorithm terminates. Suppose first that there exists some x ∈ GL2n(Q) such that(Lx, x−1Fx−tr) ∈ S and Ex

1 = E2. Then by maximality

Gx1 = (AutE1(L, F ))x = AutEx

1(Lx, x−1Fx−tr) = G2 .

Page 33: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

2.4. SOME NOTATION 33

Conversely suppose that G2 = Gy1 for some y ∈ GL2n(Q). Then (Ly, y−1Fy−tr) ∈

Z(G2)×F>0(G2) is primitive and has determinant d. So there exists some e ∈ E2 suchthat (Lye, (ye)−1F (ye)−tr) ∈ L′. By definition of S, there exists some t ∈ GL2n(Q)such that Et

2 = E2 and (Lyet, (yet)−1F (yet)−tr) ∈ S. So x := yet furnishes an isometrybetween (L, F ) and some element of S satisfying Ex

1 = E2 as claimed. �

2.4 Some notation

Definition and Remark 2.4.1 For i = 1, 2 let Gi < GLmi(Q) be finite irreducible

matrix groups and let Ei := End(Gi). The tensor product

G1⊗G2 := {g1⊗ g2 | gi ∈ Gi} < GLm1m2(Q)

is isomorphic to some central product G1 �C G2. This matrix group is usually notirreducible, since E1⊗E2 might not be a skewfield. The following definition is usedto construct a (usually irreducible) direct summand of G1⊗G2.

Let Q be a maximal common subalgebra of E1 and E2 of dimension d = dimQ(Q).Then G1⊗

QG2 := 4Q(4Q(G1)⊗4Q(G2)) < GLm1m2

d(Q) is isomorphic to G1 �C G2

with C = G1 ∩Q ∩G2. Moreover G1⊗QG2 contains a normal subgroup Hi isomorphic

to Gi where the restriction of the natural character onto Hi is a multiple of the nat-ural character of Gi. To simplify the notation, we use the following conventions: IfQ'Q(α) is a field, we write ⊗

αinstead of ⊗

Q(α). If Q'Qα,P1,...,Pr is a quaternion algebra

with center K ramified only at the (finite or infinite) places Pi, we write ⊗P1, . . . , Pr

if

K = Q and we write ⊗α, P1, . . . , Pr

if K 'Q(α). Finally, if d = m2, then G2 embeds into

E∗1 . In this case, we use ◦ instead of ⊗Q

.

Note that this construction does not always give irreducible matrix groups. We willonly encounter the following examples (in dimension 16) where this is not the case:

In these cases (after exchanging the Gi) we have G1'C10, m1 = 4 and E1'Q(ζ10).Further E2 is a totally definite quaternion algebra which is split by E1. Thus themaximal common subalgebra of E1 and E2 equals Q and G1⊗G2 is reducible. In thesecases, we make a slight abuse of notation and denote by G1 ⊗√

5′G2 an irreducible direct

summand of G1⊗G2 (this was first introduced in [NP95, page 91]). This notationhas the advantage, that in all our examples the dimension formula still holds, that is:G1 ⊗√

5′G2 denotes a subgroup of GLk(Q) where k = 2m2 = m1m2

dimQ(Q(√

5)).

Page 34: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

34 CHAPTER 2. METHODS

Definition and Remark 2.4.2 We will use the following conventions for the names(of the conjugacy classes) of rational/symplectic/quaternionic matrix groups.

• If G < GLm(Q) for some skewfield Q, then ±G := 〈G,−Im〉 < GLm(Q).

• The symbols An, Bn, F4 = D4, E6, E7, E8 denote (the automorphism groups of)the corresponding root lattices.

• If a maximal finite irreducible rational/symplectic/quaternionic primitive ma-trix group G < GLm(Q) is not a tensor product of rational, symplectic orquaternionic matrix groups of smaller dimension, it is denoted by E[Con]k whereE'End(G) and m = k · dimQ(E) since G can be identified with a subgroup ofGLk(E). Further, Con describes some construction of G from building blocks(Op and components; see Tables 2.5.1 and 2.5.2) or smaller matrix groups bytaking generalized Bravais groups, tensor products or group extensions.

Again, if E'Q we omit the subscript E. If E'Q(√α) is a field, we write

α[Con]k and if E'Qα,P1,...,Pr is a quaternion algebra over K ramified only at theplaces Pi we write P1,...,Pr [Con]k if K = Q and α,P1,...,Pr [Con]k if K 'Q(α).

• If G is symplectic imprimitive, then it is conjugate to the wreath product ofsome s.p.i.m.f. subgroup H < Sp 2n

k(Q) with Sk. In this case, we write Hk.

These conventions are consistent with the ones of [Ple91, NP95, Neb95, Neb96,Neb98a]. Moreover, for matrix groups described in loc. cit. we use the names giventhere.

Example 2.4.3

• C30 denotes the torsion subgroup of Q(ζ30)∗ which gives rise to a subgroup ofGL8(Q) with Q(ζ30) as commuting algebra. Clearly, there exists only one splitextension of this matrix group by C4 that fixes Q(

√−15). One finds that this

group is s.p.i.m.f. and we denote it by √−15[C30 :C4]4 < Sp8(Q).

• The group D8⊗C4 is a subgroup of GL4(Q) and it is one of the building blocksdescribed in Table 2.5.2. Taking its generalized Bravais group, one obtains as.p.i.m.f. subgroup of Sp4(Q) denoted by its isomorphism type i[(D8⊗C4).S3]2.

Tensoring this group with Aut(A2) < GL2(Q) gives a s.p.i.m.f. subgroup ofSp8(Q) which we call i[(D8⊗C4).S3]2⊗A2.

Lemma 2.1.21 shows that taking wreath products of these two s.p.i.m.f. groupsalso yields maximal finite groups denoted by i[(D8⊗C4).S3]k2 < Sp4k(Q) and(i[(D8⊗C4).S3]2⊗A2)` < Sp8`(Q).

As in the classification of the maximal finite rational and quaternionic matrix groups,we frequently have to construct a matrix groupH that contains an irreducible subgroupG1⊗

QG2 of index 2. Most of these extensions come from one of the following three

constructions:

Page 35: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

2.4. SOME NOTATION 35

Definition and Remark 2.4.4 ([NP95, (II.4) Proposition]) For i = 1, 2 letGi < GLmi

(Q) be two finite irreducible matrix groups and let Ei := End(Gi). Furtherlet Q be a maximal common subalgebra of E1 and E2 such that G1⊗

QG2 < GLm(Q) is

irreducible. We view Gi as a subgroup of G1⊗QG2 and Gi as a subalgebra of G1⊗

QG2.

(a) Suppose there exist some units ai ∈ Gi \ Gi and a positive squarefree integer psuch that Ga1

i = Gi and p−1a2i ∈ Gi. Then

G1

2(p)

⊗QG2 :=

⟨G1⊗

QG2, p

−1a1a2

⟩is an irreducible subgroup of GLm(Q) that contains G1⊗

QG2 with index 2.

(b) SupposeG1⊗QG2 ⊆ A ⊂ B ⊆ Qm×m is a chain of simple algebras with B = A⊕xA

for some x ∈ B such that x2 = ±1, xA = Ax and xGi = Gix. If there existsome units ai ∈ Gi and a positive squarefree integer p such that Gaix

i = Gi andp−1(aix)2 ∈ Gi then

G1

2(p)

�QG2 :=

⟨G1⊗

QG2, p

−1a1a2x

⟩is an irreducible subgroup of GLm(Q) that contains G1⊗

QG2 with index 2.

(c) Suppose A ⊆ CQm×m(G2) is a simple subalgebra that contains G1. If there existunits a1 ∈ A, a2 ∈ G2 and a positive squarefree integer p such that Gai

i = Gi

and p−1a2i ∈ Gi, then

G1

2(p)

@×⊃QG2 :=

⟨G1⊗

QG2, p

−1a1a2

⟩is an irreducible subgroup of GLm(Q) that contains G1⊗

QG2 with index 2.

In addition, the symbols are simplified as follows:

• If m2 = dimQ(Q), we write2(p)◦,

2(p)� and

2(p)@⊃ instead of

2(p)

⊗Q,

2(p)

�Q

and2(p)

@×⊃Q

respectively.

• If Q'Q, the subscript Q is completely omitted. If Q'Q(α) is a field, we writeα instead of Q. If Q'Qα,P1,...,Ps is a quaternion algebra with center K ramifiedonly at the places P1, . . . , Pr, we replace the subscript Q by P1, . . . , Ps if K = Qor by α, P1, . . . , Ps if K 'Q(α).

• If p = 1, we omit (p) in the above symbols.

In most cases, two different extensions of G1⊗QG2 by C2 can be distinguished by these

symbols together with their commuting algebras. Note however, this is not always thecase due to the solvability of certain relative norm equations:

Page 36: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

36 CHAPTER 2. METHODS

Example 2.4.5 Let G1 = √5,∞[SL2(5)]1 be the torsion subgroup of any maximal

order of the quaternion algebra Q√5,∞ with center Q(√

5) ramified only at the twoinfinite places. Since its commuting algebra is another copy of Q√5,∞, we find somex ∈ E1 of order 4. Let G2 be the subgroup generated by x. Thus G := G1 ◦ G2

denotes an irreducible subgroup of GL8(Q) with commuting algebra E'Q(i,√

5).Since Out(G1)'Out(G2)'C2 there exists only one class of outer automorphism thatacts nontrivially on G1 and G2. It can be represented by an automorphism of order 2,thus there exists only two possible such extensions.Construction (b) can be used to find some α = a1a2x that acts like the nontrivial outerautomorphism on the Gi. Clearly H1 := 〈G,α〉 has commuting algebra Q(

√−5). But

then u := 1+√

52∈ E satisfies NrE/Q(

√−5)(u) = u ·uα = −1. In particular H2 := 〈G, uα〉

is an extension of G, not isomorphic to H1 but with the same commuting algebra.

Remark 2.4.6 If (like in the previous example) there exist only two s.i.m.f. extensionsone split and one not, we write 2+(p) for the split and 2−(p) for the nonsplit extension.

Thus the groups Hi from above are labeled √5,∞[SL2(5)]12+

�C4 and √5,∞[SL2(5)]12−�C4

(see Theorem 4.5.1).

If there are several such extensions yielding s.i.m.f. groups that cannot be distinguishedby the above, we describe the automorphisms induced by p−1a1a2 or p−1a1a2x explicitlywhen the groups are introduced for the first time.

Frequently, one has some s.p.i.m.f. matrix group G that contains an irreducible sub-group N := G1⊗QG2 of index 2 and one wants to know whether G can be obtainedfrom N by one of the constructions above. We want to discuss one example, to givesome idea how this can be done. Clearly (b) is the most difficult construction, sinceit requires to find 4 parameters p, a1, a2, x whereas the others only require 3.

Example 2.4.7 Suppose G < Sp8(Q) is s.p.i.m.f. and it contains a normal sub-group N := √

−2[GL2(3)]2⊗D10 with index 2 and End(G)'Q(√−10). Then E :=

End(N)'Q(√−2,√

5) and every g ∈ G \ N acts on E by√−2

g= −

√−2 and√

5g

= −√

5. In particular, this rules out constructions (a) and (c) from Definition2.4.4.Let ϕ : G1 := √

−2[GL2(3)]2→ 〈SL2(3), ( 1 00 −1 )〉 ⊂ F2×2

3 and set z := ϕ−1(( 1 00 −1 )). Fur-

ther let G2 := D10 be generated by some a, b ∈ N that satisfy a5 = b2 = (ab)2 = 1.Since Out(Gi)'C2 we find some g ∈ G which satisfies ag = g2 = b, zg = −z andg ∈ CG(Bo(O2(G))) where Bo(O2(G))' SL2(3). (Note that we might have to exchangeb by zb).Now suppose g = p−1a1a2x as described in Definition 2.4.4 (b). Then

b = g2 = p−2a1a2x2ax1a

x2 = ±p−2(a1a

x1)(a2a

x2)

since the ai ∈ Gi commute and x2 = ±1 by our assumption. The action of x onG2 is explicitly known and one finds (using Groebner bases in MAGMA) that a2 :=(1 + a2 + a3) + b satisfies a2a

x2 = b. In particular, if we set p = a1 = 1 and x := a−1

2 · g,then x2 = 1. One easily checks that these elements meet all requirements and thus

G'√−10[√−2[GL2(3)]22

�D10]8 (see Theorem 4.9.1).

Page 37: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

2.5. SOME TABLES 37

2.5 Some tables

2.5.1 Candidates for the layer

Table 2.5.1 This table lists all quasisimple finite rational irreducible matrix groupsN in GLm(Q) for 2 ≤ m ≤ 22.The representations with m ≥ 12 and Schur index + are omitted since they can not bea subgroup of E(G) for some s.p.i.m.f. subgroup G ≤ Sp2n(Q) for 1 ≤ n ≤ 11.

N Bo(N) m character End(N) omitAlt5 ±S5 = A4 4 χ4 Q −Alt5 ±S6 = A5 5 χ5 Q +Alt6 ±S6 = A5 5 χ5a or χ5b Q −Alt5 ±Alt5 6 χ3ab Q(

√5) −

L2(7) ±L2(7) 6 χ3ab Q(√−7) −

L2(7) ±L2(7) 6 χ6 Q −Alt7 ±S7 = A6 6 χ6 Q −U4(2) ±U4(2) :2 = E6 6 χ6 Q −Alt8 ±S8 = A7 7 χ7 Q −U3(3) ±S6(2) = E7 7 χ7 Q +L2(7) ±S6(2) = E7 7 χ7 Q +L2(8) ±S6(2) = E7 7 χ7a Q +S6(2) ±S6(2) = E7 7 χ7 Q −

SL2(5) SL2(5) 8 2χ2ab Q√5,∞ −SL2(5) SL2(9) 8 2χ4 Q∞,3 +L2(7) ±L2(7).2 = M8,3 8 χ8 Q −

SL2(7) SL2(7) 8 χ4ab Q(√−7) −

SL2(9) SL2(9) 8 2χ4a or 2χ4b Q∞,3 −L2(8) 2.O+

8 (2).2 = E8 8 χ8 Q +

2.Alt7 2.Alt7 8 χ4ab Q(√−7) −

2.Alt8 2.O+8 (2).2 = E8 8 χ8 Q +

Sp4(3) Sp4(3) ◦ C3 8 χ4ab Q(√−3) −

Alt9 2.O+8 (2).2 = E8 8 χ8 Q +

2.Alt9 2.O+8 (2).2 = E8 8 χ8 Q +

2.Sp6(2) 2.O+8 (2).2 = E8 8 χ8 Q +

2.O+8 (2) 2.O+

8 (2).2 = E8 8 χ8 Q −Alt6 ±S10 = A9 9 χ9 Q +Alt10 ±S10 = A9 9 χ9 Q −

L2(11) ±L2(11) 10 χ5ab Q(√−11) −

U4(2) = S4(3) ±S4(3) ◦ C3 10 χ5ab Q(√−3) −

L2(11) ±L2(11) :2 = A(2)10 10 χ10a Q −

L2(11) ±L2(11) 10 χ10b Q −Alt6 ±S6 10 χ10 Q −Alt11 ±S11 = A10 10 χ10 Q −M11 ±S11 = A10 10 χ10a Q +

Page 38: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

38 CHAPTER 2. METHODS

Alt12 ±S12 = A11 11 χ11 Q −M11 ±M11 11 χ11 Q −

L2(11) ±S12 = A11 11 χ11 Q +M12 ±S12 = A11 11 χ11a or χ11b Q +

SL2(5) SL2(5) 12 2χ6 Q∞,2 −6.U4(3) 6.U4(3).2 12 χ12ab Q(

√−3) −

3.Alt6 ±3.Alt6 12 χ3ab + χ′3ab Q(√−3,√

5) −3.Alt6 ±3.Alt6 12 χ6 + χ′6 Q(

√−3) −

SL2(11) SL2(11) 12 χ6ab Q(√−11) −

3.Alt7 6.U4(3).2 12 χ6 + χ′6 Q(√−3) +

U3(3) ±U3(3) 12 2χ6 Q∞,3 −6.L4(3) 6.L4(3) 12 χ6 + χ′6 Q(

√−3) −

U3(3) U3(3) ◦ C4 14 χ7ab Q(i) −SL2(7) SL2(7) 16 2χ8 Q∞,3 −L2(17) ±L2(17).2 16 χ16 Q −L2(16) ±S17 16 χ16 Q +2.Alt10 2.Alt10 16 χ16 Q −Alt17 ±S17 16 χ16 Q −3.Alt6 ±3.M10 18 χ9ab Q(

√−3) −

L2(19) ±L2(19) 18 χ9ab Q(√−19) −

SL2(11) SL2(11) 20 2χ10 Q∞,2 −Alt7 ±Alt7 20 χ10ab Q(

√−7) −

M11 2.M12 :2 20 χ10bc Q(√−2) +

2.M12 2.M12 :2 20 χ10ab Q(√−2) −

2.M22 2.M22 :2 20 χ10ab Q(√−7) −

U4(2) ±U4(2) ◦ C3 20 χ10ab Q(√−3) −

U5(2) ±U5(2) 20 2χ10 Q∞,2 −2.L3(4) 2.L3(4) :22 20 χ10ab Q(

√−7) −

SL2(19) SL2(19) 20 χ10ab Q(√−19) −

U5(2) ±U5(2) ◦ C3 22 χ11ab Q(√−3) −

L2(23) ±L2(23) 22 χ11ab Q(√−23) −

If N is not normal in Bo(N), then N is not a normal subgroup of any s.p.i.m.f. matrixgroup (see Lemma 2.1.23). These cases are indicated in the last row with a +.

Note also that the above characters are indexed by their degrees and not the numbersgiven in the ATLAS [CCN+85].

Proof: This table can be taken from [Neb98a, Table 9.1]. Alternatively, the repre-sentations can be taken from [Nic06] which is based on [HM01]. For the generalizedBravais groups, one computes the order Λ∞(N) ⊂ Qm×m (cf. Section 2.1.3) using lin-ear algebra over Z. Then one computes some Λ∞(N)-invariant lattices and takes theintersection A of their automorphism groups wrt. the full form space F(N). If N EAthen Bo(N) = A. Otherwise, one computes Bo(N) using the isomorphism classes ofZ(Λ∞(N)) using Remark 2.3.2. This method works for all the groups N from aboveexcept SL2(5) with character 2χ4 since here N 5 Bo(N) and End(N) is not a field.

Page 39: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

2.5. SOME TABLES 39

In this case, one can use the algorithm [Neb95, III.11] to compute the isomorphismclasses of Λ∞(N)-invariant lattices. �

2.5.2 Candidates for the Fitting subgroup

Table 2.5.2 All candidates for N := Op(G) of an irreducible symplectic primitivematrix group G are given by

N Bo(N) dimQ(N) End(N)Cpm ±N pm−1(p− 1) Q(ζpm)p1+2n

+ , (p > 2) ±N.Sp2n(p) pn(p− 1) Q(ζp)21+2n

+ N.O+2n(2) 2n Q

21+2n− N.O−2n(2) 2n+1 Q∞,2p1+2n

+ �Cpm , (m > 1) ±N.Sp2n(p) pm+n−1(p− 1) Q(ζp)21+2n

+ �D2m , (m > 3) N.Sp2n(2) 2n+m−2 Q(θ2m−1)21+2n

+ �Q2m , (m > 3) N.Sp2n(2) 2n+m−1 Qθ2m−1 ,∞21+2n

+ �QD2m , (m > 3) N.Sp2n(2) 2n+m−2 Q(ζ2m−1 − ζ−12m−1)

In the last three rows n = 0 is allowed. In these cases N is D2m , Q2m or QD2m

respectively.Note that Bo(N) is only correct under the assumption that N EG.

Proof: All abelian characteristic subgroups of N are cyclic by Corollary 2.1.16. ThusN must be isomorphic to a subgroup from above by a theorem of Ph. Hall (see Theo-rem 2.1.17). These groups have only one faithfull rational irreducible representation.The generalized Bravais groups Bo(N) of these representations have been computedin [Neb98a, Chapter 8] (under the assumption that N EG). �

2.5.3 Tables for number fields

Table 2.5.3 This table contains information on cyclotomic number fields that isneeded to construct the s.i.m.f. supergroups of some irreducible cyclic subgroups oforder m.

The second column contains the set Sm := Π(Q(θm),m)\Π(m) of “additional primes”;if not empty. The third column contains the decomposition of pZ[θm] into prime idealsfor various primes p. The last column contains generators for all minimal totallycomplex subfields of Q(ζm).

The fourth column contains the narrow class group Cl+(Z[θm]); if not trivial. It isgiven as follows: Let ψm : Cl+(Z[θm])

∼→⊕

i Z/am,iZ be an isomorphism where theam,i are elementary divisors. The first row lists the am,i. The following rows list thenonzero images of the prime ideals from above under ψm. The superscript (∗) meansall ideals of a given norm.

Page 40: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

40 CHAPTER 2. METHODS

m Sm prime decomposition in Z[θm] Cl+(Z[θm]) minimal totally complexsubfields of Q(ζm)

8 (2) = p22, (3), (5) i,

√−2

12 (2) = p22, (3) = p2

3, (5)2

p2, p3 1i,√−3

14 (2), (3), (5), (7) = p37

√−7

16 (2) = p42, (3), (5) i,

√−2, ζ16 − ζ−1

16

18 (2), (3) = p33, (5), (7)

√−3

20 (2) = p22, (3), (5) = p4

5

2p2 1

i,√−5, ζ10

24 (2) = p42, (3) = p2

3, (5) = p5p′5

2p2 1

i,√−2,√−3,√−6

28 (2) = p22, (3) = p3p

′3, (5), (7) = p6

7

2

p(∗)3 , p7 1

i,√−7

30 (2), (3) = p23, (5) = p4

5

2p3, p5 1

√−3,√−15, ζ10

32 (2) = p82, (3), (5),

(7) = p7p′7, (11), (13)

i,√−2, ζ16 − ζ−1

16 ,ζ32 − ζ−1

32

36 (2) = p22, (3) = p6

3, (5), (7)2

p2, p3 1i,√−3

40 (2) = p42, (3) = p3p

′3, (5) = p4

5

2p2 1

i,√−2,√−5,√−10,

ζ10,√

2·(ζ10 − ζ−110 )

42 (2), (3) = p23, (5) = p5p

′5, (7) = p6

7

2

p3, p(∗)5 1

√−3,√−7

44(2) = p2

2, (3), (5) = p5p′5,

(11) = p1011

2p2, p11 1

i,√−11

48 (2) = p82, (3) = p2

3

2p2 1

i,√−2,√−3,√−6,√

3·(ζ16−ζ−116 ), ζ16−ζ−1

16

50 (2), (3), (5) = p105 ζ10

54 (2), (3) = p93, (5), (7), (11), (13)

√−3

60 {11, 59}(2) = p2

2, (3) = p23, (5) = p4

5,(11) = p11p

′11p′′11p′′′11

2− 1

i,√−3,√−5,√−15,

ζ10,√

3·(ζ10 − ζ−110 )

66(2) = p2p

′2, (3) = p2

3, (5), (7),(11) = p10

11

2

p(∗)2 , p11 1

√−3,√−11

All cyclotomic fields Q(ζm) from above have class number 1. This implies that theirmaximal totally real subfields Q(θm) also have class number 1 (see [Was96, Theo-rem 4.10]). Moreover NrQ(ζm)/Q(θm)(Z[ζm]∗) = Z[θm]∗>0 in all cases. So one only hasto consider a single class of totally positive units in the m-parameter argument (seeRemark 2.2.13).

Proof: Follows from explicit calculations with MAGMA [BCP97]. �

Page 41: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

2.5. SOME TABLES 41

Table 2.5.4 The following table contains information on some totally real numberfields K needed for the m-parameter argument in the sequel. The second column con-tains the set Π(K, 2)\{2}. The fourth column describes the narrow class group Cl+(ZK)in the notation of the previous table.

K prime decomposition in ZK Cl+(ZK) Z∗K,>0/(Z∗K)2

Q(√

2) ∅ (2) = p22, (3), (5) 1 1

Q(√

3) ∅ (2) = p22, (3) = p2

3, (5), (7)2

p2, p3 1C2

Q(√

5) ∅ (2), (3), (5) = p25 1 1

Q(√

6) ∅ (2) = p22, (3) = p2

3, (5) = p5p′5

2

p2, p(∗)5 1

C2

Q(√

7) {3} (2) = p22, (3) = p3p

′3, (5), (7) = p2

7

2

p2, p(∗)3 1

C2

Q(√

21) {3} (2), (3) = p23, (5) = p5p

′5, (7) = p2

7

2

p3, p(∗)5 1

C2

Q(√−2·(ζ10 − ζ−1

10 )) ∅ (2) = p22, (3), (5) = p4

5

2p2, p5 1

C2

Q(√

2,√

5) ∅ (2) = p22, (3) = p3p

′3, (5) = p2

5 1 1

Q(√

3,√

5) {11} (2) = p22, (3) = p2

3, (5) = p25

2− 1

C2

Proof: Follows from explicit calculations with MAGMA [BCP97]. �

Page 42: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

42 CHAPTER 2. METHODS

Page 43: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

Chapter 3

Some infinite s.i.m.f. families

3.1 Some subgroups of Spp−1(Q)

Let p ≥ 5 be a prime and write p − 1 = 2a · o with o odd. In the spirit of [NP95,chapter V] we describe all s.i.m.f. supergroups G of Cp in dimension p − 1 where Cpdenotes the (up to conjugacy) unique cyclic matrix group of order p in GLp−1(Q).

Clearly, one possibility is that G contains a normal subgroup conjugate to Cp. Sincethe commuting algebra of Cp is isomorphic to Q(ζp) we have G/±Cp ≤ C2a ×Co. ByGalois theory, G is symplectic if and only if G/±Cp ≤ Co and therefore G'±Cp :Coby maximality. (The group ±Cp :Co has only one irreducible rational representationof degree p− 1 and we identify the group with this representation.)

Another class of candidates are extensions of L2(p). The smallest faithful irreduciblecomplex representations of L2(p) are of degree p−1

2and algebraically conjugate. The

corresponding character field is Q(√±p) with the − sign if and only if p ≡4 −1 (see

[Dor71, §38]).If p ≡4 −1 then L2(p) contains a subgroup U isomorphic to Cp :C p−1

2. The restriction of

the natural representation of L2(p) on U is irreducible and has the same character fieldQ(√−p) ([Dor71, §38]). By [Lor71, Satz 1.2.1, p. 67], the Schur index of L2(p) is equal

to the Schur index of U which is 1. Thus C2 × L2(p) has a unique p − 1 dimensionalrationally irreducible representation (denoted by √−p[±L2(p)] p−1

2in the sequel) with

commuting algebra Q(√−p).

The next result shows that there are no further possibilites. More precisely:

Theorem 3.1.1 Let p ≥ 11 be prime and G < Spp−1(Q) such that p divides |G|.Write p− 1 = 2a ·o with o odd.

Then G is s.i.m.f. if and only if G is conjugate to

{±Cp :Co if p ≡4 +1√−p[±L2(p)] p−1

2if p ≡4 −1

.

Proof: Let ±Ip−1 < G < Spp−1(Q) such that p divides |G|. Further let P ∈ Sylp(G).Then by Minkowski’s bound, |P | = p. So the commuting algebra E of P is isomorphicto Q(ζp). Thus ±Ip−1 ≤ Z(G) ≤ CG(P ) = ±P . Since G must have a faithful

43

Page 44: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

44 CHAPTER 3. SOME INFINITE S.I.M.F. FAMILIES

irreducible complex character of degree ≤ p−12

it follows from a theorem of H. Blau[Fei82, VIII Theorem 7.2, p. 365] that either P E G or G/Z(G)'L2(p). In the firstcase, G is conjugate to a subgroup of ±Cp :Co. In the second case, Z(G) = ±P wouldimply that G = ±P since ±P is self-centralizing in G. So Z(G) = ±Ip−1. SinceL2(p) is perfect, G is either isomorphic to ±L2(p) or SL2(p). So by [Dor71, Th. 38.1]this implies p ≡4 −1. But if p ≡4 −1 the real Schur indices of the p−1

2dimensional

complex characters of SL2(p) are 2 (which can be computed from the character tableof SL2(p)). Thus G is conjugate to √−p[±L2(p)] p−1

2. Since √−p[±L2(p)] p−1

2contains a

subgroup conjugate to ±Cp :Co the result follows. �

Note that the above result is also true for p = 5 and 7 as the explicit calculations inLemmas 4.3.3 and 4.4.2 show.

3.2 Some subgroups of Spp+1(Q)

Let p ≥ 5 be a prime. If p ≡4 −1 thenG := SL2(p) has only two algebraically conjugatecomplex representations of degree p+1

2as the generic character table [Dor71, Th. 38.1]

shows. Let χ denote one of the corresponding characters and let P ∈ Sylp(G). Anexplicit calculation shows (1GP , χ)G = (1P , χ|P )P = 1. Thus (by [Isa94, Corollary (10.2)part (c)]) χ is realizable over its character field, which is Q(

√−p). So χ gives rise to

a subgroup of Spp+1(Q) denoted by √−p[SL2(p)] p+12

.

Theorem 3.2.1 Let p ≥ 11 be prime and G < Spp+1(Q) such that p divides |G|.Then G is s.i.m.f. if and only if p ≡4 −1 and G is conjugate to √−p[SL2(p)] p+1

2.

Proof: Let P ∈ Sylp(G). Then again, by Minkowski’s bound, |P | = p. Thus thenatural representation of P splits into twice the trivial one and the Q-irreducible ofdegree p − 1. Since there exists an embedding δ : G → GLm(K) for some totallycomplex number field K with m · [K : Q] = p + 1 there is only the possibility K =Q(√−p) and m = p+1

2. So the commuting algebra of δ(P ) in Km×m is isomorphic to

Q(ζp) × Q(√−p). In particular, Z(G) is isomorphic to a subgroup of C2p × C2. By

Corollary 2.1.16 we know that P 5 G and therefore Z(G) ≤ C2×C2. Since G cannotbe imprimitive by Minkowski’s bound, Z(G) is not isomorphic to C2×C2. This showsZ(G) = ±Ip+1. From Blau’s theorem [Fei82, VIII Theorem 7.2, p. 365] it follows thatG must be isomorphic to ±L2(p) or SL2(p). Since K 'Q(

√−p) it follows from the

character table of SL2(p) [Dor71, Th. 38.1] that p ≡4 −1 and that ±L2(p) has nofaithful complex character of degree p+1

2. So G must be conjugate to √−p[SL2(p)] p+1

2

and the result follows. �

Remark 3.2.2 Theorem 4.4.1 shows that the above result also holds for p = 5. Butaccording to Theorem 4.5.1, the unique s.i.m.f. subgroup of Sp8(Q) whose order isdivisible by 7 is √−7[2.Alt7]4 (which contains a subgroup conjugate to SL2(7)).

Page 45: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

3.3. THE GROUP QD2N 45

3.3 The group QD2n

Let n ≥ 4. The group QD2n =⟨x, y | x2n−1

, y2, xy = x2n−2−1⟩

has one rationally

irreducible representation of degree 2n−2. This representation has Q(ζ2n−1 − ζ−12n−1) as

commuting algebra, so we denote it by ζ2n−1−ζ−1

2n−1[QD2n ]2.

Lemma 3.3.1 If n ≥ 5 then ζ2n−1−ζ−1

2n−1[QD2n ]2 is a s.i.m.f. subggroup of Sp2n−2(Q).

Proof: The commuting algebra of H := ζ2n−1−ζ−1

2n−1[QD2n ]2 is isomorphic to K :=

Q(ζ2n−1 − ζ−12n−1). This is the fixed field of the automorphism of Q(ζ2n−1) induced by

ζ2n−1 7→ −ζ−12n−1 = ζ2n−2−1

2n−1 . The subfields of K are linearly ordered by Galois theory andthe maximal subfield is the fixed-field of complex conjugation i.e. totally real. Thuseach s.i.m.f. supergroup G of H embeds into GL2(K). Therefore G := G/Z(G) =G/ 〈±I2n−2〉 embeds into PGL2(K). Since n ≥ 5 is assumed we get G is a dihedralgroup (of order 2n−1) according to Blichfeldt’s classification [Bli17]. This shows G = Has claimed. �

3.4 The group 21+2n+

In this section, which is heavily based on Section 5 of [NRS01], let Tn' 21+2n+ be the

n-fold tensor product of 〈( 0 11 0 ) , ( 1 0

0 −1 )〉'D8. We describe the construction of Bo(Tn)and define a maximal finite subgroup of GL2n(Q(

√−2)).

Let (b0, . . . , b2n−1) be the standard basis of Q1×2n. We identify v ∈ Fn2 with j =∑

i vi2i−1 and thereby we index the basis vectors bj with elements of Fn2 . For an affine

subspace U of Fn2 let χU =∑

u∈U bu. Then Ln and L′n are the Z-lattices in Q1×2n

spanned by {2b(n−dim(U)+δ)/2cχU | U an affine subspace of Fn2

}where δ = 0 for Ln and δ = 1 for L′n.

In [Wal62, Theorem 3.2] it is shown that Hn := Aut(Ln, I2n)∩Aut(L′n, I2n) is isomor-phic to 21+2n

+ .O+2n(2) and further O2(Hn) is conjugate to Tn.

By [Win72] we have Out(21+2n+ )'O+

2n(2) : 2'GO+2n(2) the full orthogonal group of

a quadratic form of Witt defect 0. Conjugation by hn := ( 1 11 −1 )⊗ I2n−1 induces an

outer automorphism on Tn which is not realized by Hn. Since End(T n)'Q andh2n = 2I2n , there exists no element in GL2n(Q) of finite order which induces the same

automorphism on Tn. Thus Hn is conjugate to Bo(Tn). Moreover 1√−2hn normalizes

Tn and therefore Bo(Tn). Hence Hn :=⟨Hn,

1√−2hn

⟩is the unique extension of Hn

in GL2n(Q(√−2)). The group Hn gives rise to a finite symplectic matrix group in

Sp2n+1(Q) which will be denoted by √−2[21+2n+ .(O+

2n(2) :2)]2n in the sequel.

Page 46: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

46 CHAPTER 3. SOME INFINITE S.I.M.F. FAMILIES

Finally, by extending scalars Mn :=√−2L′n + Ln is a Z[

√−2]-lattice generated by{√

−2n−dim(U)

χU | U an affine subspace of Fn2}.

Lemma 3.4.1 The lattice Mn is the n-fold tensor product M1 ⊗Z[√−2]. . . ⊗

Z[√−2]M1.

Proof: We use induction on n. Let Vn−1 = 〈e1, . . . , en−1〉 and V1 = 〈en〉. One checksthat bx⊗ by = bx+y for all x ∈ Vn−1, y ∈ V1.Let U be a d-dimensional affine subspace of Vn−1. For y in V1 it follows that√−2

n−1−dχU ⊗

√−2by =

√−2

n−dχy+U ∈ Mn. Similarly, since U + V1 has dimension

d+ 1, we get√−2

n−1−dχU ⊗χV1 =

√−2

n−(d+1)χU+V1 ∈Mn. Thus Mn−1⊗M1 ⊆Mn.

Conversely, suppose U is a d-dimensional affine subspace of Fn2 . Write U = x+ y+U0

where U0 is a subspace of Fn2 and x ∈ Vn−1, y ∈ V1.

If U0 ≤ Vn−1 then√−2

n−dχU =

√−2

n−1−dχx+U ⊗

√−2by ∈ Mn−1⊗M1. Otherwise

Un−1 := U0 ∩ Vn−1 is a (d− 1)-dimensional subspace and U0 = Un−1 ∪ (z + en + Un−1)for some z ∈ Vn−1.

If z ∈ Un−1, then√−2

n−dχU =

√−2

n−1−(d−1)χx+Un−1 ⊗χV1 otherwise we have

√−2

n−dχU =

√−2

n−1−dχx+Un−1+〈z〉⊗

√−2by

+√−2

n−1−(d−1)χx+z+Un−1 ⊗χV1

−√−2(√−2

n−1−(d−1)χx+z+Un−1 ⊗

√−2by)

This shows Mn ⊆Mn−1⊗M1. �

Lemma 3.4.2 The group Hn is conjugate to the Hermitian automorphism groupAutQ(

√−2)(Mn) := StabU2n (Q(

√−2))(Mn) in GL2n(Q(

√−2)).

Proof: For n = 3 the result can be checked explicitly. So we may assume that n 6=3. Let (v1, . . . , v2n) be a Z-basis of L′n such that (2v1, . . . , 2v2n−1 , v2n−1+1, . . . , v2n)is a Z-basis of Ln. Then (

√−2v1, . . . ,

√−2v2n , 2v1, . . . , 2v2n−1 , v2n−1+1, . . . , v2n) is a

Z-basis of Mn =√−2L′n ⊕ Ln. In particular, the Z-lattices Ln and

√−2L′n are

perpendicular with respect to the scalar product (x, y) 7→ 12

TrQ(√−2)/Q(xytr). Thus

the group AutQ(√−2)(Mn) is the subgroup of Aut(

√−2L′n ⊥ Ln, I2n+1) which commutes

with√−2. Since n 6= 3 is assumed, the automorphism groups of Ln and L′n equal

Hn [Wal62, Theorem 3.2]. Hence using appropriate bases, AutQ(√−2)(Mn) contains a

subgroup Gn of index at most two where

Gn =

{(g1 00 g2

)| g1, g2 ∈ Hn

}∩ AutQ(

√−2)(Mn)

Now√−2 interchanges

√−2L′n and Ln, i.e. it operates as a block matrix

(0 w

−2w−1 0

)for some w ∈ GL2n(Q). So

(g1 00 g2

)∈ Gn if and only if g2 = gw1 and therefore Gn'Hn.

Page 47: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

3.5. THE GROUP P 1+2N+ 47

On the other hand, 1√−2hn acts on M1⊗Mn−1 = Mn. So AutQ(

√−2)(Mn) is isomorphic

to Hn. Both groups have conjugate Fitting subgroups and therefore their general-ized Bravais groups must be conjugate as well. But then the whole groups must beconjugate, since Hn is the unique extension of Hn in GL2n(Q(

√−2)) by the extra

automorphism induced by hn. �

Lemma 3.4.3 If n ≥ 2, then √−2[21+2n+ .(O+

2n(2) :2)]2n is the (up to conjugacy) uniques.i.m.f. subgroup of Sp2n+1(Q) with Fitting group 21+2n

+ .

Proof: Since Z[√−2] is a PID, Mn has a Z[

√−2]-basis. With respect to this basis, its

automorphism group Gn is a finite subgroup of GL2n(Z[√−2]). By explicit calculations

in MAGMA one checks that for n ∈ {2, 3} the Z-span 〈Gn〉Z equals Z[√−2]2

n×2n. For

n ≥ 4 it follows from Mn = Mn−2 ⊗Z[√−2]M2 that G2⊗Gn−2 ⊂ Gn (using appropriate

bases). By induction, we get

Z[√−2]2

n×2n

= 〈Gn−2〉Z ⊗Z[√−2]〈G2〉Z ⊆ 〈Gn〉Z ⊆ Z[

√−2]2

n×2n

.

In particular, each Gn-invariant Z[√−2]-lattice is a multiple of Mn, since Z[

√−2] has

class number 1. Thus Gn is a maximal finite subgroup of GL2n(Q(√−2)). But any

finite symplectic supergroup of √−2[21+2n+ .(O+

2n(2) :2)]2n comes from a finite supergroup

of Hn'Gn < GL2n(Q(√−2)). Thus √−2[21+2n

+ .(O+2n(2) : 2)]2n is s.i.m.f.. The second

statement follows from the construction of Hn and Remark 2.2.17. �

3.5 The group p1+2n+

In this section, let p be an odd prime. We will describe a family of irreducible sym-plectic matrix groups in dimension pn(p− 1) which will be maximal finite in the casethat p is a Fermat prime, i.e. p− 1 is a power of two.

Let T(p)n ' p1+2n

+ be the n-fold tensor product of T(p)1 where T

(p)1 is the subgroup

of GLp(Q(ζp)) generated by the diagonal matrix Diag(1, ζp, . . . , ζp−1p ) and the per-

mutation matrix corresponding to the p-cycle (1, . . . , p). Further let H(p)n =

NUpn (Q(ζp))(T(p)n ). By [Win72] H

(p)n is isomorphic to a subgroup of C2 × p1+2n

+ .Sp2n(p),

since the group of outer automorphisms which act trivially on the center of T(p)n is

isomorphic to Sp2n(p).

In [Wal62, Section 4] Wall constructs a (p−1)pn dimensional rational lattice on which

C2×p1+2n+ .Sp2n(p) acts. Thus H

(p)n = Bo(T (p)

n )'C2×p1+2n+ .Sp2n(p) (if we assume that

T(p)n E Bo(T (p)

n )). Now H(p)n gives rise to a finite subgroup of Sppn(p−1)(Q) which will

be denoted by ζp [±p1+2n+ .Sp2n(p)]pn .

Page 48: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

48 CHAPTER 3. SOME INFINITE S.I.M.F. FAMILIES

Theorem 3.5.1 If p is a Fermat prime, then ζp [±p1+2n+ .Sp2n(p)]pn is a s.i.m.f. sub-

group of Sppn(p−1)(Q).

Proof: The commuting algebra C of ζp [±p1+2n+ .Sp2n(p)]pn is isomorphic to Q(ζp). Since

p is a Fermat prime, C has only one maximal subfield, which must be totally real. Thusany symplectic supergroup must come from a finite subgroup of GLpn(Q(ζp)). But H

(p)n

is maximal finite in GLpn(Q(ζp)) according to [NRS01, Theorem 7.3]. �

Page 49: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

Chapter 4

The classification

In this final chapter, we classify all s.i.m.f. subgroups of GL2n(Q) for 1 ≤ n ≤ 11.The first section handles the generic case n > 3 prime. The subsequent sections eachdeal with one particular dimension 2n. The s.i.m.f. subgroups G < GL2n(Q) are listedin tables as follows:

The s.i.m.f. groups are grouped together by their commuting algebras. Groups havingthe same commuting algebras are sorted by group order (descending) and minimaldeterminant d (ascending). The invariant d is explained below.

The first column contains a number for the group for easy referencing. The primitivegroups are numbered consecutively. For the imprimitive groups we use triples [i, j, k]with jk = 2n which stands for the wreath product of the i-th s.p.i.m.f. matrix groupin dimension j with Sk.

The second column contains the name of G using the conventions from Definition2.4.2. The next two columns list the group order |G| and the number of isomorphismclasses of G-invariant lattices. These two numbers and the endomorphism ring (whichcan be read off the second column) are invariants of the conjugacy class of G. Butusually this does not identify the class of G uniquely.

Thus the fifth column (labeled Lmin) contains some more invariants: Let

S := {(L, F ) ∈ Z(G)×F>0(G) | F integral on L} and

d := min{det(L, F ) | (L, F ) ∈ S} .

Then {(L, F ) ∈ S | det(L, F ) = d} partitions into several isometry classes. If(L1, F1), . . . , (Ls, Fs) represent these classes, then the third column lists the distincttriples [d,min(Li, Fi), |SV(Li, Fi)|] for (1 ≤ i ≤ s). Here min(L, F ) and SV(L, F )denote the minimum and the set of shortest vectors of (L, F ) respectively.

It turns out that in almost all cases, these invariants determine the conjugacy classof G uniquely. (In fact, the only exceptions are (√5,∞[SL2(5)]1 ◦ C5)⊗A2 and

ζ10 [C10]1 ⊗√5′∞,3[SL2(9)]2 < Sp16(Q). But they can easily be distinguised by their Fitting

subgroups.)

Finally the last column lists the r.i.m.f. supergroups of G (up to conjugacy).

49

Page 50: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

50 CHAPTER 4. THE CLASSIFICATION

4.1 Dimension 2p

Let G be a s.p.i.m.f. matrix group of degree 2p for some prime p > 3.

Lemma 4.1.1 The Fitting subgroup F (G) is cyclic of order 2, 4 or 6.

Proof: By Corollary 2.1.16 Ol(G) = 1 for all primes ` with ` − 1 - 2p. Suppose firstq := 2p + 1 is prime and q | |G|. Then q ≥ 11 and q ≡4 −1. So Theorem 3.1.1 showsthat G'√−q[±L2(q)]p and thus F (G)'C2.So we may now assume that F (G) = O2(G)O3(G). In particular G cannot be cyclicsince otherwise G is either reducible or Oq(G) 6= 1. Thus G embeds irreducibly intoGLp(K) for some imaginary quadratic number field K. So the result follows fromTable 2.5.2, since D8 does not have such an embedding. �

Corollary 4.1.2 The group G is not soluble. Moreover, K := End(G) is an imagi-nary quadratic number field such that 4K(E(G)) < GLp(K) is absolutely irreducible.

Thus E(G) is either reducible with Q2×2 as commuting algebra or it is irreducible andits commuting algebra is an imaginary quadratic number field. In both cases, G caneasily be recovered from F ∗(G) (cf. Sections 2.2.3 and 2.2.4).

4.2 Dimension 2

Theorem 4.2.1 The s.i.m.f. subgroups G of Sp2(Q) are

# G |G| |Z(G)| Lmin r.i.m.f. supergroups

1 i[C4]1 22 1 [1, 1, 4] B2

2 √−3[C6]1 2·3 1 [3, 2, 6] A2

Proof: Every finite subgroup of Sp2(Q) is cyclic since it admits a faithful representationof degree 1 over some imaginary quadratic number field. �

Page 51: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.3. DIMENSION 4 51

4.3 Dimension 4

Theorem 4.3.1 The s.i.m.f. subgroups G of Sp4(Q) are

# G |G| |Z(G)| Lmin r.i.m.f. supergroups

1 i[(D8⊗C4).S3]2 25 ·3 1 [22, 2, 24] F4

2 i[C4]1⊗A2 23 ·3 2 [32, 2, 12] A22

3 √−2[GL2(3)]2 24 ·3 1 [22, 2, 24] F4

4 ∞,2[SL2(3)]1 ◦ C3 23 ·32 2 [22, 2, 24] F4

[2, 2, 2] √−3[C6]21 23 ·32 1 [32, 2, 12] A2

2

5 ζ10 [C10]1 2·5 1 [5, 2, 20] A4

Proof: It follows from explicit calculations, that the above table is correct and yieldss.i.m.f. groups. The r.i.m.f. supergroups are easily constructed, since all these groupsexcept ζ10 [C10]1 are uniform. Further ζ10 [C10]1 can only be contained in Aut(A4) bycomparison of orders. The imprimitive s.i.m.f. matrix groups can only be conjugate to√−3[C6]21 or i[C4]21. The first group if s.i.m.f. by Lemma 2.1.21. The group H := i[C4]21

has Q(i) as commuting algebra. Further it fixes two lattices L1, L2. One checks thatone of the groups Aut(Lj,F(H)) (j = 1, 2) is conjugate to i[(D8⊗C4).S3]2. Thus His not maximal finite.So it remains to prove that each s.p.i.m.f. subgroup of Sp4(Q) is conjugate to one ofthe groups from above. This is done in Section 4.3.2. �

4.3.1 Irreducible cyclic subgroups

Before we prove the completeness, we classify all finite subgroups G < Sp4(Q) thatcontain an irreducible cyclic subgroup U . Then | ± U | ∈ {8, 10, 12}.

Lemma 4.3.2 If |U | = 8 then G is conjugate to √−2[GL2(3)]2 or i[(D8⊗C4).S3]2.

Proof: It follows from Minkowski’s bound that Π(G) ⊆ {2, 3, 5}. The commutingalgebra of U is isomorphic to Q(ζ8) and has class number 1. So U fixes only onelattice L. One finds some F ∈ F>0(U) that is integral on L such that det(L, F ) = 1.By Table 2.5.3 G must be conjugate to AutQ(

√−d)(L, p

a2F ) for some a ∈ {0, 1} and

d ∈ {1, 2}. This leaves the candidates:

Q(i) Q(√−2)

F � i[(D8⊗C4).S3]2 � √−2[GL2(3)]2p2F i[(D8⊗C4).S3]2 √

−2[GL2(3)]2 �

Lemma 4.3.3 If ±U is of order 10 then G' ζ10 [C10]1.

Page 52: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

52 CHAPTER 4. THE CLASSIFICATION

Proof: The commuting algebra End(U)'Q(ζ10) has only one proper subfield, whichis Q(

√5). So End(U) = End(G). Further U fixes up to isomorphism only one lattice

L. Let F ∈ F>0(U), then AutQ(ζ10)(L, F ) = ±U shows that ±U is s.i.m.f.. �

Lemma 4.3.4 If U is of order 12 then G is conjugate to i[(D8⊗C4).S3]2, i[C4]1⊗A2,

∞,2[SL2(3)]1 ◦ C3 or √−3[C6]21.

Proof: Again by Minkowski’s bound Π(G) ⊆ {2, 3, 5}. The commuting algebra ofU is isomorphic to Q(ζ12) and has class number 1. So U fixes only one lattice L.Further, one finds some F ∈ F>0(U) that is integral on L such that det(L, F ) = 4. ByTable 2.5.3, G must be conjugate to AutQ(

√−d)(L, p

−a2 pa3F ) for some a ∈ {0, 1} and

d ∈ {1, 3}. This leaves the four candidates:

Q(i) Q(√−3)

F i[(D8⊗C4).S3]2 ∞,2[SL2(3)]1 ◦ C3

p−12 p3F i[C4]1⊗A2

√−3[C6]21

So the result follows. �

4.3.2 Proof of Theorem 4.3.1

Let G < Sp4(Q) be s.p.i.m.f.. Then E(G) = 1 according to Table 2.5.1. Thus F (G) isselfcentralizing.By Corollary 2.1.16 we know that Op(G) = 1 for all p ≥ 7. The case O5(G) 6= 1is handled in Lemma 4.3.3. The remaining cases are handled in the two subsequentlemmas.

Lemma 4.3.5 If O3(G) 6= 1 then G is conjugate to i[C4]1⊗A2 or ∞,2[SL2(3)]1 ◦ C3.

Proof: By Table 2.5.2 we get O3(G) = C3 and O2(G) is one of C2, C4, D8 or Q8. IfO2(G) = C2 then [G : C6] ≤ |Out(C6)| = 2 contradicts Lemma 2.2.1. In all othercases G contains an irreducible cyclic subgroup of order 12, so the result follows fromLemma 4.3.4. �

Lemma 4.3.6 If F (G) is a 2-group, then G is conjugate to i[(D8⊗C4).S3]2 or√−2[GL2(3)]2.

Proof: We already know that Bo(D8⊗C4) = i[(D8⊗C4).S3]2 is maximal finite. As-sume now that O2(G) is cyclic or isomorphic to D8, then G = O2(G) since E(G) = 1and Out(F (G))) is a 2-group. Thus G = O2(G) is either reducible or not maxi-mal. If O2(G)'QD16 then G contains an irreducible cyclic subgroup of order 8.This contradicts Lemma 4.3.2. So there remains the case that O2(G)'Q8. ThenB := Bo(O2(G))'∞,2[SL2(3)]1 and [G : B] = 2 since B is not maximal. By Re-mark 2.2.17 there is only one such extension, which is √−2[GL2(3)]2. �

Page 53: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.4. DIMENSION 6 53

4.4 Dimension 6

Theorem 4.4.1 The s.i.m.f. subgroups G of Sp6(Q) are

# G |G| |Z(G)| Lmin r.i.m.f. supergroups

[2, 1, 3] i[C4]31 27 ·3 3 [1, 1, 12] B6

1 √−3[±31+2

+ :SL2(3)]3 24 ·34 2 [3, 2, 72] E6

[2, 2, 3] √−3[C6]31 24 ·34 1 [33, 2, 18] A3

2

2 √−7[±L2(7)]3 24 ·3·7 1 [73, 4, 42] A

(2)6

We need two lemmas for the proof. The first lemma shows that Theorem 3.1.1 alsoholds for p = 7.

Lemma 4.4.2 Let G < Sp6(Q) be s.i.m.f. such that |G| is divisible by 7. Then G isconjugate to √−7[±L2(7)]3.

Proof: As in the proof of Theorem 3.1.1, it follows that G is symplectic primitive andcontains an irreducible subgroup U isomorphic to C7. By Minkowski’s bound we getΠ(|G|) ⊆ {2, 3, 5, 7}. The group U fixes only one lattice L since End(U)'Q(ζ14) hasclass number 1. Further there exists some F ∈ F>0(U) that is integral on L withdet(L, F ) = 7. Table 2.5.3 shows that G is conjugate to AutQ(

√−7)(L, p

k7F ) for some

k ∈ {0, 1}. So the result is easily verified. �

Lemma 4.4.3 Let G < Sp6(Q) be s.p.i.m.f. such that |O3(G)| > 3 or G contains anirreducible subgroup U 'C18. Then O3(G)' 31+2

+ and G'√−3[±31+2+ :SL2(3)]3.

Proof: If |O3(G)| > 3 then, by Table 2.5.2, O3(G) is either cyclic of order 9 or iso-morphic to 31+2

+ . In the latter case Bo(O3(G))'√−3[±31+2+ :SL2(3)]3 and this group is

s.i.m.f. by Theorem 3.5.1. So we may assume that G contains an irreducible subgroupU 'C18. The commuting algebra of U is isomorphic to Q(ζ18) and has class number 1.Thus U fixes only one lattice L. One finds some F ∈ F>0(U) that is integral on L suchthat det(L, F ) = 3. Table 2.5.3 shows that G is conjugate to Aut√−3(L, pk3F ) for somek ∈ {0, 1}. These two automorphism groups are conjugate to √−3[±31+2

+ :SL2(3)]3 and√−3[C6]31 respectively. �

Proof (of Theorem 4.4.1): One checks explicitely that the table given in Theorem 4.4.1is correct. (Note that the r.i.m.f. supergroups are easily constructed sind all s.i.m.f.groups are uniform.) The group √

−3[C6]31 is s.i.m.f. by Lemma 2.1.21. The group

i[C4]31 fixes three lattices and has Q(i) as commuting algebra. So one checks that it ismaximal. Thus it remains to show that each s.p.i.m.f. group G < Sp6(Q) is conjugateto √−3[±31+2

+ : SL2(3)]3 or √−7[±L2(7)]3. By Table 2.5.2 and the preceding lemmaswe may assume that O3(G) ≤ C3 and Op(G) = 1 for all primes p > 3. If E(G) = 1then F (G) ∈ {±I6, C4,±C3, D8}. In any case [G : F (G)] ≤ 2, which contradictsLemma 2.2.1. Hence E(G) 6= 1 and from Table 2.5.1 it follows that E(G)'L2(7).But then G'√−7[±L2(7)]3 by the above. �

Page 54: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

54 CHAPTER 4. THE CLASSIFICATION

4.5 Dimension 8

Theorem 4.5.1 The s.i.m.f. subgroups G of Sp8(Q) are:

# G |G| |Z(G)| Lminr.i.m.f.

supergroups

1 i[(21+4+ ⊗C4).S6]4 210 ·32 ·5 1 [1, 2, 240] E8

[4, 1, 2] i[(D8⊗C4).S3]22 211 ·32 1 [24, 2, 48] F 24

[2, 1, 4] i[C4]41 211 ·3 3 [1, 1, 16] B8

[4, 2, 2] (i[C4]1⊗A2)2 27 ·32 2 [34, 2, 24] A42

2 i[(D8⊗C4).S3]2⊗A2 26 ·32 2 [24 ·34, 4, 72] A2⊗F4

[4, 3, 2] √−2[GL2(3)]22 29 ·32 1 [24, 2, 48] F 2

4

3 √−2[∞,2[21+4

− .Alt5]2 :2]4 28 ·3·5 1 [1, 2, 240] E8

4√−2[21+4

+ .(O+4 (2) :2)]4

= √−2[F4 :2]4

28 ·32 1 [24, 2, 48] F 24

5 √−3[Sp4(3) ◦ C3]4 27 ·35 ·5 1 [1, 2, 240] E8

[2, 2, 4] √−3[C6]41 27 · 35 1 [34, 2, 24] A4

2

[4, 4, 2] (∞,2[SL2(3)]1 ◦ C3)2 27 ·34 2 [24, 2, 48] F 24

6 √−3[C6]1⊗F4 27 ·33 2 [24 ·34, 4, 72] A2⊗F4

7 ∞,5[SL2(5) :2]2 ◦ C3 24 ·32 ·5 2 [54, 4, 120] S8 √

−3[C6]1⊗A4 24 ·32 ·5 2 [34 ·52, 4, 60] A2⊗A4

9 √−5[√5,∞[SL2(5)]1

2−�C4]4 25 ·3·5 2 [1, 2, 240] E8

10 √−5[√5,∞[SL2(5)]1

2+

�C4]4 25 ·3·5 2 [54, 4, 120] S

11 √−5[C20 :C4]4 24 ·5 4 [52, 2, 40] A2

4

12 √−6[√2,∞[S4]1

2−�C3]4 25 ·32 2 [1, 2, 240] E8

13 √−6[√2,∞[S4]1

2+

�C3]4 25 ·32 2 [24, 2, 48] F 24

14 √−6[D16

2

� √−3[C6]1]4 25 ·3 4 [34, 2, 24] A42, A2⊗F4

15 √−7[2.Alt7]4 24 ·32 ·5·7 1 [1, 2, 240] E8

16 √−15[√5,∞[SL2(5)]1

2−�C3]4 24 ·32 ·5 2 [1, 2, 240] E8

17 √−15[√5,∞[SL2(5)]1

2+

�C3]4 24 ·32 ·5 2 [54, 4, 120] S

18 √−15[C30 :C4]4 23 ·3·5 4 [34 ·52, 4, 60] A2⊗A4

19 √5,∞[SL2(5)]1 ◦ C5 23 ·3·52 1 [1, 2, 240] E8, S

[4, 5, 2] ζ10 [C10]21 23 ·52 1 [52, 2, 40] A24

20 ζ10 [C10]1⊗A2 22 ·3·5 2 [34 ·52, 4, 60] A2⊗A4

21 ζ16−ζ−116

[QD32]2 25 2 [1, 1, 16] B8, F24

where S denotes the r.i.m.f. matrix group [(SL2(5)2� SL2(5)) :2]8.

To distinguish the groups √−6[√2,∞[S4]12−�C3]4 and √

−6[√2,∞[S4]12+

�C3]4 we make the

following convention. Both groups are generated by N := √2,∞[S4]1 ◦C3 and some α ∈

G with α2 ∈ N that centralizes Bo(O2(G))'∞,2[SL2(3)]1 and induces the nontrivial

Page 55: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.5. DIMENSION 8 55

outer automorphisms on S4 and C3. Up to isomorphism there are two choices for α2.

The name √−6[√2,∞[S4]12+

�C3]4 stands for α2 = I8 and we write √−6[√2,∞[S4]12−�C3]4 if

α2 = −I8.

The proof of the theorem is given in Section 4.5.2.

4.5.1 Irreducible cyclic subgroups

If G < Sp8(Q) is s.i.m.f. and contains an irreducible cyclic subgroup U then | ± U | ∈{16, 20, 24, 30}. In this section, we construct all such groups G.

Lemma 4.5.2 Let G < Sp8(Q) be s.i.m.f. with an irreducible subgroup U 'C16. Sup-pose that Π(|G|) ⊆ {2, 3, 5} or that there exists some (L, F ) ∈ Z(G) × F>0(G) suchthat F is integral on L and Π(det(L, F )) ⊆ {2, 3, 5}. Then G is conjugate to one ofthe following groups:

ζ16−ζ−116

[QD32]2, i[C4]41,√−2[GL2(3)]22, i[(D8⊗C4).S3]22 .

Proof: The commuting algebra of U is isomorphic to Q(ζ16) and has class number 1.Thus U fixes only one lattice L. One finds some F ∈ F>0(U) such that F is integralon L and det(L, F ) = 1. By Table 2.5.3, we have to consider the groups AutK(L, pk2F )for some 0 ≤ k ≤ 2 and K ∈ {Q(i),Q(

√−2),Q(ζ16 − ζ−1

16 )}.

form Q(i) Q(√−2) Q(ζ16 − ζ−1

16 )

F i[C4]41 � √−2[GL2(3)]22 ζ16−ζ−116

[QD32]2p2F i[C4]41 � √−2[GL2(3)]22 ζ16−ζ−1

16[QD32]2

p22F i[(D8⊗C4).S3]22

√−2[GL2(3)]22 ζ16−ζ−1

16[QD32]2

So the result follows. �

Lemma 4.5.3 Let G < Sp8(Q) be s.i.m.f. with an irreducible subgroup U 'C20. Sup-pose that Π(|G|) ⊆ {2, 3, 5} or that there exists some (L, F ) ∈ Z(G) × F>0(G) suchthat F is integral on L and Π(det(L, F )) ⊆ {2, 3, 5}. Then G is conjugate to ζ10 [C10]21,

√−5[C20 : 4]4, √5,∞[SL2(5)]1 ◦ C5, √−5[√5,∞[SL2(5)]1

2+

�C4]4, √−5[√5,∞[SL2(5)]12−�C4]4 or

i[(21+4+ ⊗C4).S6]4.

Proof: The commuting algebra of U is isomorphic to Q(ζ20) and has class number 1.Thus U fixes only one lattice L. One finds some F ∈ F>0(U) such that F is integralon L and det(L, F ) = 1. By Table 2.5.3, we have to consider the groups AutK(L, pk5F )for some 0 ≤ k ≤ 2 and K ∈ {Q(i),Q(

√−5),Q(ζ10)}.

form Q(i) Q(√−5) Q(ζ10)

F i[(21+4+ ⊗C4).S6]4 √

−5[√5,∞[SL2(5)]12−�C4]4 √

5,∞[SL2(5)]1 ◦ C5

p5F � i[(21+4+ ⊗C4).S6]4 √

−5[C20 :4]4 ζ10 [C10]21

p25F � i[(2

1+4+ ⊗C4).S6]4 √

−5[√5,∞[SL2(5)]12+

�C4]4 √5,∞[SL2(5)]1 ◦ C5

This proves the claim. �

Page 56: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

56 CHAPTER 4. THE CLASSIFICATION

Lemma 4.5.4 Let G < Sp8(Q) be s.i.m.f. with an irreducible subgroup U 'C24. Sup-pose that Π(|G|) ⊆ {2, 3, 5} or that there exists some (L, F ) ∈ Z(G) × F>0(G) suchthat F is integral on L and Π(det(L, F )) ⊆ {2, 3, 5}. Then G is conjugate to one of:

√−6[√2,∞[S4]1

2+

�C3]4, √−6[√2,∞[S4]12−�C3]4, i[((D8⊗C4).S3)]2⊗A2,

√−2[∞,2[21+4

− .Alt5]2 :2]4, i[(21+4+ ⊗C4).S6]4, √−3[Sp4(3) ◦ C3]4, (i[C4]1⊗A2)2,

√−3[C6]41, (∞,2[SL2(3)]1 ◦ C3)2, i[((D8⊗C4).S3)]22,

√−3[C6]1⊗F4,

∞,5[SL2(5) :2]2 ◦ C3, √−6[D16

2

� √−3[C6]1]4, √−2[F4 :2]4 .

Proof: The commuting algebra End(U)'Q(ζ30) has class number 1, so U fixes upto isomorphism one lattice L. One finds some F ∈ F>0(U) such that F is in-tegral on L and det(L, F ) = 1. By Table 2.5.3 we have to consider the groups

AutQ(√−d)(L, p

2a2 pb3p

c5p′5c′F ) for a, b, c, c′ ∈ {0, 1} and d ∈ {1, 2, 3, 6}.

Since there exists some x ∈ NGL8(Q)(U) ∩ GL(L) such that px5 = p′5 (and necessarilypx2 = p2, px3 = p3) we may assume that c′ ≤ c. Since p5p

′5 = 5Z[θ24] we may even

assume that c′ = 0. So we have 32 possibilities:

form Q(i) Q(√−2)

F i[(21+4+ ⊗C4).S6]4 i[∞,2[21+4

− .Alt5]2 :2]4p2

2F i[(D8⊗C4).S3]22√−2[F4 :2]4

p3F (i[C4]1⊗A2)2 � i[∞,2[21+4− .Alt5]2 :2]4

p22p3F i[(D8⊗C4).S3]2⊗A2 � √−2[F4 :2]4p5F � i[(2

1+4+ ⊗C4).S6]4 � √−2[F4 :2]4

p22p5F � (i[C4]1⊗A2)2 � i[∞,2[21+4

− .Alt5]2 :2]4p3p5F � i[(2

1+4+ ⊗C4).S6]4 � √−2[F4 :2]4

p22p3p5F � (i[C4]1⊗A2)2 � i[∞,2[21+4

− .Alt5]2 :2]4

form Q(√−3) Q(

√−6)

F √−3[Sp4(3) ◦ C3]4 √

−6[√2,∞[S4]12−�C3]4

p22F (∞,2[SL2(3)]1 ◦ C3)2 √

−6[√2,∞[S4]12+

�C3]4

p3F √−3[C6]41

√−6[D16

2

� √−3[C6]1]4

p22p3F √

−3[C6]1⊗F4√−6[D16

2

� √−3[C6]1]4

p5F ∞,5[SL2(5) :2]2 ◦ C3 � √−6[√2,∞[S4]12−�C3]4

p22p5F � √−3[Sp4(3) ◦ C3]4 � √−6[D16

2

� √−3[C6]1]4

p3p5F � ∞,5[SL2(5) :2]2 ◦ C3 � √−6[√2,∞[S4]12−�C3]4

p22p3p5F � √−3[Sp4(3) ◦ C3]4 � √−6[D16

2

� √−3[C6]1]4

This proves the claim. �

Page 57: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.5. DIMENSION 8 57

Lemma 4.5.5 Let G < Sp8(Q) be s.i.m.f. with an irreducible subgroup U 'C30. Sup-pose that Π(|G|) ⊆ {2, 3, 5} or that there exists some (L, F ) ∈ Z(G) × F>0(G) suchthat F is integral on L and Π(det(L, F )) ⊆ {2, 3, 5}. Then G is conjugate to one ofthe following groups:

√−3[Sp4(3) ◦ C3]4, ζ10 [C10]1⊗A2, √−15[C30 :4]4, √−3[C6]1⊗A4, ∞,5[SL2(5) :2]2 ◦ C3,

√−15[√5,∞[SL2(5)]1

2+

�C3]4, √−15[√5,∞[SL2(5)]12−�C3]4, √5,∞[SL2(5)]1 ◦ C5 .

Proof: The commuting algebra End(U)'Q(ζ30) has class number 1, so U fixesup to isomorphism one lattice L. Further there exists some F ∈ F>0(U) suchthat F is integral on L and det(L, F ) = 1. By Table 2.5.3 we have to con-sider the groups AutK(L, pa3p

b5F ) where a ∈ {0, 1}, b ∈ {0, 1, 2} with a ≡2 b and

K ∈ {Q(√−3),Q(

√−15),Q(ζ10)}. So we have the following 9 automorphism groups

to check:

form Q(√−3) Q(

√−15) Q(ζ10)

F √−3[Sp4(3) ◦ C3]4 √

−15[√5,∞[SL2(5)]12−�C3]4 √

5,∞[SL2(5)]1 ◦ C5

p3p5F √−3[C6]1⊗A4

√−15[C30 :4]4 ζ10 [C10]1⊗A2

p25F ∞,5[SL2(5) :2]2 ◦ C3

√−15[√5,∞[SL2(5)]1

2+

�C3]4 √5,∞[SL2(5)]1 ◦ C5

These groups are all maximal finite. �

4.5.2 Proof of Theorem 4.5.1

We have to prove the completeness of the list given in Theorem 4.5.1. The candidatesfor the maximal finite symplectic imprimitive groups come from the classification ofthe s.p.i.m.f. subgroups of Sp2(Q) and Sp4(Q). By Lemma 2.1.21, we only have tocheck the group i[C4]41. It fixes up to isomorphism three lattices and has Q(i) ascommuting algebra. One verifies that it is s.i.m.f..

So it remains to prove the completeness for the s.p.i.m.f. subgroups of Sp8(Q). Thus,for the remainder of this section let G < Sp8(Q) be s.p.i.m.f..

First we handle the case that G contains a quasisimple normal subgroup N . ByTable 2.5.1, N must be conjugate to Alt5, SL2(5), SL2(7), SL2(9), 2.Alt7 or Sp4(3).These cases are handled in the next two lemmas.

Lemma 4.5.6 Let N be a normal subgroup of G.

(a) If N is conjugate to Alt5 then G'√−3[C6]1⊗A4.

(b) If N is conjugate to 2.Alt7, then G = N .

(c) If N is conjugate to Sp4(3), then G = Bo(N)'√−3[Sp4(3) ◦ C3]4.

Page 58: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

58 CHAPTER 4. THE CLASSIFICATION

(d) N is not conjugate to SL2(7).

(e) N is not conjugate to SL2(9).

Proof:

(a) Let H := Bo(N)'±S5'Aut(A4). So H cannot be self centralizing sinceOut(H) is trivial and End(H)'Q2×2. Thus G must contain a subgroup con-jugate to Ck⊗A4 with k ∈ {6, 4}. These groups have Q(

√−3) and Q(i) as

commuting algebras and they fix 2 and 4 lattices respectively. One easilychecks that √−3[C6]1⊗A4 is s.i.m.f. whereas C4⊗A4 is properly contained in

i[(21+4+ ⊗C4).S6]4.

(b) Up to isomorphism, N fixes only one lattice L and it has Q(√−7) as commuting

algebra. So the claim is easily verified.

(c) Again, Bo(N)'√−3[Sp4(3) ◦ C3]4 fixes only one lattice L and has Q(√−3) as

commuting algebra. The result follows as above.

(d) N fixes 5 lattices and has Q(√−7) as commuting algebra. Let F ∈ F>0(N).

One checks that AutQ(√−7)(L, F ) is either conjugate to N or √−7[2.Alt7]4 for all

L ∈ Z(N).

(e) The commuting algebra of N is isomorphic to Q∞,3 and Out(N)'C2 × C2 butonly one class of outer automorphisms can be realized in GL8(Q). Using Re-mark 2.2.17, one finds that G contains a subgroup conjugate to N ◦ C4, N ◦ C3

or N.2. The first group fixes 2 lattices and is only contained in i[(21+4+ ⊗C4).S6]4

the other two groups fix only one lattice and they are only contained in√−3[Sp4(3) ◦ C3]4. So the result follows. �

Lemma 4.5.7 If G contains a normal subgroup N conjugate to √5,∞[SL2(5)]1, thenG is conjugate to one of

√−15[√5,∞[SL2(5)]1

2−�C3]4, √−15[√5,∞[SL2(5)]1

2+

�C3]4, ∞,5[SL2(5) :2]2 ◦ C3,

√−5[√5,∞[SL2(5)]1

2−�C4]4, √−5[√5,∞[SL2(5)]1

2+

�C4]4 or √5,∞[SL2(5)]1 ◦ C5 .

Proof: Let Q := End(N)'Q√5,∞ and let K 'Q(√

5) be its center. Further denoteby M a maximal ZK-order of Q. If CG(N) ⊂ N , then [G : N ] = |Out(N)| = 2. Theouter automorphism of N does not centralize K. So End(G) < Q is a totally definitequaternion algebra with center Q ramified at a subset of Π(|G|) = {2, 3, 5}. Hence itcontains nontrivial torsion units which contradicts the assumption CG(N) ⊂ N .

Thus there exists some g ∈ CG(N) \ N . We may assume that g is contained in thetorsion group M∗,1' SL2(5), since all maximal ZK-orders of Q are conjugate. Thisleaves three cases and in any case Π(|G|) = {2, 3, 5}.

Page 59: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.5. DIMENSION 8 59

• U := N ◦ C3 ≤ G. Then K is the maximal totally real subfield ofEnd(U)'Q(

√−3,√

5). Further U fixes only one lattice L and there exists someF ∈ F>0(U) which is integral on L with det(L, F ) = 1. By the 2-parameterargument (see Table 2.5.4), G must either fix (L, F ) or (L, p5F ). The minimaltotally complex subfields of K are isomorphic to Q(

√−3) and Q(

√−15), this

gives rise to four candidates:

form Q(√−3) Q(

√−15)

F √−3[Sp4(3) ◦ C3]4 √

−15[√5,∞[SL2(5)]12−�C3]4

p5F ∞,5[SL2(5) :2]2 ◦ C3√−15[√5,∞[SL2(5)]1

2+

�C3]4

• U := N ◦ C4 ≤ G. Then End(U)'Q(i,√

5). As above, U fixes only one latticeL and there exists some F ∈ F>0(U) which is integral on L and det(L, F ) = 1.Again we have four candidates

form Q(i) Q(√−5)

F i[(21+4+ ⊗C4).S6]4 √

−5[√5,∞[SL2(5)]12−�C4]4

p5F � i[(21+4+ ⊗C4).S6]4 √

−5[√5,∞[SL2(5)]12+

�C4]4

• U := N ◦ C5 ≤ G. Then End(U)'Q(ζ10) is minimal totally complex. FurtherU fixes only one lattice L. One checks that U is already s.i.m.f..

After omitting the groups which do not contain a normal subgroup conjugate to N ,one gets the claimed result. �

We now turn to a case to case discussion of the various Fitting subgroups.

Lemma 4.5.8 If O5(G) 6= 1 then G is conjugate to one of the following groups:

ζ10 [C10]1⊗A2, √−15[C30 :C4]4, √−4[C20 :C4]4 or √5,∞[SL2(5)]1 ◦ C5 .

Proof: Table 2.5.2 shows O5(G)'C5. If O3(G)'C3 then G contains an irreduciblecyclic normal subgroup of order 30. Since |Aut(C30)| = 8, it follows from Lemma 4.5.5that G' ζ10 [C10]1⊗A2 or √−15[C30 :C4]4.Suppose now O3(G) = 1. By Table 2.5.2, O2(G) must be conjugate to one of C2, C4, D8

or Q8 (note that Q(ζ10) splitsQ∞,2). In the latter three cases, G contains an irreduciblecyclic subgroup of order 20 and Π(|G|) ⊆ {2, 3, 5}. Hence G'√−4[C20 : C4]4 byLemma 4.5.3.If O2(G)'C2, then CG(F (G)) embeds into GL2(Q(ζ10)). If E(G) 6= 1, thenby Table 2.5.1, E(G) is conjugate to √

5,∞[SL2(5)]1. In this case, Lemma 4.5.7shows that G'√5,∞[SL2(5)]1 ◦ C5. It remains the case that F ∗(G)'C10. ThenG/F ∗(G)'Aut(C10)'C4 by Lemma 2.2.1. There are two such extensions. Thegroup C10 : C4 is reducible, whereas C10 ·C4 has Q∞,5 as commuting algebra. Thisgroup cannot be maximal finite since Q∞,5 contains nontrivial torsion units. �

Page 60: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

60 CHAPTER 4. THE CLASSIFICATION

O3(G) 6= 1 and O5(G) = 1

We now suppose that O5(G) = 1 and O3(G) 6= 1. By Table 2.5.2 we have O3(G)'C3

and O2(G) ∈ {C2, C4, C8, D8, Q8, 21+4+ , 21+4

− , D8⊗C4, D16, QD16, Q16}.These cases are handled in the following lemmas.

Lemma 4.5.9

(a) If O2(G)'D16 then G'√−6[D16

2

� √−3[C6]1]4.

(b) O2(G) is not conjugate to C8, QD16 or Q16.

Proof: In all these cases G contains an irreducible cyclic subgroup of order 24 andΠ(|G|) = {2, 3, 5}. So the result follows from Lemma 4.5.4. �

Lemma 4.5.10 If O2(G)' 21+4+ , then G'√−3[C6]1⊗F4.

Proof: Bo(F (G)) is conjugate to √−3[C6]1⊗F4 and fixes only one lattice. Its commut-

ing algebra is isomorphic to Q(√−3). Hence the claim is easily verified. �

Lemma 4.5.11 O2(G) 6' 21+4− .

Proof: Suppose O2(G)' 21+4− . Then G contains the normal subgroup N := Bo(F (G))

conjugate to ∞,2[21+4− .Alt5]2 ◦ C3. The group N fixes 2 lattices and has Q(

√−3) as

commuting algebra. One easily checks that it is only contained in √−3[Sp4(3) ◦ C3]4(which has the wrong Fitting subgroup). �

Lemma 4.5.12 If O2(G)'D8⊗C4, then G' i[(D8⊗C4).S3]2⊗A2.

Proof: The subgroup N := Bo(F (G))' i[(D8⊗C4).S3]2⊗C3 of G contains an irre-ducible cyclic subgroup of order 24 and Π(|G|) = {2, 3}. So the result follows fromLemma 4.5.4. �

Lemma 4.5.13 O2(G) 6'D8 and O2(G) 6'C4.

Proof: Suppose O2(G) is one of these groups. In either case G contains an irreduciblenormal subgroup N ≤ F (G) which is isomorphic to C12. Then C := CG(N) embedsinto GL2(Q(ζ12)) and contains N . Thus E(G) = 1 and G/F (G) ≤ Out(F (G))'C2 ×C2. If O3(G) 6⊆ Z(G) then there exists some g ∈ G such that g induces the nontrivialouter automorphism on O3(G) and g2 ∈ O2(G). By maximality we get g ∈ O2(G)which contradicts O2(G) ⊂ CG(O3(G)). So G/F (G) ≤ C2. But this contradictsLemma 2.2.1. �

Page 61: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.5. DIMENSION 8 61

Lemma 4.5.14 If O2(G)'C2 then G is conjugate to √−3[C6]1⊗A4, √−3[Sp4(3)◦C3]4,

∞,5[SL2(5) :2]2 ◦ C3, √−15[√5,∞[SL2(5)]12−�C3]4 or √−15[√5,∞[SL2(5)]1

2+

�C3]4.

Proof: If E(G) = 1, then G/F (G) ≤ Out(C6)'C2 contradicts Lemma 2.2.1. SoE(G) 6= 1. But all these cases have already been handled in Lemmas 4.5.6 and 4.5.7.�

Lemma 4.5.15 If O2(G)'Q8 then G is either conjugate to √−6[√2,∞[S4]12+

�C3]4 or

√−6[√2,∞[S4]1

2−�C3]4.

Proof: Let N := Bo(F (G))'∞,2[SL2(3)]1 ◦ C3. Then C := CG(N) embeds intoGL2(Q(

√−3)) which implies that C is soluble. Therefore G/N ≤ Out(N)'C2 × C2.

By Lemma 2.2.1, we know that [G : N ] = 4. So there is some α ∈ G \N such that αinduces the outer automorphism on SL2(3) and acts trivially on O3(G). Hence α com-mutes with the center of E := End(N)'Q(

√−3)2×2. By Lemma 2.2.16, H := 〈N,α〉

is (up to conjugacy) uniquely determined by the isomorphism type of K := CE(α).There are two possibilities, namely K 'Q(

√−3,√

2) or K 'Q(√−3,√−2).

• K 'Q(√−3,√−2): The maximal totally real subfield of K is isomorphic to

Q(√

6). Further H fixes only one lattice L and there exists some F ∈ F>0(H)that is integral on L such that det(L, F ) = 16. Since NrK/Q(

√6)(Z∗K) = Z[

√6]∗>0

we may restrict ourselves to one class of totally positive units. By Table 2.5.4,this leaves the following four candidates.

form Q(√−3) Q(

√−2)

F (∞,2[SL2(3)]1 ◦ C3)2 √−2[F4 :2]2

p3F √−3[C6]1⊗F4 � √−2[F4 :2]2

But none of these groups has the correct Fitting subgroup.

• K 'Q(√−3,√

2): The maximal totally real subfield of K is isomorphic toQ(√

2). Further H fixes only one lattice L and there exists some F ∈ F>0(H)which is integral on L such that det(L, F ) = 1. By Table 2.5.4, there are fourcandidates:

form Q(√−3) Q(

√−6)

F √−3[Sp4(3) ◦ C3]4 √

−6[√2,∞[S4]12−�C3]4

p2F (∞,2[SL2(3)]1 ◦ C3)2 √−6[√2,∞[S4]1

2+

�C3]4

The result follows if one checks the Fitting subgroups of these candidates. �

Page 62: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

62 CHAPTER 4. THE CLASSIFICATION

Op(G) = 1 for all odd primes p

In this last section, suppose that F (G) = O2(G). By Table 2.5.2, O2(G) is isomorphicto one of C2, C4, C8, C16, D8, Q8, 2

1+4+ , 21+4

− , D8⊗C4, D8⊗C8, D8⊗QD16, 21+4+ ⊗C4,

D16, QD16, Q16 or QD32. These cases are handled below. This concludes the clas-sification of the s.i.m.f. matrix groups of degree 8.

Lemma 4.5.16 If F (G)' 21+4+ ⊗C4, then G = Bo(F (G))' i[(2

1+4+ ⊗C4).S6]4.

Proof: The group Bo(F (G)) fixes up to isomorphism only one lattice L and has Q(i)as commuting algebra. Hence the claim is easily verified. �

Lemma 4.5.17 If F (G)'QD32, then G = F (G).

Proof: Follows from Lemma 3.3.1. �

Lemma 4.5.18 F (G) is not isomorphic to C8, D16, QD16 or Q16.

Proof: In all these cases G would contain a normal cyclic subgroup N of order 8.Then C := CG(N) embeds into GL2(Q(ζ8)). Hence E(G) = 1 and this implies thatG/F (G) ≤ Out(F (G)) is a 2-group. So G = F (G) is reducible. �

Lemma 4.5.19 If F (G)' 21+4− , then G is conjugate to √−2[∞,2[21+4

− .Alt5]2 :2]4.

Proof: The normal subgroup N := Bo(F (G))'∞,2[21+4− .Alt5]2 is self centralizing in G

and End(N)'Q∞,2. Hence [G : N ] ≤ 2. Thus by Remark 2.2.17, G must contain asubgroup U conjugate to N.2. Since U fixes up to isomorphism a unique lattice andhas Q(

√−2) as commuting algebra, the claim is easily verified. �

Lemma 4.5.20 If F (G)' 21+4+ , then G is conjugate to √−2[F4 :2]4.

Proof: Let N := Bo(F (G))'F4. Then C := CG(N) embeds into Q2×2. So C andG are soluble. Thus again [G : N ] ≤ 2 and by Remark 2.2.17 we conclude thatG'√−2[F4 :2]4. Finally one checks that this group is s.i.m.f.. �

Lemma 4.5.21 F (G) 6'C16.

Proof: Follows from Lemma 4.5.2. �

Page 63: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.5. DIMENSION 8 63

Lemma 4.5.22 F (G) is neither isomorphic to D8⊗C8 nor D8⊗QD16.

Proof: In both cases, G would contain an irreducible normal subgroup N 'D8⊗C8.Then B := Bo(N)'N.S3 fixes only one lattice L and has Q(ζ8) as commuting algebra.One finds some F ∈ F>0(B) that is integral on L such that det(L, F ) = 1. SinceΠ(|G|) = {2, 3} it follows from Table 2.5.4 that we have to check the following fourcandidates:

Q(i) Q(√−2)

F i[(21+4+ ⊗C4).S6]4 √

−2[∞,2[21+4− .Alt5]2 :2]4

p2F i[(D8⊗C4).S3]22√−2[F4 :2]4

None of these groups has the correct Fitting subgroup. �

Lemma 4.5.23 F (G) 6'D8⊗C4.

Proof: Suppose F (G)'D8⊗C4. Then N := Bo(F (G))'(D8⊗C4).S3 has Q(i)2×2 ascommuting algebra. Thus E(G) = 1. But then [G : N ] ≤ 2 contradicts Lemma 2.2.1.�

Lemma 4.5.24 F (G) 6'Q8.

Proof: Suppose F (G)'Q8. Then N := Bo(F (G))'∞,2[SL2(3)]1 and CG(N) embedsinto GL2(Q∞,2). Hence it follows from Table 2.5.1 that E(G) = 1. Thus G/N ≤Out(SL2(3))'C2 contradicts Lemma 2.2.1. �

Lemma 4.5.25

(a) If F (G)is isomorphic to C4, then G is conjugate to √−5[√5,∞[SL2(5)]12+

�C4]4 or

√−5[√5,∞[SL2(5)]1

2−�C4]4.

(b) The Fitting group F (G) is not isomorphic to D8.

Proof: If E(G) = 1 then [G : F (G)] ≤ 2 contradicts Lemma 2.2.1. So by Table 2.5.1,E(G) must be conjugate to Alt5 or SL2(5). Thus the result follows from Lemmas 4.5.6and 4.5.7. �

Lemma 4.5.26 If F (G)'C2, then G is conjugate to √−7[2.Alt7]4.

Proof: By Table 2.5.1, E(G) is conjugate to one of Alt5, SL2(5), SL2(7), SL2(9) or2.Alt7 (note that O3(Bo(Sp4(3)))'C3). We have already classified these groups G inLemmas 4.5.6 and 4.5.7. �

Page 64: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

64 CHAPTER 4. THE CLASSIFICATION

4.6 Dimension 10

Theorem 4.6.1 The s.i.m.f. subgroups G of Sp10(Q) are

# G |G| |Z(G)| Lmin r.i.m.f. supergroups

[2, 1, 5] i[C4]51 213 ·3·5 3 [1, 1, 20] B10

1 i[C4]1⊗A5 26 ·32 ·5 6 [32, 2, 60] A25

[2, 2, 5] √−3[C6]51 28 ·36 ·5 1 [35, 2, 30] A5

2

2 √−3[±S4(3) ◦ C3]5 27 ·35 ·5 2 [22 ·35, 4, 270] [(C6 × S4(3)).2]10

3 √−11[±L2(11)]5 23 ·3·5·11 1 [115, 6, 110] A

(3)10

Proof: We know that that √−3[C6]51 is maximal finite by Lemma 2.1.21. The group

i[C4]51 fixes three lattices and has Q(i) as commuting algebra. One checks that it isalso maximal finite. So we may now suppose that G is s.p.i.m.f..

Then G cannot be soluble according to Corollary 4.1.2. So Table 2.5.1 shows thatE(G) is isomorphic to Alt6, L2(11) or S4(3).

The group √−11[±L2(11)]5 is s.i.m.f. by Theorem 3.1.1.

If E(G)'S4(3), then End(N)'Q(√−3) and Bo(E(G))'√−3[±S4(3) ◦ C3]5 fixes up

to isomorphism one lattice L. One immediately verifies that it is maximal finite.

Suppose now E(G)'Alt6. Then N := Bo(E(G))'Aut(A5)'±S6. If F (G) = ±I10

then G = N is reducible, since the exceptional outer automorphism of S6 cannot berealized in GL5(C). So F (G) is cyclic of order 6 or 4 by Lemma 4.1.1. In the first caseG would be properly contained in √−3[±S4(3)◦C3]5. In the latter case G = i[C4]1⊗A5

which one easily verifies to be maximal finite by computing the automorphism groupsof all six G-invariant lattices.

The r.i.m.f. supergroups are easily constructed since G is uniform in any case. �

Page 65: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.7. DIMENSION 12 65

4.7 Dimension 12

Theorem 4.7.1 The s.i.m.f. subgroups G of Sp12(Q) are

# G |G| |Z(G)| Lminr.i.m.f.

supergroups

[4, 1, 3] i[(D8⊗C4).S3]32 216 ·34 1 [26, 2, 72] F 34

[2, 1, 6] i[C4]61 216 ·32 ·5 3 [1, 1, 24] B12

1 i[C4]1⊗E6 29 ·34 ·5 2 [32, 2, 144] E26

[4, 2, 3] (i[C4]1⊗A2)3 210 ·34 2 [36, 2, 36] A62

2 ∞,3[±U3(3)]3 ◦ C4 27 ·33 ·7 2 [36, 4, 756] [6.U4(3).22]12

3 i[C4]1⊗A6 26 ·32 ·5·7 2 [72, 2, 84] A26

4 i[S2(2)

@×⊃ i[C4]1]6 26 ·34 4 [26 ·34, 4, 216] [S2

�√−3

SL2(3)]12

5 i[L2(7)2(2)

⊗ i[C4]1]6 26 ·3·7 2 [26 ·72, 4, 336] [L2(7)2(2)

⊗D8]12

6 i[C4]1⊗A(2)6 26 ·3·7 2 [76, 4, 84] (A

(2)6 )2

7 i[√−7[±L2(7)]32(2)

@×⊃ i[C4]1]6 26 ·3·7 2 [26 ·76, 8, 336] [L2(7)2(2)

@×⊃ D8]12

[4, 3, 3] √−2[GL2(3)]32 213 ·34 1 [26, 2, 72] F 3

4

8 √−2[±L2(7)·2]6 25 ·3·7 2 [72, 2, 84] A2

6

9 √−2[∞,2[SL2(5)]3 :2]6 24 ·3·5 6 [22 ·5, 3, 80] [SL2(5)

2(2)◦ SL2(3)]12

10 √−3[6.U4(3).2]6 29 ·37 ·5·7 1 [36, 4, 756] [6.U4(3).22]12

[2, 2, 6] √−3[C6]61 210 ·38 ·5 1 [36, 2, 36] A6

2

[6, 1, 2] √−3[±31+2

+ :SL2(3)]23 29 ·38 2 [32, 2, 144] E26

[4, 4, 3] (∞,2[SL2(3)]1 ◦ C3)3 210 ·37 2 [26, 2, 72] F 34

11 S ⊗√−3∞,2[SL2(3)]1 26 ·35 4 [26 ·34, 4, 216] [S

2

�√−3

SL2(3)]12

12 √−3[±3.M10]6 25 ·33 ·5 2 [36 ·56, 8, 270] [±3.Alt12.2

2]12

13 √−3[C6]1⊗M6,2 24 ·32 ·5 6 [36 ·56, 6, 60] A2⊗M6,2

14 ∞,2[SL2(5)]3 ◦ C3 23 ·32 ·5 8 [22 ·54, 4, 360] [SL2(5)2(2)◦ SL2(3)]12

15 √−5[i[C4]1

2−

� Alt5]6 25 ·3·5 14[1, 1, 24][1, 2, 264]

B12

16 √−5[i[C4]1

2+

� Alt5]6 25 ·3·5 14[56, 4, 60][56, 3, 40]

M26,2

[6, 2, 2] √−7[±L2(7)]23 29 ·32 ·72 1 [72, 4, 84] (A

(2)6 )2

17 √−7[±L2(7)]3 ⊗√

−7∞,3[S3]1 25 ·32 ·7 2 [36, 4, 756] [6.U4(3).22]12

18 √−7[±L2(7)]3⊗A2 25 ·32 ·7 2 [36 ·76, 8, 126] A2⊗A(2)

6

19 √−11[SL2(11)]6 23 ·3·5·11 5

[1, 1, 24][1, 2, 264]

B12

20 √−15[±3.Alt6 ·21]6 25 ·33 ·5 2 [36, 4, 756] [6.U4(3).22]12

21 √−15[±3.Alt6 :21]6 25 ·33 ·5 2 [36 ·56, 8, 270] [±3.Alt12.2

2]12

[4, 5, 3] ζ10 [C10]31 24 ·3·53 1 [53, 2, 60] A34

Page 66: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

66 CHAPTER 4. THE CLASSIFICATION

22 ζ10 [C10]1⊗√5

Alt5 23 ·3·52 2 [24 ·53, 4, 420] [D20

2

�√5

Alt5]12

23 ζ26+ζ326+ζ926

[C26 :C3]3 2·3·13 9 [13, 2, 156] A12

Here S denotes the s.p.i.m.f. subgroup √−3[±31+2+ : SL2(3)]3 < Sp6(Q). A proof of this

theorem is given in Section 4.7.2.

4.7.1 Irreducible cyclic subgroups

Let G < Sp12(Q) be s.i.m.f. such that G contains an irreducible cyclic subgroup U .Then | ± U | ∈ {26, 28, 36, 42}. These groups are classified below.

Lemma 4.7.2 If ±U has order 26 then G is conjugate to ζ26+ζ326+ζ926

[C26 :C3]3.

Proof: Follows from Theorem 3.1.1. �

Lemma 4.7.3 If U has order 28, then G is conjugate to i[C4]1⊗A6, i[C4]1⊗A(2)6 ,

i[L2(7)6

2(2)

⊗i[C4]1]6, i[√−7[±L2(7)]32(2)

@×⊃ i[C4]1]6 or √−7[±L2(7)]23.

Proof: The commuting algebra of U is isomorphic to Q(ζ28) and has class number1. Thus U fixes only one lattice L. Further there exists some F ∈ F>0(U) suchthat F is integral on L and det(L, F ) = 72. It follows from Minkowski’s bound thatΠ(|G|) = {2, 3, 5, 7, 11, 13}. The cases that |G| is divisible by 11 or 13 are handledin Theorems 3.1.1 and 3.2.1. So we have Π(|G|) = {2, 3, 5, 7}. By Table 2.5.3, Gis conjugate to AutQ(

√−d)(L, p

k2p

2l7 F ) for some k, l ∈ {0, 1} and d ∈ {1, 7}. These

automorphism groups are

form Q(i) Q(√−7)

F i[C4]1⊗A6 � √−7[±L2(7)]23

p2F i[L2(7)6

2(2)

⊗i[C4]1]6 � √−7[±L2(7)]23p2

7F i[C4]1⊗A(2)6

√−7[±L2(7)]23

p2p27F i[√−7[±L2(7)]3

2(2)

@×⊃ i[C4]1]6 � √−7[±L2(7)]23

So the result follows. �

Lemma 4.7.4 If U has order 36, then G is conjugate to one of:

i[C4]1⊗E6, √−3[±31+2+ :SL2(3)]23, i[

√−3[±31+2

+ :SL2(3)]32(2)

@×⊃ i[C4]1]6,

√−3[±31+2

+ :SL2(3)]3⊗∞,2[SL2(3)]1, (i[C4]1⊗A2)2, √−3[C6]61 .

Page 67: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.7. DIMENSION 12 67

Proof: The commuting algebra of U is isomorphic to Q(ζ36) and has class number 1.Thus U fixes only one lattice L. Further there exists some F ∈ F>0(U) such that F isintegral on L and det(L, F ) = 9. As above, we have Π(|G|) ⊆ {2, 3, 5, 7}. Restrictingto normalized lattices (see Definition 2.2.4), Table 2.5.3 shows that G is conjugateto AutQ(

√−d)(L, p

k2p

l3F ) for some (k, l) ∈ {(0, 0), (1, 1), (0, 2)} and d ∈ {1, 3}. These

groups are given below.

form Q(i) Q(√−3)

F i[C4]1⊗E6√−3[±31+2

+ :SL2(3)]23

p2p3F i[√−3[±31+2+ :SL2(3)]3

2(2)

@×⊃ i[C4]1]6 √−3[±31+2

+ :SL2(3)]3⊗∞,2[SL2(3)]1

p23F (i[C4]1⊗A2)2 √

−3[C6]61

This proves the result. �

Lemma 4.7.5 If ±U has order 42, then G is conjugate to one of

√−3[6.U4(3).2]6, √−7[±L2(7)]3⊗A2, √−7[±L2(7)]3 ⊗√

−7∞,3[S3]1 .

Proof: The commuting algebra of U is isomorphic to Q(ζ42) and has class number 1. SoU fixes only one lattice L. Further one finds some F ∈ F>0(U) such that F is integralon L and det(L, F ) = 36. As above we have Π(|G|) = {2, 3, 5, 7}. By Table 2.5.3, G isconjugate to AutQ(

√−d)(L, p

−k3 pk5p

l7F ) or AutQ(

√−d)(L, p

−k3 p′5

kpl7F ) for some k ∈ {0, 1},0 ≤ l ≤ 3 and d ∈ {3, 7}. Since AutQ(

√−d)(L, p

−13 p′5p

l7F ) = AutQ(

√−d)(L, p

−13 p5p

l7F ) =

AutQ(√−3)(L, p

l7F ) ∩ AutQ(

√−7)(L, p

l7F ) for all l and d we have eight groups to check.

form Q(√−3) Q(

√−7)

F √−3[6.U4(3).2]6 √

−7[±L2(7)]3 ⊗√−7∞,3[S3]1

p7F � √−3[6.U4(3).2]6 � √−7[±L2(7)]3⊗A2

p27F � √−3[6.U4(3).2]6 � √−7[±L2(7)]3 ⊗√

−7∞,3[S3]1

p37F � √−3[6.U4(3).2]6 √

−7[±L2(7)]3⊗A2

So the lemma is proven. �

4.7.2 Proof of Theorem 4.7.1

We have to prove the completeness of the list given in Theorem 4.7.1 (the correct-ness follows from explicit calculations). The candidates for the maximal finite sym-plectic imprimitive groups come from the classification of the s.p.i.m.f. subgroups ofSp2(Q), Sp4(Q) and Sp6(Q). By Lemma 2.1.21, we only have to check the group

i[C4]61. It fixes up to isomorphism three lattices and has Q(i) as commuting algebra.One verifies that it is s.i.m.f..

So it remains to prove the completeness for the s.p.i.m.f. matrix groups. Thus, for theremainder of this section let G < Sp12(Q) be s.p.i.m.f..

Page 68: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

68 CHAPTER 4. THE CLASSIFICATION

The case that O13(G) 6= 1 is handled in Lemma 4.7.2. Hence we may assume thatF (G) = O2(G)O3(G)O5(G). So Theorem 4.7.1 follows by discussing all possible can-didates for the Fitting subgroup of G. This is done in the subsequent lemmas.

Again, we handle the irreducible quasisimple normal subgroups first.

Lemma 4.7.6 Suppose G < Sp12(Q) is s.p.i.m.f. and G contains an irreducible qua-sisimple normal subgroup N . Then one of the following holds.

(a) If N ' 6.U4(3) then G = Bo(N)'√−3[6.U4(3).2]6.

(b) If N 'U3(3) then G'∞,3[±U3(3)]3 ◦ C4.

(c) If N is conjugate to 3.Alt6 with character χ3a+χ′3a+χ3b+χ

′3b, then G is conjugate

to √−15[±3.Alt6 ·2]6, √−15[±3.Alt6 :2]6 or √−3[±3.M10]6.

(d) If N ' SL2(11) then G = N .

(e) If N is conjugate to ∞,2[SL2(5)]3, then G is conjugate to √−2[∞,2[SL2(5)]3 :2]6 or

∞,2[SL2(5)]3 ◦ C3.

Proof: Suppose first that we are in one of the cases mentioned above.

(a) Bo(N) fixes only one lattice and has Q(√−3) as commuting algebra. So the

claim is easily verified.

(b) The commuting algebra of N is isomorphic to Q∞,3 and Out(N)'C2. Thus byRemark 2.2.17, G contains N ◦ C4, N ◦ C3 or ±N.2 as a subgroup. The firstgroup is already s.i.m.f.. The other two groups fix 1 or 4 lattices respectively.One checks that they are only contained in √−3[6.U4(3).2]6.

(c) The commuting algebra C of N is isomorphic to Q(√−3,√

5) with Q(√

5) asmaximal totally real subfield. Further, N fixes only one lattice L and one findssome F ∈ F>0(G) that is integral on L with det(L, F ) = 36. Since Π(|G|) ={2, 3, 5} this leaves the following 4 candidates (see Table 2.5.4).

form Q(√−3) Q(

√−15)

F √−3[6.U4(3).2]6 √

−3[±3.Alt6 ·2]6p5F √

−3[±3.M10]6 √−3[±3.Alt6 :2]6

So the result follows.

(d) Follows from Theorem 3.2.1.

(e) The centralizing algebra of N is isomorphic to Q∞,2 and Out(N)'C2. Hence,by Remark 2.2.17, G contains a subgroup conjugate to: N ◦C3, N.2 and N ◦C4.These fix 8, 6 and 20 lattices respectively. The first two groups are maximalfinite. The remaining group is only contained in G = i[C4]61.

Page 69: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.7. DIMENSION 12 69

If N is not conjugate to one of these groups, it follows from Table 2.5.1, that N mustbe conjugate to 6.L3(4) or 3.Alt6 with character χ6 + χ′6.The group 6.L3(4) fixes two lattices and has Q(

√−3) as commuting algebra. One

checks that it is only contained in √−3[6.U4(3).2]6.

In the remaining case, N fixes 12 lattices and has Q(√−3) as commuting algebra.

One checks that N has the maximal finite symplectic supergroups √−3[6.U4(3).2]6 and√−3[C6]61 which both do not normalize N . �

Lemma 4.7.7 If O5 6= 1 then G is conjugate to ζ10 [C10]1⊗√5

Alt5.

Proof: By Table 2.5.2, O5(G)'C5. Thus CG(O5(G)) embeds into GL3(Q(ζ10)). Inparticular, by loc. cit. F (G)'C10. But then E(G) = 1 contradicts Corollary 2.2.3.So Table 2.5.1 shows that F ∗(G)' ζ10 [C10]1⊗√

5

Alt5. But then F ∗(G) fixes 2 lattices and

has Q(ζ10) as commuting algebra. One checks that it is already s.i.m.f. by computingtheir automorphism group (with respect to the full form space). �

Lemma 4.7.8 If O3(G) = 31+2+ , then G is conjugate to one of

√−3[±31+2

+ : SL2(3)]3 ⊗√−3∞,2[SL2(3)]1 or i[√−3[±31+2

+ : SL2(3)]32(2)

@×⊃ i[C4]1]6 .

Proof: By Table 2.5.1 we have E(G) = 1. If F (G) = ±O3(G) then G/Bo(F (G)) ≤ C2

contradicts Lemma 2.2.1. So by Table 2.5.2 we have F (G)' 31+2+ ⊗H with H = C4, D8

or Q8. If O2(G)'Q8, then G = Bo(F (G))'√−3[±31+2+ : SL2(3)]3 ⊗√

−3∞,2[SL2(3)]1 is

already s.i.m.f..So we may now assume that G contains a normal subgroup conjugate to N :=B(O3(G))⊗C4'√−3[31+2

+ : SL2(3)]3⊗C4 of index at most 4. In particular Π(|G|) =

{2, 3}. The commuting algebra C of U is isomorphic to Q(i,√

3) and has K 'Q(√

3)as maximal totally real subfield. Up to isomorphism, N fixes two lattices, which areboth N -normal critical. Further we find some L ∈ Z(N) and a form F ∈ F>0(U) thatis integral on L such that det(L, F ) = 32. Since Z∗K,>0 = NrC/K(Z∗C) we may restrictourselves to one class of totally positive units. By Table 2.5.4, this leaves the followingcases:

form Q(i) Q(√−3)

F i[C4]1⊗E6√−3[±31+2

+ :SL2(3)]2

p2p3F i[√−3[±31+2+ : SL2(3)]3

2(2)

@×⊃ i[C4]1]6 √−3[±31+2

+ : SL2(3)]3 ⊗√−3∞,2[SL2(3)]1

This proves the claim. �

Page 70: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

70 CHAPTER 4. THE CLASSIFICATION

Lemma 4.7.9 O3(G) is not isomorphic to C9.

Proof: Suppose O3(G) = C9. Then CG(O3(G)) embeds into GL2(Q(ζ9)). Thus G issoluble. If F (G) = ±C9 then, by Lemma 2.2.1, G contains a subgroup N isomorphic toC18.C3 of index at most 2. But then O3(N) = O3(G) has order 27. So we may assumethat F (G) = C9⊗H with H 'C4, D8 or Q8. In any case G contains an irreduciblecyclic subgroup of order 36. Hence the result follows from Lemma 4.7.4. �

Lemma 4.7.10 If O3(G) = C3, then G is conjugate to one of √−3[6.U4(3).2]6,√−3[C6]1⊗M6,2, √−3[±3.M10]6, √−15[±3.Alt6·21]6, √−15[±3.Alt6 :21]6, ∞,2[SL2(5)]3◦C3,√−7[±L2(7)]3 ⊗√

−7∞,3[S3]1, √−7[±L2(7)]3⊗A2.

Proof: By Table 2.5.1, E(G) is either trivial, irreducible or isomorphic to Alt5, L2(7),U4(2). Let N := O3(G)E(G). This leaves the following cases:

(a) If E(G) = 1 then G is soluble and O2(G) ≤ CG(O3(G)) embeds intoGL6(Q(

√−3)). Thus O2(G) is isomorphic to one of C2, C4, D8 or Q8. The

normal subgroup U := Bo(O2(G))O3(G) E G is self centralizing and embedsinto GL2(Q(

√−3)). But since G/U ≤ Out(U) is a 2-group, this contradicts

Corollary 2.2.3.

(b) If E(G)'Alt5 then C := End(N)'Q(√

5,√−3) and denote by K 'Q(

√5) its

maximal totally real subfield. Then N fixes up to isomorphism 4 lattices whoseendomorphism ring equals ZC . But only one of them, call it L, has minimalsuperlattices which have not this maximal order as endomorphism ring. So L isN -normal critical since C has class number 1 (see Remark 2.2.8). We find someF ∈ F>0(N) such that det(L, F ) = 24 · 36. Moreover G/N ≤ C2 × C2 showsthat Π(|G|) = {2, 3, 5}. By 2.5.4 G is conjugate to AutQ(

√−d)(L, p

α5F ) for some

α ∈ {0, 1} and d ∈ {3, 15}.

form Q(√−3) Q(

√−15)

F � √−3[C6]61 � √−15[±3.Alt6 ·21]6p5F √

−3[C6]1⊗M6,2 � √−15[±3.Alt6 :21]6

So G'√−3[C6]1⊗M6,2.

(c) If E(G)'L2(7) then G contains an irreducible cyclic subgroup of order 21. ThusG is conjugate to √−7[±L2(7)]3 ⊗√

−7∞,3[S3]1 or √−7[±L2(7)]3⊗A2 by Lemma 4.7.5.

(d) If E(G)'Alt7 or E(G)'U4(2) then N is irreducible with commuting alge-bra Q(

√−3). One checks that they have only one s.i.m.f. supergroup which

is √−3[6.U4(3).2]6. But this group does not contain N as a normal subgroup.

(e) Finally if E(G) is irreducible (and quasisimple), Lemma 4.7.6 shows that G isconjugate to √−3[6.U4(3).2]6,√−3[±3.M10]6, √−15[±3.Alt6·21]6, √−15[±3.Alt6 :21]6or ∞,2[SL2(5)]3 ◦ C3. �

Page 71: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.7. DIMENSION 12 71

Lemma 4.7.11 If Op(G) = 1 for all odd primes p, then O2(G) is conjugate to one ofC2, C4 or D8 and E(G) 6= 1.

Proof: If O2(G) is not isomorphic to C2, C4 and D8, then Corollary 2.1.16 and Ta-ble 2.5.2 show that O2(G) ∈ O := {Q8, C8, D16, QD16, D8⊗C4, 21+4

+ }.Suppose first E(G) = 1. For any possible O2(G) it follows from loc. cit. thatG/Bo(O2(G)) is a 2-group and Bo(O2(G)) embeds into GLk(Q) for some k ∈ {1, 2, 4}.This contradicts Corollary 2.2.3. Hence E(G) 6= 1.Finally, suppose O2(G) ∈ O. Then End(O2(G))'GL3(Q) where Q is isomorphic toone of Q,Q(i),Q(

√±2) or Q∞,2. But then Table 2.5.1 implies E(G) = 1 which is

impossible (note that Q(√

5) and Q(√−7) do not split Q∞,2). �

Lemma 4.7.12 If F (G) is conjugate to C4 or D8 then G is conjugate to one of

∞,3[U3(3)]3 ◦ C4, √−5[i[C4]12+

� Alt5]6, √−5[i[C4]12−

� Alt5]6, i[C4]1⊗A(2)6 ,

i[√−7[±L2(7)]32(2)

@×⊃ i[C4]1]6, i[L2(7)2(2)

⊗i[C4]1]6, i[C4]1⊗A6, i[C4]1⊗E6

Proof: If E(G) is irreducible, then G'∞,3[U3(3)]3 ◦ C4 according to Lemma 4.7.6.Suppose now that E(G) is not irreducible. Then E(G) embeds into GL6(Q(i)) sinceF (G) contains a characteristic subgroup U isomorphic to C4. Table 2.5.1 shows thatthere are five possibilities left.

(a) If E(G)'Alt5 then N := Alt5⊗C4 E G. The commuting algebra of N isisomorphic to Q(i,

√5) with Q(

√5) as maximal totally real subfield. Since

G/N ≤ C2 × C2 we have Π(|G|) = {2, 3, 5}. Up to isomorphism, N fixes 3lattices that have the maximal order as endomorphism ring. One of them isN -normal critical, L say. One finds some F ∈ F>0(N) that is integral on L suchthat det(L, F ) = 1. By Table 2.5.4 this leaves 4 candidates:

form Q(√−5) Q(i)

F √−5[i[C4]1

2−

� Alt5]6 � i[C4]61

p5F √−5[i[C4]1

2+

� Alt5]6 � i[C4]61

So G'√−5[i[C4]12−

� Alt5]6 or √−5[i[C4]12+

� Alt5]6.

(b) If E(G) is conjugate to √−7[L2(7)]3 then N := √−7[±L2(7)]3⊗C4 E G. The

commuting algebra C of N is isomorphic to Q(i,√−7). Let K 'Q(

√7) be

its maximal totally real subfield. Since G/N ≤ Out(N)'C2 × C2, we haveΠ(|G|) = {2, 3, 7}. The group N fixes only one lattice L and there exists someF ∈ F>0(H) that is integral on L such that det(L, F ) = 76. Since EndZN(L) isthe maximal order in C and since Z∗K,>0 = NrC/K(Z∗C) we may restrict ourselvesto one class of totally positive units. Let 〈σ〉 = Gal(C/K)'C2. One finds thatσ is conjugation by some x ∈ NGL12(Q)(N) ∩ GL(L) with xFxtr = F . So x

Page 72: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

72 CHAPTER 4. THE CLASSIFICATION

interchanges the two prime ideals over 3 (and necessarily fixes the unique primeideals over 2 and 7). By Table 2.5.4 this leaves the following 8 automorphismgroups:

form Q(i) Q(√−7)

F i[C4]1⊗A(2)6

√−7[±L2(7)]23

p2F i[√−7[±L2(7)]32(2)

@×⊃ i[C4]1]6 � √−7[±L2(7)]23

p3p−17 F ∞,3[U3(3)]4 ◦ C4

√−7[±L2(7)]3 ⊗√

−7∞,3[S3]1

p2p3p−17 F N N

So G' i[C4]1⊗A(2)6 or i[√−7[±L2(7)]3

2(2)

@×⊃ i[C4]1]6.

(c) If E(G) is conjugate to L2(7) with character 2χ6 then N := L2(7)⊗C4 E Gfixes up to isomorphism 6 lattices and its commuting algebra is isomorphic to

Q(i). One checks that N is only contained in i[C4]1⊗A6 or i[L2(7)2(2)

⊗i[C4]1]6. So

G' i[L2(7)2(2)

⊗i[C4]1]6.

(d) If E(G)'Alt7 then Bo(F ∗(G))' i[C4]1⊗A6 is already s.i.m.f..

(e) If E(G)'U4(2) then Bo(F ∗(G))' i[C4]1⊗E6 is already s.i.m.f.. �

Lemma 4.7.13 If F (G)'C2 then G is conjugate to √−2[±L2(7)·2]6, √−11[SL2(11)]6or √−2[∞,2[SL2(5)]3 :2]6.

Proof: If E(G) is irreducible, then Lemma 4.7.6 shows that G'√−11[SL2(11)]6. Oth-erwise Table 2.5.1 shows that E(G) is isomorphic to Alt5, Alt7, U4(2) or L2(7)(with two representations). The 6-dimensional representation of Alt5 extends to

±Alt5 : 2 in GL6(Q) by [CCN+85]. The element 1+√

52∈ Q(

√5)'CQ6×6(Alt5) has

norm −1. Thus also ±Alt5 ·2 < GL6(Q). So E(G) 6'Alt5. If E(G)'Alt7 or U4(2)then G/ ± E(G) ≤ Out(E(G))'C2'Bo(E(G))/ ± E(G) shows that G = Bo(E(G))is reducible. Suppose E(G) is conjugate to L2(7) with character 2χ3ab. ThenG/±E(G) ≤ Out(E(G))'C2 contradicts Lemma 2.2.1. Finally suppose E(G) is con-jugate to L2(7) with character 2χ6. The extension ±L2(7) :2 embeds into GL6(Q(

√2))

(see [CCN+85]). The split extension √−2[±L2(7)·2]6 < GL6(Q(√−2)) is maximal finite

as one easily verifies. �

Page 73: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.8. DIMENSION 14 73

4.8 Dimension 14

Theorem 4.8.1 The s.i.m.f. subgroups G of Sp14(Q) are

# G |G| |Z(G)| Lmin r.i.m.f. supergroups

[2, 1, 7] i[C4]71 218 ·32 ·5·7 3 [1, 1, 28] B14

1 i[C4]1⊗E7 211 ·34 ·5·7 3 [1, 2, 252] E27

2 i[U3(3) ◦ C4]7 27 ·33 ·7 4 [26 ·32, 3, 112] [U3(3)2◦ C4]14

[2, 2, 7] √−3[C6]71 211 ·39 ·5·7 1 [37, 2, 42] A7

2

3 √−3[C6]1⊗E7 210 ·35 ·5·7 2 [22 ·37, 4, 378] A2⊗E7

Proof: By explicit calculations, one verifies that the above table is correct and yieldss.i.m.f. groups. Further the r.i.m.f. supergroups are easily constructed since all s.i.m.f.groups are uniform. It remains to show the completeness of the classification. Thegroup √−3[C6]71 is s.i.m.f. by Lemma 2.1.21. The group i[C4]71 fixes 3 lattices and hasQ(i) as commuting algebra. One verifies that it is s.i.m.f.. So it remains to prove thatthe completeness of the s.p.i.m.f. matrix groups.

Let G < Sp14(Q) be s.p.i.m.f.. Then Corollary 4.1.2 shows that E(G) 6= 1. ThusN := Bo(E(G)) is conjugate to A7, E7 or U3(3) ◦ C4 by Table 2.5.1.

The group i[U3(3) ◦ C4]7 is already s.i.m.f.. In the other two cases, Out(N) istrivial. Thus by Lemma 4.1.1, G contains a subgroup conjugate to Ck⊗N withk ∈ {4, 6}. If N 'E7, this yields the maximal finite subgroups stated above. Thegroups √−3[C6]1⊗A7 and i[C4]1⊗A7 are irreducible and fix 4 and 7 lattices respec-tively. One checks that they are only contained in √−3[C6]1⊗E7 and i[C4]1⊗E7 re-spectively. �

Page 74: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

74 CHAPTER 4. THE CLASSIFICATION

4.9

Dim

ensi

on

16

Theore

m4.9

.1T

hes.

i.m

.f.

subg

rou

psG

ofSp

16(Q

)ar

e

#G

|G|

|Z(G

)|Lmin

r.i.

m.f

.su

perg

rou

ps

[8,1,2

]i[

(21+

4+⊗C

4).S

6]2 4

221·3

4·5

21

[1,2,4

80]

E2 8

[2,1,8

]i[C

4]8 1

223·3

2·5·7

3[1,1,3

2]B

16

[4,1,4

]i[

(D8⊗C

4).S

3]4 2

223·3

51

[28,2,9

6]F

4 4

1i[C

4] 1⊗E

821

5·3

5·5

2·7

1[1,2,4

80]

E2 8

2i[

(21+

6+⊗C

4).

Sp

6(2

)]8

217·3

4·5·7

1[2

8,4,4

320]

F4⊗F

4

[4,2,4

]( i

[C4] 1⊗A

2)4

215·3

52

[38,2,4

8]A

8 2

[8,2,2

]( i

[(D

8⊗C

4).S

3] 2⊗A

2)2

213·3

42

[28·3

8,4,1

44]

(A2⊗A

4)2

3i[√−

3[S

p4(3

)◦C

3] 4

2(2

)

@×⊃i[C

4] 1

] 829·3

5·5

2[2

8·3

8,6,9

60]

[(Sp

4(3

)◦C

3)

2 � √−

3SL

2(3

)]16

4i[

(21+

4+⊗C

4).S

6] 4⊗A

221

1·3

3·5

2[3

8,4,7

20]

A2⊗E

8

5i[C

4] 1⊗M

8,3

26·3·7

4[3

2·7

6,4,1

68]

M2 8,3

6∞,3

[SL

2(7

)]4◦C

425·3·7

4[3

8·7

4,6,3

36]

[SL

2(7

)2(3

) ◦S

3] 1

6

[4,3,4

]√−

2[G

L2(3

)]4 2

219·3

51

[28,2,9

6]F

4 4

[8,3,2

]√−

2[ ∞

,2[2

1+

4−

.Alt

5] 2

:2]2 4

217·3

2·5

21

[1,2,4

80]

E2 8

[8,4,2

]√−

2[F

4:2

]2 421

7·3

41

[28,2,9

6]F

4 4

7√−

2[ ∞

,2[2

1+

6−

.O− 6

(2)]

4:2

] 821

4·3

4·5

1[2

8,4,4

320]

F4⊗F

4

8√−

2[2

1+

6+

.(A

lt8:2

)]8

214·3

2·5·7

1[1,2,4

80]

E2 8

9√−

2[G

L2(3

)]2⊗A

427·3

2·5

2[2

8·5

4,4,2

40]

A4⊗F

4

10√−

2[G

L2(3

)]2⊗ √ −

2∞,5

[SL

2(5

):2]

227·3

2·5

2[5

8,4,2

40]

[(SL

2(5

)2 �

SL

2(5

)):2

]2 8

[2,2,8

]√−

3[C

6]8 1

215·3

10·5·7

1[3

8,2,4

8]A

8 2

[8,5,2

]√−

3[S

p4(3

)◦C

3]2 4

215·3

10·5

21

[1,2,4

80]

E2 8

11√−

3[C

6] 1⊗E

821

4·3

6·5

2·7

1[3

8,4,7

20]

A2⊗E

8

[4,4,4

]( ∞

,2[S

L2(3

)]1◦C

3)4

215·3

92

[28,2,9

6]F

4 4

[8,6,2

](√−

3[C

6] 1⊗F

4)2

215·3

62

[28·3

8,4,1

44]

(A2⊗F

4)2

Page 75: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.9. DIMENSION 16 75#

G|G|

|Z(G

)|Lmin

r.i.

m.f

.su

perg

rou

ps

12∞,2

[21+

6−

.O− 6

(2)]

4◦C

321

3·3

5·5

2[2

8,4,4

320]

F4⊗F

4

13√−

3[S

p4(3

)◦C

3] 4⊗ √ −

3∞,2

[SL

2(3

)]1

29·3

6·5

2[2

8·3

8,6,9

60]

[(Sp

4(3

)◦C

3)

2 � √−

3SL

2(3

)]16

[8,7,2

]( ∞

,5[S

L2(5

):2]

2◦C

3)2

29·3

4·5

22

[58,4,2

40]

[(SL

2(5

)2 �

SL

2(5

)):2

]2 8

[8,8,2

](√−

3[C

6] 1⊗A

4)2

29·3

4·5

22

[38·5

4,4,1

20]

(A2⊗A

4)2

14√−

3[C

6] 1⊗

[(SL

2(5

)2 �

SL

2(5

)):2

] 827·3

3·5

22

[38·5

8,8,3

60]

[(SL

2(5

)2 �

SL

2(5

)):2

] 8⊗A

2

15( ∞

,2[S

L2(3

)]1◦C

3)⊗A

426·3

3·5

4[2

8·5

4,4,2

40]

A4⊗F

4

16( ∞

,2[S

L2(3

)]1◦C

3)⊗ √ −

3∞,5

[SL

2(5

):2]

226·3

3·5

4[2

8·3

8·5

8,1

2,48

0][S

L2(5

)2(3

)

@×⊃ ∞,3

(SL

2(3

)2 �C

3)]

16

17∞,5

[SL

2(5

)2 � √5D

10] 4◦C

325·3

2·5

24

[54,4,2

640]

[((S

L2(5

)◦

SL

2(5

)):2

)2 � √5D

10] 1

6

18∞,2

[SL

2(5

)2(2

)

@×⊃D

8] 4◦C

326·3

2·5

4[2

8·5

8,8,1

200]

[SL

2(5

)2(2

)

@×⊃ ∞,2

21+

4−

.Alt

5] 1

6

19√−

3[C

60.(C

4×C

2)]

825·3·5

8[2

8·3

8·5

4,8,3

60]

[D120.(C

4×C

2)]

16

[8,9,2

]√−

5[√

5,∞

[SL

2(5

)]1

2− �C

4]2 4

211·3

2·5

22

[1,2,4

80]

E2 8

[8,1

0,2]

√−

5[√

5,∞

[SL

2(5

)]1

2+ �C

4]2 4

211·3

2·5

22

[58,4,2

40]

[(SL

2(5

)2 �

SL

2(5

)):2

]2 8

20√−

5[(

(SL

2(5

)◦

SL

2(5

)):2

)2− �i[C

4] 1

] 828·3

2·5

22

[1,2,4

80]

E2 8

21√−

5[(

(SL

2(5

)◦

SL

2(5

)):2

)2+ �i[C

4] 1

] 828·3

2·5

22

[58,4,2

40]

[(SL

2(5

)2 �

SL

2(5

)):2

]2 8

[8,1

1,2]

√−

5[C

20:C

4]2 4

29·5

24

[54,2,8

0]A

4 4

22√−

5[ i

[(D

8⊗C

4).S

3] 2

2+ � i√

5,∞

[SL

2(5

)]1] 8

28·3

2·5

2[2

8,4,4

320]

F4⊗F

4

23√−

5[ i

[(D

8⊗C

4).S

3] 2

2− � i√

5,∞

[SL

2(5

)]1] 8

28·3

2·5

2[2

8·5

8,8,1

200]

[SL

2(5

)2(2

)

@×⊃ ∞,2

21+

4−

.Alt

5] 1

6

24√−

5[ ∞

,5[S

L2(5

)2 � √5D

10] 4

:2] 8

26·3·5

24

[54,4,2

640]

[(SL

2(5

)◦

SL

2(5

)).2

2 � √5D

10] 1

6

Page 76: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

76 CHAPTER 4. THE CLASSIFICATION

#G

|G|

|Z(G

)|Lmin

r.i.

m.f

.su

perg

rou

ps

25√−

5[ i

[(D

8⊗C

4).S

3] 2

2 �D

10] 8

27·3·5

4[2

8·5

4,4,2

40]

A4⊗F

4

[8,1

2,2]

√−

6[ ∞

,2[S

4] 1

2− �C

3]2 4

211·3

42

[1,2,4

80]

E2 8

[8,1

3,2]

√−

6[ ∞

,2[S

4] 1

2+ �C

3]2 4

211·3

42

[28,2,9

6]F

4 4

26√−

6[ ∞

,2[2

1+

4−

.Alt

5] 2

2(3

)

@×⊃A

2] 8

29·3

2·5

2[1,2,4

80]

E2 8

27√−

6[ ∞

,2[2

1+

4−

.Alt

5] 2

2(3

)

@×⊃ i∞,3

[S3] 1

] 829·3

2·5

2[2

8,4,4

320]

F4⊗F

4

[8,1

4,2]

√−

6[D

16

2 �√−

3[C

6] 1

]2 421

1·3

24

[38,2,4

8]A

8 2,

(A2⊗F

4)2

28√−

6[ ∞

,2[S

L2(3

)]1

2 � i∞,3

[SL

2(9

)]2] 8

27·3

3·5

2[3

8,4,7

20]

[(SL

2(9

)2(3

)

� ∞,3

SL

2(9

)).2

] 16

29√−

6[F

4

2 �∞,3

[S3] 1

] 829·3

32

[38,4,7

20]

A2⊗E

8

30√−

6[(F

4⊗A

2):

2]8

29·3

32

[28·3

8,4,1

44]

(F4⊗A

2)2

[8,1

5,2]

√−

7[2.A

lt7]2 4

29·3

4·5

2·7

21

[1,2,4

80]

E2 8

31√−

7[2.A

lt7] 4⊗A

225·3

3·5·7

2[3

8,4,7

20]

E8⊗A

2

32√−

7[2.A

lt7] 4⊗ √ −

7∞,3

[S3] 1

25·3

3·5·7

2[3

8·7

8,1

2,16

80]

[2.A

lt7

2(3

)

@×⊃ √ −7S

3] 1

6

33√−

10[√−

2[G

L2(3

)]2

2+ � √−

2

√5,∞

[SL

2(5

)]1] 8

27·3

2·5

2[1,2,4

80]

E2 8

34√−

10[√−

2[G

L2(3

)]2

2− � √−

2

√5,∞

[SL

2(5

)]1] 8

27·3

2·5

2[5

8,4,2

40]

[(SL

2(5

)2 �

SL

2(5

)).2

]2 8

35√−

10[√−

2[G

L2(3

)]2

2 �D

10] 8

26·3·5

4[2

8·5

4,5,2

40]

A4⊗F

4

[8,1

6,2]

√−

15[√

5,∞

[SL

2(5

)]1

2− �C

3]2 4

29·3

4·5

22

[1,2,4

80]

E2 8

[8,1

7,2]

√−

15[√

5,∞

[SL

2(5

)]1

2+ �C

3]2 4

29·3

4·5

22

[58,4,2

40]

[(SL

2(5

)2 �

SL

2(5

)):2

]2 8

Page 77: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.9. DIMENSION 16 77#

G|G|

|Z(G

)|Lmin

r.i.

m.f

.su

perg

rou

ps

36√−

15[(

(SL

2(5

)◦

SL

2(5

)):2

)2− �√−

3[C

6] 1

] 827·3

3·5

22

[38,4,7

20]

A2⊗E

8

37√−

15[(

(SL

2(5

)◦

SL

2(5

)):2

)2+ �√−

3[C

6] 1

] 827·3

3·5

22

[38·5

8,8,3

60]

A2⊗

[(SL

2(5

)2 �

SL

2(5

)):2

] 8

[8,1

8,2]

√−

15[C

30:C

4]2 4

27·3

2·5

24

[38·5

4,4,1

20]

(A2⊗A

4)2

38√−

15[(√

5,∞

[SL

2(5

)]1◦C

3)

2 � √5D

10] 8

25·3

2·5

24

[54,4,2

640]

[((S

L2(5

)◦

SL

2(5

)):2

)2 � √5D

10] 1

6

[8,1

9,2]

(√5,∞

[SL

2(5

)]1◦C

5)2

27·3

2·5

41

[1,2,4

80]

E2 8,[

(SL

2(5

)2 �

SL

2(5

)):2

]2 8

[4,5,4

]ζ 1

0[C

10]4 1

27·3·5

41

[54,2,8

0]A

4 4

39ζ 1

0[C

10] 1⊗ √ 5

((SL

2(5

)◦

SL

2(5

)):2

)26·3

2·5

31

[54,4,2

640]

[((S

L2(5

)◦

SL

2(5

)):2

)2 � √5D

10] 1

6

40ζ 1

0[C

10] 1⊗ √ 5′∞

,2[2

1+

4−

.Alt

5] 2

27·3·5

22

[28,4,4

320]

F4

∼ ⊗F

4,

[SL

2(5

)2(2

)

@×⊃ ∞,2

21+

4−

.Alt

5] 1

6

[8,2

0,2]

( ζ10[C

10] 1⊗A

2)2

25·3

3·5

22

[38·5

4,4,1

20]

(A2⊗A

4)2

41ζ 1

0[C

10] 1⊗F

427·3

2·5

2[2

8·5

4,4,2

40]

A4⊗F

4

42ζ 1

0[C

10] 1⊗ √ 5′∞

,3[S

L2(9

)]2

24·3

2·5

22

[38,4,7

20]

[(SL

2(9

)2(3

)

⊗ ∞,3

SL

2(9

)).2

] 16,

[SL

2(5

)2(3

)

@×⊃ ∞,3

SL

2(9

)]16

43(√

5,∞

[SL

2(5

)]1◦C

5)⊗A

224·3

2·5

22

[38,4,7

20]

A2⊗E

8,A

2⊗

[(SL

2(5

)2 �

SL

2(5

)):2

] 8

44ζ 1

0[C

10] 1⊗ √ 5′∞

,3[S

L2(3

)2 �C

3] 2

24·3

2·5

4[2

8·3

8,6,9

60]

[SL

2(5

)2(3

)

@×⊃ ∞,3

(SL

2(3

)2 �C

3)]

16,

[(Sp

4(3

)◦C

3)

2 � √−

3SL

2(3

)]16

45ζ 1

0[C

60.(C

2×C

2)]

424·3·5

4[2

8·3

8·5

4,8,3

60]

D120.(C

4×C

2)

[8,2

1,2]

ζ 16−ζ−

116

[QD

32]2 2

211

4[1,1,3

2]B

16,F

4 4

46ζ 1

6−ζ−

116

[(D

8⊗QD

32).S

3] 4

28·3

2[1,2,4

80]

E2 8,F

4 4

Page 78: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

78 CHAPTER 4. THE CLASSIFICATION

#G

|G|

|Z(G

)|Lmin

r.i.

m.f

.su

perg

rou

ps

47ζ 1

6−ζ−

116

[QD

32] 2⊗A

226·3

4[3

8,2,4

8]A

8 2,

(A2⊗F

4)2

48√

2·(ζ 1

0−ζ−

110

)[√

2,∞

[S4] 1

2− � √5′ζ 1

0[C

10] 1

] 425·3·5

2[1,2,4

80]

E2 8,

[(SL

2(5

)2 �

SL

2(5

)):2

]2 8

49√

2·(ζ 1

0−ζ−

110

)[√

2,∞

[S4] 1

2+ � √5′ζ 1

0[C

10] 1

] 425·3·5

2[2

8,4,4

320]

F4

∼ ⊗F

4,

[SL

2(5

)2(2

)

@×⊃ ∞,2

21+

4−

.Alt

5] 1

6

50√

2·(ζ 1

0−ζ−

110

)[D

16

2 �ζ 1

0[C

10] 1

] 425·5

4[5

4,2,8

0]A

4 4,A

4⊗F

4

51√

3·(ζ 1

0−ζ−

110

)[C

60.(C

2×C

2)]

4,(

1,1,1

)24·3·5

4[1,2,4

80]

E2 8,

[(SL

2(5

)2 �

SL

2(5

)):2

]2 8

52√

3·(ζ 1

0−ζ−

110

)[C

60.(C

2×C

2)]

4,(i,

1,1

)24·3·5

4[2

8,4,4

320]

F4⊗F

4,

[SL

2(5

)2(2

)

@×⊃ ∞,2

21+

4′ .A

lt5] 1

6

53√

3·(ζ 1

0−ζ−

110

)[C

60.(C

2×C

2)]

4,(

1,1,−

1)

24·3·5

4[5

4,4,2

640]

[(SL

2(5

)◦

SL

2(5

)).2

2 � √5D

10] 1

6

54√

3·(ζ 1

0−ζ−

110

)[C

60.(C

2×C

2)]

4,(

1,−

1,1

)24·3·5

4[3

8,4,7

20]

A2⊗E

8,A

2⊗

[(SL

2(5

)2 �

SL

2(5

)):2

] 855

√3·(ζ 1

0−ζ−

110

)[C

60.(C

2×C

2)]

4,(i,

1,−

1)

24·3·5

4[2

8·5

4,4,2

40]

A4⊗F

4

56√

3·(ζ 1

0−ζ−

110

)[C

60.(C

2×C

2)]

4,(i,−

1,1

)24·3·5

4[2

8·3

8,6,9

60]

[(Sp

4(3

)◦C

3)

2 � √−

3SL

2(3

)]16,

[(SL

2(5

)2(3

)

@×⊃ ∞,3

(SL

2(3

)2 �C

3)]

16

57√

3·(ζ 1

0−ζ−

110

)[C

60.(C

2×C

2)]

4,(

1,−

1,−

1)

24·3·5

4[3

8·5

4,4,1

20]

(A2⊗A

4)2

58√

3·(ζ 1

0−ζ−

110

)[C

60.(C

2×C

2)]

4,(i,−

1,−

1)

24·3·5

4[2

8·3

8·5

4,8,3

60]

[D120.(C

4×C

2)]

16

59√

3·(ζ 1

6−ζ−

116

)[θ 1

6,∞

[Q32] 1

2 �C

3] 4

26·3

4[1,2,4

80]

E2 8,F

4 4

60√

3·(ζ 1

6−ζ−

116

)[D

32

2 �√−

3[C

6] 1

] 426·3

4[3

8,2,4

8]A

8 2,

(A2⊗F

4)2

61Q

(i,√

3,√

5)[C

60.C

2] 2

23·3·5

4[1

14,4,4

80]

[D120.C

2] 1

6,1,

[D120.C

2] 1

6,2

62ζ 3

2−ζ−

132

[QD

64] 2

262

[1,1,3

2]B

16,F

4 4

63ζ 3

4[C

34] 1

2·1

71

[17,

2,27

2]A

16,A

(3)

16

Page 79: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.9. DIMENSION 16 79

The eleven s.p.i.m.f. subgroups G < Sp16(Q) with an irreducible normal cyclic sub-group of order 60 have the following presentations:

• √−3[C60.(C4 × C2)]4'⟨x, α, β | x60, α4, β2, xα = x7, xβ = x19, αβ = x15α

⟩• ζ10 [C60.(C2 × C2)]4'

⟨x, α, β | x60, α2, β2, xα = x11, xβ = x31, αβ = x15α

⟩• Q(i,

√3,√

5)[C60.C2]2'〈x, α | x60, α2 = x15, xα = x49〉.

• √3·(ζ10−ζ−110 )[C60.(C2 × C2)]4,(a,b,e) is a Q-irreducible matrix group isomorphic to⟨x, α, β | x60, xα = −x−1, xβ = x19, α2 = a, β2 = b, αβ = eβα−1

⟩for e, b ∈ {±1} and a ∈ {1, i := x15}.

To distinguish between the matrix groups √−5[i[(D8⊗C4).S3]22+

�i

√5,∞[SL2(5)]1]8 and

√−5[i[(D8⊗C4).S3]2

2−

�i

√5,∞[SL2(5)]1]8 we make the following convention. These two

groups are generated by i[(D8⊗C4).S3]2⊗i

√5,∞[SL2(5)]1 and some α that centralizes

the unique normal subgroup isomorphic to Q8 in O2(G)'D8⊗C4'Q8 ◦ C4. Up toconjugacy one has the two choices α2 = I16 and α2 = −I16. In the first case we write2+

�i

and in the second case we use2−

�i

.

Similarly, the two s.p.i.m.f. matrix groups √−10[√−2[GL2(3)]22+

�√−2

√5,∞[SL2(5)]1]8 and

√−10[√−2[GL2(3)]2

2−

�√−2

√5,∞[SL2(5)]1]8 are generated by √−2[GL2(3)]2 ⊗√

−2

√5,∞[SL2(5)]1

and some α that centralizes Bo(O2(G))'∞,2[SL2(3)]1. Again there are up to conjugacy

two possibilities. We write2+

�√−2

for α2 = I16 and2−

�√−2

means α2 = −I16.

Lemma 4.9.2 All groups listed in Theorem 4.9.1 are s.i.m.f..

Proof: The candidates for the maximal finite symplectic imprimitive matrix groupscome from the classification of the s.p.i.m.f. subgroups of Sp2m(Q) with m ∈ {1, 2, 4}.All groups except i[C4]81 and ζ16−ζ−1

16[QD32]22 are s.i.m.f. by Lemma 2.1.21. These two

groups have Q(i) and Q(ζ16 − ζ−116 ) as commuting algebras and they fix up to iso-

morphism 3 and 4 lattices respectively. One checks that they are maximal finite bycomputing the corresponding automorphism groups (wrt. the full form space).

So we may now assume that G < Sp16(Q) is s.p.i.m.f.. According to Theorem 3.1.1,

ζ34 [C34]1 is the unique s.i.m.f. subgroup of Sp16(Q) whose order is a multiple of 17.If G is any other group from the above table whose order is not divisible by 17 andwhich is not isomorphic to C60.C2, then E := End(G) is a minimal totally complexfield. Thus these groups are checked to be s.i.m.f. by computing AutE(L, F ) where F ∈F>0(G) is fixed and L runs through a system of representatives for the isomorphismclasses of Z(G). Obviously, G is not a subgroup of [D120.C2]16,i see ([NP95, (IV.1)

Page 80: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

80 CHAPTER 4. THE CLASSIFICATION

Theorem]). Thus loc. cit. shows that any r.i.m.f. supergroup of G fixes a primitivelattice of determinant only divisible by 2, 3, 5 or 7. So the r.i.m.f. supergroups can beconstructed by the m-parameter argument.Finally, suppose that G = Q(i,

√3,√

5)[C60.C2]2. Let C := End(G)'Q(i,√

3,√

5) and

denote by K 'Q(√

3,√

5) its maximal totally real subfield. Since C is not minimaltotally complex, the m-parameter argument would be quite tedious. We give an-other proof of the maximality, using only the classification of the r.i.m.f. subgroups ofGL16(Q) (see [NP95, (IV.1) Theorem]).The group G fixes up to isomorphism four lattices L1, . . . , L4 which can be chosen suchthat the index [L1 : Li] is a power of 5. Further one finds some F ∈ F>0(G) that isintegral on L1 with det(L1, F ) = 114.Suppose H is a r.i.m.f. supergroup of G. Let (L′, F ′) ∈ Z(G) × F>0(G) be integraland of minimal determinant among all such integral pairs. Let d = det(L′, F ′). Theclassification of the r.i.m.f. subgroups of GL16(Q) shows that Π(d) ⊆ {2, 3, 5, 7, 11}.There exist 1 ≤ i ≤ 4, c ∈ C and x ∈ K>0 such that L′ = Lic and F ′ = xF . Then(L′, F ′) is isometric to (Li, xNrC/K(c−1)F ). If we set a := xNrC/K(c−1) ∈ K>0 thend = det(Li, F )·NrK/Q(a)4 = 5k ·114 ·NrK/Q(a)4 for some k ∈ Z. Since the prime idealsof ZK over 2, 3, 5 and 7 are generated by Elements in K>0 and the ideals over 11 arenot, this implies that d is divisible by 11. The classification of the r.i.m.f. subgroupsof GL16(Q) shows that H can only be conjugate to [D120.C2]16,1 or [D120.C2]16,2. Oneimmediately constructs G as a subgroup of these groups. In any case [H : G] = 2and H is not symplectic. This implies that G is s.i.m.f. and we have found its r.i.m.f.supergroups. �

It remains to prove that Theorem 4.9.1 contains every conjugacy class of s.p.i.m.f.matrix groups. This is accomplished in the remainder of this section. As always, wefirst classify the s.i.m.f. groups that contain an irreduble cyclic subgroup. Afterwards,we turn to a case by case discussion of the various Fitting subgroups.But before we start, we find all s.p.i.m.f. groups that contain some irreducible normalsubgroup N where End(N) is a quaternion algebra.

Lemma 4.9.3 If G < Sp16(Q) is s.p.i.m.f. and contains a normal subgroup N con-jugate to ∞,3[SL2(7)]4, then G is conjugate to ∞,3[SL2(7)]4 ◦ C4.

Proof: The commuting algebra of N is isomorphic to Q∞,3 and Out(N)'C2. Henceby Remark 2.2.17, G contains a subgroup conjugate to N ◦ C4, N ◦ C3 or N.2. Thefirst group is maximal finite. The other two groups fix 4 and 16 lattices respectively.One checks that they both have only one s.i.m.f. supergroup, which is √−3[C6]81. �

Lemma 4.9.4 If G < Sp16(Q) is s.p.i.m.f. and contains a normal subgroup N ' 21+6− ,

then G is conjugate to √−2[∞,2[21+6− .O−6 (2)]4 :2]8 or ∞,2[21+6

− .O−6 (2)]4 ◦ C3.

Proof: The normal subgroup B := Bo(N)'∞,2[21+6− .O−6 (2)]4 of G has Q∞,2 as com-

muting algebra and Out(B)'C2. Hence by Remark 2.2.17, G contains a subgroupconjugate to B ◦ C4, B ◦ C3 or B.2. Their commuting algebras are isomorphic toQ(i), Q(

√−3) and Q(

√−2) respectively. Since they only fix 1 or 2 lattices, it is easily

verified that B ◦ C4 is only contained in i[(21+6+ ⊗C4).Sp6(2)]8 whereas the other two

groups are s.i.m.f.. �

Page 81: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.9. DIMENSION 16 81

4.9.1 Irreducible cyclic subgroups

In this section, we classify all s.i.m.f. groups G < Sp16(Q) that contain an irreduciblecyclic subgroup U (under some assumptions on Π(|G|)). There are essentially 5 suchgroups U since | ± U | ∈ {k ∈ N | k ≡2 0 and ϕ(k) = 16} = {32, 34, 40, 48, 60}.The group ζ34 [C34]1 is the unique symplectic irreducible groupG whose order is divisibleby 17 as we have seen in Theorem 3.1.1.

Theorem 4.9.5 If |U | = 32 then G is conjugate to ζ16−ζ−116

[QD32]22, ζ32−ζ−132

[QD64]2,√−2[GL2(3)]42, i[C4]81 or i[(D8⊗C4).S3]42.

Proof: By Minkowski’s bound and Theorem 3.1.1 we have Π(|G|) ⊆ {2, 3, 5, 7, 11, 13}.The group U fixes only one lattice L since End(U)'Q(ζ32) has class number 1. Fur-ther there exists some F ∈ F>0(U) that is integral on L with det(L, F ) = 1. Letσ ∈ Gal(Q(θ32)/Q) such that σ interchanges the two prime ideals over 7. One findsthat σ is conjugation by some x ∈ NGL16(Q)(U) ∩ GL(L). Hence by Table 2.5.3,G must be conjugate to AutK(L, pa2p

b7F ) for some 0 ≤ b ≤ 4, a ∈ {0, 1} and

K ∈ {Q(i),Q(√−2),Q(ζ16 − ζ−1

16 ),Q(ζ32 − ζ−132 )}.

If K = Q(ζ16 − ζ−116 ) or Q(ζ32 − ζ−1

32 ) then G is conjugate to ζ16−ζ−116

[QD32]22or ζ32−ζ−1

32[QD64]2 respectively. Finally, AutQ(

√−2)(L, p

k2p

l7F ) ≤ √

−2[GL2(3)]42 and

AutQ(i)(L, pa2pb7F ) ≤

{i[C4]81 if 0 ≤ b ≤ 2

i[(D8⊗C4).S3]42 if b ∈ {3, 4}. �

Theorem 4.9.6 Suppose |U | = 40 and Π(|G|) = {2, 3, 5} or there exists some(L, F ) ∈ Z(G) × F>0(G) such that F is integral on L and Π(det(L, F )) ⊆ {2, 3, 5}.Then G is conjugate to one of

i[(21+4+ ⊗C4).S6]24, i[(2

1+6+ ⊗C4).Sp6(2)]8, i[√−3[Sp4(3) ◦ C3]4

2(2)

@×⊃ i[C4]1]8,

√−2[21+6

+ .(Alt8 :2)]8, √−2[∞,2[21+6− .O−6 (2)]4 :2]8, √−2[GL2(3)]2⊗A4,

√−2[GL2(3)]2 ⊗√

−2∞,5[SL2(5) :2]2, √−5[√5,∞[SL2(5)]1

2+

�C4]24,√−5[√5,∞[SL2(5)]1

2−�C4]24,

√−5[C20 :C4]24,

√−5[i[(D8⊗C4).S3]2

2

�D10]8, √−5[i[(D8⊗C4).S3]22+

�i

√5,∞[SL2(5)]1]8,

√−5[i[(D8⊗C4).S3]2

2−

�i

√5,∞[SL2(5)]1]8, √−10[√−2[GL2(3)]2

2+

�√2

√5,∞[SL2(5)]1]8,

√−10[√−2[GL2(3)]2

2−

�√2

√5,∞[SL2(5)]1]8, √−10[√−2[GL2(3)]2

2

�D10]8,

(√5,∞[SL2(5)]1 ◦ C5)2, ζ10 [C10]1 ⊗√5′∞,2[21+4

− .Alt5]2, ζ10 [C10]1 ⊗√5′∞,3[SL2(9)]2,

ζ10 [C10]1 ⊗√5′∞,3[SL2(3)

2�C3]2, ζ10 [C10]41, ζ10 [C10]1⊗F4, ζ10 [C60.(C2 × C2)]4,

√2·(ζ10−ζ−1

10 )[D10

2

� ζ16 [C10]1]4,

√2·(ζ10−ζ−1

10 )[√

2,∞[S4]12+

�√5′ ζ10

[C10]1]4, √2·(ζ10−ζ−110 )[

√2,∞[S4]1

2−

�√5′ ζ10

[C10]1]4 .

Page 82: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

82 CHAPTER 4. THE CLASSIFICATION

Proof: The commuting algebra End(U)'Q(ζ40) has class number 1. Thus U fixesonly one lattice L. Further there exists some F ∈ F>0(U) that is integral on L withdet(L, F ) = 1. Let σ ∈ Gal(Q(θ40)/Q) such that σ interchanges the two prime idealsover 3. One finds that σ is conjugation by some x ∈ NGL16(Q)(N) ∩ GL(L). Thusby Table 2.5.3, G must be conjugate to AutK(L, p2a

2 pb3pc5F ) for some a, b ∈ {0, 1},

0 ≤ c ≤ 2 and K ∈ {Q(i),Q(√−2),Q(

√−5),Q(

√−10),Q(ζ10),Q(

√2·(ζ10 − ζ−1

10 ))}.

form Q(i) Q(√−2)

F i[(21+4+ ⊗C4).S6]24

√−2[(21+6

+ .(Alt8 :2)]8p2

2F i[(21+6− ⊗C4).Sp6(2)]8 √

−2[∞,2[21+6− .O−6 (2)]4 :2]8

p3F � i[√−3[Sp4(3) ◦ C3]42(2)

@×⊃ i[C4]1]8 � √−2[(21+6+ .(Alt8 :2)]8

p22p3F i[√−3[Sp4(3) ◦ C3]4

2(2)

@×⊃ i[C4]1]8 � √−2[∞,2[21+6− .O−6 (2)]4 :2]8

p5F � i[(21+4+ ⊗C4).S6]24 � √−2[GL2(3)]2⊗A4

p22p5F � i[(2

1+6− ⊗C4).Sp6(2)]8 √

−2[GL2(3)]2⊗A4

p3p5F � i[(21+4+ ⊗C4).S6]24 � √−2[GL2(3)]2⊗A4

p22p3p5F � i[√−3[Sp4(3) ◦ C3]4

2(2)

@×⊃ i[C4]1]8 � √−5[i[(D8⊗C4).S3]22

�D10]8

p25F � i[(2

1+4+ ⊗C4).S6]24

√−2[GL2(3)]2 ⊗√

−2∞,5[SL2(5) :2]2

p22p

25F � i[(2

1+6− ⊗C4).Sp6(2)]8 � √−2[GL2(3)]2 ⊗√

−2∞,5[SL2(5) :2]2

p3p25F � i[(2

1+4+ ⊗C4).S6]24

√−2[21+6

− .(Alt8 :2)]8

p22p3p

25F � i[√−3[Sp4(3) ◦ C3]4

2(2)

@×⊃ i[C4]1]8 � √−5[i[(D8⊗C4).S3]22

�D10]8

form Q(√−5) Q(ζ10)

F √−5[√5,∞[SL2(5)]1

2−�C4]24 (√5,∞[SL2(5)]1 ◦ C5)2

p22F

√−5[i[(D8⊗C4).S3]2

2+

�i

√5,∞[SL2(5)]1]8 ζ10 [C10]1 ⊗√

5′∞,2[21+4

− .Alt5]2

p3F � √−2[(21+6+ .(Alt8 :2)]8 ζ10 [C10]1 ⊗√

5′∞,3[SL2(9)]2

p22p3F � √−5[i[(D8⊗C4).S3]2

2+

�i

√5,∞[SL2(5)]1]8 ζ10 [C10]1 ⊗√

5′∞,3[SL2(3)

2�C3]2

p5F √−5[C20 :C4]24 ζ10 [C10]41

p22p5F √

−5[i[(D8⊗C4).S3]22

�D10]8 ζ10 [C10]1⊗F4

p3p5F � √−2[GL2(3)]2⊗A4 ζ10 [C10]41

p22p3p5F √

−5[i[(D8⊗C4).S3]22

�D10]8 ζ10 [C60.(C2 × C2)]4

p25F

√−5[√5,∞[SL2(5)]1

2+

�C4]24 (√5,∞[SL2(5)]1 ◦ C5)2

p22p

25F

√−5[i[(D8⊗C4).S3]2

2−

�i

√5,∞[SL2(5)]1]8 ζ10 [C10]1 ⊗√

5′∞,2[21+4

− .Alt5]2

p3p25F � √−2[(21+6

+ .(Alt8 :2)]8 ζ10 [C10]1 ⊗√5′∞,3[SL2(9)]2

p22p3p

25F � √−5[i[(D8⊗C4).S3]2

2

�D10]8 ζ10 [C10]1 ⊗√5′∞,3[SL2(3)

2�C3]2

Page 83: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.9. DIMENSION 16 83

form Q(√−10) Q(

√2·(ζ10 − ζ−1

10 ))

F √−10[√−2[GL2(3)]2

2+

�√2

√5,∞[SL2(5)]1]8 √

2·(ζ10−ζ−110 )[

√2,∞[S4]1

2−

�√5′ ζ10

[C10]1]4

p22F � √−10[√−2[GL2(3)]2

2+

�√2

√5,∞[SL2(5)]1]8 √2·(ζ10−ζ−1

10 )[√

2,∞[S4]12+

�√5′ ζ10

[C10]1]4

p3F � i[√−3[Sp4(3) ◦ C3]42(2)

@×⊃ i[C4]1]8 � ζ10 [C10]1 ⊗√5′∞,3[SL2(9)]2

p22p3F � i[√−3[Sp4(3) ◦ C3]4

2(2)

@×⊃ i[C4]1]8 � ζ10 [C10]1 ⊗√5′∞,3[SL2(3)

2�C3]2

p5F � √−10[√−2[GL2(3)]22

�D10]8 √2·(ζ10−ζ−1

10 )[D16

2

� ζ10 [C10]1]4

p22p5F √

−10[√−2[GL2(3)]22

�D10]8 √2·(ζ10−ζ−1

10 )[D16

2

� ζ10 [C10]1]4

p3p5F � i[(21+4+ ⊗C4).S6]24 � ζ10 [C10]41

p22p3p5F � i[√−3[Sp4(3) ◦ C3]4

2(2)

@×⊃ i[C4]1]8 � ζ10 [C60.(C2 × C2)]4

p25F

√−10[√−2[GL2(3)]2

2−

�√2

√5,∞[SL2(5)]1]8 √

2·(ζ10−ζ−110 )[

√2,∞[S4]1

2−

�√5′ ζ10

[C10]1]4

p22p

25F � √−10[√−2[GL2(3)]2

2−

�√2

√5,∞[SL2(5)]1]8 √2·(ζ10−ζ−1

10 )[√

2,∞[S4]12+

�√5′ ζ10

[C10]1]4

p3p25F � i[(2

1+4+ ⊗C4).S6]24 � ζ10 [C10]1 ⊗√

5′∞,3[SL2(9)]2

p22p3p

25F � i[√−3[Sp4(3) ◦ C3]4

2(2)

@×⊃ i[C4]1]8 � ζ10 [C10]1 ⊗√5′∞,3[SL2(3)

2�C3]2

Theorem 4.9.7 Suppose |U | = 48 and Π(|G|) = {2, 3} or there exists some (L, F ) ∈Z(G) × F>0(G) such that F is integral on L and Π(det(L, F )) ⊆ {2, 3}. Then G isconjugate to one of

i[(21+4+ ⊗C4).S6]24, i[(D8⊗C4).S3]42, (i[C4]1⊗A2)4, (i[(D8⊗C4).S3]2⊗A2)2,

√−6[√2,∞[S4]1

2+

�C3]24,√−6[√2,∞[S4]1

2−�C3]24,

√−6[D16

2

� √−3[C6]1]24,

√−3[Sp4(3) ◦ C3]24, (∞,2[SL2(3)]1 ◦ C3)4, √−3[C6]81, (√−3[C6]1⊗F4)2,

√−2[∞,2[21+4

− .Alt5] :2]24,√−2[F4 :2]24,

√3·(ζ16−ζ−1

16 ))[θ16,∞[Q32]12�C3]4,

√3·(ζ16−ζ−1

16 ))[D32

2

� √−3[C6]1]4, ζ16−ζ−116

[(D8⊗QD32).S3]4, ζ16−ζ−116

[QD32]2⊗A2 .

Proof: The commuting algebra End(U)'Q(ζ48) has class number 1. Thus U fixes onlyone lattice L. There exists some F ∈ F>0(U) that is integral on L with det(L, F ) = 1.So by Table 2.5.3, G must be conjugate to AutK(L, p2a

2 pb3F ) for some 0 ≤ a ≤ 2,b ∈ {0, 1} and K ∈ {Q(i),Q(

√−2),Q(

√−3),Q(

√−6),Q(

√3·(ζ16−ζ−1

16 )),Q(ζ16−ζ−116 )}.

Page 84: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

84 CHAPTER 4. THE CLASSIFICATION

form Q(i) Q(√−6) Q(

√−3)

F i[(21+4+ ⊗C4).S6]24

√−6[√2,∞[S4]1

2−�C3]24

√−3[Sp4(3) ◦ C3]24

p22F � i[(D8⊗C4).S3]42 � √−6[√2,∞[S4]1

2+

�C3]24 � (∞,2[SL2(3)]1 ◦ C3)4

p42F i[(D8⊗C4).S3]42

√−6[√2,∞[S4]1

2+

�C3]24 (∞,2[SL2(3)]1 ◦ C3)4

p3F (i[C4]1⊗A2)4 √−6[D16

2

� √−3[C6]1]24√−3[C6]81

p22p3F � (i[C4]1⊗A2)4 � √−6[D16

2

� √−3[C6]1]24 � √−3[C6]81

p42p3F (i[(D8⊗C4).S3]2⊗A2)2 √

−6[D16

2

� √−3[C6]1]24 � (√−3[C6]1⊗F4)2

The remaining groups are

AutQ(√−2)(L, p

2a2 pb3F ) ≤

{√−2[∞,2[21+4

− .Alt5] :2]24 if a = 0√−2[F4 :2]24 if a 6= 0

with equality if and only if b = 0 and a 6= 1

AutQ(√

3·(ζ16−ζ−116 ))(L, p

2a2 pb3F )'

3·(ζ16−ζ−116 ))[θ16,∞[Q32]1

2�C3]4 if b = 0

√3·(ζ16−ζ−1

16 ))[D32

2

� √−3[C6]1]4 if b = 1

AutQ(ζ16−ζ−116 )(L, p

2a2 pb3F )'

{ζ16−ζ−1

16[(D8⊗QD32).S3]4 if b = 0

ζ16−ζ−116

[QD32]2⊗A2 if b = 1.

So the result follows. �

Theorem 4.9.8 Suppose |U | = 60 and Π(|G|) = {2, 3, 5} or there exists some(L, F ) ∈ Z(G) × F>0(G) such that F is integral on L and Π(det(L, F )) ⊆ {2, 3, 5}.Then G is conjugate to one of

i[C4]1⊗E8, i[(21+6+ ⊗C4).Sp6(2)]8, i[(2

1+4+ ⊗C4).S6]4⊗A2,

i[√−3[Sp4(3) ◦ C3]42(2)

@×⊃ i[C4]1]8, √−3[Sp4(3) ◦ C3]24, ∞,2[21+6− .O−6 (2)]4 ◦ C3,

√−3[C6]1⊗E8, √−3[Sp4(3) ◦ C3]4 ⊗√

−3∞,2[SL2(3)]1, ∞,5[SL2(5)

2

�√5D10]4 ◦ C3,

(∞,2[SL2(3)]1 ◦ C3)⊗A4, (√−3[C6]1⊗A4)2, √−3[C60.(C4 × C2)]8,

(∞,5[SL2(5) :2]2 ◦ C3)2, ∞,2[SL2(5)2(2)

@×⊃ D8]4 ◦ C3, √−3[C6]1⊗[(SL2(5)2� SL2(5)) :2]8,

(∞,2[SL2(3)]1 ◦ C3) ⊗√−3∞,5[SL2(5) :2]2, √−5[((SL2(5) ◦ SL2(5)) :2)

2−

� i[C4]1]8,

√−5[∞,5[SL2(5)

2

�√5D10]4 :2]8, √−5[((SL2(5) ◦ SL2(5)) :2)

2+

� i[C4]1]8,

Page 85: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.9. DIMENSION 16 85

√−5[i[(D8⊗C4).S3]2

2+

�i

√5,∞[SL2(5)]1]8, √−5[i[(D8⊗C4).S3]2

2

�D10]8,

√−5[i[(D8⊗C4).S3]2

2−

�i

√5,∞[SL2(5)]1]8, √−15[√5,∞[SL2(5)]1

2−�C3]24,

√−15[(√5,∞[SL2(5)]1 ◦ C3)

2

�√5D10]8, √−15[√5,∞[SL2(5)]1

2+

�C3]24,

√−15[((SL2(5) ◦ SL2(5)) :2)

2−

� √−3[C6]1]8, √−15[C30 :C4]24,

√−15[((SL2(5) ◦ SL2(5)) :2)

2+

� √−3[C6]1]8, (√5,∞[SL2(5)]1 ◦ C5)2,

ζ10 [C10]1 ⊗√5′∞,2[21+4

− .Alt5]2, (√5,∞[SL2(5)]1 ◦ C5)⊗A2, ζ10 [C10]1 ⊗√5′∞,3[SL2(3)

2�C3]2,

ζ10 [C10]1⊗√5

((SL2(5) ◦ SL2(5)) :2), ζ10 [C10]1⊗F4, ζ10[C30 :2]22, ζ10 [C60.(C2 × C2)]4

Q(i,√

3,√

5)[C60.C2]2 or √3·(ζ10−ζ−110 )[C60.(C2 × C2)]4,(a,b,e) with a ∈ {1, i} and b, e ∈ {0, 1}.

Proof: Let C := End(U)'Q(ζ60) and K 'Q(θ60) be its maximal totally real subfield.Both have class number 1. Hence U fixes up to isomorphism only one lattice L. Thereexists some F ∈ F>0(U) that is integral on L such that (L, F )'E2

8 . Clearly U isnot maximal finite. Hence, the maximal totally real subfield of End(G) is properlycontained in K. Thus by the proof of Corollary 2.2.12, we may assume that G fixes aform F ′ ∈ F>0(U) that is integral on L with Π(det(L, F ′)) ⊆ {2, 3, 5} ∪

⋃k�K Π(k) =

{2, 3, 5, 11}. (Note that this is a huge improvement over Π(K, 60) = {2, 3, 5, 11, 59}).

Denote by p(i)11 (1 ≤ i ≤ 4) the four prime ideals over 11. By Table 2.5.3, G is

conjugate to AutK′(L, pa2pb3pc5

∏4i=1(p

(i)11 )diF ) for some a, b ∈ {0, 1}, 0 ≤ c ≤ 2, di ≥ 0

and K ′ ∈ {Q(i),Q(√−3),Q(

√−5),Q(

√−15),Q(ζ10),Q(

√3·(ζ10 − ζ−1

10 ))}.

There exists some σi ∈ Gal(K/Q) such that σi(p(1)11 ) = p

(i)11 and one finds that σi is

conjugation by some xi ∈ NGL16(Q)(N)∩GL(L). Since σi necessarily fixes p2, p3 and p5,we may assume that d1 ≥ di for all i. Furthermore, restricting to normalized lattices(see Definition 2.2.4) yields the inequalities di ≤ 1 and

∑i di ≤ 2.

First, we handle the cases d1 = 0: Let a, b ∈ {0, 1} and 0 ≤ c ≤ 2, then

AutQ(i)(L, pa2pb3pc5F ) ≤

i[C4]1⊗E8 if a = b = 0

i[(21+6+ ⊗C4).Sp6(2)]8 if (a, b) = (1, 0)

i[(21+4+ ⊗C4).S6]4⊗A2 if (a, b) = (0, 1)

i[√−3[Sp4(3) ◦ C3]42(2)

@×⊃ i[C4]1]8 if a = b = 1

and equality holds if and only if c = 0.

Page 86: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

86 CHAPTER 4. THE CLASSIFICATION

The groups involving Q(√−3) are

form Q(√−3)

F √−3[Sp4(3) ◦ C3]24

p2F ∞,2[21+6− .O−6 (2)]4 ◦ C3

p3F √−3[C6]1⊗E8

p2p3F √−3[Sp4(3) ◦ C3]4 ⊗√

−3∞,2[SL2(3)]1

p5F ∞,5[SL2(5)2

�√5D10]4 ◦ C3

p2p5F (∞,2[SL2(3)]1 ◦ C3)⊗A4

p3p5F (√−3[C6]1⊗A4)2

p2p3p5F √−3[C60.(C4 × C2)]8

p25F (∞,5[SL2(5) :2]2 ◦ C3)2

p2p25F ∞,2[SL2(5)

2(2)

@×⊃ D8]4 ◦ C3

p3p25F

√−3[C6]1⊗[(SL2(5)

2� SL2(5)) :2]8

p2p3p25F (∞,2[SL2(3)]1 ◦ C3) ⊗√

−3∞,5[SL2(5) :2]2

which are all s.i.m.f..Similarly

AutQ(√−5)(L, p

a2pb3pc5F ) ≤

√−5[((SL2(5) ◦ SL2(5)) :2)

2−

� i[C4]1]8 if a = c = 0

√−5[∞,5[SL2(5)

2

�√5D10]4 :2]8 if (a, c) = (0, 1)

√−5[((SL2(5) ◦ SL2(5)) :2)

2+

� i[C4]1]8 if (a, c) = (0, 2)

√−5[i[(D8⊗C4).S3]2

2+

�i

√5,∞[SL2(5)]1]8 if (a, c) = (1, 0)

√−5[i[(D8⊗C4).S3]2

2

�D10]8 if a = c = 1

√−5[i[(D8⊗C4).S3]2

2−

�i

√5,∞[SL2(5)]1]8 if (a, c) = (1, 2)

and equality holds if and only if b = 0.The groups involving Q(

√−15) are AutQ(

√−15)(L, p

a2pb3pc5F ) ≤

√−15[√5,∞[SL2(5)]1

2−�C3]24 if b = c = 0

√−15[(√5,∞[SL2(5)]1 ◦ C3)

2

�√5D10]8 if (b, c) = (0, 1)

√−15[√5,∞[SL2(5)]1

2+

�C3]24 if (b, c) = (0, 2)

√−15[((SL2(5) ◦ SL2(5)) :2)

2−

� √−3[C6]1]8 if (b, c) = (1, 0)

√−15[C30 :C4]24 if b = c = 1

√−15[((SL2(5) ◦ SL2(5)) :2)

2+

� √−3[C6]1]8 if (b, c) = (1, 2)

and equality holds if and only if a = 0. The remaining two fields yield

Page 87: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.9. DIMENSION 16 87

form Q(ζ10) Q(√

3·(ζ10 − ζ−110 ))

F (√5,∞[SL2(5)]1 ◦ C5)2 √3·(ζ10−ζ−1

10 )[C60.(C2 × C2)]4,(1,−1,1)

p2F ζ10 [C10]1 ⊗√5′∞,2[21+4

− .Alt5]2 √3·(ζ10−ζ−1

10 )[C60.(C2 × C2)]4,(i,−1,1)

p3F (√5,∞[SL2(5)]1 ◦ C5)⊗A2√

3·(ζ10−ζ−110 )[C60.(C2 × C2)]4,(1,1,−1)

p2p3F ζ10 [C10]1 ⊗√5′∞,3[SL2(3)

2�C3]2 √

3·(ζ10−ζ−110 )[C60.(C2 × C2)]4,(i,1,−1)

p5F ζ10 [C10]1⊗√5

((SL2(5) ◦ SL2(5)) :2) √3·(ζ10−ζ−1

10 )[C60.(C2 × C2)]4,(1,−1,−1)

p2p5F ζ10 [C10]1⊗F4√

3·(ζ10−ζ−110 )[C60.(C2 × C2)]4,(i,−1,−1)

p3p5F ζ10 [C30 :2]22√

3·(ζ10−ζ−110 )[C60.(C2 × C2)]4,(1,1,1)

p2p3p5F ζ10 [C60.(C2 × C2)]4 √3·(ζ10−ζ−1

10 )[C60.(C2 × C2)]4,(i,1,1)

The fields Q(ζ10) and Q(√

3 · (ζ10 − ζ−110 )) have only one proper subfield, which is

isomorphic to Q(√

5). Thus, these groups are easily be checked to be s.i.m.f. bycomputing the automorphism groups of the G-invariant lattices wrt. the full formspace. Moreover, we don’t have to check the forms pa2p

b3p

25F since p2

5F = 5+√

52F .

Suppose now d1 = 1 and d2 = d3 = d4 = 0:For each d ∈ {1, 3, 5, 15} the group AutQ(

√−d)(Li, p

a2pb3pc5p

(1)11 F ) is conjugate to

Q(i,√

3,√

5)[C60.C2]2 which we have already proven to be s.i.m.f. in Lemma 4.9.2.

For α ∈ {ζ10,√

3·(ζ10 − ζ−110 )} the groups AutQ(α)(L, p

a2pb3pc5p

(1)11 F ) are conjugate to an

extension of U by C2 with commuting algebra Q(ζ10,√

3). The extension is split if andonly if c is odd. The nonsplit extension is properly contained in (√5,∞[SL2(5)]1 ◦ C5)2

and the split extension is a subgroup of ζ10 [C10]1⊗√5

((SL2(5) ◦ SL2(5)) :2).

Finally suppose d1 = 1 and∑4

i=1 di = 2. Then, for every minimal totally complex

subfield K ′ of K, AutK′(L, pa2pb3pc5

∏4i=1(p

(i)11 )diF ) is conjugate to a proper subgroup of

AutK′(L, pa2pb3pc5F ). �

4.9.2 The case O17(G) = 1 and O5(G) 6= 1

Lemma 4.9.9 If E(G) is conjugate to √5,∞[SL2(5)]1, then G is conjugate to one of

√−5[∞,5[SL2(5)

2

�√5D10]4 :2]8, ∞,5[SL2(5)

2

�√5D10]4 ◦ C3,

√−15[(√5,∞[SL2(5)]1 ◦ C3)

2

�√5D10]8, (√5,∞[SL2(5)]1 ◦ C5)⊗A2 .

Proof: The group G contains a normal subgroup N conjugate to SL2(5)◦C5. SupposeN is self-centralizing. Then Out(N)'〈α, β〉'C2 × C4. Both, α and β cannot berealized in GL16(Q) alone. Hence by Lemma 2.2.1, G = 〈N,αβ〉 with (αβ)4 = ±1.

Page 88: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

88 CHAPTER 4. THE CLASSIFICATION

One of these groups is realizeable in dimension 8. The other gives an irreducible groupG with commuting algebra Q∞,5. But the torsion subgroup of the (up to isomorphismunique) maximal order of Q∞,5 is C6. Thus N is not self-centralizing.So we may assume that G contains an irreducible subgroup H := N ⊗Cm withm ∈ {3, 4}. In both cases Gmust therefore contain an irreducible cyclic subgroup of or-der 60. The commuting algebra ofH is isomorphic to C := Q(ζ10, ζm). The torsion sub-group of Z∗C is C30 if m = 3 and C20 otherwise. Hence G/CG(N)N ≤ Out(N)'C2×C4

implies Π(|G|) = {2, 3, 5}. So the result follows from Theorem 4.9.8. �

Lemma 4.9.10 If O3(G) 6= 1 then G is conjugate to one of

(√5,∞[SL2(5)]1 ◦ C5)⊗A2, ∞,5[SL2(5)2

�√5D10]4 ◦ C3,

√−15[(√5,∞[SL2(5)]1 ◦ C3)

2

�√5D10]8, ζ10 [C60.(C2 × C2)]4, √−3[C60.(C4 × C2)]8,

ζ10 [C10]1 ⊗√5′∞,3[SL2(3)

2�C3]2, Q(i,

√3,√

5)[C60.C2]2

or √3·(ζ10−ζ−110 )[C60.(C2 × C2)]4,(a,b,c) with a ∈ {1, i} and b, c ∈ {±1}.

Proof: Table 2.5.2 shows that O3(G)'C3 and O2(G) embeds into GL2(Q(ζ15)). ThusO2(G)'C2, C4, D8 or Q8. If O2(G) 6= C2 then G contains an irreducible cyclic sub-group of order 60 and Π(|G|) = {2, 3, 5}. Theorem 4.9.8 gives precisely the claimedgroups.If F (G)'±C15 then C := CG(F (G)) embeds into GL2(Q(ζ15)). Table 2.5.1 showsthat E(G) is either trivial or conjugate to √5,∞[SL2(5)]1. The latter case has beenhandled in the lemma before. So we may now suppose that F ∗(G) = ±C15. LetC := CG(O3(G)). Then [G : C] ≤ 2 and C/F (G) ≤ Out(C5). Hence C is conjugateto one of ±C15, D10⊗C6, Q20 ◦ C3, (C5 : C4)⊗C6, (C10 ·C4) ◦ C3. In any case, C isrationally reducible and the commuting algebra of a direct summand contains a thirdroot of unity. This contradicts Lemma 2.2.1. �

Lemma 4.9.11 If O3(G) = 1 and O2(G) = Q8 then G is conjugate to one of

√−10[√−2[GL2(3)]2

2

�D10]8, √2·(ζ10−ζ−110 )[

√2,∞[S4]1

2−

�√5′ ζ10

[C10]1]4,

√2·(ζ10−ζ−1

10 )[√

2,∞[S4]12+

�√5′ ζ10

[C10]1]4 .

Proof: Let N := Bo(F (G)) = ζ10 [C10]⊗√5′∞,2[SL2(3)]1. Then CG(N) embeds into

GL2(Q(ζ10)). It follows from Table 2.5.1 that E(G) = 1. So G/N ≤ Out(N)'C4×C2

and [G : N ] ≥ 4 by Lemma 2.2.1. In particular, Π(|G|) = {2, 3, 5}. Let U :=CG(O5(G))EG. There are three possibilities:

Page 89: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.9. DIMENSION 16 89

• If U ' ζ10 [C10]1⊗√−2[GL2(3)]2, then U fixes up to isomorphism one lattice L.

Further C := End(U)'Q(ζ10,√−2) has K := Q(

√−2 · (ζ10 − ζ−1

10 )) as max-imal real subfield. There exists some F ∈ F>0(U) that is integral on Lwith det(L, F ) = 1. Since EndZU(L) is the maximal order of C and sinceNrC/K(Z∗C) = Z∗K,>0, we may restrict ourselves to one class of totally positiveunits. It follows from Table 2.5.4 that G is conjugate to one of AutK′(L, p

a2pb5F )

for some (a, b) ∈ {(0, 0), (1, 1), (0, 2)} and K ′ ∈ {Q(√−2),Q(

√−10),Q(ζ10)}.

These are

form Q(√−2) Q(ζ10)

F √−2[21+6

+ .(Alt8 :2)]8 (√5,∞[SL2(5)]1 ◦ C5)2

p2p5F √−2[GL2(3)]2⊗A4 ζ10 [C10]1⊗F4

p25F

√−2[GL2(3)]2 ⊗√

−2∞,5[SL2(5) :2]2 (√5,∞[SL2(5)]1 ◦ C5)2

form Q(√−10)

F √−10[√−2[GL2(3)]2

2+

�√−2

√5,∞[SL2(5)]1]8

p2p5F √−10[√−2[GL2(3)]2

2

�D10]8

p25F

√−10[√−2[GL2(3)]2

2−

�√−2

√5,∞[SL2(5)]1]8

All groups are s.i.m.f. but only √−10[√−2[GL2(3)]22

�D10]8 has the correct Fitting

subgroup.

• If U '√2,∞[S4]1 ⊗√5′ζ10 [C10]1, then again U fixes only one lattice L. The com-

muting algebra C := End(U)'Q(ζ10,√

2) has K := Q(√

2,√

5) as maximalreal subfield. Again there exists some F ∈ F>0(U) such that F is inte-gral on L with det(L, F ) = 1. Further, there exists some σ(Gal(K/Q)) thatinterchanges the two prime ideals over 3ZK and σ is conjugation by somex ∈ NGL16(Q)(U)∩GL(L). So by Table 2.5.4, G is conjugate to AutK′(L, p

a2pb3F )

for some a, b ∈ {0, 1} and K ′ ∈ {Q(ζ10),Q(√

2 · (ζ10 − ζ−110 ))}. Note that since

K ′ has Q(√

5) as maximal totally real subfield, we do not have to check p5 since

p5F = 5+√

52F . These groups are:

form Q(ζ10) Q(√

2·(ζ10 − ζ−110 ))

F (√5,∞[SL2(5)]1 ◦ C5)2 √2·(ζ10−ζ−1

10 )[√

2,∞[S4]12−

�√5′ ζ10

[C10]1]4

p2F ζ10 [C10]1 ⊗√5′∞,2[21+4

− .Alt5]2 √2·(ζ10−ζ−1

10 )[√

2,∞[S4]12+

�√5′ ζ10

[C10]1]4

p3F ζ10 [C10]1 ⊗√5′∞,3[SL2(9)]2 U

(L, p2p3F ) ζ10 [C10]1 ⊗√5′∞,3[SL2(3)

2�C3]2 U

Only √2·(ζ10−ζ−110 )[

√2,∞[S4]1

2−

�√5′ζ10

[C10]1]4 and √2·(ζ10−ζ−110 )[

√2,∞[S4]1

2+

�√5′ζ10

[C10]1]4 have

the required Fitting subgroup.

Page 90: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

90 CHAPTER 4. THE CLASSIFICATION

• If U = N , then G/N 'C4. More precisely G is one of the four groups G = 〈N,α〉where α induces an outer automorphism of order 4 on O5(G) and either

◦ α4 = I16 and α ∈ CG(Bo(O2(G))). But then G can be extended by torsionelements in End(G)'Q∞,2.

◦ α4 = −I16 and α ∈ CG(Bo(O2(G))). This group is for example properlycontained in (∞,2[SL2(3)]1 ◦ C3) ⊗√

−3∞,5[SL2(5) :2]2.

◦ α4 = I16 and α induces the outer automorphism of Bo(O2(G)). This groupembeds into GL8(Q).

◦ α4 = −I16 and α induces the outer automorphism of Bo(O2(G)). This group

is properly contained in ∞,5[SL2(5)2

�√2D10]4.

Thus the result follows. �

Lemma 4.9.12 If O3(G) = 1 then O2(G) is not isomorphic to C4 or D8.

Proof: In both cases G would contain a normal subgroup N 'C20. The central-izer C := CG(N) embeds into GL2(Q(ζ20)). Hence E(G) is either conjugate to√

5,∞[SL2(5)]1 or trivial. The first case contradicts Lemma 4.9.9.

Thus F (G) is self-centralizing. Hence G/F (G) ≤ Out(F (G))'C2 × C4. It followsfrom Lemma 2.2.1 that [G : F (G)] > 2. If g ∈ CG(O5(G)) \ F (G) then g ∈ O2(G). Inparticular, this shows G/F (G)'C4. This leaves the two cases:

• F (G)'C20. By group cohomology, MAGMA finds that G must be iso-morphic to

⟨a, b, α | a5, b4, [a, b], aα = a2, bα = bε, α4 = bk

⟩for some (ε, k) ∈

{(1, 0), (−1, 0), (−1, 2), (1, 2), (1, 1)}. The first three groups embed into GL8(Q)with Q(i) and Q(

√−5) as endomorphism rings. The fourth is properly contained

in √−10[√−2[GL2(3)]22

�D10]8 and the last one only has a rational irreducible rep-

resentation in dimension 32.

• F (G)'C5 ×D8. In this case G must be isomorphic to⟨a, b, c, α | a5, b4, [a, b], [a, c], bc = b−1, c2, aα = a2, bα = b−1, cα = brc, α4 = b2s

⟩for some r, s ∈ {0, 1}. Thus U := 〈a, b, α〉 is the group discussed above (withε = −1 and k ∈ {0, 2}). In particular, U is reducible and has a imaginaryquadratic field as commuting algebra. This contradicts Lemma 2.2.1.

So the result follows. �

Page 91: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.9. DIMENSION 16 91

Lemma 4.9.13

(a) O2(G) is neither isomorphic to C8, QD16 nor Q16.

(b) If O2(G)'D16, then G is conjugate to √2·(ζ10−ζ−110 )[D16

2

� ζ10 [C10]1]4.

Proof: In any case, G contains an irreducible cyclic subgroup U ≤ F (G) of order 40.Thus F (G) is self-centralizing and hence Π(|G|) = {2, 3, 5}. So the result follows fromTheorem 4.9.6. �

Lemma 4.9.14

(a) If O2(G)' 21+4+ , then G is conjugate to ζ10 [C10]1⊗F4.

(b) If O2(G)' 21+4− , then G is conjugate to ζ10 [C10]1 ⊗√

5′∞,2[21+4

− .Alt5]2.

Proof: We have to prove Bo(F (G)) = G in both cases. The group Bo(F (G)) is ir-reducible, fixes 2 lattices and has Q(ζ10) as endomorphism ring. Hence the claim isverified by computing the automorphism groups of these lattices wrt. the full formspace. �

Lemma 4.9.15 If O2(G)'D8⊗C4 then G'√−5[i[(D8⊗C4).S3]22

�D10]8.

Proof: The group G contains an irreducible normal subgroup N := Bo(F (G)) =

i[(D8⊗C4).S3]2⊗ ζ10 [C10]1. The commuting algebra of N is isomorphic to Q(ζ20) andN fixes only one lattice L. Thus N is self-centralizing and Π(|G|) = {2, 3, 5}. Furtherwe find some F ∈ F>0(G) that is integral on L with det(L, F ) = 28. Restricting tonormalized lattices (see Definition 2.2.4) it follows from Table 2.5.3 that G is conjugateto AutK(L, pa5F ) for some 0 ≤ a ≤ 2 and K ∈ {Q(i),Q(

√−5),Q(ζ10)}. These groups

are

AutQ(ζ10)'

ζ10 [C10]1 ⊗√5′∞,2[21+4

− .Alt5]2 if a is even

ζ10 [C10]1⊗F4 if a is odd

andQ(i) Q(

√−5)

F i[(21+6+ ⊗C4).Sp2(6)]8 √

−5[i[(D8⊗C4).S3]22+

�i

SL2(5)]8

p5F � i[(21+6+ ⊗C4).Sp2(6)]8 √

−5[i[(D8⊗C4).S3]22

�D10]8

p25F i[(2

1+6+ ⊗C4).Sp2(6)]8 √

−5[i[(D8⊗C4).S3]22−

�i

SL2(5)]8

Only √−5[i[(D8⊗C4).S3]22

�D10]8 has the correct Fitting subgroup. �

Page 92: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

92 CHAPTER 4. THE CLASSIFICATION

Lemma 4.9.16 If F (G)'C10, then G is conjugate to ζ10 [C10]1⊗√5

((SL2(5)◦SL2(5)) :2)

or ζ10 [C10]1 ⊗√5′∞,3[SL2(9)]2.

Proof: Since CG(F (G)) embeds into Q(ζ10)2×2, it follows from Table 2.5.1 that E(G)is conjugate to Alt5, SL2(5) ◦ SL2(5), ∞,3[SL2(9)]2 or √5,∞[SL2(5)]1. The latter casecontradicts Lemma 4.9.9.

• If E(G)'∞,3[SL2(9)]2 then F ∗(G)' ζ10 [C10]1 ⊗√5′∞,3[SL2(9)]2 is s.i.m.f..

• If E(G)' SL2(5) ◦ SL2(5) then Bo(F ∗(G))' ζ10 [C10]1⊗√5

((SL2(5) ◦ SL2(5)) : 2) is

already s.i.m.f..

• If E(G)'Alt5 then Bo(F ∗(G))' ζ10 [C10]1⊗A4 has Q(ζ10) as commuting al-gebra and fixes up to isomorphism 5 lattices. By computing their automor-phism groups (wrt. the full form space), one finds that G is only contained in

ζ10 [C10]1⊗√5

((SL2(5) ◦ SL2(5)) :2).

This proves the claim. �

4.9.3 The case O17(G) = O5(G) = 1 and O3(G) 6= 1

Let G < Sp16(Q) be s.p.i.m.f. such that O3(G) 6= 1 and Op(G) = 1 for all primes p > 3.Then O3(G)'C3 and O2(G) is isomorphic to C2, C4, D8, Q8, C8, D16, Q16, QD16,D8⊗C4, 21+4

+ , 21+4− , C16, D32, Q32, QD32, D8⊗C8, D8⊗D16, D8⊗QD16, D8⊗Q16,

21+4+ ⊗C4, 21+6

+ or 21+6− by Table 2.5.2.

Again, we discuss all possible cases.

Lemma 4.9.17 If O2(G)' 21+6− then G is conjugate to ∞,2[21+6

− .O−6 (2)]4 ◦ C3.

Proof: Follows from Lemma 4.9.4. �

Lemma 4.9.18 O2(G) is not conjugate to 21+6+ .

Proof: Otherwise G would contain Bo(F (G))' 21+6+ .Alt8⊗√−3[C6]1 as a normal sub-

group. This group fixes two lattices and has Q(√−3) as commuting algebra. One

easily checks that it is only contained in the s.i.m.f. group √−3[C6]1⊗E8. �

Page 93: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.9. DIMENSION 16 93

Lemma 4.9.19 If O2(G)' 21+4+ ⊗C4, then G is conjugate to i[(2

1+4+ ⊗C4).S6]4⊗A2.

Proof: Otherwise G would contain the irreducible normal subgroup N := Bo(F (G))which is conjugate to i[(2

1+4+ ⊗C4).S6]4⊗√−3[C6]1. Since G/N ≤ C2 × C2 we may

assume Π(|G|) = {2, 3, 5}. Let C := End(U)'Q(ζ12) and K 'Q(√

3) be its totallyreal subfield. The group N fixes up to isomorphism only one lattice L and there existssome F ∈ F>0(N) that is integral on L with det(L, F ) = 28. Since Z∗K,>0 = NrC/K(Z∗C)we can restrict ourselves to one class of totally positive units. By Table 2.5.4, G mustbe conjugate to AutQ(

√−d)(L, p

−a2 pa3F ) for some a ∈ {0, 1} and d ∈ {1, 3}.

form Q(i) Q(√−3)

F i[(21+6+ ⊗C4).Sp6(2)]8 ∞,2[21+6

− .O−6 (2)]4 ◦ C3

p−12 p3F i[(2

1+4+ ⊗C4).S6]4⊗A2

√−3[C6]1⊗E8

The result follows by checking the Fitting subgroups. �

Lemma 4.9.20O2(G) is not conjugate to D8⊗C8, D8⊗QD16, D8⊗D16 or D8⊗Q16.

Proof: In any case G contains a normal irreducible subgroup H conjugate toC3⊗D8⊗C8. Thus also N := Bo(H) E G and N is conjugate to C3⊗(D8⊗C8).S3.The commuting algebra C of N is isomorphic to Q(ζ24) with K 'Q(θ24) as max-imal totally real subfield. Further N fixes up to isomorphism only one lattice Land one finds some F ∈ F>0(N) that is integral on L with det(L, F ) = 1. FromG/F (G) ≤ Out(F (G)) it follows that Π(|G|) = {2, 3}. Since EndZN(N) is the max-imal order in C and since Z∗K,>0 = NrC/K(Z∗C), we may restrict ourselves to oneclass of totally positive units. If follows from Table 2.5.3, that G is conjugate toAutQ(

√−d)(L, p

2a2 pb3F ) for some a, b ∈ {0, 1} and d ∈ {1, 2, 3, 6}. These are

form Q(i) Q(√−2)

F i[(21+4+ ⊗C4).S6]24

√−2[21+6

+ .(Alt8 :2)]8p2

2F i[(21+6+ ⊗C4).Sp6(2)]8 √

−2[∞,2[21+6− .O−6 (2)]4 :2]8

p3F i[(21+4+ ⊗C4).S6]4⊗A2 � √−2[21+6

+ .(Alt8 :2)]8p2

2p3F (i[(D8⊗C4).S3]2⊗A2)2 � √−2[∞,2[21+6− .O−6 (2)]4 :2]8

Q(√−3) Q(

√−6)

F √−3[Sp4(3) ◦ C3]24

√−6[∞,2[21+4

− .Alt5]22(3)

@×⊃iA2]8

p22F ∞,2[21+6

− .O−6 (2)]4 ◦ C3√−6[∞,2[21+4

− .Alt5]22(3)

@×⊃i∞,3[S3]1]8

p3F √−3[C6]1⊗E8

√−6[F4

2

� ∞,3[S3]1]8

p22p3F (√−3[C6]1⊗F4)2 √

−6[(F4⊗A2) :2]8

No group has the correct Fitting subgroup. �

Page 94: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

94 CHAPTER 4. THE CLASSIFICATION

Lemma 4.9.21

(a) If O2(G)'D32, then G is conjugate to √3·(ζ16−ζ−116 )[D32⊗√−3[C6]1]4.

(b) If O2(G)'Q32, then G is conjugate to √3·(ζ16−ζ−116 )[θ16,∞[Q32]1

2�C3]4.

(c) If O2(G)'QD32, then G is conjugate to ζ16−ζ−116

[QD32]2⊗A2.

(d) O2(G) is not conjugate to C16.

Proof: In all cases, F (G) contains an irreducible self-centralizing cyclic subgroup oforder 48. Furher, Out(F (G)) is a 2-group which shows Π(|G|) = {2, 3}. So the resultfollows from Theorem 4.9.7. �

Lemma 4.9.22 If O2(G)' 21+4− , then G is conjugate to √−6[∞,2[21+4

− .Alt5]22(3)

@×⊃ A2]8

or √−6[∞,2[21+4− .Alt5]2

2(3)

@×⊃i∞,3[S3]1]8.

Proof: G contains the normal subgroup N := Bo(O2(G)) ◦ C3'∞,2[21+4− .Alt5]2 ◦ C3.

By Lemma 2.2.1 we get G/N 'C2 × C2. Thus CG(O3(G)) is conjugate to N1 :=√−2[∞,2[21+4

− .Alt5]2 : 2]4⊗C3 or N2 := (∞,2[21+4− .Alt5]2 ·2) ◦ C3 and Π(|G|) = {2, 3, 5}.

In any case CG(O3(G)) is irreducible and fixes only one lattice L. In both cases, thereexists some F ∈ F>0(Ni) that is integral on L with det(L, F ) = 1.

• Let C 'Q(√−2,√−3) be the commuting algebra of N1 and let K 'Q(

√6) be

its maximal totally real subfield. Since EndZN(N) is the maximal order in Cand since Z∗K,>0 = NrC/K(Z∗C), we may restrict ourselves to one class of totallypositive units. Let σ ∈ Gal(K/Q) such that σ interchanges the two prime idealsover 5. One finds that σ is conjugation by some x ∈ NGL16(Q)(N1) ∩ GL(L).By Table 2.5.4, G must be conjugate to AutQ(

√−d)(L, p

b3(p2p5)aF ) for some

a, b ∈ {0, 1} and d ∈ {2, 3}. The groups AutQ(√−2)(L, F )'√−2[21+6

+ .(Alt8 :2)]8 and AutQ(

√−3)(L, F )'√−3[C6]1⊗E8 are s.i.m.f., but have the wrong Fit-

ting subgroups. The groups AutQ(√−d)(L, p3F ) are properly contained in

AutQ(√−d)(L, F ). Finally AutQ(

√−d)(L, p2p

b3p5F ) = N1. So CG(O3(G)) 6'N1.

• Let C 'Q(√

2,√−3) be the commuting algebra of N2 and let K 'Q(

√2)

be its maximal totally real subfield. By Table 2.5.4, G is conjugate toAutQ(

√−d)(L, p

a2F ) for some a ∈ {0, 1} and d ∈ {3, 6}. These groups are

forms Q(√−3) Q(

√−6)

F √−3[Sp4(3) ◦ C3]24

√−6[∞,2[21+4

− .Alt5]22(3)

@×⊃ A2]8

p2F ∞,2[21+6− .O−6 (2)]4 ◦ C3

√−6[∞,2[21+4

− .Alt5]22(3)

@×⊃i∞,3[S3]1]8

This proves the claim. �

Page 95: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.9. DIMENSION 16 95

Lemma 4.9.23 If O2(G)' 21+4+ , then G is conjugate to √

−6[F4

2

� ∞,3[S3]1]8 or√−6[(F4⊗A2) :2]8.

Proof: G contains the normal subgroup N := Bo(O2(G))O3(G)'√−3[C6]1⊗F4 andG/N ≤ C2×C2. Thus [G : N ] = 4 by Lemma 2.2.1. So G contains a subgroup of indextwo conjugate to F4⊗∞,3[S3]1 or F4⊗A2. The result follows from Remark 2.2.17. �

Lemma 4.9.24 O2(G) is not conjugate to D8⊗C4.

Proof: Otherwise N := Bo(F (G))' i[(D8⊗C4).S3]2⊗C3 would be a normal subgroupof G. The centralizer of N embeds into GL2(Q(ζ12)). Thus again E(G) = 1 andG/N ≤ C2 × C2. By Lemma 2.2.1 we get [G : N ] = 4. But MAGMA shows that noextension of N by C2 × C2 has the correct O2. �

Lemma 4.9.25 O2(G) is not conjugate to C8, D16, Q16 or QD16.

Proof: In any case CG(F (G)) embeds into GL2(Q(ζ24)). So E(G) = 1 by Table 2.5.1.Let C = CG(O3(G)). Since Out(F (G)) is a 2-group and C/F (G) < Out(F (G)), weget C = F (G). But then [G : F (G)] ≤ 2 contradicts Lemma 2.2.1. �

Lemma 4.9.26 If O2(G)'Q8 then G is conjugate to i[√−3[Sp4(3) ◦ C3]42(2)

@×⊃ C4]8 or

(∞,2[SL2(3)]1 ◦ C3)⊗A4.

Proof: Let B := Bo(F (G))'∞,2[SL2(3)]1◦C3. Then the centralizer CG(B) embeds intoGL4(Q(

√−3)). If E(G) = 1 then G/B ≤ C2×C2 shows that G would be reducible. So

it follows from Table 2.5.1, that E(G) is conjugate to Alt5, √5,∞[SL2(5)]1, ∞,3[SL2(9)]2or Sp4(3). In any case, G/F ∗(G) ≤ Out(F ∗(G)) implies Π(|G|) = {2, 3, 5}.

• If E(G)'Alt5, then N := Bo(F ∗(G))'(∞,2[SL2(3)]1 ◦C3)⊗A4 is a normal sub-group of G. But then G = N , since N is already s.i.m.f., as we have seenbefore.

• If E(G)'√5,∞[SL2(5)]1, then BE(G) contains an irreducible cyclic subgroup oforder 60. Theorem 4.9.8 implies G'∞,5[SL2(5) :2]2 ⊗√

−3(∞,2[SL2(3)]1 ◦ C3).

• If E(G)'∞,3[SL2(9)]2 or Sp4(3), then G contains a subgroup H conjugateto SL2(5) ⊗√

−3C12 where the restriction of the natural character to H is 4χ4.

In particular G contains an irreducible cyclic subgroup of order 60. ThusG'√−3[Sp4(3) ◦ C3]4 ⊗√

−3∞,2[SL2(3)]1 by Theorem 4.9.8. �

Page 96: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

96 CHAPTER 4. THE CLASSIFICATION

Lemma 4.9.27

(a) If O2(G)'C4 then G is conjugate to i[√−3[Sp4(3) ◦ C3]42(2)

@×⊃ C4]8.

(b) If O2(G)'D8 then G is conjugate to ∞,2[SL2(5)2(2)

@×⊃ D8]4 ◦ C3.

Proof: In both cases, F (G) contains a characteristic subgroup U isomorphic to C12. IfE(G) = 1 then G/F (G) ≤ C2 × C2 shows that G would be reducible. So E(G) 6= 1embeds into GL4(Q(ζ12)). By Table 2.5.1, this implies that E(G) is conjugate toAlt5, √5,∞[SL2(5)]1, ∞,3[SL2(9)]2 or Sp4(3). In any case G/F ∗(G) ≤ Out(F ∗(G))shows that Π(|G|) = {2, 3, 5}.

• If E(G)'Alt5, then N := Bo(E(G)U)'C12⊗A4 is irreducible with C 'Q(ζ12)as commuting algebra. It fixes 4 lattices but there exists a N -normal criticalset {L1, L2}. Since N is not normal in AutQ(ζ12)(L1, F )' i[(2

1+4+ ⊗C4).S6]4⊗C3

for some F ∈ F>0(N), it follows that G must fix L2. Clearly Π(|G|) = {2, 3, 5}and one finds some F ∈ F>0(N) that is integral on L2 with det(L2, F ) = 28 ·54.Since EndZN(L2) is the maximal order of C and Z[

√3]∗>0 = NrC/Q(

√3)(Z∗C) we

may restrict ourselves to one class of totally positive units. By Table 2.5.4, thisleaves the following four groups:

lattice and form Q(i) Q(√−3)

(L2, F ) � i[(21+6+ ⊗C4).Sp6(2)]8 (∞,2[SL2(3)]1 ◦ C3)⊗A4

(L2, p−12 p3F ) � i[(2

1+4+ ⊗C4).S6]4⊗A2 (√−3[C6]1⊗A4)2

None has the correct generalized Fitting subgroup.

• If E(G)'√5,∞[SL2(5)]1, then UE(G) contains an irreducible cyclic subgroup of

order 60. Theorem 4.9.8 shows that G'∞,2[SL2(5)2(2)

@×⊃ D8]4 ◦ C3.

• If E(G)'∞,3[SL2(9)]2 or Sp4(3), then G contains a subgroup H conjugate toSL2(5) ⊗√

−3C12 where the restriction of the natural character to SL2(5) is 4χ4.

In particular G contains an irreducible cyclic subgroup of order 60. Thus G is

conjugate to i[√−3[Sp4(3) ◦ C3]42(2)

@×⊃ C4]8 by Theorem 4.9.8. �

Lemma 4.9.28 If O2(G) = C2, then G is conjugate to one of √−3[C6]1⊗E8,

√−7[2.Alt7]4 ⊗√

−7∞,3[S3]1, √−7[2.Alt7]4⊗A2, √−3[C6]1⊗[(SL2(5)

2� SL2(5)) :2]8,

√−15[((SL2(5) ◦ SL2(5)) :2)

2+

� √−3[C6]1]8, √−15[((SL2(5) ◦ SL2(5)) :2)2−

� √−3[C6]1]8 .

Proof: Let N := Bo(F ∗(G)) E G. By Table 2.5.1 there are the following possibilitiesfor E(G):

Page 97: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.9. DIMENSION 16 97

• E(G)'Alt5. Then N '√−3[C6]1⊗A4 has Q(√−3) as commuting algebra and

[G : N ] ≤ 2. This contradicts Lemma 2.2.1.

• E(G)'√5,∞[SL2(5)]1. Let C := CG(O3(G)). It follows from Lemma 2.2.1 that[G : C] = [C : N ] = 2. Thus C is reducible and conjugate to ∞,5[SL2(5) :2]2 ◦C3

or ∞,5[SL2(5)·2]2 ◦ C3. This contradicts loc. cit..

• E(G)' SL2(5)◦SL2(5). Then N = ((SL2(5)◦SL2(5)) :2)⊗C3 is irreducible, hasQ(√

5,√−3) as commuting algebra and fixes only one lattice L. One finds some

F ∈ F>0(N) that is integral on L with det(L, F ) = 38. Further G/F ∗(G) ≤Out(F ∗(G))'D8 × C2 shows Π(|G|) = {2, 3, 5}. By Table 2.5.4, we have tocheck the following groups:

Q(√−3) Q(

√−15)

F √−3[C6]1⊗E8

√−15[((SL2(5) ◦ SL2(5)) :2)

2−

� √−3[C6]1]8

p5F √−3[C6]1⊗[(SL2(5)

2� SL2(5)) :2]8 √

−15[((SL2(5) ◦ SL2(5)) :2)2+

� √−3[C6]1]8

All groups except √−3[C6]1⊗E8 have the correct generalized Fitting subgroups.

• E(G)'L2(7). Then N = M8,3⊗C3 is irreducible with commuting algebraQ(√−3) and fixes 12 lattices. By computing the corresponding automorphism

groups, one checks that N is only contained in √−3[C6]81.

• E(G)'∞,3[SL2(7)]4 contradicts Lemma 4.9.3.

• E(G)' SL2(9). Then E(G) 6 Bo(N)'√−3[Sp4(3) ◦ C3]4 (see Lemma 4.5.6).

• E(G)'√−7[2.Alt7]4. Then N = √−7[2.Alt7]4⊗√−3[C6]1 is irreducible with com-

muting algebra C 'Q(√−3,√−7) and fixes one lattice L. Again one concludes

Π(|G|) = {2, 3, 5, 7}. Further there exists some F ∈ F>0(N) that is integral onL with det(L, F ) = 38. Let K 'Q(

√21) be the maximal totally real subfield of

C. Since EndZN(L) is the maximal order of C and since Z∗K,>0 = NrC/K(Z∗C), wemay restrict ourselves to one class of totally positive units. Let σ ∈ Gal(K/Q)such that σ interchanges the two prime ideals over 5. One finds that σ is con-jugation by some x ∈ NGL16(Q)(N) ∩ GL(L) such that xFxtr = F . Thus byTable 2.5.4, G is conjugate to AutQ(

√−d)(L, p

−a3 pa5p

b7F ) for some a, b ∈ {0, 1} and

d ∈ {3, 7}. If a = 1 then these groups equal N . The other four groups are:

form Q(√−3) Q(

√−7)

F √−3[C6]1⊗E8

√−7[2.Alt7]4⊗A2

p7F � √−3[C6]1⊗E8√−7[2.Alt7]4 ⊗√

−7∞,3[S3]1

So G is conjugate to √−7[2.Alt7]4⊗A2 or √−7[2.Alt7]4 ⊗√−7∞,3[S3]1.

• E(G)' SL2(7) with character 2χ4ab. The commuting algebra C of N is isomor-phic to Q(

√−3,√−7) with K 'Q(

√21) as maximal totally real subfield. Then

Page 98: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

98 CHAPTER 4. THE CLASSIFICATION

N fixes 4 lattices that have ZC as endomorphism ring but only one class has min-imal N -invariant superlattices whose endomorphism ring is a proper suborder ofZC . So by Remark 2.2.8 this yields a N -normal critical lattice L. Further thereexists some F ∈ F>0(N) that is integral on L with det(L, F ) = 24·38. Again wehave Π(|G|) = {2, 3, 7}. Just as before we may restrict ourselves to one class oftotally positive units. By Table 2.5.4, G must be conjugate to AutQ(

√−d)(L, p

a7F )

for some a ∈ {0, 1} and d ∈ {3, 7}. One checks that these automorphism groupsare conjugate to N if a = 1. And they yield proper subgroups of √−3[C6]81 and√−7[2.Alt7]4⊗A2 if a = 0. So this case never happens.

• E(G)' Sp4(3). Then N '√−3[Sp4(3) ◦C3]4 is reducible. Again by Lemma 2.2.1we conclude [G : N ] = 4. Thus G contains a subgroup of index two conjugateto Sp4(3) ⊗√

−3∞,3[S3]1 or Sp4(3)⊗A2. Both groups have Q(

√−3) as commuting

algebras and fix one or three lattices respectively. One checks that they are onlycontained in √−3[Sp4(3) ◦ C3]24.

• E(G)'Aut(E8) = 2.O+8 (2).2. Then N = √

−3[C6]1⊗E8 is already s.i.m.f.. �

4.9.4 The case Op(G) = 1 for all odd primes p

Let G < Sp16(Q) be s.p.i.m.f. such that F (G) = O2(G). It follows from Table 2.5.2that O2(G) is isomorphic to C2, C4, D8, Q8, C8, D8⊗C4, D16, Q16, QD16, C16,D8⊗C8, D8⊗D16, D8⊗Q16, D8⊗QD16, 21+4

+ , 21+4+ ⊗C4, 21+4

− , C32, D32, Q32, QD32,QD64, D8⊗C16, D8⊗QD32, D8⊗D16, 21+4

+ ⊗C8, 21+4+ ⊗D16, 21+4

+ ⊗QD16, 21+6− , 21+6

+

or 21+6− ⊗C4.

We discuss each possibility, which finishes the classification of the s.p.i.m.f. subgroupsof Sp16(Q).

Lemma 4.9.29

(a) If F (G)' 21+6+ then G is conjugate to √−2[21+6

+ .(Alt8 :2)]8.

(b) If F (G)' 21+6+ ⊗C4 then G is conjugate to i[(2

1+6+ ⊗C4).Sp6(2)]8.

(c) If F (G)' 21+6− then G is conjugate to √−2[∞,2[21+6

− .O−6 (2)]4 :2]8.

Proof:

(a) Follows from Lemma 3.4.3.

(b) In this case Bo(F (G))' i[(21+6+ ⊗C4).Sp6(2)]8 fixes only one lattice and has Q(i)

as commuting algebra. One checks that it is s.i.m.f..

(c) Follows from Lemma 4.9.4. �

Page 99: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.9. DIMENSION 16 99

Lemma 4.9.30 F (G) is not conjugate to 21+4+ ⊗C8, 21+4

+ ⊗D16 or 21+4+ ⊗QD16.

Proof: In any case G would contain an irreducible normal subgroup N conjugate to21+4

+ ⊗C8. Thus G contains a normal subgroup B := Bo(N)'N.S6. This group fixesup to isomorphism only one lattice L and its commuting algebra is isomorphic to Q(ζ8)with maximal totally real subfield Q(

√2). Thus B is self-centralizing and from the

structure of Out(N) we get G/B ≤ C2 × C2. Hence Π(|G|) = {2, 3, 5}. There existsome F ∈ F>0(B) that is integral on L with det(L, F ) = 1. By Table 2.5.4, G isconjugate to AutQ(

√−d)(L, p

a2F ) for some a ∈ {0, 1} and d ∈ {1, 2}. These groups are:

form Q(i) Q(√−2)

F i[(21+4+ ⊗C4).S6]24

√−2[21+6

+ .(Alt8 :2)]8p2F i[(2

1+6+ ⊗C4).Sp6(2)]8 √

−2[∞,2[21+6− .O−6 (2)]4 :2]8

None of these groups has the correct Fitting subgroup. �

Lemma 4.9.31

(a) If F (G)'D8⊗QD32 then G is conjugate to ζ16−ζ−116

[(D8⊗QD32).S3]4.

(b) F (G) is not conjugate to D8⊗C16 or D8⊗D16.

Proof: In any case, G contains an irreducible normal subgroup N conjugate toD8⊗C16. Thus G contains a normal subgroup B := Bo(N)'N.S3. This groupfixes only one lattice L and its commuting algebra is isomorphic to Q(ζ16). ThusB is self-centralizing and from the structure of Out(N) we get G/B ≤ C2 × C4.Hence Π(|G|) = {2, 3}. Let F ∈ F>0(B) such that F is integral on L withdet(L, F ) = 1. By Table 2.5.3, G is conjugate to AutQ(α)(L, p

a2F ) for some 0 ≤ a ≤ 2

and α ∈ {i,√−2, ζ16 − ζ−1

16 }. These groups are

form Q(i) Q(√−2) Q(ζ16 − ζ−1

16 )

F i[(21+4+ ⊗C4).S6]24

√−2[∞,2[(D8⊗Q8).Alt5]2 :2]24 ζ16−ζ−1

16[(D8⊗QD32).S3]4

p2F � i[(D8⊗C4).S3]42 � √−2[F4 :2]24 ζ16−ζ−116

[(D8⊗QD32).S3]4p2

2F i[(D8⊗C4).S3]42√−2[F4 :2]24 ζ16−ζ−1

16[(D8⊗QD32).S3]4

So the result follows. �

Lemma 4.9.32 F (G) is not conjugate to C16, D32 or QD32.

Proof: Otherwise CG(F (G)) embeds into GL2(Q(ζ16)), so E(G) = 1. Thus G/F (G) ≤Out(F (G)) is a 2-group, which implies G = F (G). But then G is reducible. �

Page 100: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

100 CHAPTER 4. THE CLASSIFICATION

Lemma 4.9.33

(a) If F (G)' ζ32−ζ−132

[QD64]2 then G = F (G) is s.i.m.f..

(b) F (G) is not conjugate to Q32 or C32.

Proof: Clearly E(G) = 1 and thus F (G) is self-centralizing in G. Since Out(F (G)) isa 2-group, we have G = F (G). The group ζ32−ζ−1

32[QD64]2 is s.i.m.f. by Lemma 3.3.1

whereas C32 � QD64 and Q32 � Q32 ◦ C3. �

Lemma 4.9.34 F (G) is not conjugate to 21+4− .

Proof: If E(G) = 1, then B := Bo(F (G))'∞,2[21+4− .Alt5]2 and G/B ≤ C2 contradicts

Lemma 2.2.1. So E(G) 6= 1 embeds into GL2(Q∞,2) and thus must be conjugate to√

5,∞[SL2(5)]1 by Table 2.5.1. The group √5,∞[SL2(5)]1 ⊗∞, 2∞,2[21+4

− .Alt5]2 is irreducible

and has Q(√

5) as commuting algebra. In this case G would not be symplectic. �

Lemma 4.9.35 F (G) is not conjugate to 21+4+ ⊗C4.

Proof: The centralizer CG(F (G)) embeds into GL2(Q(i)). So it follows from Ta-ble 2.5.1, that E(G) = 1. Thus G contains B := Bo(F (G))'F (G).S6 of index atmost 2 and B has Q(i)2×2 as commuting algebra. This contradicts Lemma 2.2.1. �

Lemma 4.9.36 F (G) is not conjugate to 21+4+ .

Proof: Otherwise G contains the normal subgroup N := Bo(F (G))'Aut(F4). ThenCG(N) embeds into GL4(Q). Table 2.5.1 implies that E(G) = 1 (note that F4⊗A4 isnot symplectic). But then G/N ≤ Out(N)'C2 implies that G is reducible. �

Lemma 4.9.37 F (G) is not conjugate to D8⊗C8, D8⊗D16, D8⊗Q16 or D8⊗QD16.

Proof: In any cases E(G) = 1 and G would contain a normal subgroup N conjugateto D8⊗C8 = Q8⊗

iC8. Let B := Bo(N)'∞,2[SL2(3)]1⊗

iC8. It follows from G/F (G) ≤

Out(F (G)) that G is soluble and |G| = 2k ·3 for some k > 0. Moreover B containsa characteristic subgroup U conjugate to ∞,2[SL2(3)]1. But CG(U) is necessarily a2-group, so CG(U) ⊆ F (G). Hence G contains UF (G) as a normal subgroup of indexat most 2. Now Lemma 2.2.1 implies F (G)'D8⊗Q16 or D8⊗D16. In both cases,Bo(F (G))'F (G).S3 implies that Bo(F (G)) = G since |Bo(F (G))| = 2·|UF (G)|.If F (G)'D8⊗Q16, then F (G) has Q√2,∞,∞ as commuting algebra which containsnontrivial torsion units. So G cannot be s.i.m.f..If F (G)'D8⊗D16 = Q16◦Q8 then Bo(F (G))'√2,∞[Q16]1◦∞,2[SL2(3)]1 is reducible.�

Page 101: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.9. DIMENSION 16 101

Lemma 4.9.38 If F (G)'D8⊗C4 then G is conjugate to

√−5[i[(D8⊗C4).S3]2

2+

�i

√5,∞[SL2(5)]1]8 or √−5[i[(D8⊗C4).S3]2

2−

�i

√5,∞[SL2(5)]1]8 .

Proof: Let B := Bo(F (G))' i[(D8⊗C4).S3]2. Then CG(B) embeds into GL4(Q(i)).By 2.5.1 E(G) is conjugate to 1, Alt5, √5,∞[SL2(5)]1 or ∞,3[SL2(9)]2. LetN := BE(G)EG.

• If E(G) = 1, then [G : B] ≤ 2. This contradicts Lemma 2.2.1.

• If E(G)'Alt5 or ∞,3[SL2(9)]2, then N is already irreducible, fixes 4 or 2 latticesrespectively and has Q(i) as commuting algebra. It is easily checked that N isonly contained in i[(2

1+6+ ⊗C4).Sp6(2)]8.

• If E(G)'√5,∞[SL2(5)]1 then N contains an irreducible cyclic subgroup of order40. Since Out(N) is a 2-group, we have Π(|G|) = {2, 3, 5}. Hence G is conjugate

to √−5[i[(D8⊗C4).S3]22+

�i

√5,∞[SL2(5)]1]8 or √−5[i[(D8⊗C4).S3]2

2−

�i

√5,∞[SL2(5)]1]8

by Theorem 4.9.6.

Thus the claim follows. �

Lemma 4.9.39 F (G) is not conjugate to C8, D16 or QD16.

Proof: If E(G) = 1, then G/F (G) ≤ Out(F (G)) is a 2-group. Which implies thatG = F (G) is reducible. In any case, F (G) contains a characteristic subgroup H 'C8.Thus E(G) embeds into GL4(Q(ζ8)). So E(G) 6= 1 is conjugate to Alt5, √5,∞[SL2(5)]1or ∞,3[SL2(9)]2. In any case, G/F ∗(G) ≤ Out(F (G)) shows that Π(|G|) = {2, 3, 5}.Moreover HBo(E(G)) E G contains an irreducible cyclic subgroup of order 40. Thusthe result follows from Theorem 4.9.6. �

Lemma 4.9.40 If F (G)'Q8 then G is conjugate to one of

√−10[√−2[GL2(3)]2

2−

�√−2

√5,∞[SL2(5)]1]8, √−10[√−2[GL2(3)]2

2+

�√−2

√5,∞[SL2(5)]1]8

√−2[GL2(3)]2 ⊗√

−2∞,5[SL2(5) :2]2, √−2[GL2(3)]2⊗A4, ∞,2[SL2(3)]1

2

�i∞,3[SL2(9)]2 .

Proof: The layer E(G) embeds into GL4(Q∞,2). Since Out(Bo(Q8))'C2, E(G) can-not be trivial. Table 2.5.1 shows that E(G) is conjugate to Alt5, √5,∞[SL2(5)]1 or

∞,3[SL2(9)]2 (note that O3(Bo(Sp4(3)))'C3).

• If E(G)'Alt5 then Bo(F ∗(G))'∞,2[SL2(3)]1⊗A4 is an irreducible normal sub-group of G and it has Q∞,2 as commuting algebra. By Remark 2.2.17, G isconjugate to √−2[GL2(3)]2⊗A4. This group is s.i.m.f..

Page 102: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

102 CHAPTER 4. THE CLASSIFICATION

• If E(G)'√5,∞[SL2(5)]1, then G contains a normal subgroup N := Bo(F ∗(G))conjugate to √5,∞[SL2(5)]1 ◦ SL2(3) and G/N ≤ Out(N)'C2 × C2.

First we handle the case that [G : N ] = 2. The groups √5,∞[SL2(5)]12+

� SL2(3)

and √5,∞[SL2(5)]12−� SL2(3) are reducible.

The groups ∞,5[SL2(5) :2]2 ⊗√−2∞,2[SL2(3)]1 and ∞,5[SL2(5)·2]2 ⊗√

−2∞,2[SL2(3)]1 are

proper subgroups of √−2[GL2(3)]2 ⊗√−2∞,5[SL2(5) : 2]2 and √

−2[21+6+ .(Alt8 : 2)]8

respectively. The group √5,∞[SL2(5)]1 ⊗

∞, 2√

2,∞[S4]1 is not symplectic. Finally

H := √5,∞[SL2(5)]1 ⊗√

−2

√−2[GL2(3)]1 is irreducible, has Q(

√−2,√

5) as com-

muting algebra and fixes only one lattice L. There exists some F ∈ F>0(H)that is integral on L with det(L, F ) = 1. By Table 2.5.4, G is conjugate toAutQ(

√−d)(L, p

a5F ) for some a ∈ {0, 1} and d ∈ {2, 10}. These groups are:

form Q(√−2) Q(

√−10)

F √−2[(21+6

+ .Alt8) :2]8 √−10[√−2[GL2(3)]2

2+

�√−2

√5,∞[SL2(5)]1]8

p5F √−2[GL2(3)]2 ⊗√

−2∞,5[SL2(5) :2] √

−10[√−2[GL2(3)]22−

�√−2

√5,∞[SL2(5)]1]8

Note that this also handles the case where [G : N ] = 4.

• If E(G)'∞,3[SL2(9)]2, then G contains a normal subgroup N conjugate to

∞,2[SL2(3)]2⊗i∞,3[SL2(9)]2. Then End(N)'Q2,3 and Out(SL2(9))'C2×C2 but

one outer automorphism interchanges χ4a and χ4b. Therefore G/N ≤ C2 × C2.Remark 2.2.17 shows that G contains a normal subgroup conjugate to G1 :=

∞,2[SL2(3)]12

�i∞,3[SL2(9)]2 or G2 := ∞,2[SL2(3)]1 ⊗√

−3(∞,3[SL2(9)]2.2). (Note that

√2,∞[S4]1 ⊗

∞, 3∞,3[SL2(9)]2 is not symplectic and √−2[GL2(3)]2⊗∞,3[SL2(9)]2 is an

irreducible subgroup of GL32(Q) since Q(√−2) does not split Q∞,3). The group

G1 is s.i.m.f. and G2 is only contained in √−3[Sp4(3) ◦ C3] ⊗√−3∞,2[SL2(3)]1. �

Lemma 4.9.41

(a) If F (G)'C4 then G is conjugate to i[C4]1⊗E8, i[C4]1⊗M8,3, ∞,3[SL2(7)]4 ◦C4,

√−5[((SL2(5) ◦ SL2(5)) :2)

2−

� i[C4]1]8 or √−5[((SL2(5) ◦ SL2(5)) :2)2+

� i[C4]1]8.

(b) F (G) is not conjugate to D8.

Proof: Suppose F (G)'C4 or D8. So E(G) embeds into GL8(Q(i)). By Ta-ble 2.5.1, E(G) is isomorphic to Alt5, SL2(5) (with character 4χ2ab), SL2(5) ◦SL2(5), L2(7), SL2(7) (2 representations), SL2(9), 2.Alt7 or 2.O+

8 (2). (Note thatO3(Bo(Sp4(3)))'C3).Since F (G) and Out(F (G))'C2 are 2-groups, so is C := CG(E(G)). Thus F (G) = Cand therefore G/F ∗(G) ≤ Out(E(G)).

Page 103: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.9. DIMENSION 16 103

• If E(G)'Alt5, then G = Bo(N)'±S5⊗F (G) is reducible.

• If E(G)'√5,∞[SL2(5)]1 then [G : F ∗(G)] ≤ 2. Thus F ∗(G) = √5,∞[SL2(5)]1⊗D8

by Lemma 2.2.1. The commuting algebra of F ∗(G) is isomorphic to Q√5,∞. Thetwo groups ∞,5[SL2(5)·2]2⊗D8 and ∞,5[SL2(5) :2]2⊗D8 have Q∞,5 as commuting

algebras. The two groups √5,∞[SL2(5)]12+

�D8 and √5,∞[SL2(5)]12−

�D8 haveQ∞,2 as

commuting algebras. These four groups cannot be s.i.m.f. since their commutingalgebras contain nontrivial torsion units.

• If E(G)'∞,3[SL2(9)]2 then [G : F ∗(G)] ≤ 2 since one outer automorphism ofSL2(9) interchanges χ4a and χ4b. So F ∗(G)'∞,3[SL2(9)]2⊗D8 by Lemma 2.2.1.This group has Q∞,3 as commuting algebra and is self-centralizing in G. ByRemark 2.2.17 one finds that G is a proper subgroup of √−3[Sp4(3) ◦ C3]24.

• If E(G)'∞,3[SL2(7)]4, then G'∞,3[SL2(7)]4 ◦ C4 by Lemma 4.9.3.

In all other cases, let H ≤ F (G) be the characteristic subgroup of order 4 and setN := HE(G).

• If E(G)' SL2(5) ◦ SL2(5) then B := Bo(N)'((SL2(5) ◦ SL2(5)) : 2)⊗ i[C4]1.Then B has an irreducible cyclic subgroup of order 60 and G/B ≤ Out(B)shows Π(|G|) = {2, 3, 5}. It follows from Theorem 4.9.8 that G is conjugate to

√−5[((SL2(5) ◦ SL2(5)) :2)

2+

� i[C4]1]8 or √−5[((SL2(5) ◦ SL2(5)) :2)2−

� i[C4]1]8.

• If E(G)'L2(7) then Bo(N)' i[C4]1⊗(L2(7).2) = i[C4]1⊗M8,3 is already s.i.m.f..

• If E(G)' SL2(7) with character 2χ4ab, then N ' SL2(7)⊗ i[C4]1 has C :=Q(i,√

7) as commuting algebra with totally real subfield K 'Q(√

7). Usingpart (a) of Remark 2.2.8 one finds a N -normal critical lattice L such thatEndZN(L) = ZC and some F ∈ F>0(N) that is integral on L with det(L, F ) = 1.Since Z∗K,>0 = NrC/K(Z∗C), we may restrict ourselves to one class of totally posi-tive units. Further one finds some x ∈ NGL16(Q)(N)∩GL16(L) such that px3 = p′3(and x necessarily fixes p2 and p7). Since Π(|G|) = {2, 3, 7}, it follows fromTable 2.5.4 that G is conjugate to AutQ(

√−d)(L, p

a2pb3pb7F ) for some a, b ∈ {0, 1}

and d ∈ {1, 7}. If b = 1 these groups equal N . The other four groups are:

form Q(i) Q(√−7)

F � i[C4]81 � √−7[2.Alt7]28p2F i[(2

1+6+ ⊗C4).Sp6(2)]8 � √−7[2.Alt7]28

• If E(G)' 2.Alt7 then N '√−7[2.Alt7]4⊗ i[C4]1 has C := Q(i,√

7) as commutingalgebra. The group N fixes only one lattice L and there exists some F ∈ F>0(N)that is integral on L with det(L, F ) = 1. As before, there are eight candidatesto check:

form Q(i) Q(√−7)

F i[C4]1⊗E8√−7[2.Alt7]28

p2F i[(21+6+ ⊗C4).Sp6(2)]8 � √−7[2.Alt7]28

p3p7F N √−7[2.Alt7]8 ⊗√

−7∞,3[S3]1

p2p3p7F N N

Page 104: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

104 CHAPTER 4. THE CLASSIFICATION

• If E(G)' 2.O+8 (2) then Bo(N)' i[C4]1⊗E8 is already s.i.m.f.. �

Lemma 4.9.42 F (G) is not conjugate to C2.

Proof: Otherwise G/±E(G) ≤ Out(E(G)). Table 2.5.1 shows that E(G) is isomorphicto Alt5, SL2(5) (with character 4χ2ab), SL2(5) ◦ SL2(5), SL2(7), L2(7) (2 representa-tions), SL2(9), 2.Alt7 or 2.O+

8 (2).The case that E(G) is conjugate to SL2(7) with character 2χ8 has been handled inLemma 4.9.3. If E(G)'L2(7) then Bo(E(G))'±L2(7).2. Since Out(E(G))'C2, weget G = ±L2(7).2 is reducible. Similarly, if E(G)' 2.O+

8 (2) then Bo(E(G))'E8.Since Out(E(G))'C2, we get G = E8 is reducible.Suppose E(G)' SL2(5) ◦ SL2(5). Then G contains a normal subgroup B :=Bo(E(G))'((SL2(5) ◦ SL2(5)) : 2) and G/B ≤ Out(B)'C2 × C2. Only one classof outer automorphisms can be realized in GL16(Q) and both extensions (split andnon-split) are reducible. Thus this case cannot happen.In all other cases E(G) is reducible, has a commuting algebra which is not isomorphicto K2×2 for some totally real number field K and G/ ± E(G) ≤ C2. (Note thatOut(SL2(9))'C2 × C2 but one outer automorphism interchanges χ4a and χ4b.) Thiscontradicts Lemma 2.2.1. �

Page 105: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.10. DIMENSION 18 105

4.10 Dimension 18

Theorem 4.10.1 The s.i.m.f. subgroups G of Sp18(Q) are

# G |G| |Z(G)| Lminr.i.m.f.

supergroups

[2, 1, 9] i[C4]91 225 ·34 ·5·7 3 [1, 1, 36] B18

1 i[C4]1⊗A9 210 ·34 ·52 ·7 12 [1, 2, 180] A29

[2, 2, 9] √−3[C6]91 216 ·313 ·5·7 1 [39, 2, 54] A9

2

[6, 1, 3] √−3[±31+2

+ :SL2(3)]33 213 ·313 2 [33, 2, 216] E36

2 √−3[±31+4

+ :Sp4(3)]9 28 ·39 ·5 2 [35, 4, 6480] H1

3 √−3[C6]1⊗A9 29 ·35 ·52 ·7 4 [22 ·39 ·52, 4, 270] A2⊗A9

4 √−3[±3.M10]9 25 ·33 ·5 2 [39 ·56, 6, 180] [±3.Alt6.2

2]18

[6, 2, 3] √−7[±L2(7)]33 213 ·34 ·73 1 [79, 4, 126] (A

(2)6 )3

5 √−7[±(L2(7) ⊗√

−7L2(7)) :2]9 28 ·32 ·72 1 [79, 6, 336] H2

6 √−19[±L2(19)]9 23 ·32 ·5·19 1 [199, 10, 342] A

(5)18

where H1 := [±31+4+ : Sp4(3).2]18 and H2 := [±(L2(7)

2

�√−7

L2(7)) : 2]18 are r.i.m.f.

subgroups of GL18(Q).

Again, before we prove the theorem, we discuss the case that G contains an irreduciblecyclic subgroup U . If |±U | = 38, then Theorem 3.1.1 shows that G'√−19[±L2(19)]9.The remaining case | ± U | = 54 is handled below.

Lemma 4.10.2 If G contains an irreducible cyclic subgroup U of order 54 andΠ(|G|) ⊆ {2, 3, 5, 7, 11, 13}, then G is conjugate to √−3[C6]91 or √−3[±31+2

+ :SL2(3)]33.

Proof: The centralizing algebra C of U is isomorphic to Q(ζ54) and has class number1. Thus G fixes only one lattice L. There exists some F ∈ F>0(U) that is integral onL with det(L, F ) = 3. By Table 2.5.3, G must be conjugate to AutQ(

√−3)(L, p

k3F ) for

some 0 ≤ k ≤ 4. So the result is easily verified. �

Proof (Theorem 4.10.1): Explicit calculations show that the table is correct and ityields s.i.m.f. matrix groups. The symplectic imprimitive matrix groups come fromthe s.p.i.m.f. subgroups of Sp2(Q) and Sp6(Q). It follows from Lemma 2.1.21 that√−3[C6]91, √−7[±L2(7)]33 and √−3[±31+2

+ : SL2(3)]33 are maximal finite. The group i[C4]91fixes 3 lattices and has Q(i) as commuting algebra. One verifies that this group is alsomaximal finite.

It remains to classify the s.p.i.m.f. subgroups G < Sp18(Q). This is done in thefollowing three lemmas by discussing the various Fitting subgroups. In any case wehave F (G) =

∏p∈{2,3,7}Op(G) according to Corollary 2.1.16 and Theorem 3.1.1. �

For the remainder of the section suppose G < Sp18(Q) is s.p.i.m.f..

Page 106: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

106 CHAPTER 4. THE CLASSIFICATION

Lemma 4.10.3 O7(G) = 1.

Proof: By Table 2.5.2 the Fitting subgroup F (G) must be conjugate to ±C7. Supposefirst E(G) = 1. By Lemma 2.2.1 G must contain a normal subgroup N '±C7 :C3. Butthere exists only one such extension and this embeds into GL6(Q). Since [G : N ] ≤ 2this contradicts loc. cit.. So E(G) 6= 1 embeds into GL3(Q(ζ7)). Thus E(G)'L2(7)by Table 2.5.1. Then F ∗(G)'±C7 ⊗√

−7L2(7) is irreducible and fixes only one lattice

L. Let C 'Q(ζ14) denote the commuting algebra of F ∗(G) and let K 'Q(θ14) beits maximal real subfield. Since G/F ∗(G) ≤ C6 × C2, we only have to consider theprime ideals over 2, 3 and 7. One finds some F ∈ F>0(F ∗(G)) that is integral on Lsuch that det(L, F ) = 73. Further C has only one totally complex subfield which isQ(√−7). Hence it follows from Table 2.5.3, that G is conjugate to AutQ(

√−7)(L, p

a7F )

with a ∈ {0, 1} (for a ≥ 2 the lattice is not normalized). Both automorphism groupsare contained in √−7[±(L2(7) ⊗√

−7L2(7)) :2]9. �

Lemma 4.10.4 If O3(G) 6= 1 then either

(a) O3(G)' 31+4+ and G is conjugate to √−3[±31+4

+ :Sp4(3)]9.

(b) O3(G)'C3 and G is conjugate to √−3[C6]1⊗A9 or √−3[±3.M10]9.

Proof: If O3(G) is irreducible, it is conjugate to 31+4+ or 31+2

+ ⊗√−3C9 since O3(G) 6'C27

by Lemma 4.10.2. If O3(G) embeds irreducibly into GL6(Q), it is conjugate to C9 or31+2

+ . Otherwise O3(G)'C3 embeds irreducibly into GL2(Q).

• If O3(G)' 31+4+ then Bo(O3(G))'√−3[±31+4

+ :Sp4(3)]9 is already s.i.m.f..

• If O3(G)' 31+2+ ⊗√

−3C9 then G contains a normal subgroup N conjugate to

±(31+2+ ⊗√

−3C9) : SL2(3). The commuting algebra of N is isomorphic to Q(ζ9).

Thus G/N ≤ C6 and therefore Π(|G|) = {2, 3}. There exists a normal crit-ical set of two lattices {L1, L2} and F ∈ F>0(N) that is integral on the Liwith det(Li, F ) ∈ {3, 27}. By Table 2.5.3 we only have to consider the groupsAutQ(

√−3)(Li, p

a3F ) with a ∈ {0, 1}. These groups are subgroups of the s.i.m.f.

groups √−3[±31+4+ :Sp4(3)]9 or √−3[±31+2

+ :SL2(3)]33.

• If O3(G)'C9 or 31+2+ then CG(O3(G)) embeds into GL3(Q(ζk)) with k ∈ {3, 9}.

In particular F ∗(G) = ±O3(G). Let N := Bo(O3(G))EG. Then N is conjugateto ±C9 or ±31+2

+ :SL2(3). In the first case, let P ∈ Syl3(G). Then [G : ±P ] ≤ 2shows P = N and therefore [G : N ] ≤ 2. In the second case, it follows fromOut(O3(G))'GL2(3) that [G : N ] ≤ 2. So both cases contradict Lemma 2.2.1.

• If O3(G)'C3, then CG(O3(G)) embeds into GL9(Q(√−3)). So O2(G) = ±I18

and it follows from Table 2.5.1 that E(G) is conjugate to Alt10 or 3.Alt6. Inany case Bo(F ∗(G)) is already s.i.m.f. and conjugate to one of the groups statedabove. �

Page 107: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.10. DIMENSION 18 107

Lemma 4.10.5 If F (G) = O2(G), then G is conjugate to i[C4]1⊗A9, √−19[±L2(19)]9or √−7[±(L2(7) ⊗√

−7L2(7)) :2]9.

Proof: Suppose first F (G) 6= ±I18. Then F (G) is isomorphic to C4 or D8. Thus Gcontains a normal subgroup N 'C4 and E(G) embeds into GL9(Q(i)). By Table 2.5.1E(G) is conjugate to Alt10. So G contains an irreducible normal subgroup B :=NBo(E(G))' i[C4]1⊗A9. The group B fixes 12 lattices and has Q(i) as commutingalgebra. One easily checks that it is s.i.m.f..If F (G) = ±I18, then E(G) 6= 1 embeds irreducibly into GLk(Q) for k ∈ {6, 9, 18} byTable 2.5.1.

(a) If k = 6 then E(G)'Alt5,Alt7,L2(7) or U4(2). In any case [G : Bo(E(G))] ≤ 2contradicts Lemma 2.2.1.

(b) If k = 9 then E(G)'Alt10 and Bo(G)'A9 implies G = Bo(G) is reducible.

(c) If k = 18 then E(G)'L2(19) or L2(7) ⊗√−7

L2(7) since O3(Bo(3.Alt6)) = C3 and

Alt5⊗√5

Alt5 fixes no skewsymmetric form. The group √−19[±L2(19)]9 is s.i.m.f.

by Theorem 3.2.1. In the second case Bo(E(G))'√−7[±(L2(7) ⊗√−7

L2(7)) : 2]9 is

irreducible and fixes only one lattice. One checks that it is s.i.m.f.. �

Page 108: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

108 CHAPTER 4. THE CLASSIFICATION

4.1

1D

imensi

on

20

Theore

m4.1

1.1

The

s.i.

m.f

.su

bgro

upsG

ofSp

20(Q

)ar

e

#G

|G|

|Z(G

)|Lmin

r.i.

m.f

.su

perg

rou

ps

[2,1,1

0]i[C

4]1

01

228·3

4·5

2·7

3[1,1,4

0]B

20

[4,1,5

]i[

(D8⊗C

4).S

3]5 2

228·3

6·5

1[2

10,2,1

20]

F5 4

[4,2,5

]( i

[C4] 1⊗A

2)5

218·3

6·5

2[3

10,2,6

0]A

10

2

1i[C

4] 1⊗A

10

210·3

4·5

2·7·1

12

[112,2,2

20]

A2 10

2∞,2

[±U

5(2

)]52

(2) ◦C

421

3·3

5·5·1

11

[210,4,3

960]

[SU

5(2

)2(2

) ◦SL

2(3

)]20

[10,

1,2]

( i[C

4] 1⊗A

5)2

213·3

4·5

210

[34,2,1

20]

A4 5

3i[C

4] 1⊗

[(C

6×S

4(3

)).2

] 10

29·3

5·5

6[3

10,4,5

40]

[(C

6×S

4(3

)).2

]2 10

4i[

(D8⊗C

4).S

3] 2⊗A

529·3

3·5

6[2

10·3

4,4,3

60]

F4⊗A

5

5i[

[±S

6] 1

0

2(2

)

@×⊃i[C

4] 1

] 10

27·3

2·5

6[3

8,3,8

0][D

82(2

)

⊗S

6] 2

0

6i[C

4] 1⊗A

(2)

10

25·3·5·1

12

[116,4,4

40]

(A(2

)10

)2

7∞,2

[SL

2(1

1)] 5

2(2

)@⊃

C4

25·3·5·1

12

[210·1

14,6,1

320]

[SL

2(1

1)2(2

) ◦SL

2(3

)]20

8i[C

4] 1⊗A

(3)

10

25·3·5·1

12

[111

0,6,2

20]

(A(3

)10

)2

[4,3,5

]√−

2[G

L2(3

)]5 2

223·3

6·5

1[2

10,2,1

20]

F5 4

9√−

2[ ∞

,2[±U

5(2

)]5:2

] 10

212·3

5·5·1

11

[210,4,3

960]

[SU

5(2

)2(2

) ◦SL

2(3

)]20

10√−

2[2.M

12:2

] 10

28·3

3·5·1

11

[210,4,3

960]

[2.M

12:2

] 20

11√−

2[G

L2(3

)]2⊗A

528·3

3·5

12[2

10,4,3

960]

F4⊗A

5,

[SU

5(2

)2(2

) ◦SL

2(3

)]20

[2,2,1

0]√−

3[C

6]1

01

218·3

14·5

2·7

1[3

10,2,6

0]A

10

2

[4,4,5

]( ∞

,2[S

L2(3

)]1◦C

3)5

218·3

11·5

2[2

10,2,1

20]

F5 4

[10,

2,2]

√−

3[S

4(3

)◦C

3]2 5

215·3

10·5

22

[24·3

10,4,5

40]

[(C

6×S

4(3

)).2

]2

12√−

3[C

6] 1⊗A

10

29·3

5·5

2·7·1

12

[310·1

12,4,3

30]

A2⊗A

10

Page 109: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.11. DIMENSION 20 109

13∞,2

[±U

5(2

)]5◦C

321

1·3

6·5·1

12

[210,4,3

960]

[SU

5(2

)2(2

) ◦SL

2(3

)]20

14√−

3[±S

4(3

)◦C

3] 5⊗ √ −

3∞,2

[SL

2(3

)]1

29·3

6·5

6[2

10,4,3

960]

[SU

5(2

)2(2

) ◦SL

2(3

)]20

15√−

3[±U

4(2

)◦C

3] 1

027·3

5·5

2[2

8·3

10,6,1

440]

[SU

4(2

)2 �C

6] 2

0

16√−

3[±

L2(1

1)2(3

)

⊗√−

3[C

6] 1

] 10

24·3

2·5·1

12

[112,4,1

2540

][±

L2(1

1)2(3

)

⊗D

12] 2

0

17√−

3[√−

11[±

L2(1

1)] 5

2(3

)

@×⊃√−

3[C

6] 1

] 10

24·3

2·5·1

12

[111

0,8,6

60]

[±L

2(1

1)2(3

)

@×⊃D

12] 2

0

18√−

3[C

6] 1⊗A

(2)

10

24·3

2·5·1

12

[310·1

16,8,6

60]

A2⊗A

(2)

10

19√−

3[C

6] 1⊗A

(3)

10

24·3

2·5·1

12

[310·1

110,1

2,33

0]A

2⊗A

(3)

10

20∞,2

[SL

2(1

1)] 5◦C

323·3

2·5·1

14

[210·1

14,6,1

320]

[SL

2(1

1)2(2

) ◦SL

2(3

)]20

21√−

7[2.M

22:2

] 10

29·3

2·5·7·1

11

[710,8,6

160]

[2.M

22:2

] 20

[10,

3,2]

√−

11[±

L2(1

1)]2 5

27·3

2·5

2·1

121

[111

0,6,2

20]

(A(3

)10

)2

22√−

11[±

L2(1

1)] 5⊗√−

11∞,2

[SL

2(3

)]1

25·3

2·5·1

12

[210,4,3

960]

[SU

5(2

)2(2

) ◦SL

2(3

)]20

23√−

11[±

L2(1

1)] 5⊗A

224·3

2·5·1

14

[111

0,8,6

60]

[L2(1

1)2(3

)

@×⊃D

12] 2

0,A

2⊗A

(3)

10

24√−

19[S

L2(1

9)] 9

23·3

2·5·1

95

[1,1,4

0][1,2,7

60]

B20

[4,5,5

]ζ 1

0[C

10]5 1

28·3·5

61

[55,2,1

00]

A5 4

25ζ 1

0[±

51+

2+

.Sp

2(5

)]5

24·3·5

42

[53,4,1

2300

][±

51+

2+

:GL

2(5

)]20

26ζ 1

0[C

10] 1⊗A

525·3

2·5

24

[24·3

4·5

5,4,3

00]

A4⊗A

5

Pro

of:

By

explici

tca

lcula

tion

s,on

eve

rifies

that

the

abov

eta

ble

isco

rrec

t.T

he

candid

ates

for

the

sym

ple

ctic

impri

mit

ive

mat

rix

grou

ps

com

efr

omth

ecl

assi

fica

tion

ofth

es.

p.i.m

.f.

subgr

oups

ofSp

2(Q

),Sp

4(Q

)an

dSp

10(Q

).A

ccor

din

gto

Lem

ma

2.1.

21al

lth

ese

grou

ps

exce

pti[C

4]1

01

and

( i[C

4] 1⊗A

5)2

are

s.i.m

.f..

Thes

etw

ogr

oups

fixes

3an

d10

latt

ices

resp

ecti

vely

and

they

hav

eQ

(i)

asco

mm

uti

ng

alge

bra

s.O

ne

veri

fies

that

thes

egr

oups

are

also

s.i.m

.f..

So

itre

mai

ns

topro

veth

ecl

assi

fica

tion

ofth

es.

p.i.m

.f.

subgr

oups.

This

isac

com

plish

edin

Sec

tion

4.11

.2.

Page 110: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

110 CHAPTER 4. THE CLASSIFICATION

4.11.1 Irreducible cyclic subgroups

If a s.i.m.f. matrix group G < Sp20(Q) contains an irreducible cyclic subgroup U , then| ± U | ∈ {50, 44, 66}. These cases are handled below.

Lemma 4.11.2 Suppose G contains an irreducible cyclic subgroup U of order 50 andΠ(|G|) ⊆ {2, 3, 5} or there exists some (L, F ) ∈ Z(G)×F>0(G) such that F is integralon L with det(L, F ) ⊆ {2, 3, 5}. Then G is conjugate to ζ10 [C10]51.

Proof: The commuting algebra of U is isomorphic to Q(ζ50) and has class number 1.Thus G fixes only one lattice L. Further there exists some F ∈ F>0(U) that is integralon L with det(L, F ) = 5. By Table 2.5.3, G must be conjugate to AutQ(ζ10)(L, p

a5F )

for some 0 ≤ a ≤ 4. All these groups are subgroups of ζ10 [C10]51. �

Lemma 4.11.3 Suppose G contains an irreducible cyclic subgroup U of order 44 andΠ(|G|) ⊆ {2, 3, 5, 11} or there exists some (L, F ) ∈ Z(G) × F>0(G) such that F isintegral on L with det(L, F ) ⊆ {2, 3, 5, 11}. Then G is conjugate to one of

√−11[±L2(11)]25,

√−11[±L2(11)]5 ⊗√

−11∞,2[SL2(3)]1, ∞,2[±U5(2)]5

2(2)◦ C4,

∞,2[±SL2(11)]52(2)@⊃ C4 or i[C4]1⊗H with H ∈ {A10, A

(2)10 , A

(3)10 } .

Proof: The commuting algebra C := End(U)'Q(ζ44) and has class number 1. ThusG fixes only one lattice L. Further there exists some F ∈ F>0(U) that is integralon L such that det(L, F ) = 112. Let K 'Q(θ44) be the maximal totally real subfieldof C. There exists some σ ∈ Gal(C/K) that interchanges p5 and p′5. Further σ isconjugation by some x ∈ NGL16(Q)(U)∩GL(L) with xFxtr = F . So Table 2.5.3 showsthat G is conjugate to AutQ(

√−d)(L, p

a2pb5p

2c−a11 F ) for some a, b ∈ {0, 1}, 0 ≤ c ≤ 2 and

d ∈ {1, 11}.

One finds AutQ(√−11)(L, p

a2pb5p

2c−a11 F ) ≤

√−11[±L2(11)]25 if a = 0√−11[±L2(11)]5 ⊗√

−11∞,2[SL2(3)]1 if a = 1.

Further AutQ(√−11)(L, p

a2p5p

2c−a11 F ) = AutQ(i)(L, p

a2p5p

2c−a11 F ). The remaining 6 auto-

morphism groups are given below.

form Q(i) form Q(i)

F i[C1]1⊗A10 p2p−111 F ∞,2[±U5(2)]5

2(2)◦ C4

p211F i[C1]1⊗A(2)

10 p2p11F ∞,2[SL2(11)]52(2)@⊃ C4

p411F i[C1]1⊗A(3)

10 p2p311F � ∞,2[SL2(11)]5

2(2)@⊃ C4 �

Page 111: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.11. DIMENSION 20 111

Lemma 4.11.4 Suppose G contains an irreducible cyclic subgroup U of order 66 andΠ(|G|) ⊆ {2, 3, 5, 7, 11} or there exists some (L, F ) ∈ Z(G) × F>0(G) such that F isintegral on L with det(L, F ) ⊆ {2, 3, 5, 7, 11}. Then G is conjugate to one of

√−11[±L2(11)]5⊗A2, √−11[±L2(11)]5 ⊗√

−11∞,2[SL2(3)]1, ∞,2[±U5(2)]5 ◦ C3,

∞,2[SL2(11)]5 ◦ C3, √−3[±L2(11)2(3)

⊗√−3[C6]1]10, √−3[√−11[±L2(11)]52(3)

@×⊃ √−3[C6]1]10

or √−3[C6]1⊗H with H ∈ {A10, A(2)10 , A

(3)10 } .

Proof: The commuting algebra C of U is isomorphic to Q(ζ66) and has class number 1.Thus G fixes only one lattice L. Further there exists some F ∈ F>0(U) that is integralon L such that det(L, F ) = 112. Let K 'Q(θ66) be the maximal totally real subfieldof C. There exists some σ ∈ Gal(C/K) that interchanges p2 and p′2. Further σ isconjugation by some x ∈ NGL20(Q)(U)∩GL(L) with xFxtr = F . So Table 2.5.3 showsthat G is conjugate to AutQ(

√−d)(L, p

a2pb3p

2c−a11 F ) for some a, b ∈ {0, 1}, 0 ≤ c ≤ 2 and

d ∈ {3, 11}.

One checks that AutQ(√−11)(L, p

a2pb3p

2c−a11 F ) ≤

√−11[±L2(11)]5⊗A2 if a = 0√−11[±L2(11)]5 ⊗√

−11SL2(3) if a = 1.

Further AutQ(√−11)(L, p2p3p

2c−111 F ) = AutQ(

√−3)(L, p2p3p

2c−111 F ) for all c. The remain-

ing 9 automorphism groups are given below.

form Q(√−3) form Q(

√−3)

F √−3[±L2(11)

2(3)

⊗√−3[C6]1]10 p3F √−3[C6]1⊗A10

p211F � √−3[√−11[±L2(11)]5

2(3)

@×⊃ √−3[C6]1]10 p3p211F

√−3[C6]1⊗A(2)

10

p411F

√−3[√−11[±L2(11)]5

2(3)

@×⊃ √−3[C6]1]10 p3p411F

√−3[C6]1⊗A(3)

10

p2p−111 F ∞,2[±U5(2)]5 ◦ C3 p2p11F ∞,2[SL2(11)]5 ◦ C3

p2p311F � √−11[±L2(11)]5 ⊗√

−11∞,2[SL2(3)]1

4.11.2 Proof of Theorem 4.11.1

Suppose thatG < Sp20(Q) is s.p.i.m.f.. Before we discuss all possible Fitting subgroupsofG, we describe all groupsG that contain an irreducible quasisimple normal subgroup.

Lemma 4.11.5

(a) If G contains a normal subgroup N '∞,2[SL2(11)]5 then G is conjugate to

∞,2[SL2(11)]5 ◦ C3 or ∞,2[SL2(11)]52(2)@⊃ C4.

(b) If G contains a normal subgroup N '∞,2[±U5(2)]5 then G is conjugate to

∞,2[±U5(2)]5 ◦ C3, ∞,2[±U5(2)]52(2)◦ C4 or √−2[∞,2[±U5(2)]5 :2]10.

Page 112: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

112 CHAPTER 4. THE CLASSIFICATION

Proof: In both cases, N is rationally irreducible and has Q∞,2 as commuting algebra.By Remark 2.2.17, G contains a subgroup U conjugate to ±N : 2 or ±N ◦ Ci withi ∈ {3, 4}. The commuting algebra of U is Q(

√−d) with d = 2, 3, 1 respectively.

One easily checks that ∞,2[SL2(11)]5 ◦C3, ∞,2[±U5(2)]5 ◦C3 and √−2[∞,2[±U5(2)]5 :2]10

are s.i.m.f.. Further ∞,2[±U5(2)]5 ◦ C4 fixes only one lattice and is only contained in

∞,2[±U5(2)]52(2)◦ C4. The group ∞,2[SL2(11)]5 : 2 fixes 4 lattices and is only contained

in √−2[2.M12 : 2]10. Finally ∞,2[SL2(11)]5 ◦ C4 fixes 2 lattices and is only contained in

∞,2[SL2(11)]52(2)@⊃ C4. �

Lemma 4.11.6 O11(G) is trivial.

Proof: Suppose O11(G) 6= 1. Then O11(G)'C11 and it centralizer embeds intoGL2(Q(ζ11)). In particular E(G) = 1 and therefore F (G) is self centralizing. IfF (G) 6= ±O11(G) then G contains an irreducible cyclic subgroup of order 33 or 44and Π(|G|) ⊆ {2, 3, 5, 11}. This contradicts Lemmas 4.11.3 and 4.11.4. So F (G)'C22

and [G : F (G)] ∈ {5, 10} by Lemma 2.2.1. The group C22 :C5 has only one faithfulrational irreducible representation. It is of degree 10 and has Q(

√−11) as commuting

algebra. This again contradicts Lemma 2.2.1. �

Lemma 4.11.7 If O5(G) is nontrivial then G is conjugate to ζ10 [±51+2+ .Sp2(5)]5 or

ζ10 [C10]1⊗A5.

Proof: By Table 2.5.2, O5(G) is conjugate to C25, C5 or 51+2+ . The first case contradicts

Lemma 4.11.2. The irreducible group Bo(51+2+ ) = ζ10 [±51+2

+ .Sp2(5)]5 fixes 2 lattices andhas Q(ζ10) as commuting algebra. One easily checks that it is s.i.m.f.. So we may nowassume that O5(G) = C5. Then F (G) = ±C5 and E(G) 6= 1 by Corollary 2.2.3. ThusE(G) embeds into GL5(Q(ζ10)). It follows from Table 2.5.1 that E(G) is conjugateto Alt6. Therefore G contains a normal subgroup N := Bo(F ∗(G))' ζ10 [C10]1⊗A5.Since N fixes 4 lattices and has Q(ζ10) as commuting algebra, one easily checks thatN is s.i.m.f.. �

Lemma 4.11.8 If O3(G) 6= 1 then G is conjugate to one of

√−3[±S4(3) ◦ C3]5 ⊗√

−3∞,2[SL2(3)]1, i[C4]1⊗[C6 × S4(3).2]10, ∞,2[SL2(11)]5 ◦ C3,

∞,2[±U5(2)]5 ◦ C3,√−3[±U4(2) ◦ C3]10,√−3[±L2(11)2(3)

⊗√−3[C6]1]10,√−11[±L2(11)]5⊗A2,

√−3[√−11[±L2(11)]5

2(3)

@×⊃ √−3[C6]1]10 or √−3[C6]1⊗H with H ∈ {A10, A(2)10 , A

(3)10 } .

Proof: If O3(G) 6= 1 then O3(G) = C3. Thus O2(G) ∈ {C2, C4, D8, Q8} and Op(G) = 1for all p > 3. Let N = Bo(F ∗(G)).

Page 113: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.11. DIMENSION 20 113

• If O2(G)'Q8 then E(G) embeds into GL5(Q(√−3)). By Table 2.5.1 E(G) is

conjugate to Alt6 or S4(3).

In the latter case N '√−3[±S4(3) ◦ C3]5 ⊗√−3∞,2[SL2(3)]1 fixes 6 lattices and has

Q(√−3) as commuting algebra. One checks that it is s.i.m.f.. In the other case

N 'A5⊗√−3[SL2(3)◦C3]2 has the same endomorphism ring and fixes 18 lattices.One checks that it is only contained in √−3[S4(3) ◦ C3]5 ⊗√

−3∞,2[SL2(3)]1.

• If O2(G)'C4 or D8 then E(G) embeds into GL5(Q(ζ12)). Thus again E(G) isconjugate to A5 or S4(3). The group N1 := A5⊗C12 fixes 9 lattices, but usingpart (a) of Remark 2.2.8 one finds a normal critical lattice L. Let F ∈ F>0(N1),then AutQ(ζ12)(L, F ) = √

−3[±S4(3)◦C3]5⊗C4. So E(G)'S4(3) and G must con-tain a normal subgroup conjugate to N2 := √

−3[±S4(3)◦C3]5⊗C4. The group N2

fixes 3 lattices but there exists a normal critical one, say L. Further there existssome F ∈ F>0(N) that is integral on L such that det(L, F ) = 210 and Π(|G|) ={2, 3, 5}. The maximal totally real subfield K of C := End(N2)'Q(ζ12) isisomorphic to Q(

√3). Since EndZN2(L) is the maximal order in C and since

NrC/K(Z∗C) = Z∗K,>0 we may restrict ourselves to one class of totally positiveunits. Thus Table 2.5.4 shows that there are 4 candidates to check:

form Q(i) Q(√−3)

F ∞,2[±U5(2)]52(2)◦ C4

√−3[±S4(3) ◦ C3]5 ⊗√

−3∞,2[SL2(3)]1

p−12 p3F i[C4]1⊗[C6 × S4(3).2]10 � √−3[±S4(3) ◦ C3]25

Only i[C4]1⊗[C6 × S4(3).2]10 has the correct Fitting subgroup.

• IfO2(G) = ±1, then E(G) is isomorphic to Alt6, S4(3) = U4(2) (2 representationseach), Alt11,L2(11) (3 representations), SL2(11) or U5(2).

If E(G)' SL2(11) or U5(2) then G = E(G) ◦ C3 by Lemma 4.11.5.

If E(G)'Alt11 then N '√−3[C6]1⊗A10 fixes 2 lattices and is already s.i.m.f..

If E(G)'U4(2) with character χ10ab then N '√−3[±U4(2) ◦ C3]10 is alreadyirreducible and fixes 2 lattices. One checks that it is s.i.m.f..

If E(G)'U4(2) with character 2χ5ab then N is conjugate to √−3[±S4(3) ◦ C3]5and [G : N ] = 4 by Lemma 2.2.1. In particular, G must contain a normalsubgroup conjugate to S4(3)⊗A2 or ±S4(3) ⊗√

−3∞,3[S3]1. These two groups fix

15 and 5 lattices respectively. They are only contained in √−3[±S4(3) ◦ C3)]25.

If E(G)'Alt6 with character 4χ5a, then N '√−3[C6]1⊗A5'√−3[C6]1⊗S6.Since the exceptional outer automorphism of Alt6 interchanges its 5 dimensionalirreducible characters, we have [G : N ] ≤ 2. This contradicts Lemma 2.2.1.

If E(G)'Alt6 with character 2χ10, then N '√−3[C6]1⊗[±S6]10 is already ir-reducible and fixes 12 lattices. One checks that it is only contained in√−3[±U4(2) ◦ C3]10.

If E(G)'L2(11) with character 2χ10a, then N '√−3[C6]1⊗A(2)10 has Q(

√−3) as

commuting algebra and fixes 2 lattices. One checks that it is s.i.m.f..

Page 114: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

114 CHAPTER 4. THE CLASSIFICATION

If E(G)'L2(11) with character 2χ10b, then N = F ∗(G) has Q(√−3) as com-

muting algebra and fixes 6 lattices. One checks that it is only contained in

√−3[C6]1⊗A10 and √−3[±L2(11)

2(3)

⊗√−3[C6]1]10.

If E(G)'L2(11) with character 2χ5ab, then F ∗(G) contains an irreducible cyclicsubgroup of order 33 and |G| = {2, 3, 5, 11}. It follows from Lemma 4.11.4

that G is conjugate to √−3[√−11[±L2(11)]5

2(3)

@×⊃ √−3[C6]1]10, √−3[C6]1⊗A(3)

10 or

√−11[±L2(11)]5⊗A2. �

Lemma 4.11.9 If F (G)'D8⊗C4 then G is conjugate to i[(D8⊗C4).S3]2⊗A5.

Proof: Since E(G) embeds into GL5(Q(i)), it is conjugate to Alt6. In particular Gcontains the normal subgroup N := Bo(F ∗(G))' i[(D8⊗C4).S3]2⊗A5. The group Nfixes 6 lattices and is easily checked to be s.i.m.f.. �

Lemma 4.11.10 F (G) 6'D8⊗D8.

Proof: By Table 2.5.1, E(G)'Alt6. But then F ∗(G) is already irreducible and fixesno skewsymmetric form. �

Lemma 4.11.11 If F (G)'Q8, then G is conjugate to √−11[L2(11)]5 ⊗√−11∞,2[SL2(3)]1

or √−2[GL2(3)]2⊗A5.

Proof: Since E(G) embeds into GL5(Q∞,2), it is conjugate to Alt6 or L2(11) by Ta-ble 2.5.1 (note that O3(Bo(S4(3))) = C3).In the latter case Bo(F ∗(G))'√−11[L2(11)]5 ⊗√

−11∞,2[SL2(3)]1 is already s.i.m.f.. In the

first case N := Bo(F ∗(G))'∞,2[SL2(3)]1⊗A5 is irreducible and has Q∞,2 as commut-ing algebra. So by Remark 2.2.17, G must contain a subgroup conjugate to N.2 orN ◦Ci with i ∈ {3, 4}. These groups fix 12, 18 and 6 lattices respectively. One checksthat N : 2'√−2[GL2(3)]2⊗A5 is already s.i.m.f.. The other two groups are properlycontained in √−3[±S4(3) ◦ C3]5 ⊗√

−3∞,2[SL2(3)]1 or i[(D8⊗C4).S3]2⊗A5 respectively. �

Lemma 4.11.12 F (G) is not conjugate to C8, D16 or QD16.

Proof: In any case F (G) would contain a cyclic characteristic subgroup of order 8.Thus E(G) embeds into GL5(Q(ζ8)) and must be conjugate to Alt6. So G con-tains a normal subgroup N 'C8⊗A5. Since the exceptional outer automorphismof Alt6 interchanges its absolutely irreducible 5-dimensional characters, we haveG/N ≤ Out(C8)'C2 × C2. In particular Π(|G|) = {2, 3, 5}. The group N fixes20 lattices. By looking at the indices of these lattices in the standard lattice, one sees

Page 115: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.11. DIMENSION 20 115

that L = Z1×20 is normal critical and there exists some integral F ∈ F>0(N) such thatdet(L, F ) = 24·34. The maximal totally real subfield of Q(ζ8) is isomorphic to Q(

√2).

So Table 2.5.4 shows that there are 4 groups to check:

form Q(i) Q(√−2)

F (i[C4]1⊗A5)2 � √−2[GL2(3)]2⊗A5

p2F i[(D8⊗C4).S3]2⊗A5√−2[GL2(3)]2⊗A5

None of these has the correct Fitting subgroup. �

Lemma 4.11.13

(a) If F (G)'C4, then G is conjugate to ∞,2[±U5(2)]52(2)◦ C4, ∞,2[SL2(11)]5

2(2)@⊃ C4,

i[[±S6]10

2(2)

@×⊃ i[C4]1]10 or i[C4]1⊗H with H ∈ {A10, A(2)10 , A

(3)10 }.

(b) F (G) is not conjugate to D8.

Proof: In both cases, F (G) contains a characteristic normal cyclic subgroup U oforder 4. Thus E(G) embeds into GL10(Q(i)). By Table 2.5.1, E(G) is conjugateto Alt6 (2 representations), L2(11) (3 representations), Alt11, SL2(11) or U5(2) (noteagain that O3(Bo(S4(3))) = C3). The groups U5(2) and SL2(11) have been handled inLemma 4.11.5. Let N = Bo(E(G)U).

• If E(G)'Alt11, then N ' i[C4]1⊗A10 fixes 2 lattices and has Q(i) as commutingalgebra. It is already s.i.m.f..

• If E(G)'Alt6 with character 2χ10, then N has Q(i) as commuting algebra and

fixes 22 lattices. It is only contained in i[[±S6]10

2(2)

@×⊃ i[C4]1]10.

• Suppose E(G)'Alt6 with character 4χ5a. Since the exceptional outer automor-phism of Alt6 interchanges its absolutely irreducible 5-dimensional charactersand Bo(E(G))'A5, we get that G/N ≤ Out(F (G)). In particular F (G) = D8

by Lemma 2.2.1. Let 4(N) be a summand of the natural representation of N .Then 4(N) < GL10(Q) is absolutely irreducible and has Q as commuting alge-bra. So G embeds into GL10(K) for some imaginary quadratic number field and4(N) is an irreducible subgroup of G < GL10(K). One easily checks that onlythe outer automorphism acting on D8 and fixing A5 can be realized in GL10(C).Only the non-split extension is symplectic, since it can be realized over Q(

√−2).

It fixes 40 lattices and is only contained in √−2[GL2(3)]2⊗A5.

• If E(G)'L2(11) with character 2χ10a, then N ' i[C4]1⊗A(2)10 has Q(i) as com-

muting algebra and fixes 2 lattices. One checks that it is s.i.m.f..

• If E(G)'L2(11) with character 2χ10b, then N = F ∗(G) has Q(i) as commutingalgebra and fixes 4 lattices. It is only contained in i[C4]1⊗A10.

Page 116: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

116 CHAPTER 4. THE CLASSIFICATION

• If E(G)'L2(11) with character 2χ5ab, then N = F ∗(G) contains an irreduciblecyclic subgroup of order 44 and Π(|G|) = {2, 3, 5, 11}. Thus G is conjugate to

i[C4]1⊗A(3)10 by Lemma 4.11.3. �

Lemma 4.11.14 If F (G) = ±I20, then G is conjugate to one of

√−19[SL2(19)]10, √−2[∞,2[±U5(2)] :2]10, √−2[2.M12 :2]10, √−7[2.M22 :2]10 .

Proof: By Table 2.5.1, E(G) is isomorphic to Alt6 (2 representations), L2(11) (3 rep-resentations), Alt11, SL2(11), Alt7, 2.M12, 2.M22, U5(2), 2.L3(4) or SL2(19). Note thatO3(Bo(U4(2))) = C3 for χ5ab and χ10ab.The group √

−19[SL2(19)]10 is s.i.m.f. by Theorem 3.2.1. The cases E(G)'U5(2) orSL2(11) are handled in Lemma 4.11.5. Let N = Bo(E(G)).

• If E(G)' 2.M12 or 2.M22 then N = ±E(G) : 2 fixes only one lattice and hasQ(√−2) or Q(

√−7) as commuting algebra. One checks that N is s.i.m.f..

• If E(G)'Alt7, then N '±Alt7 fixes 5 lattices and has Q(√−7) as commuting

algebra. One checks that it is only contained in √−7[2.M22 :2]10.

• If E(G)' 2.L3(4), then N ' 2.L3(4).22 fixes 5 lattices and has Q(√−7) as com-

muting algebra. One checks that it is only contained in √−7[2.M22 :2]10.

• If E(G)'Alt11, then G/± Alt11 ≤ Out(Alt11)'C2 and N 'A10'±S11. ThusG = N is reducible.

• If E(G)'L2(11) with character 2χ5ab then N = F (G). Hence G/N ≤Out(N)'C2 contradicts Lemma 2.2.1.

• If E(G)'L2(11) with character 2χ10a, then N '±L2(11) :2. Hence G/±E(G) ≤Out(L2(11))'C2 implies that G = N is reducible.

• If E(G)'L2(11) with character 2χ10b, then N = F ∗(G) and again [G : N ] = 2.Since χ10b as absolutely irreducible, G embeds into GL10(K) for some imaginaryquadratic number field K such that N < G is irreducible. One easily constructsN ·2 < GL10(Q(

√−3)). But N ·2 cannot be s.i.m.f. since Q(

√−3) contains a

third root of unity.

• If E(G)'Alt6 with character 4χ5a then N 'A5'±S6. Since the exceptionalouter automorphism of Alt6 interchanges χ5a and χ5b, we see that G = N isreducible.

• If E(G)'Alt6 with character 2χ10 then N '±S6 and [G : N ] ≤ 2. AgainG < GL10(K) for some imaginary quadratic number field K such that N < Gis irreducible. One easily constructs N : 2 < GL10(Q(

√−2)). But N : 2 is only

contained in √−2[2.M12 :2]10. �

Page 117: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

4.12. DIMENSION 22 117

4.12 Dimension 22

Theorem 4.12.1 The s.i.m.f. subgroups G of Sp22(Q) are

# G |G| |Z(G)| Lminr.i.m.f.

supergroups

[2, 1, 11] i[C4]111 230 ·34 ·52 ·7·11 3 [1, 1, 44] B22

1 i[C4]1⊗A11 212 ·35 ·52 ·7·11 10 [32, 2, 264] A211

[2, 2, 11] √−3[C6]11

1 219 ·315·52 ·7·11 1 [311, 2, 66] A112

2 √−3[C6]1⊗A11 211 ·36 ·52 ·7·11 9 [311, 4, 396] A11⊗A2

3 √−3[±U5(2) ◦ C3]11 211 ·36 ·5·11 4 [22 ·3, 4, 49896] S

4 √−23[±L2(23)]11 24 ·3·11·23 3

[2311, 12, 1012][2311, 12, 506]

A(6)22

where S := [±PSU6(2).S3]22 < GL22(Q).

Proof: By explicit calculations, one verifies that the above table is correct and yieldss.i.m.f. groups. Further the r.i.m.f. supergroups are easily constructed since all s.i.m.f.groups are uniform. It remains to show the completeness of the classification.

The group √−3[C6]111 is s.i.m.f. by Lemma 2.1.21 and i[C4]11

1 fixes only three lattices.One checks that it is s.i.m.f.. So we may now suppose that G is s.p.i.m.f..

It follows from Corollary 4.1.2 that E(G) is not trivial. Thus by Table 2.5.1, E(G) isconjugate to Alt12, M11, U5(2) or L2(23). In the latter two cases, E(G) is irreducibleand Bo(E(G)) is already s.i.m.f..

If E(G)'Alt12 then G contains a normal subgroup B := Bo(E(G))'A11'±S12.Clearly B is not self-centralizing. Thus G contains an irreducible subgroup i[C4]1⊗A11

or √−3[C6]1⊗A11. Both groups are s.i.m.f..

If E(G)'M11 then Out(E(G)) is trivial. Thus G contains an irreducible subgroupconjugate to √−3[C6]1⊗M11 or i[C4]1⊗M11. The first group fixes 18 lattices and isonly contained in √−3[C6]1⊗A11 and √−3[C6]11

1 . The second group fixes 15 lattices andis only contained in i[C4]1⊗A11 and i[C4]11

1 . �

Page 118: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

118 CHAPTER 4. THE CLASSIFICATION

Page 119: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

Appendix A

Invariant Forms

For each conjugacy class of s.p.i.m.f. matrix groups in GL2n(Q) where 1 ≤ n ≤ 11 wegive a symmetric positive definite form F and a skewsymmetric form S such that

Aut(Z1×2n, {F, S}) = {g ∈ GL2n(Z) | gFgtr = F and gSgtr = S}

is a representative of that class.

Further the pairs (F, S) satisfy the following properties:

(a) det(F ) = min{det(L, F ′) | (L, F ′) ∈ Z(G)×F>0(G) is integral} whereG := Aut(Z1×2n, {F, S}).

(b) S · F−1 generates the commuting algebra of Aut(Z1×2n, {F, S}) and its minimalpolynomial µ(S · F−1, X) is one of

• X2 + d for some squarefree d ∈ N.

• µ(ζk − ζ−1k , X) for some even k ∈ Z≥6.

• µ(ζ26 + ζ326 + ζ9

26, X).

• µ(√k ·(ζ` − ζ−1

` ), X) where (k, `) ∈ {(2, 10), (3, 10), (3, 16)}.• µ(i+

√−3 +

√−5, X).

By Algorithm 2.3.3, these pairs (F, S) give an easy way to recover the conjugacy classof any given s.p.i.m.f. subgroup of GL2n(Q) for 1 ≤ n ≤ 11.

In some cases, tensoring such a pair (F, S) with a gram matrix g of some root latticeyields another s.p.i.m.f. automorphism group H. If the pair (F ⊗ g, S⊗ g) satisfiesproperty (a) from above, then H is omitted in the list below, since these forms caneasily be reconstructed from the name of H.

For example, tensoring the forms of i[C4]1 with any gram matrix of A2 yields a pair offorms that satisfies the above properties. Thus the s.p.i.m.f. matrix group i[C4]1⊗A2

is omitted in the list below.

Similarly, tensoring the forms of i[C4]1 with any gram matrix of A5 yields a pair offorms whose automorphism group is conjugate to i[C4]1⊗A5. But these forms donot satisfy the above properties. Thus the list below contains some other forms for

i[C4]1⊗A5.

119

Page 120: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

120 APPENDIX A. INVARIANT FORMS

The

pai

rs(F,S

)ar

egi

ven

asa

singl

em

atri

xM

.T

he

upp

ertr

iangu

lar

par

tofM

isth

eupp

ertr

iangu

lar

par

tofS

.T

he

other

entr

ies

ofM

are

the

corr

esp

ondin

gen

trie

sofF

.

For

exam

ple

,2

1−

33

−1

21−

30−

12

10

0−

12

des

crib

esth

epai

r

( 0 B B @2−

10

0−

12−

10

0−

12−

10

0−

12

1 C C A,0 B B @

01−

33

−1

01−

33−

10

1−

33−

10

1 C C A) .

A.1

Dim

ensi

on

2

1:i[C

4] 1

11

01

2:√−

3[C

6] 1

23

−1

2

A.2

Dim

ensi

on

4 1:i[

(D8⊗C

4).S

3] 2

21

0−

2−

12

11

0−

12

00−

10

2

3:√−

2[G

L2(3

)]2

20

2−

2−

12

02

0−

12

00−

10

2

4:∞,2

[SL

2(3

)]1◦C

3

2−

12−

2−

12

11

0−

12

20−

10

2

5:ζ 1

0[C

10] 1

21−

33

−1

21−

30−

12

10

0−

12

A.3

Dim

ensi

on

6

1:√−

3[±

31+

2+

:SL

2(3

)]3

23−

20

00

−1

21

00

00−

12

1−

21

00−

12

30

00

0−

12

00

0−

10

02

2:√−

7[±

L2(7

)]3

47

0−

77

0−

14

70−

77

−2−

14

70−

71−

2−

14

70

11−

2−

14

7−

21

1−

2−

14

Page 121: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

A.4. DIMENSION 8 121

A.4

Dim

ensi

on

8

1:i[

(21+

4+⊗C

4).S

6] 4

20

00

01−

20

−1

20

00

01−

10−

12

0−

10

02

00−

12

01

0−

10

00−

12

−1

00

00

00−

12

00

00

00

0−

12

00

00

0−

10

02

3:√−

2[ ∞

,2[2

1+

4−

.Alt

5] 2

:2] 4

20

0−

22

0−

10

−1

20

10

00−

20−

12

00

01

00

0−

12

0−

10

10

00−

12

01

00

00

0−

12

−2

00

00

00−

12

00

00

0−

10

02

4:√−

2[F

4:2

] 42

00

00

02−

2−

12

00

02−

20

0−

12

02−

20

00−

10

2−

20

00

00

00

20

00

00

00−

12

00

00

00

0−

12

00

00

00−

10

2

5:√−

3[S

p4(3

)◦C

3] 4

23−

20

00

00

−1

21

00

00

00−

12

−1

00

02

00−

12

−1

00

00

00−

12

−1

2−

10

00

0−

12

−3

00

00

00−

12

00

00

0−

10

02

7:∞,2

[SL

2(5

):2]

2◦C

3

42

3−

3−

10−

22

−2

4−

10−

1−

13−

11−

14

13

62

01

0−

14

−1−

12

1−

1−

11

14

33−

2−

21−

21

14

20

01−

22−

12

43

2−

10

1−

20

14

9:√−

5[√

5,∞

[SL

2(5

)]1

2− �C

4] 4

20

00

3−

2−

1−

3−

12

00−

11

3−

10−

12

00−

31

30

0−

12

11−

2−

10

00−

12

10

00

00

0−

12

00

00

00

0−

12

00

00

0−

10

02

10:√−

5[√

5,∞

[SL

2(5

)]1

2+ �C

4] 4

45

00

00

0−

5−

24

00

55

00

1−

14

00

0−

50

10−

14

05

50

−1−

11

14

00

0−

21−

21

14

00

01−

22−

12

40

2−

10

1−

20

14

11:√−

5[C

20:C

4] 4

20

00−

41

11

−1

20

01

1−

41

0−

12

01

11

10

0−

12

1−

41

10

00

02

00

00

00

0−

12

00

00

00

0−

12

00

00

00

0−

12

12:√−

6[√

2,∞

[S4] 1

2− �C

3] 4

23−

10−

10

00

−1

20

1−

22−

12

0−

12

11−

23−

30

0−

12

1−

20

20

00−

12

1−

11

00

00−

12

−2−

10

00

00−

12

−2

00

00−

10

02

13:√−

6[√

2,∞

[S4] 1

2+ �C

3] 4

20

00

02

2−

2−

12

00−

20

0−

20−

12

0−

20

04

0−

10

22

2−

40

00

00

20

00

00

00−

12

00

00

00

0−

12

00

00

00−

10

2

14:√−

6[D

16

2 �√−

3[C

6] 1

] 4

20

00

03

30

−1

20

0−

30

0−

30

02

0−

30

03

00−

12

03−

30

00

00

20

00

00

00−

12

00

00

00

00

20

00

00

00−

12

15:√−

7[2.A

lt7] 4

2−

10−

20

00

4−

12

30−

20

00

0−

12

10

20−

20

0−

12

3−

40

00

00−

12

30−

10

00

0−

12

12

00

00

0−

12

00

00

0−

10

02

16:√−

15[√

5,∞

[SL

2(5

)]1

2− �C

3] 4

21

00

20−

60

−1

2−

54

0−

24

00−

12

−3

00

00

00−

12

30

0−

60

00−

12

1−

25

00

00−

12

30

00

00

0−

12

00

00

0−

10

02

17:√−

15[√

5,∞

[SL

2(5

)]1

2+ �C

3] 4

40−

55

510

10

0−

24

−5

0−

5−

5−

55

1−

14

−5−

50

00

10−

14

55

05

−1−

11

14

5−

50

−2

1−

21

14

00

01−

22−

12

4−

52−

10

1−

20

14

18:√−

15[C

30:C

4] 4

40

00

6−

96

6−

24

00−

96−

96

0−

24

06−

96−

90

0−

24

66−

96

−2

10

04

00

01−

21

0−

24

00

01−

21

0−

24

00

01−

20

0−

24

19:√

5,∞

[SL

2(5

)]1◦C

5

2−

21

00

00

0−

12

−2

10

00

00−

12

−1

00

00

00−

12

0−

1−

12

00

0−

12

2−

1−

20

00

0−

12

21

00

00

0−

12

−1

00

00−

10

02

Page 122: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

122 APPENDIX A. INVARIANT FORMS

21:ζ 1

6−ζ−

116

[QD

32] 2

10

01

01

00

01

00

10

10

00

10

01

01

00

01

00

10

00

00

10

01

00

00

01

00

00

00

00

10

00

00

00

01

A.5

Dim

ensi

on

10

1:i[C

4] 1⊗A

5

20

00

00

1−

11−

11

20

00

02−

11

0−

10

20

0−

10

0−

11

−1

01

20

00

0−

10

10−

1−

12

−1

01

00

00

00

02

00−

1−

10

00

00

02

0−

1−

10

00

00−

1−

12

11

11−

1−

10

11−

13

−2

11−

1−

10−

10

11

3

2:√−

3[±S

4(3

)◦C

3] 5

40

00−

30−

3−

30

0−

24

00

30

03−

30

−2

24

03

00

30−

3−

22

24

03

03

00

−1−

11

04

00

00−

32

0−

2−

1−

24

−3

00

3−

12

02

01

40−

30

−1−

11−

12−

2−

24

0−

3−

21

20

0−

2−

12

40

−2

21

0−

1−

10

12

4

3:√−

11[L

2(1

1)] 5

60

00−

11−

11

00

00

26

−11

11

0−

11

11

00

0−

2−

36

00

11

00

011

−2

1−

26

00

011

0−

11

−3−

22

26

00

11

11

0−

31

10

26

11

00

02

3−

22

0−

16

11

11

02−

22−

1−

1−

21

60

02−

20

01−

2−

12

6−

11

02

11

20

20

16

A.6

Dim

ensi

on

12

2:∞,3

[±U

3(3

)]3◦C

4

4−

1−

2−

20

00

00

00

10

40

00

1−

10

0−

1−

10

10

4−

11

00

00−

10−

1−

22

14

00

00

0−

1−

2−

10

1−

2−

14

−1

00−

22

10

−2

1−

21

24

00

00−

11

0−

20−

20−

14

1−

12

2−

11−

22−

1−

2−

22

41

01−

1−

20

02

02−

2−

14

−2−

21

10

00−

2−

20

1−

24

10

02

12−

1−

1−

20

02

40

−2

0−

20

22

0−

12−

2−

14

4:i[√−

3[±

31+

2+

:SL

2(3

)]3

2(2

)

@×⊃i[C

4] 1

] 6

40

11−

21−

1−

12

10

02

41

02

21

01

11

0−

11

40

22

40−

10

10

−1

00

41−

10

10

10

10

00−

14

−1

01

10

10

−1

02

11

42

1−

21

1−

1−

1−

10

02

24

0−

10

10

10

01

11

04

1−

1−

2−

12

11

0−

10−

11

40−

1−

1−

1−

10

10

10

10

40

00−

1−

12

11

12

12

4−

10

00−

10−

10−

11

21

4

5:i[

L2(7

)2(2

)

⊗i[C

4] 1

] 64

10

0−

1−

21

01−

2−

1−

1−

14

10

01

10

10

20

−2

14

−1

04−

11

00

01

0−

21

40

10

01

00

11

20−

24

02

20

01

10−

10−

10

4−

1−

10

0−

21

1−

11

20−

14

21−

10

10

01

00

10

4−

1−

20−

1−

11

0−

10

01−

14

0−

10

20

00

20

10

04

−1

0−

10

22−

10

20

11

41

10−

1−

11

11

12

21

4

Page 123: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

A.6. DIMENSION 12 123

6:i[C

4] 1⊗A

(2)

6

40

00

00

4−

1−

21

1−

2−

14

00

00−

14−

1−

21

1−

2−

14

00

0−

2−

14−

1−

21

1−

2−

14

00

1−

2−

14−

1−

21

1−

2−

14

01

1−

2−

14−

1−

21

1−

2−

14

−2

11−

2−

14

00

00

00

40

00

00

00

00

00−

14

00

00

00

00

00−

2−

14

00

00

00

00

01−

2−

14

00

00

00

00

11−

2−

14

00

00

00

0−

21

1−

2−

14

7:i[√−

7[±

L2(7

)]3

2(2

)

@×⊃i[C

4] 1

] 6

80

0−

42

1−

13

4−

4−

40

−2

80

23

41−

4−

12

1−

3−

44

81−

11

1−

30

14−

44−

2−

18

0−

2−

12

4−

80

1−

2−

31−

28

−3

02−

22

0−

1−

34

30

18

0−

4−

30

1−

21

33

3−

42

8−

13−

31−

23−

4−

30

0−

4−

38

00−

21

4−

10

00−

11

48

00

0−

42

10

02

1−

2−

48

43

4−

1−

44−

2−

1−

10

00

84

4−

1−

43−

1−

2−

23

0−

14

8

8:√−

2[±

L2(7

)·2]

6

20

00

00

02−

10

1−

1−

12

00

00−

10

1−

1−

10

0−

12

00

02−

10−

11

10

0−

12

00−

20

10

1−

10

00−

12

01

0−

21

0−

10

00

0−

12

1−

12

0−

10

00

00

00

20

00

00

00

00

00−

12

00

00

00

00

00

0−

12

00

00

00

00

00

0−

12

00

00

00

00

00

0−

12

00

00

00

00

00

0−

12

9:√−

2[ ∞

,2[S

L2(5

)]3:2

] 63

12

0−

2−

11

12−

10

0−

13

−1

00−

30

11

2−

11

11

31−

2−

1−

22

00

2−

10−

10

32

21

10−

12

11−

1−

1−

13

00

01−

1−

11

1−

1−

11

14

30

1−

1−

11

11

1−

11−

14

11

2−

11

01

10

0−

10

31

11

11−

10

00−

11

03

00−

1−

10−

1−

11−

11−

10

30−

10−

1−

11

02−

20

0−

13

−1

10

1−

11−

12

11

0−

13

10:√−

3[6.U

4(3

).2]

6

40

30

00

03

0−

30

00

40

03

30

00

00

01

04

30

00

00

03

0−

22

14

33

0−

30

00

00

1−

2−

14

00

00

0−

30

−2

1−

21

24

30

00−

30

0−

20−

20−

14

00

00

01−

22−

1−

2−

22

43−

30

3−

20

02

02−

2−

14

00

01

00

0−

2−

20

1−

24

00

02

12−

1−

1−

20

02

43

−2

0−

20

22

0−

12−

2−

14

11:i[√−

3[±

31+

2+

:SL

2(3

)]3⊗∞,2

[SL

2(3

)]1] 6

40

31−

21−

11

61

22

24

32

22

12

3−

11−

2−

11

42

22

42−

32

1−

2−

10

04

11

2−

3−

2−

30−

30

00−

14

−3

0−

11

21

4−

10

21

14

6−

1−

2−

11

1−

1−

10

02

24

−2−

1−

2−

12

10

01

11

04

13

63

21

10−

10−

11

42

11

−1−

10

10

10

10

40

00−

1−

12

11

12

12

43

00

0−

10−

10−

11

21

4

12:√−

3[±

3.M

10] 6

83

00

0−

30−

3−

60−

30

18

03−

6−

33

3−

6−

30−

12

20

8−

3−

60

3−

6−

30

00

4−

1−

18

00

3−

30

0−

30

02

2−

28

0−

36

00

00

3−

14

04

80−

60

03

3−

4−

3−

3−

3−

3−

48

33

63

3−

33

2−

12−

2−

18

−3−

3−

3−

6−

2−

23−

44

21

18

0−

36

−2

1−

4−

2−

2−

42

1−

28

−6

0−

3−

4−

41

0−

13−

11

28

62

40−

24

1−

30

22−

28

13:√−

3[C

6] 1⊗M

6,2

10

00

00

015

66

66

64

10

00

00

615

6−

6−

66

44

10

00

06

615

6−

6−

64−

44

10

00

6−

66

15

6−

64−

4−

44

10

06−

6−

66

15

64

4−

4−

44

10

66−

6−

66

15

−5−

2−

2−

2−

2−

210

00

00

0−

2−

5−

22

2−

24

10

00

00

−2−

2−

5−

22

24

410

00

0−

22−

2−

5−

22

4−

44

10

00

−2

22−

2−

5−

24−

4−

44

10

0−

2−

22

2−

2−

54

4−

4−

44

10

14:∞,2

[SL

2(5

)]3◦C

3

41

01

0−

3−

3−

2−

21−

31

−1

4−

1−

2−

23

2−

1−

2−

13

22−

14

−1

1−

11−

1−

31−

4−

1−

12−

14

−1

43

10

23

3−

22−

11

43

2−

12

12

3−

11

10

14

3−

1−

3−

3−

11

10

1−

10

14

1−

1−

11

10−

1−

11−

1−

11

41−

11

00

01

20

1−

11

40−

31

−1

11

21

11

12

41

0−

1−

10−

10

11

11

14

−1

10

11−

11

10

12

14

Page 124: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

124 APPENDIX A. INVARIANT FORMS

15:√−

5[ i

[C4] 1

2− �

Alt

5] 6

10

10−

10

10−

10

0−

10

10

01

0−

10−

10−

1−

10

01

10

10−

10

10

00

00

1−

10−

10−

10

10

00

00

10

0−

10−

10

00

00

00

11

0−

10−

11

00

00

00

10

0−

10

00

00

00

00

1−

10

11

00

00

00

00

10

00

00

00

00

00

01

1−

10

00

00

00

00

01

00

00

00

00

00

00

1

16:√−

5[ i

[C4] 1

2+ �

Alt

5] 6

50

00

00

00−

50

00

25

00

00

00

05

00

22

50

00

00

00−

50

2−

22

50

05

00

00

02−

2−

22

50

00

00

0−

52

2−

2−

22

50

50

00

00

00

00

05

00

00

00

00

00

02

50

00

00

00

00

02

25

00

00

00

00

02−

22

50

00

00

00

02−

2−

22

50

00

00

00

22−

2−

22

5

17:√−

7[±

L2(7

)]3⊗ √ −

7∞,3

[S3] 1

42−

30

00

2−

1−

41−

40

04

02−

5−

12

02

00

01

04

30

0−

20

20−

1−

2−

22

14

13

0−

14−

20

20

1−

2−

14

−2−

2−

20

03

2−

21−

21

24

30

00

12

0−

20−

20−

14

00−

20

01−

22−

1−

2−

22

4−

31

0−

5−

20

02

02−

2−

14

42

01

00

0−

2−

20

1−

24

0−

20

21

2−

1−

1−

20

02

4−

5−

20−

20

22

0−

12−

2−

14

19:√−

11[S

L2(1

1)] 6

11

11

11

11

11

11

01

11−

1−

11

1−

11−

1−

10

01

−1

11−

11−

11−

11

00

01

11

1−

11−

1−

1−

10

00

01

−1

11

1−

1−

11

00

00

01

1−

1−

11

1−

10

00

00

01

−1

11

11

00

00

00

01

−1−

11

10

00

00

00

01

−1

1−

10

00

00

00

00

11−

10

00

00

00

00

01

10

00

00

00

00

00

1

20:√−

15[±

3.A

lt6·2

1] 6

40

96

00

03

0−

30−

60

40

0−

33−

60

00

00

10

43

00

00

00

30

−2

21

4−

33−

6−

36

00

60

1−

2−

14

60

00

03

0−

21−

21

24

30

00−

30

0−

20−

20−

14

00

06

01−

22−

1−

2−

22

43−

30−

3−

20

02

02−

2−

14

00

01

00

0−

2−

20

1−

24

−6

00

21

2−

1−

1−

20

02

4−

3−

20−

20

22

0−

12−

2−

14

21:√−

15[±

3.A

lt6:2

1] 6

815

00

0−

15

015

00−

15

01

80−

15

0−

15

15

15

015

00

20

8−

15

00

15

015

00

04−

1−

18

00−

15

15

00−

15

00

22−

28

015

00

00

03−

14

04

80

00

0−

15

15

−4−

3−

3−

3−

3−

48

−15−

15

015−

15

−3

32−

12−

2−

18

15

15

15

0−

2−

23−

44

21

18

015

0−

21−

4−

2−

2−

42

1−

28

00

−3−

4−

41

0−

13−

11

28

02

40−

24

1−

30

22−

28

22:ζ 1

0[C

10] 1⊗ √ 5

Alt

5

40

30

00

00

11−

1−

3−

24

12−

30

00−

12

33

0−

14

−3

13

1−

2−

1−

4−

2−

10

1−

24

1−

11−

11

42

1−

20−

10

4−

1−

12

00

12

00

0−

2−

14

00

0−

11

00−

21

01−

24

0−

1−

2−

4−

22

01−

1−

10

04

−3−

10−

1−

11

00

20

01

41

24

1−

12

00−

11

22

40

0−

10

11

1−

22

01

24

00

00

01

01

22

22

4

23:ζ 2

6+ζ3 26+ζ9 26[C

26:C

3] 3

21−

13−

32−

10−

13−

32

−1

21−

23−

30

10

00−

10−

12

2−

23−

1−

23−

31

00

0−

12

2−

20

3−

31

00

00

0−

12

21−

31

00−

10

00

0−

12

01

00−

13

00

00

0−

12

−1

1−

13−

30

00

00

0−

12

−2

2−

33

00

00

00

0−

12

−2

2−

30

00

00

00

0−

12

−2

20

00

00

00

00−

12

−2

00

00

00

00

00−

12

Page 125: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

A.8. DIMENSION 16 125

A.7

Dim

ensi

on

14

1:i[C

4] 1⊗E

7

20−

11

10

01

11

00

10

02

00

00

00

10

0−

10

00

12

00

00

00

11−

21−

10

11

20

00

01

00−

10

00

10

12

00

01−

10

00

00

11

10

20

00

11−

10

00

11

11

12

00

01−

11

00

10

11

00

21−

1−

10−

11

−1

10

11

11

13

−1

00−

11

11

01

11

11

13

00

01

10

00

00

00−

11

20

00

−1

00

00

00

00−

1−

12

00

11

01

11

11

12

1−

13

1−

10

00

00

00

0−

1−

11−

12

2:i[U

3(3

)◦C

4] 7

30

00−

1−

10−

11

0−

10

00

−1

30−

10

0−

10

0−

10

00

11

13

0−

1−

10−

11−

10

11

11

01

30

01−

31−

1−

10

0−

10

10−

13

0−

11−

10−

1−

10

10

10−

11

3−

31−

1−

10

0−

10

−1

0−

10

00

30

00−

1−

10−

10−

10

00

0−

13

00

01−

10

01

00

00

1−

13

−1−

10

01

−1

00

0−

10

11

03

00

0−

10−

1−

10

0−

10

10

13

00−

11−

10

10−

10

01−

11

31

0−

11

0−

11

01

01

11

03

0−

10

00

0−

10

10

00

11

3

A.8

Dim

ensi

on

16

2:i[

(21+

6+⊗C

4).

Sp

6(2

)]8

40

01

01

02

1−

10

01

00

02

4−

10−

10

11

0−

11

11

00−

12

14

00

10

20

0−

1−

11

00

01

22

4−

10

22

00−

10

0−

1−

2−

12

12

14

20

0−

11

11

00

00

12

12

24

11

01

01

1−

10−

2−

2−

10

0−

2−

14

00

0−

20

00

00

−2−

10

0−

2−

12

40

00

00

0−

1−

1−

1−

20

0−

1−

22

24

0−

10

0−

1−

21

−1

10

0−

11

00−

24

0−

11

12−

10

1−

11

12

0−

2−

10

42−

1−

10−

10−

1−

10

11

0−

20−

12

40−

10

1−

11−

10−

2−

10

20

1−

1−

24

00

02

00−

12

1−

2−

2−

1−

11

1−

24

00

20

00

00−

2−

10

00

00

24

02

12

12

0−

2−

1−

1−

1−

1−

10

00

4

3:i[√−

3[S

p4(3

)◦C

3] 4

2(2

)

@×⊃i[C

4] 1

] 8

60

11

0−

11−

10

20

13

11

10

6−

13

01−

1−

12

02−

13

11

1−

13

60

0−

11−

22

02

01−

20

21−

1−

26

13

01

11

1−

3−

2−

1−

2−

10

0−

23

60−

31−

1−

1−

10

01

1−

11−

3−

33

26

02−

20−

2−

1−

11−

1−

2−

13

30

10

6−

10

00

01−

1−

21

3−

1−

2−

1−

12−

16

−3−

1−

32

21

0−

1−

2−

2−

21−

12

01

60−

1−

2−

30−

3−

32−

2−

23

32

0−

10

61

0−

10−

11

−2−

2−

21−

12

0−

13

16

−1−

30−

30

−1

30−

10−

30−

2−

2−

2−

16

11

11

33

12

0−

11

0−

11−

11

6−

1−

12

31−

21−

11−

13

00

01

36

−1

13

10

2−

1−

1−

20−

11−

11

33

60

−3

12

11−

21−

31−

10

10−

30

6

Page 126: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

126 APPENDIX A. INVARIANT FORMS

5:i[C

4] 1⊗M

8,3

40

00

00

00

42

2−

2−

12

21

24

00

00

00

24

0−

1−

21

2−

12

04

00

00

02

04−

2−

12

12

−2−

1−

24

00

00−

2−

1−

24

2−

1−

20

−1−

2−

12

40

00−

1−

2−

12

40−

11

21

2−

10

40

02

12−

10

40

02

21−

2−

10

40

22

1−

2−

10

41

1−

12

01

01

41−

12

01

01

40

00

00

00

04

00

00

00

00

00

00

00

02

40

00

00

00

00

00

00

02

04

00

00

00

00

00

00

0−

2−

1−

24

00

00

00

00

00

00−

1−

2−

12

40

00

00

00

00

00

21

2−

10

40

00

00

00

00

02

21−

2−

10

40

00

00

00

00

1−

12

01

01

4

6:∞,3

[SL

2(7

)]4◦C

4

61

02

10

0−

12−

1−

11

02

02

16

10

1−

10−

10−

20

00

20−

2−

3−

16

−2

0−

1−

21−

10

0−

20−

2−

1−

12

31

60

0−

2−

21−

2−

1−

10

1−

10

02

23

61−

2−

11−

2−

1−

1−

22−

10

−2

12

20

6−

2−

11

2−

10

20−

1−

13

1−

20−

10

60

2−

3−

10

12

00

10−

2−

1−

21

36

20−

11

00

0−

11

1−

21−

22

10

61−

13

10−

10

22−

30−

2−

20

00

63−

12

00

01

30

12−

12−

10

06

−1

21

20

1−

2−

2−

2−

2−

3−

1−

20

2−

26

−1−

10

33

30

31

02

11

12−

26

0−

2−

1−

21

00−

13

11

3−

1−

1−

1−

16

−1−

13−

1−

10−

20

30

20

11

1−

16

01

21

30

1−

1−

10

11

01−

11

6

7:√−

2[ ∞

,2[2

1+

6−

.O− 6

(2)]

4:2

] 84

00

00

00

00

00

00

22

02

40

00

00

00

0−

22

00

00

21

40

00

00

00

00

02

00

12

24

00

00

00

02

20

00

21

21

40

00

00

00

00

02

12

12

24

00

00

02

00

00

−2−

10

0−

2−

14

00

20

00

00−

2−

2−

10

0−

2−

12

4−

20

00

00−

20

−1−

20

0−

1−

22

24

00−

22

00

0−

11

00−

11

00−

24

−2

00

00

00

1−

11

12

0−

2−

10

40

2−

20

00−

1−

10

11

0−

20−

12

40

02

0−

11−

10−

2−

10

20

1−

1−

24

0−

20

20

0−

12

1−

2−

2−

1−

11

1−

24

00

20

00

00−

2−

10

00

00

24

02

12

12

0−

2−

1−

1−

1−

1−

10

00

4

8:√−

2[2

1+

6+

.(A

lt8:2

)]8

20

00

00

00−

21

00−

11−

11

−1

20

00

00

01−

11−

11

01−

20−

12

00

00

00

2−

10

0−

10

10

0−

12

00

00

1−

21

00

1−

20

00

0−

12

00

0−

11−

1−

11

01

00

00

0−

12

00

1−

10

1−

1−

11

10

00

00−

12

0−

11−

11

10−

1−

20

00

0−

10

02

00

11−

21

00

00

00

00

00

20

00

00

00

00

00

00

00−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

0−

10

02

10:√−

2[G

L2(3

)]2⊗ √ −

2∞,5

[SL

2(5

):2]

2

40

00

00

00−

13

1−

1−

4−

11

1−

24

00

00

00−

10−

2−

10

01−

10

04

00

00

04

0−

1−

11−

2−

1−

21−

22

40

00

01

0−

1−

11−

10

21−

20

24

00

01

0−

10−

10

03

−2

2−

1−

20

40

00−

1−

13

20

0−

1−

22

20−

10

40

2−

1−

4−

31

1−

30

−1−

1−

2−

1−

10−

14

0−

42

32−

1−

21

00

00

00

00

40

00

00

00

00

00

00

00−

24

00

00

00

00

00

00

00

00

40

00

00

00

00

00

00

1−

22

40

00

00

00

00

00

01−

20

24

00

00

00

00

00

0−

22−

1−

20

40

00

00

00

00

0−

22

20−

10

40

00

00

00

00−

1−

1−

2−

1−

10−

14

12:∞,2

[21+

6−

.O− 6

(2)]

4◦C

3

40

2−

12

10

01

10

01

00

02

43

01

0−

11

01−

3−

31

00

12

14

−2

21

00

00−

13−

10−

20

12

24

10

00

00−

30

0−

10

12

12

14

20

01

11

10

00−

21

21

22

4−

11

01−

2−

13−

30

0−

2−

10

0−

2−

14

2−

20−

20

00−

20

−2−

10

0−

2−

12

4−

20−

20

00

13

−1−

20

0−

1−

22

24

2−

10

0−

10−

1−

11

00−

11

00−

24

0−

11−

1−

21

01−

11

12

0−

2−

10

4−

21−

3−

2−

10−

1−

10

11

0−

20−

12

42−

10−

3−

11−

10−

2−

10

20

1−

1−

24

00

22

00−

12

1−

2−

2−

1−

11

1−

24

2−

22

00

00

0−

2−

10

00

00

24

02

12

12

0−

2−

1−

1−

1−

1−

10

00

4

Page 127: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

A.8. DIMENSION 16 127

13:√−

3[S

p4(3

)◦C

3] 4⊗ √ −

3∞,2

[SL

2(3

)]1

6−

6−

3−

30

3−

33

00

0−

3−

9−

3−

3−

30

6−

33

03−

33

00

0−

33

33−

3−

13

60

0−

33

00

00

03

00

01−

1−

26

33

03−

33−

3−

30

30−

30

0−

23

60−

33−

3−

3−

30

03−

3−

31−

3−

33

26

00

00

0−

3−

3−

3−

30

−1

33

01

06

30

00

03

30−

33−

1−

2−

1−

12−

16

3−

33

0−

6−

30

3−

2−

2−

21−

12

01

66

30

30

33

2−

2−

23

32

0−

10

6−

30−

30−

3−

3−

2−

2−

21−

12

0−

13

16

33

03

0−

13

0−

10−

30−

2−

2−

2−

16

33

3−

33

31

20−

11

0−

11−

11

63

3−

63

1−

21−

11−

13

00

01

36

3−

33

10

2−

1−

1−

20−

11−

11

33

60

−3

12

11−

21−

31−

10

10−

30

6

14:√−

3[C

6] 1⊗

[(SL

2(5

)2 �

SL

2(5

)):2

] 88

00

00

00

012−

63

3−

3−

60

6−

48

00

00

00−

612−

30−

33

3−

32−

28

00

00

03−

312−

33−

6−

60

20−

28

00

00

30−

312

33

63

−2−

22

28

00

0−

3−

33

312

3−

3−

6−

42−

42

28

00−

63−

63

312

60

02−

44−

24

80

03−

66−

36

12

34−

20

2−

40

28

6−

30

3−

60

312

−4

2−

1−

11

20−

28

00

00

00

02−

41

01−

1−

11−

48

00

00

00

−1

1−

41−

12

20

2−

28

00

00

0−

10

1−

4−

1−

1−

2−

12

0−

28

00

00

11−

1−

1−

4−

11

2−

2−

22

28

00

02−

12−

1−

1−

4−

20−

42−

42

28

00

0−

12−

21−

2−

4−

10

2−

44−

24

80

−2

10−

12

0−

1−

44−

20

2−

40

28

16:

( ∞,2

[SL

2(3

)]1◦C

3)⊗ √ −

3∞,5

[SL

2(5

):2]

2

12

−6−

618

3−

30−

60

0−

66

03

0−

36

12

−18

60−

33−

3−

66

00

60−

6−

6−

6−

612

−12−

36

33−

66

6−

66−

96

3−

6−

60

12

30−

33

6−

6−

66−

63−

6−

3−

3−

21

312

6−

618

0−

63

60

6−

6−

61

30−

2−

612

18−

6−

69−

3−

6−

3−

93

32

3−

3−

1−

66

12

−12

69

00

3−

9−

3−

30

11−

3−

66

012

−6

3−

6−

12−

3−

33

3−

4−

66

24−

6−

6−

212

−12

60

33

03

46−

6−

20−

33−

30

12

63

36−

12−

66

4−

2−

63−

1−

20

22

12

33

3−

6−

3−

6−

42

66−

2−

40

2−

3−

312

−6

0−

30

46−

6−

22−

3−

3−

1−

33

32

12

0−

3−

6−

3−

63

30

3−

33

3−

6−

10−

612

612

42

2−

20

33−

3−

40

2−

3−

1−

212

−6

30

3−

30

33−

3−

1−

21

00

06

12

17:∞,5

[SL

2(5

)2 � √5D

10] 4◦C

3

4−

2−

22−

22

2−

20−

11

13

01

1−

24

22

00

00

10

00−

2−

20−

1−

22

42−

2−

2−

22

10

20

0−

13

22−

2−

24

00

22−

1−

10

02

00

12

0−

20

42

2−

21

11

20−

1−

1−

22

0−

20

24

−2−

22−

10

20

0−

10

20−

22

22

42

20

11−

11−

2−

1−

20

2−

2−

2−

2−

24

1−

11

0−

11

0−

10−

11−

1−

10−

21

4−

10

23

13

1−

12

2−

1−

1−

10

1−

14

20−

20

11

1−

20

0−

10−

11

20

40

02

22

1−

20

00

0−

10

2−

22

42

13

01−

2−

22

00

1−

1−

10

00

43−

20

−2

21−

2−

10−

11−

12

0−

1−

14

1−

11−

2−

12−

1−

10

0−

1−

10

12−

14

1−

1−

10

1−

2−

2−

11

1−

10

00−

11

4

18:∞,2

[SL

2(5

)2(2

)

@×⊃D

8] 4◦C

3

81

10

0−

44−

10−

44−

14

44−

41

80−

4−

10

2−

5−

4−

23

0−

1−

3−

2−

33

48

0−

5−

3−

2−

4−

4−

33−

5−

2−

22−

34

42

84

03−

5−

4−

33

03

03−

34

31

48

−3

40

4−

30−

40

30

04

21

23

83

43

44

04

44

42

44

14

38

01−

10−

4−

3−

10

03

14

12

42

84

12−

60

11

04

24

44

13

48

03−

53

33−

34

23

31

41

32

84−

14−

44−

44

31

32

42

21

48

−4

4−

4−

4−

83

21

24

44

21

34

84

11−

24

12

32

43

21

44

28

−4

40

41

22

14

33

34

43

48

4−

44

44

32

44

31

44

34

48

−4

41

31

24

24

34

02

04

48

19:√−

3[C

60.(C

4×C

2)]

8

80

00

66−

6−

30−

3−

33

60

3−

30

80

06

06

30

33−

3−

60

3−

32

28

03

03

06−

60

00

03−

62

24

83

00

06

06

60−

3−

30

−2−

2−

1−

38

00

0−

3−

30−

30−

63−

3−

20−

4−

42

83

0−

12

6−

6−

60−

30

6−

22

12

0−

18

33

33

0−

6−

63−

6−

3−

1−

4−

22

21

8−

33

00

00−

36

40

22−

1−

4−

1−

18

−6

33

30

3−

31−

12

0−

1−

2−

1−

1−

28

−3−

33

30−

31−

10

0−

20

10

3−

18

00

03

01

30

01

0−

20

3−

10

80

00

0−

22

0−

24

2−

20−

1−

3−

44

80

00

44

43−

2−

12−

42−

10

00

83−

61−

3−

3−

31

2−

1−

1−

1−

21−

4−

2−

18

0−

13

22−

30

0−

2−

33

00

02−

48

Page 128: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

128 APPENDIX A. INVARIANT FORMS

20:√−

5[(

(SL

2(5

)◦

SL

2(5

)):2

)2− �i[C

4] 1

] 82

00

00

00

03−

10−

20

1−

12

−1

20

00

00

00

11

1−

10

1−

20−

12

00

00

0−

20

0−

11

2−

30

00−

12

00

00

10−

12−

1−

10

00

00−

12

00

01−

32

00−

11

10

00

0−

12

00

01−

20

02

1−

20

00

00−

12

0−

21

2−

1−

20

03

00

00−

10

02

−1

3−

1−

23−

20−

10

00

00

00

02

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

0−

10

02

21:√−

5[(

(SL

2(5

)◦

SL

2(5

)):2

)2+ �i[C

4] 1

] 84

00

00

00

00

00

00

50

5−

24

00

00

00

50

00−

5−

50

01−

14

00

00

00

50

00

00

01

0−

14

00

00

00

00

05

50

−1−

11

14

00

00

00

00

05

0−

21−

21

14

00

00

05

00

50

01−

22−

12

40

00

50

00

00

2−

10

1−

20

14

00

05

55

00

00

00

00

00

40

00

00

00

00

00

00

00−

24

00

00

00

00

00

00

00

1−

14

00

00

00

00

00

00

01

0−

14

00

00

00

00

00

00−

1−

11

14

00

00

00

00

00

0−

21−

21

14

00

00

00

00

00

01−

22−

12

40

00

00

00

00

2−

10

1−

20

14

22:√−

5[ i

[(D

8⊗C

4).S

3] 2

2+ � i√

5,∞

[SL

2(5

)]1] 8

42

21−

21

22−

31

0−

43−

2−

22

24

1−

2−

3−

21

3−

23−

3−

53

00−

12

14

0−

6−

14

40

4−

3−

33−

40−

21

22

4−

5−

22

20

4−

3−

44−

32−

12

12

14

22

2−

13−

1−

50−

20

21

21

22

41−

1−

25

2−

31−

12−

2−

2−

10

0−

2−

14

22

0−

22

2−

20−

4−

2−

10

0−

2−

12

40

20

40

03−

3−

1−

20

0−

1−

22

24

0−

12

2−

12

1−

11

00−

11

00−

24

01−

13

2−

30

1−

11

12

0−

2−

10

4−

21−

3−

21

0−

1−

10

11

0−

20−

12

4−

21

03

−1

1−

10−

2−

10

20

1−

1−

24

20

02

00−

12

1−

2−

2−

1−

11

1−

24

02

20

00

00−

2−

10

00

00

24

42

12

12

0−

2−

1−

1−

1−

1−

10

00

4

23:√−

5[ i

[(D

8⊗C

4).S

3] 2

2− � i√

5,∞

[SL

2(5

)]1] 8

8−

5−

50

00

0−

50

00−

50

00

01

80

05

10

10

50

05

10

55

10

53

48

05

510

00

55

510

10

10

54

42

80

05−

50−

5−

50−

50

55

43

14

85

00

0−

50

00

50

04

21

23

8−

50−

50

00

00

00

24

41

43

80−

5−

50

05

50

03

14

12

42

80

50

010

55

04

24

44

13

48

0−

5−

55

55

54

23

31

41

32

80

50

00

04

31

32

42

21

48

00

00

03

21

24

44

21

34

80

5−

50

41

23

24

32

14

42

80

00

41

22

14

33

34

43

48

00

44

43

24

43

14

43

44

80

41

31

24

24

34

02

04

48

24:√−

5[ ∞

,5[S

L2(5

)2 � √5D

10] 4

:2] 8

44

00

40

20−

31−

4−

4−

30−

2−

2−

24

20−

2−

40

0−

11−

11

20

02

−2

24

0−

2−

40

2−

12

21

30

33

2−

2−

24

02

24

00

0−

2−

20−

1−

12

0−

20

4−

4−

40

0−

1−

3−

1−

20−

11

20−

20

24

0−

20

1−

30−

4−

1−

4−

42

0−

22

22

42

0−

2−

20−

2−

1−

3−

2−

20

2−

2−

2−

2−

24

10

21

13

00

0−

11−

1−

10−

21

42

10

20

1−

3−

12

2−

1−

1−

10

1−

14

20

00−

21

1−

20

0−

10−

11

20

4−

1−

30

0−

21−

20

00

0−

10

2−

22

40

12

01−

2−

22

00

1−

1−

10

00

41

0−

4−

22

1−

2−

10−

11−

12

0−

1−

14

−3

21−

2−

12−

1−

10

0−

1−

10

12−

14

−1

−1−

10

1−

2−

2−

11

1−

10

00−

11

4

25:√−

5[ i

[(D

8⊗C

4).S

3] 2

2 �D

10] 8

4−

20

40

30−

60−

20

40−

20

4−

24

2−

2−

30−

33

20

2−

22

02−

20−

24

00

30

00−

20

00−

20

00−

20

46−

30

0−

42

00−

42

00

−2

10

04

−2

04

03

0−

60−

20

41−

21

1−

24

2−

2−

30−

33

20

2−

20

1−

20

0−

24

00

30

00−

20

00

10−

20−

20

46−

30

0−

42

00

00

00−

21

00

4−

20

40

30−

60

00

01−

21

1−

24

2−

2−

30−

33

00

00

01−

20

0−

24

00

30

00

00

00

10−

20−

20

46−

30

00

00

00

00

0−

21

00

4−

20

40

00

00

00

01−

21

1−

24

2−

20

00

00

00

00

1−

20

0−

24

00

00

00

00

00

10−

20−

20

4

Page 129: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

A.8. DIMENSION 16 129

26:√−

6[ ∞

,2[2

1+

4−

.Alt

5] 2

2(3

)

@×⊃A

2] 8

20

00

00

00−

43−

20

10−

10

−1

20

00

00

01−

43

01−

10−

10−

12

00

00

02

1−

43−

10

00

00−

12

00

00

00

1−

42

01

10

00−

12

00

0−

1−

11

2−

43−

11

00

00−

12

00

01

00

1−

41

20

00

00−

12

01

00−

11

3−

4−

20

00

0−

10

02

01

0−

13−

22−

40

00

00

00

02

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

0−

10

02

27:√−

6[ ∞

,2[2

1+

4−

.Alt

5] 2

2(3

)

@×⊃ i∞,3

[S3] 1

] 84

−2

22

22

02

0−

2−

22−

22−

20

24

−2

02

0−

4−

20−

40

2−

24

00

21

44−

22

02−

22−

2−

22−

2−

20

12

24

−2

0−

22

0−

20−

22

20

02

12

14

−2

04

20−

4−

40

00

01

21

22

4−

20

0−

22

00

40−

2−

2−

10

0−

2−

14

00

02−

24−

4−

22

−2−

10

0−

2−

12

4−

44

0−

24−

4−

20

−1−

20

0−

1−

22

24

0−

4−

44−

40

4−

11

00−

11

00−

24

44−

22

2−

40

1−

11

12

0−

2−

10

4−

20

42

20−

1−

10

11

0−

20−

12

4−

20−

22

−1

1−

10−

2−

10

20

1−

1−

24

00

22

00−

12

1−

2−

2−

1−

11

1−

24

−2−

22

00

00

0−

2−

10

00

00

24

02

12

12

0−

2−

1−

1−

1−

1−

10

00

4

28:√−

6[ ∞

,2[S

L2(3

)]1

2 � i∞,3

[SL

2(9

)]2] 8

40

03

30

03

30

0−

33

66

01

40

33

00−

30

00−

33

03

32

24

33

00

00

30−

30

33

01

10

4−

3−

30

00

00−

30−

33−

31

11

14

0−

30

30

00

00

00

21

21

14

33

03

60

00

30

12

21

11

40

00

0−

33

03

31

11

21

11

4−

30

0−

6−

3−

33−

31−

11

01

20

14

33

0−

30−

3−

31

11

20

12

21

40−

60

03−

32

12

10

22

21

24

−6

00

3−

31

01

10

21

22

22

40

03−

31

10

21

01

11

10

14

00

02

01

12

20

12

00

01

40

02

11

12

11

11

01−

11

24

01

12

02

21

01−

11

11

11

4

29:√−

6[F

4

2 �∞,3

[S3] 1

] 84

00

00

00

00

3−

30

30−

30

04

00

00

00

30

00

00

0−

6−

20

40

00

00−

30

00

00

00

0−

2−

24

00

00

00

00

0−

36

00

00−

24

00

03

00

00

0−

66

00

00−

24

00

00

0−

30

60−

30

00

00−

24

0−

30

06−

60

00

00

00

00−

24

0−

60

06−

30

02

0−

10

00

00

40

00

00

00

02

0−

10

00

00

40

00

00

0−

10

2−

10

00

0−

20

40

00

00

0−

1−

12−

10

00

0−

2−

24

00

00

00

0−

12−

10

00

00−

24

00

00

00

0−

12−

10

00

00−

24

00

00

00

0−

12−

10

00

00−

24

00

00

00

0−

12

00

00

00−

24

30:√−

6[(F

4⊗A

2):

2]8

40

00

00

00

00

00

00−

60

−2

40

00

00

00

00

00

00

6−

21

40

00

00

00

00

60

00

1−

2−

24

00

00

00

00

0−

60

00

0−

21

40

00

60

00−

60

00

00

1−

2−

24

00

0−

60

00

60

00

0−

21

00

40

00−

60

00

60

00

1−

20

0−

24

00

06

00

0−

60

00

00

00

04

00

00

00

00

00

00

00

0−

24

00

00

00

00

00

00

00−

21

40

00

00

00

00

00

00

1−

2−

24

00

00

00

00

00

00

00−

21

40

00

00

00

00

00

00

1−

2−

24

00

00

00

00

00

00−

21

00

40

00

00

00

00

00

1−

20

0−

24

32:√−

7[2.A

lt7] 4⊗ √ −

7∞,3

[S3] 1

12

70

00

7−

77

00−

7−

77

00

05

12

−7

21

14

07−

70

0−

7−

70

70

72

312

14

77

00

7−

14

0−

14

014

07

−6−

3−

412

00

14−

14

014−

714

70

00

−6−

21

612

77−

14

00−

77

70

70

34

1−

41

12

00

07−

70−

714

70

1−

3−

64

1−

412

0−

77

00

14−

14

7−

14

33

6−

4−

4−

40

12

7−

70−

14

07−

714

−6

0−

56

0−

2−

1−

512

77

7−

70

00

−6−

6−

40

2−

11−

53

12

14

7−

7−

14

0−

14

15

6−

31−

10

6−

3−

412

−14

14

07

01−

3−

4−

21−

26−

2−

15−

212

0−

14

0−

14

5−

20−

3−

15−

2−

2−

31−

60

12

0−

70

−6−

1−

66

0−

24−

16

20−

2−

612

70

64−

4−

4−

33

1−

3−

2−

21

21−

112

−7

−6

1−

56

62

2−

66

2−

22−

46−

112

Page 130: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

130 APPENDIX A. INVARIANT FORMS

33:√−

10[√−

2[G

L2(3

)]2

2+ � √−

2

√5,∞

[SL

2(5

)]1] 8

20

00

00

00

4−

32−

2−

1−

13

3−

12

00

00

00−

35−

3−

13−

2−

10

0−

12

00

00

00−

25−

20

10−

30

0−

12

00

00

30−

32−

23−

42

00

0−

12

00

0−

1−

1−

1−

13−

23−

20

00

0−

12

00−

31

2−

1−

33−

13

00

00

0−

12

03−

1−

11

3−

21−

40

00

0−

10

02

00

13−

2−

30

20

00

00

00

02

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

0−

10

02

34:√−

10[√−

2[G

L2(3

)]2

2− � √−

2

√5,∞

[SL

2(5

)]1] 8

40

00

00

00

50−

510

00

55

−2

40

00

00

0−

510

0−

5−

50

0−

51−

14

00

00

010−

55

0−

5−

10

05

10−

14

00

00−

55

05

05

55

−1−

11

14

00

00−

510

05−

5−

50

−2

1−

21

14

00−

50

00

05

00

01−

22−

12

40−

55−

55

010

10

02−

10

1−

20

14

50−

55−

55

510

00

00

00

00

40

00

00

00

00

00

00

00−

24

00

00

00

00

00

00

00

1−

14

00

00

00

00

00

00

01

0−

14

00

00

00

00

00

00−

1−

11

14

00

00

00

00

00

0−

21−

21

14

00

00

00

00

00

01−

22−

12

40

00

00

00

00

2−

10

1−

20

14

35:√−

10[√−

2[G

L2(3

)]2

2 �D

10] 8

40

04

00

02

00

0−

80

00

4−

24

−4

00

0−

20

00

80

00−

40

0−

24

−4

02

0−

20−

80

80

40−

40−

20

4−

20

20

80−

80−

40

40

−2

10

04

00−

40

00

60

00−

81−

21

1−

24

40

00−

60

00

80

01−

20

0−

24

40

60−

60−

80

80

10−

20−

20

4−

60

60

80−

80

00

00−

21

00

40

0−

40

00

20

00

01−

21

1−

24

40

00−

20

00

00

01−

20

0−

24

40

20−

20

00

00

10−

20−

20

4−

20

20

00

00

00

00−

21

00

40

04

00

00

00

00

1−

21

1−

24

−4

00

00

00

00

00

1−

20

0−

24

−4

00

00

00

00

01

0−

20−

20

4

36:√−

15[(

(SL

2(5

)◦

SL

2(5

)):2

)2− �√−

3[C

6] 1

] 84

00

00

00

0−

6−

36

0−

66−

66

−2

40

00

00

0−

36−

30

00

6−

60−

24

00

00

06−

3−

63

00−

66

00−

24

00

00

00

36−

30

0−

60

00−

24

00

0−

60

0−

36−

96

30

00

0−

24

00

60

00−

96

36

00

00

0−

24

0−

66−

60

63−

6−

60

00

0−

20

04

6−

66−

63

6−

6−

6−

21

00

00

00

40

00

00

00

1−

21

00

00

0−

24

00

00

00

01−

21

00

00

0−

24

00

00

00

01−

21

00

00

0−

24

00

00

00

01−

21

01

00

0−

24

00

00

00

01−

21

00

00

0−

24

00

00

00

01−

20

00

00

0−

24

00

00

01

00−

20

00

0−

20

04

37:√−

15[(

(SL

2(5

)◦

SL

2(5

)):2

)2+ �√−

3[C

6] 1

] 88

00

00

00

00

015

15

15

00

0−

48

00

00

00

00−

15

0−

15

15

15

15

2−

28

00

00

015−

15

015

15

00

02

0−

28

00

00

15

015

0−

15−

15

015

−2−

22

28

00

015−

15

15−

15

0−

15−

15

0−

42−

42

28

00

015

0−

15−

15

00

00

2−

44−

24

80

015

00−

15

00

15

4−

20

2−

40

28

015

015

00

15

0−

42−

1−

11

20−

28

00

00

00

02−

41

01−

1−

11−

48

00

00

00

−1

1−

41−

12

20

2−

28

00

00

0−

10

1−

4−

1−

1−

2−

12

0−

28

00

00

11−

1−

1−

4−

11

2−

2−

22

28

00

02−

12−

1−

1−

4−

20−

42−

42

28

00

0−

12−

21−

2−

4−

10

2−

44−

24

80

−2

10−

12

0−

1−

44−

20

2−

40

28

38:√−

15[(√

5,∞

[SL

2(5

)]1◦C

3)

2 � √5D

10] 8

42−

6−

22

26

2−

63−

1−

53

41

1−

24

22

40

4−

4−

1−

2−

42

0−

4−

4−

3−

22

46

62

6−

2−

1−

2−

20−

2−

7−

1−

42−

2−

24

4−

4−

2−

2−

3−

10

04

04

32

0−

20

46

22

1−

33

24

3−

10

20−

20

24

6−

2−

43

0−

26

23

42

0−

22

22

42−

4−

2−

1−

17

14

7−

20

2−

2−

2−

2−

24

1−

1−

3−

4−

51−

2−

10−

11−

1−

10−

21

45

4−

41−

11−

7−

12

2−

1−

1−

10

1−

14

−2−

2−

2−

2−

5−

11−

20

0−

10−

11

20

4−

20

06−

21−

20

00

0−

10

2−

22

42−

55

01−

2−

22

00

1−

1−

10

00

43

04

−2

21−

2−

10−

11−

12

0−

1−

14

−3−

11−

2−

12−

1−

10

0−

1−

10

12−

14

3−

1−

10

1−

2−

2−

11

1−

10

00−

11

4

Page 131: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

A.8. DIMENSION 16 13139

:ζ 1

0[C

10] 1⊗ √ 5

((SL

2(5

)◦

SL

2(5

)):2

)

40

00

00

00

02

21−

13−

2−

2−

24

00

00

00

1−

30

00−

30

1−

22

40

00

00−

10−

3−

33−

21

02−

2−

24

00

00−

22

10

04

0−

22

0−

20

40

00

1−

21

3−

31−

10

20−

20

24

00

3−

13

2−

30−

20

20−

22

22

40−

10

21−

22

0−

2−

20

2−

2−

2−

2−

24

−1

1−

2−

31−

20

20−

11−

1−

10−

21

42−

1−

12−

21

2−

12

2−

1−

1−

10

1−

14

−3−

30

0−

2−

21−

20

0−

10−

11

20

40

00−

10

1−

20

00

0−

10

2−

22

40

11

01−

2−

22

00

1−

1−

10

00

42

0−

3−

22

1−

2−

10−

11−

12

0−

1−

14

−2

11−

2−

12−

1−

10

0−

1−

10

12−

14

−2

−1−

10

1−

2−

2−

11

1−

10

00−

11

4

40:ζ 1

0[C

10] 1⊗ √ 5′∞

,2[2

1+

4−

.Alt

5] 2

41

02

21−

2−

10

00

00

01

12

4−

20

10−

30

00−

10

00

10

21

42

24−

1−

1−

22

22

01

1−

11

22

40

2−

11−

22

00

01

0−

22

12

14

1−

12

20

00

21

2−

21

21

22

4−

21

00−

10

21

1−

2−

2−

10

0−

2−

14

−2−

32

31

01

0−

1−

2−

10

0−

2−

12

4−

12−

10−

10

1−

1−

1−

20

0−

1−

22

24

20

00−

10−

2−

11

00−

11

00−

24

02

00−

11

01−

11

12

0−

2−

10

4−

22

11−

10−

1−

10

11

0−

20−

12

42

10

0−

11−

10−

2−

10

20

1−

1−

24

−2

02

20

0−

12

1−

2−

2−

1−

11

1−

24

2−

12

00

00

0−

2−

10

00

00

24

02

12

12

0−

2−

1−

1−

1−

1−

10

00

4

42:ζ 1

0[C

10] 1⊗ √ 5′∞

,3[S

L2(9

)]2

40−

13−

13

02

22

32

11

10

14

−1

10

1−

3−

1−

2−

20−

1−

10

02

22

43

03−

11

11

11

02

11

11

04

1−

10−

30−

1−

2−

21−

11

11

11

14

2−

1−

21−

31−

10

11

32

12

11

4−

10−

11

11−

2−

3−

2−

11

22

11

14

00−

11−

11

12

31

11

21

11

40−

1−

1−

11

02

11−

11

01

20

14

10−

1−

2−

10−

21

11

20

12

21

4−

1−

30

13

02

12

10

22

21

24

−1

00

0−

11

01

10

21

22

22

41−

21−

11

10

21

01

11

10

14

02

12

01

12

20

12

00

01

4−

11

21

11

21

11

10

1−

11

24

11

12

02

21

01−

11

11

11

4

44:ζ 1

0[C

10] 1⊗ √ 5′∞

,3[S

L2(3

)2 �C

3] 2

60−

41

01−

13

00

01

06

0−

60

60−

10−

33−

30

00

30−

2−

20

−1

36

2−

20

0−

1−

1−

10

02

02

01−

1−

26

30−

20−

20−

33−

20−

3−

10

0−

23

60

11−

20−

30−

31−

1−

21−

3−

33

26

−3

0−

1−

1−

33

13

3−

1−

13

30

10

6−

20

00

0−

1−

10−

13−

1−

2−

1−

12−

16

2−

21

13

30

0−

2−

2−

21−

12

01

64

00

3−

20

32−

2−

23

32

0−

10

6−

20−

32

0−

3−

2−

2−

21−

12

0−

13

16

−1

0−

30

1−

13

0−

10−

30−

2−

2−

2−

16

−2−

3−

30

33

12

0−

11

0−

11−

11

60−

3−

33

1−

21−

11−

13

00

01

36

−3

03

10

2−

1−

1−

20−

11−

11

33

60

−3

12

11−

21−

31−

10

10−

30

6

45:ζ 1

0[C

60.(C

2×C

2)]

4

80

33

0−

40

48

00

50

0−

7−

50

85

30

00

00

04

30

0−

33

22

80

10−

44

00

00

0−

80−

42

24

86

0−

45

00−

33

3−

5−

3−

1−

2−

2−

1−

38

30−

30−

23−

40

05

0−

20−

4−

42

84

10

03−

3−

33−

13

−2

21

20−

18

−3−

10−

3−

10

01

3−

3−

1−

4−

22

21

8−

45

00

0−

40

44

02

2−

1−

4−

1−

18

00

00−

3−

40

1−

12

0−

1−

2−

1−

1−

28

−5

55

0−

2−

31−

10

0−

20

10

3−

18

−4−

80

00

13

00

10−

20

3−

10

84

00

0−

22

0−

24

2−

20−

1−

3−

44

80

50

44

43−

2−

12−

42−

10

00

8−

5−

21−

3−

3−

31

2−

1−

1−

1−

21−

4−

2−

18

0−

13

22−

30

0−

2−

33

00

02−

48

46:ζ 1

6−ζ−

116

[(D

8⊗QD

32).S

3] 4

20

00

00

00−

11

01−

11−

20

−1

20

00

00

00

10−

12−

21−

10−

12

00

00

01−

21

00

00

00

0−

12

00

00

11−

1−

10

10

00

00−

12

00

0−

2−

11

01

0−

1−

10

00

0−

12

00

10−

11−

10

11

00

00

0−

12

0−

11

1−

1−

11−

11

00

00−

10

02

11−

11−

1−

11

10

00

00

00

02

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

0−

10

02

Page 132: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

132 APPENDIX A. INVARIANT FORMS

48:√

2·(ζ 1

0−ζ−

110

)[√

2,∞

[S4] 1

2− � √5′ζ 1

0[C

10] 1

] 4

20

00

00

00

2−

2−

13−

10−

10

−1

20

00

00

0−

22−

2−

12

1−

1−

20−

12

00

00

00−

21

1−

1−

23

20

0−

12

00

00

2−

11−

1−

13−

1−

10

00−

12

00

00

01−

23−

30

00

00

0−

12

00−

20

11−

12−

1−

20

00

00−

12

02

2−

32−

1−

12

00

00

0−

10

02

−1

2−

21−

21−

13

00

00

00

00

20

00

00

00

00

00

00

00−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

0−

10

02

49:√

2·(ζ 1

0−ζ−

110

)[√

2,∞

[S4] 1

2+ � √5′ζ 1

0[C

10] 1

] 4

40

20−

20

24

00−

4−

42−

4−

22

24

20

20

02

00−

2−

20−

2−

42

21

4−

2−

4−

64

22

0−

2−

42−

4−

20

12

24

0−

20−

2−

24−

2−

2−

2−

2−

22

21

21

4−

42

24−

4−

4−

20−

20

41

21

22

40

00

0−

2−

2−

2−

2−

44

−2−

10

0−

2−

14

−2−

22

44

00

0−

4−

2−

10

0−

2−

12

40

24

20

00−

4−

1−

20

0−

1−

22

24

22

20

04−

4−

11

00−

11

00−

24

2−

2−

24−

20

01−

11

12

0−

2−

10

42−

42

04

0−

1−

10

11

0−

20−

12

40

04

4−

11−

10−

2−

10

20

1−

1−

24

00−

22

00−

12

1−

2−

2−

1−

11

1−

24

04

20

00

00−

2−

10

00

00

24

22

12

12

0−

2−

1−

1−

1−

1−

10

00

4

50:√

2·(ζ 1

0−ζ−

110

)[D

16

2 �ζ 1

0[C

10] 1

] 42

00

00

00

0−

21

1−

21−

20

2−

12

00

00

00

2−

30

11

2−

2−

10−

12

00

00

0−

22−

21

0−

21−

10

0−

12

00

00

11

0−

2−

21−

12

00

00

20

00

1−

32

1−

2−

10

10

00

0−

12

00

10−

20

1−

12

00

00

00−

12

00

12−

21

0−

1−

20

00

00

0−

12

−2

0−

10−

22

10

00

00

00

00

20

00

00

00

00

00

00

00−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

00

20

00

00

00

00

00

00

00−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

51:√

3·(ζ 1

0−ζ−

110

)[C

60.(C

2×C

2)]

4,(

1,1,1

)

20

00

00

00

4−

3−

12−

13−

2−

2−

12

00

00

00−

12

0−

12−

54

00−

12

00

00

0−

10

3−

2−

14−

4−

10

0−

12

00

00

10−

1−

22−

10

20

00−

12

00

0−

12−

44−

31

01

00

00−

12

00−

1−

22−

23

01−

30

00

00−

12

00

00

10−

2−

22

00

00−

10

02

2−

13

0−

1−

12−

10

00

00

00

02

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

0−

10

02

52:√

3·(ζ 1

0−ζ−

110

)[C

60.(C

2×C

2)]

4,(i,

1,1

)

41−

2−

22

1−

3−

10

21

33

11−

12

41

22

62−

12

15

6−

20

0−

42

14

−4

21−

11

00−

33−

13

0−

21

22

40

23

24

2−

22−

21

3−

52

12

14

−2

22

4−

20

42−

2−

1−

31

21

22

41−

16−

31

6−

41

3−

3−

2−

10

0−

2−

14

0−

1−

2−

2−

1−

22

11

−2−

10

0−

2−

12

4−

21−

3−

2−

20−

20

−1−

20

0−

1−

22

24

0−

6−

42−

1−

31

−1

10

0−

11

00−

24

31−

52−

1−

30

1−

11

12

0−

2−

10

41

1−

23−

10−

1−

10

11

0−

20−

12

42−

14−

2−

11−

10−

2−

10

20

1−

1−

24

−4−

3−

12

00−

12

1−

2−

2−

1−

11

1−

24

02

20

00

00−

2−

10

00

00

24

12

12

12

0−

2−

1−

1−

1−

1−

10

00

4

53:√

3·(ζ 1

0−ζ−

110

)[C

60.(C

2×C

2)]

4,(

1,1,−

1)

40

00

00

00

23

43

04−

2−

2−

24

00

00

00

1−

2−

40

2−

21

4−

22

40

00

00−

1−

20

22−

23

12−

2−

24

00

00

54

4−

3−

10−

60

20−

20

40

00

2−

3−

24−

30

03

20−

20

24

00−

22

10−

26−

10

20−

22

22

40

42−

1−

1−

21−

24

−2

02−

2−

2−

2−

24

−3−

3−

21

0−

16−

10−

11−

1−

10−

21

4−

16

4−

15

0−

4−

12

2−

1−

1−

10

1−

14

−4

00−

1−

10

1−

20

0−

10−

11

20

4−

20

6−

1−

51−

20

00

0−

10

2−

22

42

32

01−

2−

22

00

1−

1−

10

00

4−

2−

4−

3−

22

1−

2−

10−

11−

12

0−

1−

14

22

1−

2−

12−

1−

10

0−

1−

10

12−

14

−2

−1−

10

1−

2−

2−

11

1−

10

00−

11

4

Page 133: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

A.8. DIMENSION 16 13354

:√

3·(ζ 1

0−ζ−

110

)[C

60.(C

2×C

2)]

4,(

1,−

1,1

)

40

00

00

00−

63−

30

6−

30−

3−

24

00

00

00

30

3−

30

0−

63

0−

24

00

00

0−

33−

66−

63

33

00−

24

00

00

0−

36−

63−

33

00

00−

24

00

06

0−

63

00

00

00

00−

24

00−

30

3−

30

6−

3−

30

00

00−

24

00−

63

30−

30

00

00

0−

20

04

−3

33

00−

30

0−

21

00

00

00

40

00

00

00

1−

21

00

00

0−

24

00

00

00

01−

21

00

00

0−

24

00

00

00

01−

21

00

00

0−

24

00

00

00

01−

21

01

00

0−

24

00

00

00

01−

21

00

00

0−

24

00

00

00

01−

20

00

00

0−

24

00

00

01

00−

20

00

0−

20

04

55:√

3·(ζ 1

0−ζ−

110

)[C

60.(C

2×C

2)]

4,(i,

1,−

1)

40

00

42−

40

00

00−

2−

12

0−

24

00

2−

42−

20

00

0−

12−

11

0−

24

0−

42−

44

00

00

2−

12−

20−

20

40−

24

40

00

00

1−

2−

2−

21

00

40

00−

2−

12

00

00

01−

21

1−

24

00−

12−

11

00

00

01−

20

0−

24

02−

12−

20

00

00

10−

20−

20

40

1−

2−

20

00

00

00

0−

21

00

40

00

42−

40

00

00

1−

21

1−

24

00

2−

42−

20

00

00

1−

20

0−

24

0−

42−

44

00

00

01

0−

20−

20

40−

24

40

00

00

00

0−

21

00

40

00

00

00

00

00

1−

21

1−

24

00

00

00

00

00

01−

20

0−

24

00

00

00

00

00

10−

20−

20

4

56:√

3·(ζ 1

0−ζ−

110

)[C

60.(C

2×C

2)]

4,(i,−

1,1

)

60

00

00

0−

30

66

03

00

30

60

00

00−

36

00

03

00

3−

13

63

63

30

00

0−

33

00

31−

1−

26

−3−

6−

30

33

00

00

33

00−

23

60−

3−

30

00

90

33

01−

3−

33

26

0−

30

66

00−

33

0−

13

30

10

60

3−

30

33−

30

63−

1−

2−

1−

12−

16

−3

30

00−

30

0−

2−

2−

21−

12

01

60−

3−

6−

9−

9−

30

2−

2−

23

32

0−

10

63

6−

3−

3−

36

−2−

2−

21−

12

0−

13

16

0−

3−

6−

63

−1

30−

10−

30−

2−

2−

2−

16

36

30

33

12

0−

11

0−

11−

11

60

06

31−

21−

11−

13

00

01

36

−3

33

10

2−

1−

1−

20−

11−

11

33

63

−3

12

11−

21−

31−

10

10−

30

6

57:√

3·(ζ 1

0−ζ−

110

)[C

60.(C

2×C

2)]

4,(

1,−

1,−

1)

40

00

00

00

06

0−

30

00

0−

24

00

00

00−

60−

30

00

00

0−

24

00

00

00

30

60

00

00

0−

24

00

00

30−

60

00

00

−2

10

04

00

00

00

00−

60

31−

21

0−

24

00

00

00

60

30

01−

21

0−

24

00

00

00−

30−

60

01−

20

0−

24

00

00−

30

60

00

00

00

00

40

00

00

00

00

00

00

00−

24

00

00

00

00

00

00

00

0−

24

00

00

00

00

00

00

00

0−

24

00

00

00

00

00

00−

21

00

40

00

00

00

00

00

1−

21

0−

24

00

00

00

00

00

01−

21

0−

24

00

00

00

00

00

01−

20

0−

24

58:√

3·(ζ 1

0−ζ−

110

)[C

60.(C

2×C

2)]

4,(i,−

1,−

1)

80−

9−

30

00

30−

3−

3−

60

06−

60

8−

9−

90

18

03−

18

3−

3−

60

06

62

28

0−

60−

30

00−

66

60−

30

22

48

−15

00−

30

03−

3−

36

09

−2−

2−

1−

38

−9

03−

33−

9−

30

0−

63

−2

0−

4−

42

83

30

09−

9−

9−

69−

9−

22

12

0−

18

−6−

63−

12−

90

06

3−

3−

1−

4−

22

21

8−

36

0−

6−

12

03

04

02

2−

1−

4−

1−

18

0−

33

39−

33

1−

12

0−

1−

2−

1−

1−

28

−6

66−

30−

61−

10

0−

20

10

3−

18

00

6−

30

13

00

10−

20

3−

10

80

12

00

−2

20−

24

2−

20−

1−

3−

44

80−

30

44

43−

2−

12−

42−

10

00

86

01−

3−

3−

31

2−

1−

1−

1−

21−

4−

2−

18

0−

13

22−

30

0−

2−

33

00

02−

48

59:√

3·(ζ 1

6−ζ−

116

)[θ 1

6,∞

[Q32] 1

2 �C

3] 4

20

00

00

00

4−

1−

1−

12−

11−

1−

12

00

00

00−

23

0−

12−

2−

1−

10−

12

00

00

00−

22

0−

12−

1−

10

0−

12

00

00−

11−

13−

2−

10

20

00−

12

00

00−

31−

24−

11−

30

00

0−

12

00

02−

21−

33−

22

00

00

0−

12

02−

10

10−

34

00

00

0−

10

02

03

0−

1−

21

02

00

00

00

00

20

00

00

00

00

00

00

00−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

0−

10

02

Page 134: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

134 APPENDIX A. INVARIANT FORMS

60:√

3·(ζ 1

6−ζ−

116

)[D

32

2 �√−

3[C

6] 1

] 4

20

03

00

00

00

00

00

3−

3−

12

3−

30

00

00

00

00

0−

30

00

20

00

03

00

00

00

00

00−

12

00−

30

00

00

00

00

00

00

20

30

30

00

00

00

00

00−

12

0−

30−

30

00

00

00

00

00

02

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

00

20

00

3−

30

00

00

00

00

0−

12

00

03

00

00

00

00

00

00

20−

30

30

00

00

00

00

00−

12

03

0−

30

00

00

00

00

00

02

00

00

00

00

00

00

00

0−

12

00

00

00

00

00

00

00

00

20

00

00

00

00

00

00

00−

12

61:Q

(i,√

3,√

5)[C

60.C

2] 2

4−

1−

13−

5−

11

3−

5−

3−

21−

22

12

14

02−

6−

1−

12−

2−

11−

2−

25

4−

1−

10

40−

63−

20−

3−

35−

1−

24

5−

31

00

41−

23−

23

0−

20

20−

40

−1

00−

14

20−

60

43−

44

33−

41

1−

10

04

−1

2−

3−

1−

15−

5−

10

3−

1−

10−

10−

14

11

10−

23−

1−

12

−1

00

00

01

43

1−

43

0−

5−

31

−1

01

12−

11

14

11−

35

11−

31

11

20−

1−

1−

11

42−

52

62−

40

11

0−

11−

2−

2−

10

43−

50

21

−1

0−

10

21

01

1−

1−

14

1−

1−

10

00

0−

20

11

0−

10−

1−

14

33−

10

12

0−

1−

11

11

00−

1−

14

03

12−

10−

12−

11−

10

01

10

41

−2−

1−

1−

20−

12

1−

1−

2−

10

1−

1−

14

62:ζ 3

2−ζ−

132

[QD

64] 2

11

00

00

00

00

00

00

01

01

10

00

00

00

00

00

00

00

11

00

00

00

00

00

00

00

01

10

00

00

00

00

00

00

00

11

00

00

00

00

00

00

00

01

10

00

00

00

00

00

00

00

11

00

00

00

00

00

00

00

01

10

00

00

00

00

00

00

00

11

00

00

00

00

00

00

00

01

10

00

00

00

00

00

00

00

11

00

00

00

00

00

00

00

01

10

00

00

00

00

00

00

00

11

00

00

00

00

00

00

00

01

10

00

00

00

00

00

00

00

11

00

00

00

00

00

00

00

01

63:ζ 3

4[C

34] 1

20

01−

21−

11

00

00

00

1−

1−

12

00−

11

10−

10

00

00−

11

0−

12

10−

10−

11

00

00

0−

11

00−

12

10

00

00

00

00

1−

10

00−

12

00

00

00

00

00

00

00

0−

12

00

1−

1−

11

00

00

00

00

0−

12

0−

11

1−

10−

11

00

00

00

0−

12

00

1−

10

1−

10

00

00

00

0−

12

0−

11

1−

10

00

00

00

00

0−

12

0−

10

10

10

00

00

00

00−

12

1−

10

0−

10

00

00

00

00

0−

12

−1

10

00

00

00

00

00

00−

12

−1

00

00

00

00

00

00

00−

12

0−

10

00

00

00

00

00

00−

12

10

00

00

00

00

00

00

0−

12

Page 135: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

A.9. DIMENSION 18 135

A.9 Dimension 18

1: i[C4]1⊗A9

2 0 −2 −1 0 −1 0 0 0 0 0 −1 0 −1 −1 −1 −1 −11 2 −1 −2 0 −1 0 0 0 0 0 −1 0 −1 −1 −1 −1 −10 0 2 0 1 −1 1 1 1 1 1 0 −1 0 0 0 −1 00 0 1 2 1 −1 1 1 1 1 1 0 −1 0 0 0 0 01 1 0 0 2 −1 0 0 0 0 0 −2 0 −1 −1 −1 0 −1−1 −1 1 1 −1 3 1 1 1 1 1 1 −1 0 0 0 1 0

1 1 0 0 1 0 2 0 0 0 0 −1 0 −2 −1 −1 0 −11 1 0 0 1 0 1 2 0 0 0 −1 0 −1 −2 −1 0 −11 1 0 0 1 0 1 1 2 0 0 −1 0 −1 −1 −2 0 −11 1 0 0 1 0 1 1 1 2 0 −1 0 −1 −1 −1 0 −21 1 0 0 1 0 1 1 1 1 2 −1 0 −1 −1 −1 −1 −10 0 1 1 0 1 0 0 0 0 0 2 −1 0 0 0 0 0−1 −1 0 0 −1 0 −1 −1 −1 −1 −1 0 2 1 1 1 0 1

0 0 1 1 0 1 0 0 0 0 0 1 0 2 0 0 0 00 0 1 1 0 1 0 0 0 0 0 1 0 1 2 0 0 00 0 1 1 0 1 0 0 0 0 0 1 0 1 1 2 0 0−1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 3 0

0 0 1 1 0 1 0 0 0 0 0 1 0 1 1 1 0 2

2: √−3[±31+4+ :Sp4(3)]9

4 0 0 0 0 0 0 0 0 −3 0 0 0 −2 −2 −2 −2 02 4 2 2 2 3 −1 1 0 −3 0 0 2 −1 −2 −2 −1 −2−2 −2 4 −3 0 −3 1 1 1 3 0 0 0 2 2 2 2 0−2 0 1 4 0 3 −2 1 1 3 0 0 0 2 −1 −1 2 0−2 −2 2 2 4 0 1 1 1 3 0 0 0 0 0 0 0 0

0 −1 1 1 2 4 0 0 0 0 0 0 0 1 −2 −2 1 00 −1 −1 0 1 0 4 −1 1 0 0 0 −1 −2 0 0 −2 10 −1 1 1 1 0 1 4 2 3 0 0 −1 −1 1 1 −1 1−2 −2 1 1 1 0 1 0 4 3 0 0 −1 1 0 0 1 1

1 −1 −1 −1 −1 0 0 1 1 4 0 0 −3 −2 1 −2 1 3−2 0 0 0 0 0 0 −2 0 −2 4 −3 0 1 1 1 1 0−2 0 2 2 2 0 0 0 0 −2 1 4 0 1 1 1 1 0−2 0 2 2 2 0 −1 1 1 −1 0 2 4 1 1 1 1 −3−2 −1 2 0 0 −1 −2 −1 1 0 1 1 1 4 3 0 4 1

2 2 −2 −1 −2 −2 0 1 −2 1 −1 −1 −1 −1 4 0 −2 1−2 0 0 1 0 −2 0 −1 2 0 1 1 1 2 0 4 1 1

2 1 0 −2 −2 −1 0 1 −1 1 −1 −1 −1 0 2 −1 4 12 2 −2 −2 −2 0 −1 −1 −1 1 0 −2 −1 −1 1 −1 1 4

4: √−3[±3.M10]96 0 0 0 0 0 0 0 0 0 −3 0 −3 0 0 0 0 00 6 0 0 0 0 0 0 0 0 0 0 0 0 −3 0 −3 00 0 6 0 0 0 0 0 3 3 0 0 0 0 0 −3 0 00 0 −2 6 0 0 0 0 0 0 0 0 0 0 0 −3 0 −3−2 0 −2 0 6 0 0 0 0 0 −3 3 0 3 0 0 0 0

0 0 0 −2 0 6 0 −3 −3 0 0 3 3 0 0 0 0 9−2 0 0 0 0 −2 6 −3 0 3 0 0 0 −3 0 0 0 −3

0 −2 −2 0 −2 1 1 6 0 0 0 0 0 0 −3 0 0 0−2 0 1 0 0 1 0 0 6 0 0 −3 9 0 0 0 3 0

0 −2 1 0 0 0 1 0 −2 6 0 0 −3 3 0 0 0 01 −2 0 −2 1 −2 0 0 0 −2 6 0 0 0 0 0 0 −30 −2 0 0 1 1 0 0 1 0 0 6 0 0 0 0 9 31 0 −2 0 0 1 0 0 −3 1 0 −2 6 0 3 0 −3 30 0 0 −2 1 0 1 0 0 1 0 −2 0 6 0 0 −3 0−2 1 0 −2 0 0 0 1 −2 0 0 0 1 −2 6 0 0 0−2 −2 1 1 0 0 −2 0 0 0 0 −2 0 0 0 6 −3 0

0 1 0 0 −2 −2 0 0 1 0 0 −3 1 1 0 1 6 −30 0 0 1 0 −3 1 −2 −2 0 1 1 1 0 0 0 1 6

5: √−7[±(L2(7) ⊗√−7

L2(7)) :2]9

6 0 0 0 0 0 0 0 7 −7 0 0 −7 7 0 7 0 02 6 0 0 −7 0 7 0 0 0 0 0 0 0 0 0 0 −72 2 6 0 0 7 0 0 0 0 0 −7 0 7 0 0 0 02 2 2 6 0 0 0 7 0 0 0 0 0 0 0 7 0 02 1 2 2 6 0 −7 0 0 0 0 0 0 0 0 0 0 02 2 1 2 2 6 0 0 0 0 7 0 0 0 −7 7 7 00 −1 2 2 1 0 6 0 0 0 −7 −7 0 0 0 0 0 02 2 2 1 2 0 0 6 0 0 0 0 0 7 7 0 −7 01 0 2 2 2 2 0 2 6 0 0 0 0 7 0 7 0 01 2 0 2 2 2 2 0 −2 6 0 0 0 −7 0 0 0 02 2 −2 0 0 1 −1 2 0 2 6 7 0 0 7 7 0 02 2 1 2 0 −2 1 2 0 0 1 6 0 7 7 0 0 01 2 2 0 2 0 2 2 −2 2 0 2 6 0 0 −7 0 0−1 0 1 0 2 2 2 −1 1 1 0 −1 0 6 0 0 7 0

0 2 2 0 2 1 2 1 0 2 −1 1 2 2 6 −7 0 −7−1 0 0 1 2 −1 2 2 1 0 1 2 1 2 1 6 0 0

0 2 0 2 2 1 2 1 0 2 2 0 2 1 0 2 6 −72 1 0 0 2 0 0 0 −2 2 2 2 2 2 1 2 1 6

Page 136: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

136 APPENDIX A. INVARIANT FORMS

6: √−19[±L2(19)]910 0 0 19 0 0 0 0 −19 0 0 −19 0 −19 0 0 −19 02 10 0 0 0 0 0 0 0 −19 19 0 0 0 19 −19 0 04 2 10 0 0 0 0 0 −19 0 0 −19 0 0 0 0 0 193 4 2 10 0 0 0 19 0 0 0 0 0 0 0 0 0 02 2 2 0 10 −19 0 0 0 0 0 −19 0 0 0 0 0 00 4 2 4 1 10 0 19 0 0 19 0 19 0 0 0 0 04 2 4 2 2 −2 10 0 0 0 0 −19 0 0 0 0 −19 02 2 2 3 4 1 4 10 −19 0 0 −19 0 0 0 0 0 01 2 1 2 2 4 0 3 10 0 0 0 19 0 0 0 0 04 3 2 2 2 −2 4 2 2 10 0 0 0 −19 0 0 0 02 3 −2 2 4 3 2 4 2 −2 10 −19 0 0 0 0 −19 −193 4 1 2 1 2 3 3 4 2 1 10 19 0 19 0 0 194 2 4 0 4 3 2 2 3 4 2 1 10 −19 −19 0 −19 03 2 2 2 −2 2 2 2 4 3 2 2 1 10 0 0 0 04 1 2 2 4 2 2 2 2 −2 4 3 −1 2 10 0 0 00 3 2 2 2 2 4 4 2 4 2 −2 2 2 −2 10 0 −191 4 2 −2 0 2 3 0 2 2 1 4 3 4 2 2 10 02 2 3 0 2 2 2 2 0 2 3 −1 2 4 2 3 4 10

A.10 Dimension 20

2: ∞,2[±U5(2)]52(2)◦ C4

4 0 0 2 0 2 0 1 1 1 −1 1 −1 −1 1 −1 1 −1 −1 00 4 −4 −2 2 0 0 1 1 −1 −1 −1 −1 1 1 1 −1 −1 −1 −20 0 4 2 0 0 0 −1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 02 2 2 4 1 1 −1 0 0 0 −2 −1 0 0 2 1 −1 −1 −1 −10 0 −2 −1 4 0 0 2 −1 −1 1 0 −1 1 −1 −1 0 0 0 00 0 0 1 0 4 −4 −2 −1 1 −1 0 1 1 1 1 0 0 0 02 0 0 1 0 0 4 2 1 1 1 2 −1 −1 1 −1 0 0 0 01 −1 −1 0 2 2 2 4 −1 1 1 1 0 0 0 −1 0 0 0 01 −1 −1 0 1 1 1 1 4 0 0 2 0 0 0 −1 1 1 1 21 1 1 2 −1 1 −1 −1 0 4 −4 −2 0 0 2 1 1 −1 −1 01 −1 1 0 −1 1 1 1 0 0 4 2 0 −2 0 −1 1 1 −1 01 −1 1 1 0 2 0 1 2 2 2 4 1 −1 1 0 1 1 −1 1−1 1 1 0 −1 −1 −1 −2 −2 0 0 −1 4 0 0 2 0 0 0 −1−1 −1 −1 −2 1 −1 −1 0 0 −2 0 −1 0 4 −4 −2 0 0 2 1−1 1 −1 0 1 1 −1 0 0 0 −2 −1 0 0 4 2 0 −2 0 −1−1 1 −1 −1 1 −1 −1 −1 −1 −1 −1 −2 2 2 2 4 1 −1 1 0

1 −1 1 1 0 0 0 0 1 1 −1 1 −2 0 0 −1 4 0 0 21 1 1 1 0 0 0 0 −1 1 1 1 0 −2 0 −1 0 4 −4 −2−1 −1 1 −1 0 0 0 0 1 −1 1 1 0 0 −2 −1 0 0 4 2

0 0 2 1 0 0 0 0 0 0 0 1 −1 −1 −1 −2 2 2 2 4

3: i[C4]1⊗[(C6 × S4(3)).2]10

4 0 1 0 0 0 0 1 0 −2 −2 0 0 0 −2 0 0 −1 0 −21 4 0 0 0 0 0 2 0 −1 1 1 0 2 0 −2 0 −1 0 10 0 4 −4 −1 −2 2 0 0 0 0 0 −1 2 −1 −2 2 1 2 01 0 0 4 0 0 0 2 −2 1 −2 −2 0 −2 −1 2 0 −2 1 −2−2 −1 0 1 4 0 0 −1 0 4 1 −2 0 −2 0 0 0 1 2 0

1 2 0 2 −1 4 0 4 −2 −1 −1 0 0 0 1 0 0 −2 0 0−2 1 0 −2 1 −1 4 −1 2 1 4 1 0 1 1 −2 0 1 0 2

0 0 2 0 0 0 0 4 1 0 0 1 −1 2 −1 −2 2 2 2 02 −1 −2 0 −1 −1 −2 −2 6 −1 −2 −1 2 −1 0 2 0 −1 −1 00 0 1 0 0 0 0 −1 0 4 0 1 −2 1 2 1 −1 −1 −1 00 0 −2 0 0 0 0 −1 2 1 4 2 0 0 2 1 −1 0 −1 02 −1 −2 0 −1 −1 −2 0 4 −2 1 6 0 −1 −2 1 0 0 0 −2−2 0 0 1 2 1 0 0 −2 0 0 −2 4 −1 2 0 0 −1 0 0−1 −2 −2 −2 −1 −2 0 0 1 −2 1 2 −1 6 0 0 0 2 0 0

2 1 −1 1 −2 1 −2 1 0 0 1 2 0 0 6 1 −1 −2 −2 −21 2 2 2 −1 2 −1 0 −2 0 −2 −2 0 −2 1 6 0 −2 1 −1−2 −2 0 −2 1 −2 1 0 −1 0 0 −1 1 2 −1 −2 4 2 0 1−2 −2 −2 −1 1 −2 0 −2 2 1 1 0 0 2 −2 −2 1 6 −1 1−1 −2 1 −2 1 −2 1 0 1 2 0 −1 0 0 −2 −3 2 2 6 2−2 0 −2 0 0 0 0 0 −1 0 2 −1 2 2 2 −1 1 2 −1 6

Page 137: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

A.10. DIMENSION 20 137

4: i[(D8⊗C4).S3]2⊗A5

4 0 0 0 0 0 1 −1 −1 1 1 1 1 0 0 1 −1 −1 0 0−2 4 0 0 0 0 0 0 1 −1 −2 1 −2 1 −1 0 1 2 1 0−2 2 4 0 0 0 0 0 1 −1 −1 0 0 −1 1 0 1 1 −1 0−2 2 2 4 0 0 0 0 1 −1 −1 0 −2 0 0 0 1 1 0 0

2 −2 0 −2 6 −3 2 0 1 1 0 −1 3 0 2 0 −1 0 −2 0−2 0 2 2 −1 6 −2 0 −1 −1 1 0 −1 −2 0 −2 −1 1 −2 0−1 0 0 0 −2 0 4 0 0 0 0 0 0 0 0 2 1 0 0 2

1 0 0 0 0 −2 0 4 0 0 0 0 0 0 0 2 1 0 0 −21 −1 −1 −1 −1 −1 2 0 4 0 1 0 0 0 0 1 2 −1 0 1−1 1 1 1 −1 −1 0 2 0 4 −1 0 0 0 0 1 2 −1 0 −1

1 −2 −1 −1 2 1 0 0 −1 −1 4 −1 2 0 1 0 −2 0 −1 0−1 −1 0 0 1 2 0 −2 0 0 1 4 0 −1 0 −1 0 1 −2 1−1 2 2 0 −1 −1 2 2 0 2 0 −2 6 1 1 2 1 0 1 0

0 1 −1 0 −2 −2 0 0 0 0 −2 −1 −1 4 −2 0 0 0 2 00 1 −1 0 −2 −2 0 0 0 0 −1 −2 1 2 4 0 0 −1 4 0−1 0 0 0 −2 2 2 −2 1 −1 0 1 0 0 0 4 0 0 0 2

1 −1 −1 −1 −1 1 1 −1 2 −2 0 0 −1 0 0 2 4 0 0 11 −2 −1 −1 2 −1 0 0 1 −1 0 1 −2 0 −1 0 0 4 −1 00 1 −1 0 −2 0 0 0 0 0 −1 0 −1 2 0 0 0 −1 4 0−2 0 0 0 −2 2 2 −2 1 −1 0 1 0 0 0 2 1 0 0 4

5: i[[±S6]10

2(2)

@×⊃ i[C4]1]10

4 0 0 −1 −1 1 0 0 1 −2 0 0 1 1 −2 −2 0 0 0 −12 4 0 0 −2 0 0 0 1 0 −1 0 0 0 −1 −2 0 0 2 −12 2 4 −1 −1 −1 0 0 1 0 0 1 0 0 −1 0 −1 0 2 −10 1 1 4 0 −1 2 1 0 1 0 0 −1 −1 −1 0 −2 −1 1 00 0 0 −1 3 0 −1 −1 1 −1 0 0 1 1 0 −1 1 3 1 0−2 −2 −2 −2 1 6 −2 −2 0 0 1 1 −1 1 2 2 2 1 −2 2

1 0 1 0 1 −2 4 0 2 −1 0 0 0 0 0 0 −2 1 0 −1−1 0 −1 0 1 2 0 4 0 0 1 1 1 1 1 0 0 1 0 1−1 0 0 0 −1 2 −2 0 4 2 0 1 −1 0 1 1 0 −1 0 1

0 −1 −1 −1 0 −1 0 0 −2 5 −1 0 1 1 −1 −1 1 0 0 −1−1 1 1 0 1 1 0 2 1 −2 5 1 0 0 1 0 −1 1 2 0

0 −1 0 −1 0 1 −1 0 1 0 1 3 0 0 0 0 0 0 0 01 2 0 −1 1 1 0 2 −1 −1 2 0 5 1 1 −1 1 1 0 01 1 1 −1 0 1 −1 0 0 0 1 1 2 3 0 0 1 0 0 0−2 −1 −1 0 1 1 −1 0 1 1 1 1 −1 0 4 0 0 1 1 0−2 −2 0 0 1 0 0 0 0 1 1 1 −2 −1 2 4 0 1 2 0

0 1 0 2 −1 0 −2 0 0 −1 0 0 1 1 0 −1 4 −1 0 11 2 1 0 0 0 −1 −1 1 −1 0 0 1 1 0 −1 1 3 1 −12 2 0 0 −1 −2 0 0 0 1 −1 0 1 0 −1 −2 0 1 4 −1−1 0 0 1 1 1 −1 1 1 −1 2 1 0 0 2 1 1 0 −1 3

6: i[C4]1⊗A(2)10

4 0 0 0 0 0 0 0 0 0 4 1 −2 −2 −2 −2 −2 −1 1 21 4 0 0 0 0 0 0 0 0 1 4 0 1 1 1 1 1 2 0−2 0 4 0 0 0 0 0 0 0 −2 0 4 1 2 2 0 2 1 −2−2 1 1 4 0 0 0 0 0 0 −2 1 1 4 1 2 1 0 −1 0−2 1 2 1 4 0 0 0 0 0 −2 1 2 1 4 1 1 1 0 −1−2 1 2 2 1 4 0 0 0 0 −2 1 2 2 1 4 1 2 0 −1−2 1 0 1 1 1 4 0 0 0 −2 1 0 1 1 1 4 0 0 −2−1 1 2 0 1 2 0 4 0 0 −1 1 2 0 1 2 0 4 2 −2

1 2 1 −1 0 0 0 2 4 0 1 2 1 −1 0 0 0 2 4 −12 0 −2 0 −1 −1 −2 −2 −1 4 2 0 −2 0 −1 −1 −2 −2 −1 40 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 −2 0 4 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 −2 1 1 4 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 −2 1 2 1 4 0 0 0 0 00 0 0 0 0 0 0 0 0 0 −2 1 2 2 1 4 0 0 0 00 0 0 0 0 0 0 0 0 0 −2 1 0 1 1 1 4 0 0 00 0 0 0 0 0 0 0 0 0 −1 1 2 0 1 2 0 4 0 00 0 0 0 0 0 0 0 0 0 1 2 1 −1 0 0 0 2 4 00 0 0 0 0 0 0 0 0 0 2 0 −2 0 −1 −1 −2 −2 −1 4

7: ∞,2[SL2(11)]52(2)@⊃ C4

6 0 1 0 −1 2 2 −2 1 1 1 −2 3 1 −1 1 1 1 −1 −1−2 6 −2 0 1 0 1 −1 0 1 2 0 −2 0 3 0 −1 −2 0 −2

1 0 6 1 −2 1 1 −2 2 −2 0 1 0 0 −1 0 2 2 2 2−2 2 1 6 −1 −1 −1 1 −2 0 1 0 −1 0 1 1 1 −2 2 −1

1 −1 0 1 6 −1 1 −1 −1 −2 −1 −1 0 −2 −1 0 0 1 2 1−2 2 1 1 −3 6 0 1 −1 1 −1 −2 1 0 2 0 0 0 1 −1−2 3 1 3 1 2 6 −1 0 0 1 −1 0 −3 2 0 1 −1 1 −1

0 −1 −2 −3 1 −3 −3 6 1 −1 0 2 −1 1 −2 −1 −2 1 −1 2−1 2 −2 0 −1 1 2 −1 6 2 2 −1 −1 −1 2 0 2 −1 −2 −2

1 −1 −2 −2 −2 1 −2 1 0 6 −2 −1 2 0 −1 0 −3 0 0 −21 2 −2 1 −1 1 1 −2 2 2 6 −2 1 −1 1 0 0 −2 −2 −62 2 1 −2 −1 0 −1 0 1 −1 0 6 −1 1 0 1 1 1 −1 0−3 0 2 1 −2 3 2 −1 −1 0 −1 −3 6 −1 0 −1 0 0 0 1

1 2 −2 −2 0 0 1 1 1 2 1 1 −1 6 0 0 −3 −2 −1 −1−1 −1 −3 1 −1 0 0 0 0 3 1 −2 0 0 6 0 −2 −1 0 −1

1 2 2 1 −2 2 0 −1 −2 2 2 1 1 0 0 6 0 1 1 −2−1 1 −2 1 −2 2 −1 0 2 1 2 −1 0 −1 0 0 6 −2 −1 −2−1 0 2 2 −1 2 1 −1 1 −2 −2 −1 2 −2 −1 −1 2 6 1 2

1 −2 0 0 0 −3 −1 1 −2 −2 −2 −1 0 −1 0 −1 −1 1 6 21 2 0 1 −1 −1 1 0 2 −2 0 2 −1 1 −1 0 0 2 2 6

Page 138: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

138 APPENDIX A. INVARIANT FORMS

8: i[C4]1⊗A(3)10

6 0 0 0 0 0 0 0 0 0 6 −1 1 −3 −2 −2 −2 −2 2 −1−1 6 0 0 0 0 0 0 0 0 −1 6 2 −1 −1 2 −2 2 −3 2

1 2 6 0 0 0 0 0 0 0 1 2 6 −3 0 2 0 −2 0 3−3 −1 −3 6 0 0 0 0 0 0 −3 −1 −3 6 2 1 0 0 −2 −1−2 −1 0 2 6 0 0 0 0 0 −2 −1 0 2 6 2 3 −2 −2 −2−2 2 2 1 2 6 0 0 0 0 −2 2 2 1 2 6 2 −2 −1 0−2 −2 0 0 3 2 6 0 0 0 −2 −2 0 0 3 2 6 −1 0 −2−2 2 −2 0 −2 −2 −1 6 0 0 −2 2 −2 0 −2 −2 −1 6 −2 0

2 −3 0 −2 −2 −1 0 −2 6 0 2 −3 0 −2 −2 −1 0 −2 6 0−1 2 3 −1 −2 0 −2 0 0 6 −1 2 3 −1 −2 0 −2 0 0 6

0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 −1 6 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1 2 6 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 −3 −1 −3 6 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 −2 −1 0 2 6 0 0 0 0 00 0 0 0 0 0 0 0 0 0 −2 2 2 1 2 6 0 0 0 00 0 0 0 0 0 0 0 0 0 −2 −2 0 0 3 2 6 0 0 00 0 0 0 0 0 0 0 0 0 −2 2 −2 0 −2 −2 −1 6 0 00 0 0 0 0 0 0 0 0 0 2 −3 0 −2 −2 −1 0 −2 6 00 0 0 0 0 0 0 0 0 0 −1 2 3 −1 −2 0 −2 0 0 6

9: √−2[∞,2[±U5(2)]5 :2]10

4 0 0 0 0 0 0 0 0 0 −2 0 0 0 −2 0 2 −2 0 −2−1 4 0 0 0 2 −2 2 0 0 2 0 2 0 0 0 0 0 0 0

0 0 4 0 0 2 −2 2 0 0 0 0 0 0 0 0 0 −2 2 −20 −2 0 4 −2 0 0 0 2 0 0 2 0 0 2 0 −2 0 0 00 2 −2 −1 4 0 0 0 −2 2 0 0 2 −2 0 0 0 0 0 20 1 −1 −2 0 4 2 0 0 0 0 0 0 2 −2 0 2 0 0 01 −1 −1 1 0 −1 4 0 0 0 0 0 −2 −2 0 0 −2 0 0 00 0 1 −1 −1 2 −2 4 0 0 −2 0 0 0 0 0 0 0 2 0−1 0 0 −1 −1 1 −2 1 4 0 0 0 0 2 0 0 2 2 −2 0

0 0 −1 2 1 −1 1 −2 −2 4 2 0 2 0 2 0 0 0 0 21 1 0 −1 0 1 1 0 −1 0 4 0 0 0 0 0 0 0 0 −2−2 −1 0 1 −1 0 −1 1 2 0 −2 4 0 0 2 0 0 2 0 2

1 −1 0 0 −1 1 1 0 −2 1 2 −1 4 0 0 2 0 −2 2 00 0 −2 −1 1 1 1 0 1 −1 1 0 0 4 0 0 0 2 0 0−1 0 1 −1 −1 0 −1 1 0 −1 0 1 1 −1 4 0 0 0 0 0−1 −1 2 0 −2 0 0 0 0 0 0 1 1 −2 1 4 0 0 0 0

1 0 −1 −1 1 1 1 0 −1 0 1 −2 1 2 −2 −1 4 0 2 01 1 −1 −1 2 −1 1 −1 −1 0 1 −1 0 1 1 −2 0 4 0 0−1 −1 1 1 −2 0 0 1 −1 0 0 0 1 −2 1 2 −1 −2 4 0−1 0 1 0 −1 −1 0 −1 −1 1 0 0 1 −2 2 2 −1 0 1 4

10: √−2[2.M12 :2]10

4 2 −2 0 −2 −2 0 0 0 2 2 0 0 −2 0 −2 −2 2 0 0−2 4 0 −2 2 0 0 0 0 0 0 0 0 2 0 2 2 2 0 2

1 −1 4 2 0 0 0 0 0 0 0 0 0 −2 0 −2 −2 0 0 00 0 0 4 −2 0 −2 −2 −2 0 0 2 0 0 2 0 0 0 0 01 −2 2 −1 4 −2 0 0 0 0 −2 0 2 0 0 −2 0 0 0 01 −1 0 0 0 4 0 0 2 0 0 −2 2 0 −2 0 −2 0 2 −20 0 2 −1 2 −1 4 0 0 0 0 0 0 −2 0 −2 0 0 0 0−1 0 2 0 1 −1 1 4 −2 0 0 2 0 0 0 0 0 0 −2 0

0 −1 2 0 2 0 1 2 4 0 −2 2 0 0 2 0 0 0 0 0−2 2 0 1 −1 −2 0 1 1 4 −2 2 −2 2 2 2 2 0 0 2−1 2 0 1 −1 0 0 0 −1 1 4 0 0 2 0 2 0 0 0 2−2 2 −2 1 −2 −1 0 −1 −2 1 0 4 0 0 0 0 2 0 0 0

2 −2 1 0 2 −1 0 0 0 −1 0 −2 4 0 0 0 0 0 0 2−1 −1 −1 −1 1 −1 0 −1 0 0 −2 1 0 4 0 −2 2 −2 0 0−1 0 −2 0 −1 0 −1 −1 −1 −1 −1 2 −1 1 4 0 0 0 0 −2−2 0 0 −1 0 0 −1 1 1 1 −1 0 −1 2 0 4 2 −2 0 0−1 0 0 −1 0 −2 1 0 −1 0 −1 1 0 2 0 1 4 −2 −2 0−1 1 −1 −1 0 −2 0 1 −1 1 1 0 1 0 −1 0 1 4 −2 2

0 1 1 0 0 −1 0 1 1 1 0 −1 0 0 −2 1 1 1 4 2−1 0 1 −2 1 −2 2 1 1 1 −1 0 0 1 0 1 2 1 0 4

11: √−2[GL2(3)]2⊗A5

4 2 −2 −2 2 2 −2 0 2 0 0 0 0 2 0 −2 0 0 −2 −2−1 4 0 0 0 −2 0 0 0 0 −2 2 −2 −2 2 2 −2 0 2 2

0 0 4 −2 0 0 0 0 0 0 0 −2 0 0 −2 0 2 0 0 00 −2 0 4 0 0 0 0 −2 0 0 −2 2 −2 0 0 0 0 0 00 2 −2 −1 4 −2 0 0 0 0 0 2 0 0 4 0 −2 2 0 20 1 −1 −2 0 4 −2 0 0 0 0 0 −2 0 0 0 0 0 0 01 −1 −1 1 0 −1 4 2 0 0 2 0 2 0 0 0 0 0 0 −20 0 1 −1 −1 2 −2 4 0 0 0 0 0 0 0 0 0 0 0 0−1 0 0 −1 −1 1 −2 1 4 2 −2 2 −2 0 −2 0 0 −2 0 0

0 0 −1 2 1 −1 1 −2 −2 4 0 −2 2 −2 2 0 0 0 2 21 1 0 −1 0 1 1 0 −1 0 4 0 −2 −2 0 0 −2 0 0 0−2 −1 0 1 −1 0 −1 1 2 0 −2 4 2 −2 0 2 0 −2 2 2

1 −1 0 0 −1 1 1 0 −2 1 2 −1 4 0 0 0 0 0 0 00 0 −2 −1 1 1 1 0 1 −1 1 0 0 4 0 0 −2 0 0 0−1 0 1 −1 −1 0 −1 1 0 −1 0 1 1 −1 4 2 0 −2 2 0−1 −1 2 0 −2 0 0 0 0 0 0 1 1 −2 1 4 2 0 0 0

1 0 −1 −1 1 1 1 0 −1 0 1 −2 1 2 −2 −1 4 2 −2 01 1 −1 −1 2 −1 1 −1 −1 0 1 −1 0 1 1 −2 0 4 0 0−1 −1 1 1 −2 0 0 1 −1 0 0 0 1 −2 1 2 −1 −2 4 −2−1 0 1 0 −1 −1 0 −1 −1 1 0 0 1 −2 2 2 −1 0 1 4

Page 139: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

A.10. DIMENSION 20 139

13: ∞,2[±U5(2)]5 ◦ C3

4 −1 0 −2 0 2 1 2 −1 −2 1 0 3 2 1 1 1 1 1 −1−1 4 0 0 0 −1 −1 −2 0 0 −1 −1 −1 −2 2 −1 −2 3 −1 2

0 0 4 0 0 −1 1 −1 −2 −1 2 −2 2 0 3 0 −1 1 1 10 −2 0 4 1 0 −1 3 −1 0 −1 −1 0 −1 −1 −2 1 −1 1 −20 2 −2 −1 4 0 −2 −1 1 −1 −2 −1 −1 −1 −1 0 1 0 0 10 1 −1 −2 0 4 −1 0 −1 3 1 2 1 −1 2 2 −1 1 0 31 −1 −1 1 0 −1 4 0 0 1 −3 1 −1 1 −3 −2 1 −1 −2 −20 0 1 −1 −1 2 −2 4 −1 0 2 −1 0 0 3 2 0 1 1 3−1 0 0 −1 −1 1 −2 1 4 0 3 0 0 −1 0 2 −1 −1 1 −1

0 0 −1 2 1 −1 1 −2 −2 4 −2 0 −1 −1 −1 −2 0 2 −2 −11 1 0 −1 0 1 1 0 −1 0 4 0 0 −1 0 0 −1 3 0 2−2 −1 0 1 −1 0 −1 1 2 0 −2 4 −3 0 −1 −1 0 −1 0 −2

1 −1 0 0 −1 1 1 0 −2 1 2 −1 4 2 1 −1 −1 2 −1 10 0 −2 −1 1 1 1 0 1 −1 1 0 0 4 −3 0 0 −1 0 0−1 0 1 −1 −1 0 −1 1 0 −1 0 1 1 −1 4 −1 0 1 −1 0−1 −1 2 0 −2 0 0 0 0 0 0 1 1 −2 1 4 −1 0 0 0

1 0 −1 −1 1 1 1 0 −1 0 1 −2 1 2 −2 −1 4 0 −1 31 1 −1 −1 2 −1 1 −1 −1 0 1 −1 0 1 1 −2 0 4 0 0−1 −1 1 1 −2 0 0 1 −1 0 0 0 1 −2 1 2 −1 −2 4 1−1 0 1 0 −1 −1 0 −1 −1 1 0 0 1 −2 2 2 −1 0 1 4

14: √−3[±S4(3) ◦ C3]5 ⊗√−3∞,2[SL2(3)]1

4 1 0 2 0 −2 −1 −2 1 2 −1 0 −3 −2 −1 −1 −1 −1 −1 1−1 4 −2 −2 2 −1 1 −2 0 0 1 −1 1 2 2 −1 0 3 −1 2

0 0 4 −4 0 1 1 1 0 −3 0 −2 −2 0 1 0 1 1 1 10 −2 0 4 −1 0 −1 1 −1 0 −1 1 0 −3 1 2 −1 −1 1 00 2 −2 −1 4 −4 0 −3 1 1 0 1 1 1 1 0 −1 2 −2 10 1 −1 −2 0 4 −1 0 −1 1 1 −2 −1 1 −2 −2 1 1 −2 −11 −1 −1 1 0 −1 4 0 0 3 −1 1 1 −1 −1 0 1 −1 0 −20 0 1 −1 −1 2 −2 4 −3 0 2 −3 0 0 1 −2 0 3 −1 1−1 0 0 −1 −1 1 −2 1 4 0 1 2 0 1 0 0 −1 −1 1 1

0 0 −1 2 1 −1 1 −2 −2 4 −2 0 1 −3 1 2 0 −2 2 11 1 0 −1 0 1 1 0 −1 0 4 −2 0 −3 0 2 −1 −1 2 2−2 −1 0 1 −1 0 −1 1 2 0 −2 4 3 0 1 1 0 −1 2 0

1 −1 0 0 −1 1 1 0 −2 1 2 −1 4 −2 −1 1 1 −2 1 −10 0 −2 −1 1 1 1 0 1 −1 1 0 0 4 −1 0 0 1 0 0−1 0 1 −1 −1 0 −1 1 0 −1 0 1 1 −1 4 1 0 −1 1 0−1 −1 2 0 −2 0 0 0 0 0 0 1 1 −2 1 4 1 −2 2 −2

1 0 −1 −1 1 1 1 0 −1 0 1 −2 1 2 −2 −1 4 2 −1 −11 1 −1 −1 2 −1 1 −1 −1 0 1 −1 0 1 1 −2 0 4 0 2−1 −1 1 1 −2 0 0 1 −1 0 0 0 1 −2 1 2 −1 −2 4 −3−1 0 1 0 −1 −1 0 −1 −1 1 0 0 1 −2 2 2 −1 0 1 4

15: √−3[±U4(2) ◦ C3]10

6 0 3 0 −3 −3 0 0 0 −3 0 −3 0 0 0 −3 0 −3 −3 02 6 3 0 0 −3 −3 −3 −3 −3 0 −3 0 3 0 0 0 0 0 −33 3 6 0 −3 −9 −3 0 −3 −3 0 0 3 0 −3 −3 0 −3 0 −32 2 2 6 0 −3 0 −3 −3 0 −3 0 3 0 −3 −3 −3 −3 −3 −33 2 3 2 6 −3 0 0 0 −3 0 0 3 0 0 0 3 0 0 03 3 3 1 3 6 3 3 3 0 3 3 3 3 0 0 3 3 0 02 3 3 2 2 3 6 0 0 0 3 0 3 3 0 0 0 0 0 02 1 2 1 2 1 2 6 0 3 0 −3 3 3 3 0 3 −3 3 32 3 3 1 2 3 0 2 6 0 0 0 3 0 0 0 3 0 3 01 3 1 2 1 2 2 1 2 6 0 −3 0 0 0 3 0 0 0 −32 2 2 3 0 1 1 2 2 2 6 0 3 3 0 0 0 −3 0 −31 1 2 2 2 1 2 3 2 1 2 6 9 3 3 0 0 0 3 02 2 1 1 1 −1 1 3 1 2 1 3 6 0 3 0 −3 −3 0 02 1 2 2 2 1 −1 1 2 2 1 1 2 6 −3 0 0 −3 0 −32 2 1 1 2 2 2 1 0 0 0 −1 1 1 6 3 0 0 0 33 2 1 3 2 2 0 0 2 1 2 0 0 2 1 6 3 0 −3 02 2 2 3 1 1 0 1 3 0 2 2 1 2 0 3 6 0 3 03 2 3 1 0 3 2 1 2 2 3 2 1 1 0 2 2 6 0 01 2 0 3 0 0 0 −1 1 2 2 1 2 2 2 3 3 2 6 02 3 1 3 0 2 2 1 2 3 3 0 0 1 1 2 2 2 2 6

16: √−3[±L2(11)2(3)

⊗√−3[C6]1]10

4 1 3 6 3 1 −1 2 0 −1 0 1 −2 1 −1 1 2 −1 0 1−1 4 0 −1 −1 −1 1 −1 0 0 1 −2 0 0 3 −1 0 0 −2 −2−1 0 4 0 0 −2 2 −1 4 0 −3 −1 0 −1 2 −3 2 1 0 −3−2 1 2 4 0 −2 2 −1 3 −1 −3 −2 −2 1 2 −2 2 2 −3 −2−1 −1 2 2 4 0 0 −2 3 0 −3 0 0 1 0 −3 1 2 −3 −2

1 1 −2 0 −2 4 2 2 −1 −1 1 −1 −3 0 0 2 1 −1 −1 1−1 −1 2 0 2 −2 4 −2 3 2 −1 1 2 −2 −1 −3 −1 0 1 −1

0 −1 1 1 0 0 0 4 1 −1 −1 0 −1 3 0 0 1 −1 1 −2−2 0 0 1 1 −1 1 −1 4 3 −2 2 0 −1 0 0 −2 3 −1 1

1 0 −2 −1 −2 1 −2 −1 1 4 1 1 −2 1 0 2 0 0 0 22 −1 1 −1 1 −1 1 1 −2 −1 4 2 0 0 0 −2 1 −2 0 −11 −2 −1 0 0 1 −1 2 0 1 0 4 −2 3 −1 2 0 1 −1 02 0 −2 −2 −2 1 −2 −1 0 2 0 0 4 −1 −1 2 1 1 0 2−1 2 1 1 1 0 0 −1 −1 −1 0 −1 −1 4 2 −2 1 0 −3 −2−1 −1 2 0 0 −2 1 0 0 0 0 −1 −1 0 4 1 −1 −2 4 1

1 −1 −1 0 −1 2 −1 2 −2 0 0 2 0 0 −1 4 2 −1 1 0−2 2 2 2 1 −1 1 −1 2 0 −1 −2 −1 1 1 −2 4 1 −1 −2−1 2 −1 0 −2 1 −2 −1 1 2 −2 −1 1 0 0 −1 1 4 0 1

2 −2 0 −1 1 −1 1 1 −1 0 2 1 0 −1 0 1 −1 −2 4 −11 −2 −1 0 0 1 −1 2 −1 0 1 2 0 −2 −1 2 −2 −1 1 4

Page 140: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

140 APPENDIX A. INVARIANT FORMS

17: √−3[√−11[±L2(11)]52(3)

@×⊃ √−3[C6]1]10

8 −2 −6 −3 2 1 −1 3 −3 4 2 0 −4 −3 −2 −1 −3 −2 −3 22 8 −6 −4 2 0 −3 3 0 −2 −2 0 0 −2 −3 −1 −4 −3 −1 −2−2 2 8 0 2 0 −4 0 −1 −2 −1 4 −1 −3 3 0 0 6 3 2

1 0 0 8 2 0 0 −4 −1 2 2 0 0 −6 −2 −2 2 −3 0 −3−2 0 0 −2 8 0 3 −2 4 −6 6 3 3 2 −6 −4 0 −4 1 −3−1 4 2 0 2 8 −6 0 3 0 2 −3 0 0 −6 −2 −1 0 3 −2−1 −1 0 0 3 0 8 −2 3 0 4 6 0 2 0 0 6 −2 4 1

1 −1 −2 0 2 0 −2 8 3 −3 4 1 0 6 −6 0 −2 −4 6 −41 −2 1 1 0 1 −1 1 8 4 0 −4 −6 −3 −4 −6 0 2 3 00 −2 2 −2 2 0 0 1 0 8 3 3 0 −1 2 −4 −2 2 −2 3−2 2 1 0 0 2 0 0 0 −3 8 0 0 2 0 0 −4 0 4 −6

2 0 0 0 1 −1 2 1 0 −1 2 8 −4 −2 0 0 0 0 2 −30 2 1 −2 3 2 4 0 2 0 0 0 8 3 −3 −3 0 1 6 3−1 0 3 2 0 2 2 2 3 −1 2 2 3 8 −3 0 2 0 12 0

0 1 3 −2 2 0 0 2 0 2 −2 2 1 1 8 0 2 0 3 21 −1 2 2 0 0 0 2 2 0 0 2 1 4 4 8 0 3 6 33 0 2 2 0 1 0 2 2 2 0 2 0 2 2 4 8 1 2 42 1 2 −1 0 0 −2 0 2 2 −2 0 1 0 4 1 −1 8 0 01 1 3 4 −1 1 0 −2 3 0 0 2 0 4 −1 2 2 0 8 02 2 2 −1 1 2 1 0 0 3 −2 −1 3 0 2 1 0 4 0 8

18: √−3[C6]1⊗A(2)10

8 0 0 0 0 0 0 0 0 0 12 3 −6 −6 −6 −6 −6 −3 3 62 8 0 0 0 0 0 0 0 0 3 12 0 3 3 3 3 3 6 0−4 0 8 0 0 0 0 0 0 0 −6 0 12 3 6 6 0 6 3 −6−4 2 2 8 0 0 0 0 0 0 −6 3 3 12 3 6 3 0 −3 0−4 2 4 2 8 0 0 0 0 0 −6 3 6 3 12 3 3 3 0 −3−4 2 4 4 2 8 0 0 0 0 −6 3 6 6 3 12 3 6 0 −3−4 2 0 2 2 2 8 0 0 0 −6 3 0 3 3 3 12 0 0 −6−2 2 4 0 2 4 0 8 0 0 −3 3 6 0 3 6 0 12 6 −6

2 4 2 −2 0 0 0 4 8 0 3 6 3 −3 0 0 0 6 12 −34 0 −4 0 −2 −2 −4 −4 −2 8 6 0 −6 0 −3 −3 −6 −6 −3 12−4 −1 2 2 2 2 2 1 −1 −2 8 0 0 0 0 0 0 0 0 0−1 −4 0 −1 −1 −1 −1 −1 −2 0 2 8 0 0 0 0 0 0 0 0

2 0 −4 −1 −2 −2 0 −2 −1 2 −4 0 8 0 0 0 0 0 0 02 −1 −1 −4 −1 −2 −1 0 1 0 −4 2 2 8 0 0 0 0 0 02 −1 −2 −1 −4 −1 −1 −1 0 1 −4 2 4 2 8 0 0 0 0 02 −1 −2 −2 −1 −4 −1 −2 0 1 −4 2 4 4 2 8 0 0 0 02 −1 0 −1 −1 −1 −4 0 0 2 −4 2 0 2 2 2 8 0 0 01 −1 −2 0 −1 −2 0 −4 −2 2 −2 2 4 0 2 4 0 8 0 0−1 −2 −1 1 0 0 0 −2 −4 1 2 4 2 −2 0 0 0 4 8 0−2 0 2 0 1 1 2 2 1 −4 4 0 −4 0 −2 −2 −4 −4 −2 8

19: √−3[C6]1⊗A(3)10

12 0 0 0 0 0 0 0 0 0 18 −3 3 −9 −6 −6 −6 −6 6 −3−2 12 0 0 0 0 0 0 0 0 −3 18 6 −3 −3 6 −6 6 −9 6

2 4 12 0 0 0 0 0 0 0 3 6 18 −9 0 6 0 −6 0 9−6 −2 −6 12 0 0 0 0 0 0 −9 −3 −9 18 6 3 0 0 −6 −3−4 −2 0 4 12 0 0 0 0 0 −6 −3 0 6 18 6 9 −6 −6 −6−4 4 4 2 4 12 0 0 0 0 −6 6 6 3 6 18 6 −6 −3 0−4 −4 0 0 6 4 12 0 0 0 −6 −6 0 0 9 6 18 −3 0 −6−4 4 −4 0 −4 −4 −2 12 0 0 −6 6 −6 0 −6 −6 −3 18 −6 0

4 −6 0 −4 −4 −2 0 −4 12 0 6 −9 0 −6 −6 −3 0 −6 18 0−2 4 6 −2 −4 0 −4 0 0 12 −3 6 9 −3 −6 0 −6 0 0 18−6 1 −1 3 2 2 2 2 −2 1 12 0 0 0 0 0 0 0 0 0

1 −6 −2 1 1 −2 2 −2 3 −2 −2 12 0 0 0 0 0 0 0 0−1 −2 −6 3 0 −2 0 2 0 −3 2 4 12 0 0 0 0 0 0 0

3 1 3 −6 −2 −1 0 0 2 1 −6 −2 −6 12 0 0 0 0 0 02 1 0 −2 −6 −2 −3 2 2 2 −4 −2 0 4 12 0 0 0 0 02 −2 −2 −1 −2 −6 −2 2 1 0 −4 4 4 2 4 12 0 0 0 02 2 0 0 −3 −2 −6 1 0 2 −4 −4 0 0 6 4 12 0 0 02 −2 2 0 2 2 1 −6 2 0 −4 4 −4 0 −4 −4 −2 12 0 0−2 3 0 2 2 1 0 2 −6 0 4 −6 0 −4 −4 −2 0 −4 12 0

1 −2 −3 1 2 0 2 0 0 −6 −2 4 6 −2 −4 0 −4 0 0 12

20: ∞,2[SL2(11)]5 ◦ C3

6 2 −5 0 3 −4 −2 2 3 −1 1 4 −9 1 1 −3 1 −3 −1 1−2 6 2 0 −3 2 −1 −1 0 −1 −2 −2 4 0 −3 −2 1 2 0 2

1 0 6 −1 6 −3 −1 2 −2 0 0 1 −4 2 −1 −2 −2 −4 −2 −2−2 2 1 6 3 −1 3 −1 2 −2 1 −2 3 0 −3 −3 −3 0 0 1

1 −1 0 1 6 1 1 3 3 0 1 3 0 4 1 −2 0 −3 −2 1−2 2 1 1 −3 6 0 −3 1 −1 3 −2 1 −2 −2 0 2 2 −1 1−2 3 1 3 1 2 6 1 2 −2 −1 1 2 3 −4 −4 1 3 1 3

0 −1 −2 −3 1 −3 −3 6 −3 3 −2 0 1 1 4 5 0 −1 1 0−1 2 −2 0 −1 1 2 −1 6 −2 −4 −1 3 −3 0 −2 0 3 2 0

1 −1 −2 −2 −2 1 −2 1 0 6 2 −1 −2 −2 1 2 3 2 0 21 2 −2 1 −1 1 1 −2 2 2 6 0 −1 1 −3 −2 0 2 2 62 2 1 −2 −1 0 −1 0 1 −1 0 6 −1 −1 2 −1 3 −1 −3 −2−3 0 2 1 −2 3 2 −1 −1 0 −1 −3 6 1 −2 3 −2 0 2 1

1 2 −2 −2 0 0 1 1 1 2 1 1 −1 6 2 −2 5 4 −1 3−1 −1 −3 1 −1 0 0 0 0 3 1 −2 0 0 6 2 2 3 2 1

1 2 2 1 −2 2 0 −1 −2 2 2 1 1 0 0 6 −2 −1 −1 4−1 1 −2 1 −2 2 −1 0 2 1 2 −1 0 −1 0 0 6 2 3 2−1 0 2 2 −1 2 1 −1 1 −2 −2 −1 2 −2 −1 −1 2 6 −1 −2

1 −2 0 0 0 −3 −1 1 −2 −2 −2 −1 0 −1 0 −1 −1 1 6 −21 2 0 1 −1 −1 1 0 2 −2 0 2 −1 1 −1 0 0 2 2 6

Page 141: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

A.10. DIMENSION 20 141

21: √−7[2.M22 :2]10

8 0 0 0 −7 0 0 0 0 −7 0 0 0 0 0 0 0 0 0 04 8 0 0 0 −7 0 0 0 −7 0 0 0 0 7 0 0 0 0 0−2 0 8 0 0 0 0 0 0 7 0 0 7 0 0 7 0 −7 0 0

2 2 2 8 0 0 0 0 0 0 0 0 0 7 7 7 7 0 0 01 2 4 4 8 −7 0 0 0 0 0 0 0 0 0 0 0 0 −7 00 3 −2 2 −1 8 0 0 0 0 0 0 0 0 7 0 7 0 0 0−4 −4 2 −4 −2 −4 8 0 0 7 0 0 0 0 0 0 −7 0 0 0

4 4 0 2 2 0 −4 8 0 −7 0 0 0 0 0 0 0 −7 0 04 4 −2 4 2 2 −4 4 8 −7 0 0 0 0 7 0 0 0 −7 01 3 3 2 2 2 −3 3 −1 8 −7 −7 −7 −7 0 0 7 −7 0 7−4 −4 4 0 2 −4 4 −4 −4 −1 8 0 0 0 −7 0 0 0 0 0−4 −4 0 −4 −2 −2 4 −4 −4 −1 4 8 0 0 −7 −7 0 0 0 0−4 −4 3 0 0 0 4 −4 −4 1 4 4 8 0 0 0 0 0 0 0−4 −4 4 −1 0 −2 4 −4 −4 1 4 4 4 8 0 0 0 0 0 0

0 −1 0 −3 0 −3 2 2 −1 0 −1 1 0 2 8 −7 −7 7 0 0−2 0 −1 −1 −4 4 0 −2 −2 2 −2 1 2 2 1 8 0 7 0 0

0 4 2 1 0 1 −1 2 0 3 0 −2 −2 0 −1 2 8 0 0 00 −4 −1 −4 −2 −4 2 −1 −4 −1 2 4 0 2 3 −1 −2 8 7 0−4 −2 4 2 3 0 0 0 −1 2 2 0 2 4 0 0 0 −1 8 −7

4 4 −2 0 −2 2 −4 4 0 3 −4 −4 −4 −4 0 2 4 0 −3 8

22: √−11[±L2(11)]5 ⊗√−11∞,2[SL2(3)]1

4 −1 0 6 0 −6 5 −6 −5 2 −3 −4 −1 −2 −3 −3 1 1 1 −1−1 4 4 0 0 3 −5 6 0 0 −1 3 −1 −6 2 3 −6 −1 3 −2

0 0 4 4 −4 3 1 3 −2 −1 6 −2 6 4 −1 0 3 −3 5 −30 −2 0 4 1 −4 3 −5 3 0 −1 3 −4 7 −1 −2 1 3 −3 20 2 −2 −1 4 0 −2 3 1 −1 −6 3 −5 −5 −1 4 −3 −4 0 10 1 −1 −2 0 4 −1 0 −1 3 −3 2 1 −5 2 −2 −5 1 0 −11 −1 −1 1 0 −1 4 0 0 −3 −3 1 −1 1 1 −2 1 3 −2 20 0 1 −1 −1 2 −2 4 3 0 2 −1 0 0 −5 −2 0 −3 1 −5−1 0 0 −1 −1 1 −2 1 4 0 7 −4 4 −1 4 2 −1 3 −3 3

0 0 −1 2 1 −1 1 −2 −2 4 −6 4 −5 3 −1 −2 0 2 −2 −11 1 0 −1 0 1 1 0 −1 0 4 −4 4 −1 −4 −4 3 3 0 −2−2 −1 0 1 −1 0 −1 1 2 0 −2 4 1 4 3 −1 0 3 −4 2

1 −1 0 0 −1 1 1 0 −2 1 2 −1 4 2 −3 −9 3 2 −1 −30 0 −2 −1 1 1 1 0 1 −1 1 0 0 4 1 −4 0 3 −4 0−1 0 1 −1 −1 0 −1 1 0 −1 0 1 1 −1 4 −1 4 1 3 0−1 −1 2 0 −2 0 0 0 0 0 0 1 1 −2 1 4 3 0 0 0

1 0 −1 −1 1 1 1 0 −1 0 1 −2 1 2 −2 −1 4 −4 −1 −51 1 −1 −1 2 −1 1 −1 −1 0 1 −1 0 1 1 −2 0 4 0 0−1 −1 1 1 −2 0 0 1 −1 0 0 0 1 −2 1 2 −1 −2 4 −3−1 0 1 0 −1 −1 0 −1 −1 1 0 0 1 −2 2 2 −1 0 1 4

23: √−11[±L2(11)]5⊗A2

8 0 0 11 0 11 −11 11 11 0 0 0 0 11 0 11 11 0 11 02 8 0 0 0 0 −11 11 0 0 0 0 0 0 11 11 0 11 −11 0−2 2 8 0 0 0 0 0 −11 0 −11 0 −11 −11 11 0 0 0 −11 0

1 0 0 8 0 0 0 0 −11 0 0 0 0 0 0 0 0 −11 0 −11−2 0 0 −2 8 0 11 0 0 0 0 −11 11 0 0 0 0 0 −11 11−1 4 2 0 2 8 0 0 −11 0 0 −11 0 0 0 0 −11 0 −11 0−1 −1 0 0 3 0 8 0 −11 0 0 0 0 0 0 0 0 0 0 11

1 −1 −2 0 2 0 −2 8 11 11 0 −11 0 0 0 0 0 0 0 01 −2 1 1 0 1 −1 1 8 0 0 0 0 11 0 0 0 0 11 00 −2 2 −2 2 0 0 1 0 8 −11 −11 0 −11 0 0 0 0 0 11−2 2 1 0 0 2 0 0 0 −3 8 0 0 0 0 0 0 0 0 0

2 0 0 0 1 −1 2 1 0 −1 2 8 0 0 0 0 0 0 0 110 2 1 −2 3 2 4 0 2 0 0 0 8 11 11 11 0 11 0 11−1 0 3 2 0 2 2 2 3 −1 2 2 3 8 11 0 0 0 0 0

0 1 3 −2 2 0 0 2 0 2 −2 2 1 1 8 0 0 0 −11 01 −1 2 2 0 0 0 2 2 0 0 2 1 4 4 8 0 −11 0 −113 0 2 2 0 1 0 2 2 2 0 2 0 2 2 4 8 −11 0 02 1 2 −1 0 0 −2 0 2 2 −2 0 1 0 4 1 −1 8 0 01 1 3 4 −1 1 0 −2 3 0 0 2 0 4 −1 2 2 0 8 02 2 2 −1 1 2 1 0 0 3 −2 −1 3 0 2 1 0 4 0 8

24: √−19[SL2(19)]91 1 1 −1 1 −1 1 −1 1 1 −1 −1 1 1 1 −1 1 −1 1 10 1 1 −1 −1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 −1 −1 10 0 1 1 1 1 1 1 1 1 −1 1 1 −1 1 1 1 −1 −1 −10 0 0 1 1 1 1 −1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −10 0 0 0 1 1 −1 1 1 −1 −1 1 1 1 −1 −1 −1 −1 −1 10 0 0 0 0 1 1 −1 1 −1 1 1 1 1 −1 1 1 −1 1 −10 0 0 0 0 0 1 1 −1 1 1 −1 1 −1 −1 1 −1 −1 1 10 0 0 0 0 0 0 1 −1 1 1 −1 1 1 1 1 1 −1 −1 10 0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1 −1 1 1 −1 −10 0 0 0 0 0 0 0 0 1 1 1 −1 −1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 1 1 1 −1 1 1 −1 −1 −1 −10 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 1 −1 −1 1 10 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 −1 1 −1 1 −10 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 1 −1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 1 1 −10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 −1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Page 142: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

142 APPENDIX A. INVARIANT FORMS

25: ζ10 [±51+2+ .Sp2(5)]5

4 −1 −2 −3 −1 1 2 0 0 1 1 −2 2 2 −2 0 0 1 −1 −2−1 4 0 1 0 0 −1 0 1 −2 1 0 −1 1 1 −2 0 −1 −2 1

1 1 4 −1 1 3 3 −1 1 −2 −2 −2 −2 −1 0 −1 −2 0 −2 1−1 0 1 4 1 2 −1 −3 −1 −2 −1 1 0 −4 1 0 −3 1 2 0−1 2 1 2 4 1 0 −1 0 −2 0 1 −1 0 0 −1 −2 0 0 0

1 0 −1 −2 0 4 0 1 0 0 2 0 1 2 −1 −1 1 0 0 −20 1 −1 −2 −1 2 4 1 1 1 2 2 −1 2 0 0 1 −3 −2 −2−2 1 1 1 0 −2 0 4 0 0 −1 1 −2 −1 1 2 −1 0 −1 2−2 2 1 1 2 0 1 2 4 −3 −1 2 −2 0 0 −1 −2 −1 −1 1−1 2 0 0 1 −1 0 0 0 4 0 0 0 1 3 0 2 −3 0 0

1 1 0 0 0 −1 −1 −1 −1 2 4 −2 3 2 2 0 1 0 −1 1−1 −1 −2 0 −1 1 0 −1 −1 −1 −1 4 1 −3 1 −2 1 2 4 0−1 −1 1 1 1 −1 −2 1 1 0 0 −1 4 0 2 2 0 0 1 2−2 −1 −1 1 −1 −2 0 2 1 0 0 0 1 4 1 2 −1 −1 −1 1−1 2 2 1 2 0 −1 1 2 1 0 −1 1 −1 4 −2 −2 0 0 1−2 1 0 2 2 −2 −1 1 1 2 0 0 1 1 1 4 −1 −2 2 0−1 2 2 0 1 0 0 2 2 1 0 −1 1 0 2 0 4 1 −1 2

2 −2 1 0 −1 −1 −1 −1 −2 0 1 −1 1 0 −1 0 −1 4 0 01 1 2 −1 1 0 −1 −1 0 1 1 −1 1 −2 1 0 1 1 4 31 1 2 1 0 −2 0 1 0 0 1 −2 −1 0 0 0 0 1 0 4

A.11 Dimension 22

1: i[C4]1⊗A11

2 0 0 0 0 0 0 0 0 0 0 2 1 −1 1 1 1 1 1 −1 −1 −11 2 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 −1 −1 −1−1 0 2 0 0 0 0 0 0 0 0 −1 0 2 −1 −1 −1 −1 −1 1 1 1

1 0 −1 2 0 0 0 0 0 0 0 1 0 −1 2 1 1 1 1 0 −1 −11 0 −1 1 2 0 0 0 0 0 0 1 0 −1 1 2 1 1 1 −1 0 01 0 −1 1 1 2 0 0 0 0 0 1 0 −1 1 1 2 1 1 −1 −1 −11 0 −1 1 1 1 2 0 0 0 0 1 0 −1 1 1 1 2 1 −1 0 01 0 −1 1 1 1 1 2 0 0 0 1 0 −1 1 1 1 1 2 −1 0 0−1 −1 1 0 −1 −1 −1 −1 3 0 0 −1 −1 1 0 −1 −1 −1 −1 3 0 0−1 −1 1 −1 0 −1 0 0 0 3 0 −1 −1 1 −1 0 −1 0 0 0 3 2−1 −1 1 −1 0 −1 0 0 0 2 3 −1 −1 1 −1 0 −1 0 0 0 2 3

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 −1 0 2 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 −1 2 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 −1 1 2 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 −1 1 1 2 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 −1 1 1 1 2 0 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 −1 1 1 1 1 2 0 0 00 0 0 0 0 0 0 0 0 0 0 −1 −1 1 0 −1 −1 −1 −1 3 0 00 0 0 0 0 0 0 0 0 0 0 −1 −1 1 −1 0 −1 0 0 0 3 00 0 0 0 0 0 0 0 0 0 0 −1 −1 1 −1 0 −1 0 0 0 2 3

2: √−3[C6]1⊗A11

4 6 0 3 0 3 0 3 0 3 3 −3 0 3 0 3 −3 3 3 0 0 02 4 −3 3 −3 3 −3 3 −3 3 0 0 −3 3 3 3 0 3 3 3 3 32 1 4 6 0 3 0 3 0 3 0 0 0 3 0 3 −3 3 3 0 0 0−1 1 −2 4 −3 0 −3 0 −3 0 0 3 −3 0 0 0 0 0 0 0 0 3

2 1 2 −1 4 6 0 3 0 3 3 −3 0 3 0 3 −3 3 3 0 0 0−1 1 −1 2 −2 4 −3 0 −3 0 0 3 −3 0 0 0 0 0 0 0 0 3

2 1 2 −1 2 −1 4 6 0 3 3 0 0 3 0 3 −3 3 3 0 0 0−1 1 −1 2 −1 2 −2 4 −3 0 −3 3 −3 0 0 0 3 0 0 0 0 3

2 1 2 −1 2 −1 2 −1 4 6 3 0 0 3 0 3 −3 3 3 0 0 0−1 1 −1 2 −1 2 −1 2 −2 4 0 0 −3 0 0 0 0 0 0 0 0 3

1 2 0 0 −1 2 1 1 −1 2 6 3 −3 0 0 0 0 0 0 0 0 3−1 −2 −2 1 −1 −1 −2 1 0 0 −3 6 3 −3 0 −3 3 −3 −3 0 0 −3

2 1 2 −1 2 −1 2 −1 2 −1 −1 −1 4 6 0 3 −3 3 3 0 0 0−1 1 −1 2 −1 2 −1 2 −1 2 2 −1 −2 4 0 0 0 0 0 0 0 3−2 −1 0 0 0 0 0 0 0 0 −2 0 0 0 4 3 0 0 0 0 0 0−1 1 −1 2 −1 2 −1 2 −1 2 2 −1 −1 2 −1 4 0 0 0 0 0 3−1 −2 1 −2 1 −2 −1 −1 1 −2 −4 1 1 −2 2 −2 6 0 0 0 0 0−1 1 −1 2 −1 2 −1 2 −1 2 2 −1 −1 2 0 2 −2 4 0 −3 0 3−1 1 −1 2 −1 2 −1 2 −1 2 2 −1 −1 2 0 2 −2 2 4 0 −3 3−2 −1 0 0 0 0 0 0 0 0 −2 0 0 0 2 0 2 −1 0 4 0 0−2 −1 0 0 0 0 0 0 0 0 −2 0 0 0 2 0 2 0 −1 2 4 0−2 −1 −2 1 −2 1 −2 1 −2 1 1 1 −2 1 0 1 0 1 1 0 0 4

Page 143: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

A.11. DIMENSION 22 143

3: √−3[±U5(2) ◦ C3]11

4 0 3 3 2 2 0 3 0 3 4 0 2 0 0 0 −1 0 −6 2 −2 00 4 3 0 −1 2 0 0 0 0 1 0 −1 3 0 0 2 0 0 2 −2 3−1 1 4 −6 −3 0 −3 0 −3 3 −2 1 −2 3 2 4 4 3 3 0 −2 −1

1 2 2 4 0 3 0 3 −3 3 2 −1 2 3 1 2 2 3 0 3 −4 12 1 1 2 4 0 0 3 0 2 2 −2 2 0 −1 0 2 −1 −2 3 −4 −10 2 2 1 0 4 −3 0 0 2 −2 0 −2 3 3 2 1 2 1 0 −2 02 2 1 2 2 1 4 0 0 3 2 2 0 2 0 0 2 0 −3 1 −1 1−1 2 2 1 1 2 0 4 0 0 −2 −2 −1 2 1 2 1 0 3 1 −2 −1

0 2 −1 1 0 0 0 0 4 −3 2 −1 0 2 0 0 1 0 0 2 −2 2−1 −2 1 −1 0 0 −1 0 −1 4 −2 −1 −1 1 2 1 1 0 3 −1 −1 −3

0 1 2 2 0 2 0 2 0 0 4 −3 −1 4 3 4 0 4 2 2 −3 −12 −2 −1 −1 0 0 0 −2 −1 1 −1 4 1 −2 0 0 −1 0 −3 0 0 −10 1 2 2 2 0 2 1 0 1 1 −1 4 1 0 1 3 0 1 1 −3 0−2 −1 1 −1 −2 1 −2 0 0 1 0 0 −1 4 2 2 1 2 3 −3 1 0−2 −2 0 −1 −1 −1 −2 −1 0 2 −1 0 0 2 4 −2 1 0 3 −3 1 −1−2 −2 0 −2 −2 0 −2 0 −2 1 0 0 −1 2 2 4 −1 0 3 −3 3 −1−1 −2 0 −2 −2 −1 −2 −1 −1 1 0 1 −1 1 1 1 4 1 1 −1 3 −2−2 −2 1 −1 −1 0 −2 0 −2 2 0 0 0 2 2 2 1 4 3 −3 1 −1−2 0 −1 −2 −2 −1 −1 −1 0 −1 −2 −1 −1 1 1 1 1 1 4 −4 4 3−2 0 2 1 −1 0 −1 1 0 1 2 −2 1 1 1 1 1 1 0 4 0 −1

2 0 −2 0 0 0 1 −2 0 −1 −1 2 −1 −1 −1 −1 −1 −1 0 −2 4 22 1 1 1 1 2 1 1 0 −1 1 1 0 0 −1 −1 0 −1 −1 −1 0 4

4: √−23[±L2(23)]11

12 0 0 0 0 −23 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 06 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 −236 6 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 −23 0 04 6 6 12 0 0 0 0 0 0 0 0 0 0 0 0 0 23 −23 0 0 04 6 2 6 12 0 0 0 0 0 0 0 23 0 0 0 0 0 −23 23 0 03 6 2 2 6 12 0 0 0 0 0 0 23 0 0 0 0 0 −23 0 23 0−4 −4 −4 0 −4 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0−1 −2 2 2 −4 −6 4 12 0 0 0 0 −23 −23 0 0 −23 23 23 0 0 0

4 2 6 6 2 0 −4 −2 12 0 0 0 0 0 0 0 23 0 −23 0 0 0−6 −4 −6 0 −2 −2 6 0 −4 12 0 0 0 0 23 0 0 0 0 0 0 0

4 0 2 2 −2 0 4 0 4 −2 12 0 0 0 0 −23 23 0 0 0 0 04 6 6 4 0 4 2 0 2 −2 6 12 0 0 0 0 0 23 0 −23 0 −232 2 −2 −4 −1 3 2 −1 −6 2 0 0 12 0 0 0 0 0 23 0 0 04 −2 4 −2 −4 −2 0 3 0 −2 2 2 2 12 0 0 0 0 23 −23 0 0−2 −2 −4 2 4 0 2 −2 0 3 2 0 −2 −6 12 0 0 0 −23 23 0 0−4 −6 −4 0 −4 −6 6 6 −2 4 1 −2 −2 2 0 12 0 0 0 0 0 0

6 6 8 8 2 4 0 1 5 −2 5 8 0 4 0 −4 16 23 0 −23 0 0−2 −1 1 −3 −4 2 4 1 −2 −2 2 1 0 0 −2 0 −3 12 0 0 23 0−4 2 0 −1 1 1 −4 −1 −1 0 −4 0 −3 −3 1 −4 −2 0 12 0 0 −23−2 0 1 −2 1 0 −4 −2 2 −4 −2 −3 0 −3 −1 −4 −1 −2 0 12 0 23

4 −2 4 2 2 −1 −1 2 4 −4 2 0 −2 2 0 2 2 −1 −4 2 12 234 1 4 −2 −2 −2 −4 0 0 −2 −2 1 2 4 −4 −4 0 −2 −1 1 1 12

Page 144: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

144 APPENDIX A. INVARIANT FORMS

Page 145: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

Nomenclature

Let G < GLm(Q) be a matrix group and let N and H be any groups.

r.i.m.f. rational irreducible maximal finite

s.i.m.f. symplectic irreducible maximal finite

s.p.i.m.f. symplectic primitive irreducible maximal finite

Π(k) set of all primes dividing the integer k

Π(K, k) set of primes needed for the m-parameter argument cf. Definition 2.2.10

Fq finite field with q elements

QP1,...,Pr quaternion algebra with center Q ramified only at the places P1, . . . , Pr

Qα,P1,...,Pr quaternion algebra with center Q(α) ramified only at the places P1, . . . , Pr

ZK maximal order of an algebraic number field K

Cl(R) ideal class group of a Dedekind ring R

ζn primitive n-th root of unity

θn ζn + ζ−1n

Im m×m identity matrix

F(G) set of G-invariant forms cf. Definition 2.1.1

Fsym(G) subset of symmetric G-invariant forms in F(G)

Fsym(G) subset of skewsymmetric G-invariant forms in F(G)

F>0(G) subset of positive definite forms in Fsym(G)

G enveloping algebra of G cf. Definition 2.1.1

End(G) endomorphism ring or commuting algebra CQm×m(G) of G cf. Defini-tion 2.1.1

Z(Λ) set of Λ-invariant lattices in Q1×m for some Z-order Λ ⊂ Qm×m cf. Defi-nition 2.1.4

145

Page 146: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

146 APPENDIX A. INVARIANT FORMS

Z(G) set of G-invariant lattices in Q1×m cf. Definition 2.1.4

det(L, F ) determinant of the lattice L in the Euclidean space (L⊗R, F )

AutK(L,F) group of K-linear automorphisms of the lattice L wrt. the forms in F cf.Definition 2.1.4

Bo(G) generalized Bravais group of G cf. Definition 2.1.22

±G the group 〈G,−Im〉

Op(H) largest normal p-subgroup of H

F (H) Fitting subgroup of H, i.e. the largest normal nilpotent subgroup of H

E(H) layer of H, i.e. the central product of all components of H

F ∗(H) generalized Fitting subgroup of H (central product of F (H) and E(H))

An, F4, Ek (automorphism groups of) root lattices

Cn cyclic group of order n

Sn, Altn symmetric and alternating groups on n letters

D2n dihedral group of order 2n

QD2n quasidihedral group of order 2n

Q2n (generalized) quaternion group of order 2n

21+2n+ central product of n copies of D8

21+2n− central product of Q8 and n− 1 copies of D8

p1+2n+ extraspecial p-group of order p1+2n and exponent p (p odd prime)

p1+2n− extraspecial p-group of order p1+2n and exponent p2 (p odd prime)

G1⊗G2 tensor product of the two matrix groups G1 and G2. See Section 2.4 foran explanation of the symbols G1⊗ G2, G1⊗

QG2 and G1 ◦G2

G1

2(p)

⊗G2 extension of G1⊗G2 by C2. See Section 2.4 for an explanation of the

symbols G1

2(p)

⊗G2, G1

2(p)

⊗QG2, G1

2(p)

�G2, G1

2(p)

�QG2, G1

2(p)

@×⊃ G2, G1

2(p)

@×⊃QG2, G1

2(p)◦G2,

G1

2(p)�G2 and G1

2(p)@⊃ G2

N :H semidirect product, i.e. a split extension of N by H

N ·H nonsplit extension of N by H

N.H any extension of N by H

H o Sk wreath product of H and Sk

Page 147: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

Bibliography

[Art57] Emil Artin. Geometric Algebra, volume 3 of Interscience tracts in pure andapplied mathematics. Interscience Publishers, Inc., 1957.

[Asc00] Michael Aschbacher. Finite Group Theory. Cambridge University Press,2000.

[BBNZ77] Harold Brown, Rolf Bulow, Joachim Neubuser, and Hans Zassenhaus. Crys-tallographic Groups of Four-Dimensional Space. Wiley, 1977.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebrasystem. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997.

[Bli17] Hans F. Blichfeldt. Finite Collineation Groups. The University of ChicagoPress, 1917.

[CCN+85] John H. Conway, Robert T. Curtis, Simon P. Norton, Richard A. Parker,and Robert A. Wilson. Atlas of finite groups. Clarendon Press, Oxford,1985.

[Dor71] Larry L. Dornhoff. Group Representation Theory. Pure and Applied Math-ematics: A Series of Monographs and Textbooks. Marcel Dekker Inc., 1971.

[Fei76] Walter Feit. On finite linear groups in dimension at most 10. In Proceedingsof the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975),pages 397–407, 1976.

[Fei82] Walter Feit. The representation theory of finite groups. North-HollandPublishing Co., 1982.

[GTT07] Meinolf Geck, Donna Testerman, and Jacques Thevenaz, editors. GroupRepresentation Theory, chapter 6: Bounds of the Orders of Finite Sub-groups of G(k). EPFL Press, 2007.

[HM01] Gerhard Hiss and Gunter Malle. Low-dimensional representations of quasi-simple groups. LMS J. Comput. Math., 4:22–63, 2001. Corrigenda, sameJ., 5:95–126, 2002.

[Hup67] Bertram Huppert. Endliche Gruppen I. Springer, 1967.

[Isa94] I. Martin Isaacs. Character Theory of Finite Groups. Dover Publications,1994.

147

Page 148: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

148 BIBLIOGRAPHY

[Kne02] Martin Kneser. Quadratische Formen. Springer, 2002.

[KV] Markus Kirschmer and John Voight. Algorithmic enumeration of idealclasses for quaternion orders. submitted, arXiv:0808.3833 [math.NT].

[Lor71] Falko Lorenz. Uber die Berechnung der Schurschen Indizes von Charakterenendlicher Gruppen. J. Number Theory, 3:60–103, 1971.

[Min87] Hermann Minkowski. Zur Theorie der Positiven Quadratischen Formen.Journal f. d. reine und angewande Mathematik, 101:196–202, 1887.

[Neb95] Gabriele Nebe. Endliche rationale Matrixgruppen vom Grad 24. PhD thesis,RWTH Aachen University, 1995.

[Neb96] Gabriele Nebe. Finite subgroups of GLn(Q) for 25 ≤ n ≤ 31. Communica-tions in Algebra, 24(7):2341–2397, 1996.

[Neb98a] Gabriele Nebe. Finite quaternionic matrix groups. Representation Theory,2:106–223, 1998.

[Neb98b] Gabriele Nebe. The structure of maximal finite primitive matrix groups.In Bernd H. Matzat, Gerd-Martin Greuel, and Gerhard Hiss, editors, Al-gorithmic Algebra and Number Theory, pages 417–422. Springer, Berlin,1998.

[Nic06] Simon J. Nickerson. An Atlas of Characteristic Zero Representations. PhDthesis, University of Birmingham, 2006.

[NP95] Gabriele Nebe and Wilhelm Plesken. Finite rational matrix groups. InMemoirs of the American Mathematical Society, volume 116. AMS, 1995.

[NRS01] Gabriele Nebe, Eric M. Rains, and Neil J. A. Sloane. The invariants of theclifford groups. Designs, Codes and Cryptography, 24(1):99–122, 2001.

[Par84] Richard A. Parker. The computer calculation of modular characters (themeat-axe). In Computational group theory (Durham, 1982), pages 267–274.Academic Press, 1984.

[PH84] Wilhelm Plesken and Wilhelm Hanrath. The lattices of six-dimensionaleuclidean space. Mathematics of Computation, 43(168):573–587, 1984.

[Ple78] Wilhelm Plesken. On reducible and decomposable representations of orders.Journal fur die reine und angewandte Mathematik, 297:188–210, 1978.

[Ple91] Wilhelm Plesken. Some applications of representation theory. Progress inMathematics, 95:477–496, 1991.

[PS97] Wilhelm Plesken and Bernd Souvignier. Computing isometries of lattices.Journal of Symbolic Computation, 24:327–334, 1997.

[Rei03] Irving Reiner. Maximal Orders. Oxford Science Publications, 2003.

Page 149: Finite symplectic matrix groups - RWTH Aachen UniversityMarkus.Kirschmer/symplectic/thesis.pdf · Finite symplectic matrix groups Von der Fakult at fur Mathematik, Informatik und

BIBLIOGRAPHY 149

[Sch05] Isaac Schur. Uber eine Klasse von endlichen Gruppen linearer Substitu-tionen. Sitz. Preuss. Akad. Wiss., Berlin, pages 77–91, 1905. (Ges. Abh.,Band I, nr. 6).

[Ste89] Leonid Stern. On the norm groups of global fields. Journal of NumberTheory, 32(2):203–219, 1989.

[Wal62] Gordon E. Wall. On the Clifford Collineation, Transform and SimilarityGroups (IV). Nagoya Mathematical Journal, 21:199–122, 1962.

[Was96] Lawrence C. Washington. Introduction to Cyclotomic Fields. GraduateTexts in Mathematics. Springer, 2nd edition, 1996.

[Win72] David L. Winter. The automorphism group of an extraspecial p-group.Rocky Mountain Journal of Mathematics, 2(2):159–168, 1972.