first stage in the construction of a map of ... stage in the construction of a map of geothermal...

1
FIRST STAGE IN THE CONSTRUCTION OF A MAP OF GEOTHERMAL PROVINCES FOR MEXICO 1 1 1 1 1 2 2 Ruth Esther Villanueva-Estrada , Juan Ramón Armenta Ruiz , Roberto Gerardo Rocha-Miller , Augusto Antonio Rodríguez-Díaz , Sandra Beatriz Briceño Prieto , Carlos Pita de la Paz , Luis Alfredo Sánchez Galindo , 3 4, 1 1 María Teresa de Jesús Rodríguez-Salazar , Isabel Pérez Martínez Patricia Jacqueline Ramos Chaparro , Patricia Cruz Martín . 1 2 Recursos Naturales, Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México city, 04510, Mexico, Delegacion Tlalpan, Alheli Mz. 7 3 Lt 13A Col. Ejidos San Pedro Martir, Delegacion Tlalpan, Mexico, 14640, Mexico, Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, References Cataldi, R., Mainieri. A., 1995. Geothermal Ranking and Resource Assessment of Costa Rica, En: Proceedings of the World Geothermal Congress, 1995, Florence, Italy: International Geothermal Association, pp. 497-502. Espinoza-Ojeda, O.M., Prol-Ledesma, R.M., Iglesias, E.R., Figueroa-Soto, A., 2017. Update and review of heat flow measurements in México. Energy, 121: 466-479. Flores-Armenta, M., 2012. Geothermal activity and development in Mexico - keeping the production going. Short Course on Geothermal Development and Geothermal Wells. UNU-GTP and LaGeo, Santa Tecla, El Salvador. 12 p. Guía de prácticas climatológicas OMN-N| 100, 2011. Organización Meteorológica Mundial. 128 pp. Pentecost, A., 2005. Hot springs, thermal springs and warm springs, What´s the difference? Geology today, 21(6): 222-224. Prol, R.M., Juárez, G., 1985. Silica geotemperature mapping and termal regime in the Mexican Volcanic Belt. Geof. Int., Vol. 24-4: 609-621. Prol-Ledesma, 1988. El Calor interno de la Tierra. Fondo de Cultura Económica. Prol-Ledesma, R.M., Juárez, G., 1986. Geothermal map of Mexico. Journal of Volcanology and Geothermal Research, 28: 351-362. Sedlock, R.L., Ortega-Gutiérrez, F., Speed, R.C., 1993. Tectonoestratigraphic Terranes and Tectonic Evolution of Mexico. Special Paper 278. The Geological Society of America. 153 p. Smith, D.L., Nuckels III, E., Jones, R.L., Cook, G.A., 1979. Distribution of Heat Flow and Radioactive Heat Generation in Northern Mexico. Journal of Geophysical Research, 84 (B5): 2371-2379. Swanberg, C.A., Morgan, P., 1978/79. The linear relation between temperatures based on the silica content of groundwater and regional heat flow: a new heat flow map of the United States. Pageoph, Vol 117: 227-241. Swanberg, C.A., Morgan, P., 1980. The silica heat flow interpretation technique: assumptions and applications. Journal of Geophysical Research, Vol 85, No. B12: 7206-7214. Truesdell, A.M., 1976. Summary of section III- geochemical techniques in exploration. En: Proceedings, Second United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco, Calif., 1975. U.S. Government Printing Office, Washington, D.C., p. iii-xiii. Waring, G.A., 1965. Thermal springs of the United States and other countries of the world- A summary. Geological Survey Professional Paper 492. United States Government Printing Office, Washington. P. 383 Ziagos, J.P., Blacwell, D.D., Mooser, F., 1985. Heat Flow in Southern Mexico and the Thermal Effects of Subduction. Journal of Geophysical Research, 90 (B7): 5410-5420. Ÿ Pentecost (2005) points out that an acceptable definition for hot spring is one that has a discharge temperature> 36.7 ° C, which is the average temperature of the human body. Ÿ Ÿ Thermal spring has also been defined for those waters whose temperature is "appreciably higher" than the average local air temperature (Pentecost, 2005). Ÿ Ÿ Prol-Ledesma (1996), defines a thermal spring as that which discharges water at a temperature at least 5 ° C higher than the average annual temperature of the place, a widely accepted definition. Ÿ Ÿ Waring (1965), conducts a study on hot springs for the United States and other countries of the world, based on available literature. This author defines a thermal manifestation, one that is at least 9.4 ° C above the annual average annual air temperature. Introduction exico has geothermic areas of high temperature that actually are in exploitation. M However, there are also sites of low and medium temperature, which is necessary to explore (Flores-Armenta, 2012). lt is essential to have a database of the geothermal resources of the national territory, whose results can be made available to the government authorities and use them to national energy strategies. This project will compile and be complemented with new data the existing information of geochemistry of fluids, geology, and distribution of aquifers. The construction of the map of geothermal provinces is part of the P02 project of the Mexican Center for lnnovation in Geothermal Energy (CeMIE-Geo). This work will present the methodology that is being used for the construction of the map of geothermal provinces from the geochemical information whose objective is to delineate areas with greater probabilities. A classification of the geothermal provinces is an important tool in the characterization, evaluation and development of energy resources. A geothermal province is defined as a portion of the territory which by its geological and thermal conditions acquires a geothermal nature at regional level and which can be distinguished from the rest of the territory (Cataldi & Manieri, 1995). Search for bibliographic informaon Books, theses, scienfic arcles, abstracts in congress, websites (spas) Technical reports: 1Collecon of the Library of Groundwater Management of the Naonal Water Commission(CONAGUA). 2. Database - Ing. Rubén Chávez Guillén (Management of Groundwater, CONAGUA). 3. Water Quality Census for the year 2015, Dr. Eric D. Guérrez López (Assistant Manager of Water Quality Studies and Environmental Impact). 4. Technical reports of the collecon of the State Water Commission (CEA) of Guanajuato, Arch. María Concepción Eugenia Guérrez García (General Director of the State Water Commission of the State of Guanajuato, through Mr. José Luis Cruz). 5. Hydrological charts of the Naonal Instute of Stascs and Geography (INEGI). 6. Public Informaon of Mexico State (IPOMEX) 7. Jalisco State Water Commission Technical review 1. Evaluaon of ion balance. 2. Unificaon of categories and labels. 3. Verificaon of geographical locaon of hydrothermal manifestaons. 4. Review of units and coherence of geochemical informaon. 5. Review of the "Type" category to verify and disnguish between well, geothermal well or spring. Search for bibliographic informaon Integraon of underground discharge points in the database Definion of thermalism Construcon of the map of hydrothermal manifestaons and cold discharges Integraon of layers of evidence or themac maps Implementaon of a model to define areas of geothermal interest Construcon of the map of areas of geothermal interest Integraon of geothermal zones with similar characteriscs Geothermal provinces Construcon of the Map of Geothermal Provinces for the Mexican Republic Updang this database Methodology Results Thesis 5% Scienfic paper 2% Hydrogeological chart 44% Census 2015 10% Technical report 38% Book 1% Congress abstract 0.05% 36% Acceptable B.I. 63% Invalid Ionic Balance (B.I.) 1% No chemical informaon, but with temperature and geographic locaon data 36% hermalism definition T ntegration of underground discharge points in the database I eview and evaluation of data R verage Annual temperature A Much of the information that emitted instances consulted lacks the collection date of the sample, and does not report the ambient temperature; For this reason, it is necessary to carry out the analysis of the historical record of temperature of the meteorological stations to propose a as a local ambient temperature point of reference for the classification of each of the points of discharge of groundwater . Layer Interpretaon Thermal manifestaons Flow path of fluids Faults and Fractures Zones of permeability Alteraon zones Permeable areas, fluid flows of a hydrothermal system Aeromagnec data Depth to the Curie isotherm and geothermal gradient Litology and ages of the rock Areas of young volcanism Silica Geothermometry Reservoir temperature Heat flow Thermal anomaly ayers of evidence will be used to locate sites of geothermal interest. L (km) 20.4 13.1 12.2 10.1 9.2 8.5 7.4 11.1 8.0 8.9 9.6 10.5 11.7 12.8 13.4 13.9 14.5 17.3 Symbology Goethermal field Volcanic structure Concession areas (SENER) CPD 70 64 60 58 (°C/km) 55 53 50 47 44 42 41 39 37 28 H 4 SiO 4 Û SiO 2 + H 2 O Silicic acid Sílica Truesdell, 1976 Requirements: Existence of chemical equilibrium of the water-rock reacon No precipitaon of silica No mixing with groundwater (last stage of re-equilibrium) Slow kinec reacon Dependence of the temperature with the solubility of SiO 2 Where: [SiO 2 ] (mg/L) The correlation between the heat flow and the geotemperature of SiO2 was proposed by Swanberg y Morgan (1978): T SiO2 = mq + b 78 heat flow values were reported for Mexico by Smith et al. (1979), Ziagos et al. (1985), and Espinoza-Ojeda et al. (2017). The values with category 1 and 2 and A and B of heat flow were taking account by Smith et al. (1979), and Ziagos et al. (1985) respectively. Acknowledgments Dr. Arturo Iglesias Mendoza Director, IGeof, UNAM Dr. Carles Canet Miquel Secretario Académico, IGeof, UNAM Lic. Vanessa Ayala Perea Secretaria Administrativa, IGeof, UNAM Lic. Viviana Torres Valle Secretaria Administrativa, IGeof, UNAM Dr. José Manuel Romo Jones Responsable Técnico del CeMIE-Geo Dr. Jorge Zavala Hidalgo, Investigador del Centro de Ciencias de la Atmósfera Ing. Agustín Fernández Eguiarte, Unidad de Informática para las Ciencias Atmosféricas y Ambientales del CCA (UNIATMOS). Ing. Rubén Chávez Guillén Gerente de Aguas Subterráneas, CONAGUA Ing. Domingo A. Silva Gamboa Subgerente de Sistemas de Información, CONAGUA Ing. Gabino Gaspar Monterrosa Reyes Subgerente de Información Geográfica del Agua, CONAGUA Biól. Luis Aceves Martínez, Director de Operación de PTAR, Comisión Estatal del Agua de Jalisco Ing. Enrique Mejía Maravilla, Gerente de Calidad del Agua Dr. Eric D. Gutiérrez López, Subgerente de Estudios de Calidad del Agua e Impacto Ambiental Arq. María Concepción Eugenia Gutiérrez García, Directora General de la Comisión Estatal del Agua del Estado de Guanajuato. Ing. José Luis Cruz José, Director de Estudios y Monitoreo de la Comisión Estatal del Agua del Estado de Guanajuato. Ing. Verónica Fuentes Hernández, Jefe del Departamento de Calidad del Agua de la Dirección de Estudios y Monitoreo de la Comisión Estatal del Agua del Estado de Guanajuato. M.C. Claudia Nava, Jefe de Proyecto de la Red Nacional de Monitoreo Lic. Citlalí Cendejas Reyes, Jefa de la Unidad de Información, Planeación, Programación y Evaluación. Comisión del Agua del Estado de México. onclusions C The progress of the construction of the map of geothermal provinces is presented. We are currently working with complete geodates to use integration models based on existing solutions and data (Data Driven): Weighted Overlap and Boolean Overlay. With these models the analysis of the layers of GeoInformation will be carried out to obtain zones of geothermal interest from the combination and fusion of the geodates after the initial processing and analysis of the same, and finally overlapping. Distances of influence of the different geodates in the Boolean Algebra Model (BAM) Weight Factors in the Overlap Analysis Model (OAM) Locate zones of grouping of thermal manifestaons. Idenfy permeable areas defined by faults and fractures. Delimit areas with lithology that are younger and equal to 5 million years. Idenfy magnec anomalies Idenfy zones of hydrothermal alteraons. Reservoir temperature Heat flow Average annual temperatura (TMA, °C) = The sum of the maximum and minimum monthly temperatures for each climatological season divided by 12. Temperature of the warmest month (TMMC, °C) = Is the highest value of the 12 climatological monthly maximum temperature of each season. Average annual maximum temperatura (TMMA, °C) = Is the sum of the maximum monthly temperatures for each season divided by 12. These parameters were obtained by meteorological station, from the climatological normals of 1951 to 2010 published by the National Meteorological Service. It is important to mention that the Guide of climatological practices (2011), the normal ones are calculated for periods of 30 years, accepting a minimum period of 10 years. The stations that have data in a minimum period of 10 years assure a minimum climate representativeness. eference temperature R 95 % cold discharges (11040) 5 % thermal discharge (534) 90 % cold discharges (10361) 10 % thermal discharge (1213) 39 % cold discharges (4480) 39 % thermal discharge (7094) mplementation of a model to define Iareas of geothermal interest Area of Geothermal Interest

Upload: trinhnhi

Post on 28-May-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

FIRST STAGE IN THE CONSTRUCTION OF A MAP OF GEOTHERMAL PROVINCES FOR MEXICO1 1 1 1 1 2 2Ruth Esther Villanueva-Estrada , Juan Ramón Armenta Ruiz , Roberto Gerardo Rocha-Miller , Augusto Antonio Rodríguez-Díaz , Sandra Beatriz Briceño Prieto , Carlos Pita de la Paz , Luis Alfredo Sánchez Galindo ,

3 4, 1 1María Teresa de Jesús Rodríguez-Salazar , Isabel Pérez Martínez Patricia Jacqueline Ramos Chaparro , Patricia Cruz Martín .1 2Recursos Naturales, Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México, México city, 04510, Mexico, Delegacion Tlalpan, Alheli Mz. 7

3Lt 13A Col. Ejidos San Pedro Martir, Delegacion Tlalpan, Mexico, 14640, Mexico, Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán,

References

Cataldi, R., Mainieri. A., 1995. Geothermal Ranking and Resource Assessment of Costa Rica, En: Proceedings of the World Geothermal Congress, 1995, Florence, Italy: International Geothermal Association, pp. 497-502.Espinoza-Ojeda, O.M., Prol-Ledesma, R.M., Iglesias, E.R., Figueroa-Soto, A., 2017. Update and review of heat flow measurements in México. Energy, 121: 466-479.Flores-Armenta, M., 2012. Geothermal activity and development in Mexico - keeping the production going. Short Course on Geothermal Development and Geothermal Wells. UNU-GTP and LaGeo, Santa Tecla, El Salvador. 12 p.Guía de prácticas climatológicas OMN-N| 100, 2011. Organización Meteorológica Mundial. 128 pp.Pentecost, A., 2005. Hot springs, thermal springs and warm springs, What´s the difference? Geology today, 21(6): 222-224.Prol, R.M., Juárez, G., 1985. Silica geotemperature mapping and termal regime in the Mexican Volcanic Belt. Geof. Int., Vol. 24-4: 609-621. Prol-Ledesma, 1988. El Calor interno de la Tierra. Fondo de Cultura Económica.Prol-Ledesma, R.M., Juárez, G., 1986. Geothermal map of Mexico. Journal of Volcanology and Geothermal Research, 28: 351-362.Sedlock, R.L., Ortega-Gutiérrez, F., Speed, R.C., 1993. Tectonoestratigraphic Terranes and Tectonic Evolution of Mexico. Special Paper 278. The Geological Society of America. 153 p.Smith, D.L., Nuckels III, E., Jones, R.L., Cook, G.A., 1979. Distribution of Heat Flow and Radioactive Heat Generation in Northern Mexico. Journal of Geophysical Research, 84 (B5): 2371-2379.Swanberg, C.A., Morgan, P., 1978/79. The linear relation between temperatures based on the silica content of groundwater and regional heat flow: a new heat flow map of the United States. Pageoph, Vol 117: 227-241.Swanberg, C.A., Morgan, P., 1980. The silica heat flow interpretation technique: assumptions and applications. Journal of Geophysical Research, Vol 85, No. B12: 7206-7214.Truesdell, A.M., 1976. Summary of section III- geochemical techniques in exploration. En: Proceedings, Second United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco, Calif., 1975. U.S. Government Printing Office, Washington, D.C., p. iii-xiii.Waring, G.A., 1965. Thermal springs of the United States and other countries of the world- A summary. Geological Survey Professional Paper 492. United States Government Printing Office, Washington. P. 383Ziagos, J.P., Blacwell, D.D., Mooser, F., 1985. Heat Flow in Southern Mexico and the Thermal Effects of Subduction. Journal of Geophysical Research, 90 (B7): 5410-5420.

Ÿ Pentecost (2005) points out that an acceptable definition for hot spring is one that has a discharge temperature> 36.7 ° C, which is the average temperature of the human body.

Ÿ

Ÿ Thermal spring has also been defined for those waters whose temperature is "appreciably higher" than the average local air temperature (Pentecost, 2005).

Ÿ

Ÿ Prol-Ledesma (1996), defines a thermal spring as that which discharges water at a temperature at least 5 ° C higher than the average annual temperature of the place, a widely accepted definition.

Ÿ

Ÿ Waring (1965), conducts a study on hot springs for the United States and other countries of the world, based on available literature. This author defines a thermal manifestation, one that is at least 9.4 ° C above the annual average annual air temperature.

Introductionexico has geothermic areas of high temperature that actually are in exploitation. MHowever, there are also sites of low and medium temperature, which is necessary to explore (Flores-Armenta, 2012). lt is essential to have a database of the geothermal

resources of the national territory, whose results can be made available to the government authorities and use them to national energy strategies. This project will compile and be complemented with new data the existing information of geochemistry of fluids, geology, and distribution of aquifers. The construction of the map of geothermal provinces is part of the P02 project of the Mexican Center for lnnovation in Geothermal Energy (CeMIE-Geo). This work will present the methodology that is being used for the construction of the map of geothermal provinces from the geochemical information whose objective is to delineate areas with greater probabilities.

A classification of the geothermal provinces is an important tool in the characterization, evaluation and development of energy resources. A geothermal province is defined as a portion of the territory which by its geological and thermal conditions acquires a geothermal nature at regional level and which can be distinguished from the rest of the territory (Cataldi & Manieri, 1995).

Sear

chfo

rb

iblio

grap

hic

info

rma�

on Books, theses, scien�fic ar�cles, abstracts in congress,

websites (spas)

Technical reports:

1Collec�on of the Library of Groundwater Management of the Na�onal Water Commission(CONAGUA).

2. Database - Ing. Rubén Chávez Guillén (Management of Groundwater, CONAGUA).

3. Water Quality Census for the year 2015, Dr. Eric D. Gu�érrez López (Assistant Manager of Water Quality Studies and Environmental Impact).

4. Technical reports of the collec�on of the State Water Commission (CEA) of Guanajuato, Arch. MaríaConcepción Eugenia Gu�érrez García (General Director of the State Water Commission of the State of Guanajuato, through Mr. José Luis Cruz).

5. Hydrological charts of the Na�onal Ins�tute of Sta�s�cs and Geography (INEGI).

6. Public Informa�on of Mexico State (IPOMEX)

7. Jalisco State Water Commission

Tech

nic

alre

view

1. Evalua�on of ion balance.

2. Unifica�on of categories and labels.

3. Verifica�on of geographical loca�on of hydrothermal manifesta�ons.

4. Review of units and coherence of geochemical informa�on.

5. Review of the "Type" category to verify and dis�nguish between well, geothermal well or spring.

Search forbibliographicinforma�on

Integra�on of underground

discharge points in the database

Defini�on of thermalism

Construc�on of the map of

hydrothermal manifesta�ons and

cold discharges

Integra�on of layers of evidence or thema�c maps

Implementa�on of a model to define

areas of geothermal interest

Construc�on of the map of areas of

geothermal interest

Integra�on of geothermal zones

with similar characteris�cs

Geothermalprovinces

Construc�on of the Map of Geothermal

Provinces for the Mexican Republic

Upda�ng thisdatabase

Methodology

Results

Thesis5%

Scien�fic paper2%

Hydrogeological chart44%

Census 201510%

Technical report38%

Book1%

Congress abstract 0.05%

36%

Acceptable B.I.63%

Invalid Ionic Balance (B.I.)

1%No chemical

informa�on, but with temperature

and geographic loca�on data

36%

hermalism definitionT

ntegration of underground discharge points in the databaseI

eview and evaluation of dataR

verage Annual temperatureA

Much of the information that emitted instances

consulted lacks the collection date of the sample, and

does not report the ambient temperature; For this

reason, it is necessary to carry out the analysis of the

historical record of temperature of the meteorological

stations to propose a as a local ambient temperature

point of reference for the classification of each of the

points of discharge of groundwater.

Layer Interpreta�on

Thermal

manifesta�onsFlow path of fluids

Faults and

Fractures

Zones of permeability

Altera�on zonesPermeable areas, fluid flows of a

hydrothermal system

Aeromagne�c dataDepth to the Curie isotherm and

geothermal gradient

Litology and ages of

the rock

Areas of young volcanism

Silica

Geothermometry

Reservoir temperature

Heat flow Thermal anomaly

ayers of evidence will be used to locate sites of geothermal interest.L

(km)

20.4

13.1

12.2

10.1

9.2

8.5

7.4

11.1

8.0

8.9

9.6

10.5

11.7

12.8

13.4

13.9

14.5

17.3

Symbology

Goethermalfield

Volcanicstructure

Concessionareas

(SENER)

CPD

70

64

60

58

(°C/km)

55

53

50

47

44

42

41

39

37

28

H4SiO4 Û SiO2 + H2OSilicic acid Sílica

Truesdell, 1976

Requirements:• Existence of chemical equilibrium of the water-rock reac�on• No precipita�on of silica• No mixing with groundwater (last stage of re-equilibrium)• Slow kine�c reac�on

Dependence of the temperature with the solubility of SiO2

Where: [SiO2] (mg/L)

The correlation between the heat flow and the geotemperature of SiO2 was proposed by Swanberg y Morgan (1978):

T SiO2 = mq + b

78 heat flow values were reported for Mexico by Smith et al. (1979), Ziagos et al. (1985), and Espinoza-Ojeda et al. (2017). The values with category 1 and 2 and A and B of heat flow were taking account by Smith et al. (1979), and Ziagos et al. (1985) respectively.

Acknowledgments

Dr. Arturo Iglesias Mendoza Director, IGeof, UNAMDr. Carles Canet Miquel Secretario Académico, IGeof, UNAMLic. Vanessa Ayala Perea Secretaria Administrativa, IGeof, UNAMLic. Viviana Torres Valle Secretaria Administrativa, IGeof, UNAMDr. José Manuel Romo Jones Responsable Técnico del CeMIE-GeoDr. Jorge Zavala Hidalgo, Investigador del Centro de Ciencias de la AtmósferaIng. Agustín Fernández Eguiarte, Unidad de Informática para las Ciencias Atmosféricas y Ambientales del CCA (UNIATMOS).Ing. Rubén Chávez Guillén Gerente de Aguas Subterráneas, CONAGUAIng. Domingo A. Silva Gamboa Subgerente de Sistemas de Información, CONAGUAIng. Gabino Gaspar Monterrosa Reyes Subgerente de Información Geográfica del Agua, CONAGUABiól. Luis Aceves Martínez, Director de Operación de PTAR, Comisión Estatal del Agua de JaliscoIng. Enrique Mejía Maravilla, Gerente de Calidad del AguaDr. Eric D. Gutiérrez López, Subgerente de Estudios de Calidad del Agua e Impacto AmbientalArq. María Concepción Eugenia Gutiérrez García, Directora General de la Comisión Estatal del Agua del Estado de Guanajuato.Ing. José Luis Cruz José, Director de Estudios y Monitoreo de la Comisión Estatal del Agua del Estado de Guanajuato.Ing. Verónica Fuentes Hernández, Jefe del Departamento de Calidad del Agua de la Dirección de Estudios y Monitoreo de la Comisión Estatal del Agua del Estado de Guanajuato.M.C. Claudia Nava, Jefe de Proyecto de la Red Nacional de MonitoreoLic. Citlalí Cendejas Reyes, Jefa de la Unidad de Información, Planeación, Programación y Evaluación. Comisión del Agua del Estado de México.

onclusions

CThe progress of the construction of the map of geothermal provinces is presented.We are currently working with complete geodates to use integration models based on existing solutions and data (Data Driven): Weighted O verlap and Boolean Overlay. With these models the analysis of the layers of GeoInformation will be carried out to obtain zones of geothermal interest from the combination and fusion of the geodates after the initial processing and analysis of the same, and finally overlapping.

Distances of influence of the different geodatesin the Boolean Algebra

Model (BAM)

Weight Factors in the Overlap Analysis Model

(OAM)

• Locate zones of grouping of thermal manifesta�ons.

• Iden�fy permeable areas defined by faults and fractures.

• Delimit areas with lithology that are younger and equal to 5 million years.

• Iden�fy magne�c anomalies

• Iden�fy zones of hydrothermal altera�ons.

• Reservoir temperature

• Heat flow

• Average annual temperatura (TMA, °C) = The sum of the maximum and minimum monthly temperatures for each climatological season divided by 12.

• Temperature of the warmest month (TMMC, °C) = Is the highest value of the 12 climatological monthly maximum temperature of each season.

• Average annual maximum temperatura (TMMA, °C) = Is the sum of the maximum monthly temperatures for each season divided by 12. These parameters were obtained by meteorological station, from the climatological normals of 1951 to 2010 published by the National Meteorological Service.

It is important to mention that the Guide of climatological practices (2011), the normal ones are calculated for periods of 30 years, accepting a minimum period of 10 years. The stations that have data in a minimum period of 10 years assure a minimum climate representativeness.

eference temperatureR

95 % cold discharges (11040)5 % thermal discharge (534)

90 % cold discharges (10361)10 % thermal discharge (1213)

39 % cold discharges (4480)39 % thermal discharge (7094)

mplementation of a model to define Iareas of geothermal interest

Area of Geothermal Interest