flexible krylov methods for p regularization€¦ · introduction methods based on fgk sparsity...

79
Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions Flexible Krylov Methods for p Regularization Silvia Gazzola Joint work with Julianne Chung and Malena Sabat´ e Landman Department of Mathematical Sciences Modern Challenges in Imaging Tufts University, August 6, 2019 S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 1 / 28

Upload: others

Post on 19-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Flexible Krylov Methods for `p Regularization

    Silvia GazzolaJoint work with Julianne Chung and Malena Sabaté Landman

    Department of Mathematical Sciences

    Modern Challenges in ImagingTufts University, August 6, 2019

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 1 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    What is this talk about?

    Regularization of linear inverse problemsAxtrue + � = b ,

    whereb ∈ RM observations or measurementsxtrue ∈ RN desired parametersA ∈ RM×N ill-conditioned matrix models forward process� ∈ RM additive Gaussian noise

    image deblurring and denoising

    computed tomography

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 2 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    What is this talk about?Regularization of linear inverse problems

    Axtrue + � = b ,where

    b ∈ RM observations or measurementsxtrue ∈ RN desired parametersA ∈ RM×N ill-conditioned matrix models forward process� ∈ RM additive Gaussian noise

    image deblurring and denoising

    computed tomography

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 2 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    What is this talk about?Regularization of linear inverse problems

    Axtrue + � = b ,where

    b ∈ RM observations or measurementsxtrue ∈ RN desired parametersA ∈ RM×N ill-conditioned matrix models forward process� ∈ RM additive Gaussian noise

    image deblurring and denoising

    computed tomography

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 2 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Outline

    1 Introduction`p variational regularizationIteratively Re-weighted Norm (IRN) methods

    2 Methods based on the Flexible Golub-Kahan (FGK) algorithmFlexible Golub-Kahan (FGK) AlgortihmFLSQR and FLSMRHybrid FLSQR and Hybrid FLSMR

    3 Sparsity under transformInvertible transforms (wavelets)Non-Invertible transforms (TV)

    4 Numerical experiments

    5 Conclusions

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 3 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Applying variational regularization...

    xreg = arg minx∈RN

    ‖Ax− b‖22 + λR(x) , λ > 0

    R(x) = ‖Lx‖22Krylov methods are popular in this setting

    xk ∈ Kk (C, d) = span{d,Cd, . . . ,Ck−1d}rk = b− Axk ⊥ Kk (C′, d′)

    AZk = Wk+1Gk

    xk = Zkyk , yk = arg miny∈Rk‖gk − Gky‖22+λk‖Lky‖22

    Fast semi-convergence

    Iteration 150

    Iteration 0

    20 40 60 80 100 120 1400.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    C G LSHyB R

    Iteration

    Rela

    tive

    Erro

    r

    Hybrid Method Stabilizes the Error

    Hanke (1995); Frommer and Maas (1999);O’Leary and Simmons (1981); Calvetti, Morigi, Reichel, Sgallari (2000);Kilmer, Hansen, Espanol (2007); Chung and Palmer (2015); G., Novati, Russo (2015)...

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 4 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Applying variational regularization...

    xreg = arg minx∈RN

    ‖Ax− b‖22 + λR(x) , λ > 0

    R(x) = ‖Lx‖22

    Krylov methods are popular in this setting

    xk ∈ Kk (C, d) = span{d,Cd, . . . ,Ck−1d}rk = b− Axk ⊥ Kk (C′, d′)

    AZk = Wk+1Gk

    xk = Zkyk , yk = arg miny∈Rk‖gk − Gky‖22+λk‖Lky‖22

    Fast semi-convergence

    Iteration 150

    Iteration 0

    20 40 60 80 100 120 1400.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    C G LSHyB R

    Iteration

    Rela

    tive

    Erro

    r

    Hybrid Method Stabilizes the Error

    Hanke (1995); Frommer and Maas (1999);O’Leary and Simmons (1981); Calvetti, Morigi, Reichel, Sgallari (2000);Kilmer, Hansen, Espanol (2007); Chung and Palmer (2015); G., Novati, Russo (2015)...

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 4 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Applying variational regularization...

    xreg = arg minx∈RN

    ‖Ax− b‖22 + λR(x) , λ > 0

    R(x) = ‖Lx‖22Krylov methods are popular in this setting

    xk ∈ Kk (C, d) = span{d,Cd, . . . ,Ck−1d}rk = b− Axk ⊥ Kk (C′, d′)

    AZk = Wk+1Gk

    xk = Zkyk , yk = arg miny∈Rk‖gk − Gky‖22+λk‖Lky‖22

    Fast semi-convergence

    Iteration 150

    Iteration 0

    20 40 60 80 100 120 1400.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    C G LSHyB R

    Iteration

    Rela

    tive

    Erro

    r

    Hybrid Method Stabilizes the Error

    Hanke (1995); Frommer and Maas (1999);O’Leary and Simmons (1981); Calvetti, Morigi, Reichel, Sgallari (2000);Kilmer, Hansen, Espanol (2007); Chung and Palmer (2015); G., Novati, Russo (2015)...

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 4 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Applying variational regularization...

    xreg = arg minx∈RN

    ‖Ax− b‖22 + λR(x) , λ > 0

    R(x) = ‖Lx‖22Krylov methods are popular in this setting

    xk ∈ Kk (C, d) = span{d,Cd, . . . ,Ck−1d}rk = b− Axk ⊥ Kk (C′, d′)

    AZk = Wk+1Gk

    xk = Zkyk , yk = arg miny∈Rk‖gk − Gky‖22+λk‖Lky‖22

    Fast semi-convergence

    Iteration 150

    Iteration 0

    20 40 60 80 100 120 1400.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    C G LSHyB R

    Iteration

    Rela

    tive

    Erro

    r

    Hybrid Method Stabilizes the Error

    Hanke (1995); Frommer and Maas (1999);O’Leary and Simmons (1981); Calvetti, Morigi, Reichel, Sgallari (2000);Kilmer, Hansen, Espanol (2007); Chung and Palmer (2015); G., Novati, Russo (2015)...

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 4 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Applying variational regularization...

    xreg = arg minx∈RN

    ‖Ax− b‖22 + λR(x) , λ > 0

    R(x) = ‖Lx‖22Krylov methods are popular in this setting

    xk ∈ Kk (C, d) = span{d,Cd, . . . ,Ck−1d}rk = b− Axk ⊥ Kk (C′, d′)

    AZk = Wk+1Gk

    xk = Zkyk , yk = arg miny∈Rk‖gk − Gky‖22

    +λk‖Lky‖22

    Fast semi-convergence

    Iteration 150

    Iteration 0

    20 40 60 80 100 120 1400.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    C G LSHyB R

    Iteration

    Rela

    tive

    Erro

    r

    Hybrid Method Stabilizes the Error

    Hanke (1995); Frommer and Maas (1999);O’Leary and Simmons (1981); Calvetti, Morigi, Reichel, Sgallari (2000);Kilmer, Hansen, Espanol (2007); Chung and Palmer (2015); G., Novati, Russo (2015)...

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 4 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Applying variational regularization...

    xreg = arg minx∈RN

    ‖Ax− b‖22 + λR(x) , λ > 0

    R(x) = ‖Lx‖22Krylov methods are popular in this setting

    xk ∈ Kk (C, d) = span{d,Cd, . . . ,Ck−1d}rk = b− Axk ⊥ Kk (C′, d′)

    AZk = Wk+1Gk

    xk = Zkyk , yk = arg miny∈Rk‖gk − Gky‖22

    +λk‖Lky‖22

    Fast semi-convergence

    Iteration 150

    Iteration 0

    20 40 60 80 100 120 1400.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    C G LSHyB R

    Iteration

    Rela

    tive

    Erro

    r

    Hybrid Method Stabilizes the Error

    Hanke (1995); Frommer and Maas (1999);O’Leary and Simmons (1981); Calvetti, Morigi, Reichel, Sgallari (2000);Kilmer, Hansen, Espanol (2007); Chung and Palmer (2015); G., Novati, Russo (2015)...

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 4 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Applying variational regularization...

    xreg = arg minx∈RN

    ‖Ax− b‖22 + λR(x) , λ > 0

    R(x) = ‖Lx‖22Krylov methods are popular in this setting

    xk ∈ Kk (C, d) = span{d,Cd, . . . ,Ck−1d}rk = b− Axk ⊥ Kk (C′, d′)

    AZk = Wk+1Gk

    xk = Zkyk , yk = arg miny∈Rk‖gk − Gky‖22+λk‖Lky‖22

    Fast semi-convergence

    Iteration 150

    Iteration 0

    20 40 60 80 100 120 1400.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    C G LSHyB R

    Iteration

    Rela

    tive

    Erro

    r

    Hybrid Method Stabilizes the Error

    Hanke (1995); Frommer and Maas (1999);O’Leary and Simmons (1981); Calvetti, Morigi, Reichel, Sgallari (2000);Kilmer, Hansen, Espanol (2007); Chung and Palmer (2015); G., Novati, Russo (2015)...

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 4 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Applying variational regularization...

    xreg = arg minx∈RN

    ‖Ax− b‖22 + λR(x) , λ > 0

    R(x) = ‖Lx‖22Krylov methods are popular in this setting

    xk ∈ Kk (C, d) = span{d,Cd, . . . ,Ck−1d}rk = b− Axk ⊥ Kk (C′, d′)

    AZk = Wk+1Gk

    xk = Zkyk , yk = arg miny∈Rk‖gk − Gky‖22+λk‖Lky‖22

    Fast semi-convergence

    Iteration 150

    Iteration 0

    20 40 60 80 100 120 1400.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    C G LSHyB R

    Iteration

    Rela

    tive

    Erro

    r

    Hybrid Method Stabilizes the Error

    Hanke (1995); Frommer and Maas (1999);O’Leary and Simmons (1981); Calvetti, Morigi, Reichel, Sgallari (2000);Kilmer, Hansen, Espanol (2007); Chung and Palmer (2015); G., Novati, Russo (2015)...

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 4 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Applying variational regularization...

    xreg = arg minx∈RN

    ‖Ax− b‖22 + λR(x) , λ > 0

    `p regularization(we will consider R(x) = ‖x‖pp , R(x) = ‖Ψx‖pp , R(x) = TVp(x); p ≥ 1, p > 0)

    Sub-gradient strategiesShevade and Keerthi (2003), Perkins (2003), Andrew and Gao (2007), ...

    Constrained optimizationChen et al (1999), Bertsekas (2004), Gafni and Bertsekas (1984), ...

    Iterative shinkage-thresholding algorithms (ISTA)Bioucas-Dias and Figueiredo(2007), Giryes, Elad and Eldar (2011), Beck andTeboulle (2009), Goldstein and Osher (2009), Osher et al (2005) ....

    Rodriguez and Wohlberg (2008), Renaut et al (2017), ...

    Generalized Krylov methods for `p − `qLanza et al (2015), Huang, Lanza, Morigi, Reichel, Sgallari (2017),Buccini and Reichel (2019),...Gazzola and Nagy (2014)...

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 5 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Applying variational regularization...

    xreg = arg minx∈RN

    ‖Ax− b‖22 + λR(x) , λ > 0

    `p regularization(we will consider R(x) = ‖x‖pp , R(x) = ‖Ψx‖pp , R(x) = TVp(x); p ≥ 1, p > 0)

    Sub-gradient strategiesShevade and Keerthi (2003), Perkins (2003), Andrew and Gao (2007), ...

    Constrained optimizationChen et al (1999), Bertsekas (2004), Gafni and Bertsekas (1984), ...

    Iterative shinkage-thresholding algorithms (ISTA)Bioucas-Dias and Figueiredo(2007), Giryes, Elad and Eldar (2011), Beck andTeboulle (2009), Goldstein and Osher (2009), Osher et al (2005) ....

    Rodriguez and Wohlberg (2008), Renaut et al (2017), ...

    Generalized Krylov methods for `p − `qLanza et al (2015), Huang, Lanza, Morigi, Reichel, Sgallari (2017),Buccini and Reichel (2019),...Gazzola and Nagy (2014)...

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 5 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Applying variational regularization...

    xreg = arg minx∈RN

    ‖Ax− b‖22 + λR(x) , λ > 0

    `p regularization(we will consider R(x) = ‖x‖pp , R(x) = ‖Ψx‖pp , R(x) = TVp(x); p ≥ 1, p > 0)

    Sub-gradient strategiesShevade and Keerthi (2003), Perkins (2003), Andrew and Gao (2007), ...

    Constrained optimizationChen et al (1999), Bertsekas (2004), Gafni and Bertsekas (1984), ...

    Iterative shinkage-thresholding algorithms (ISTA)Bioucas-Dias and Figueiredo(2007), Giryes, Elad and Eldar (2011), Beck andTeboulle (2009), Goldstein and Osher (2009), Osher et al (2005) ....

    Iteratively re-weighted normRodriguez and Wohlberg (2008), Renaut et al (2017), ...

    Generalized Krylov methods for `p − `qLanza et al (2015), Huang, Lanza, Morigi, Reichel, Sgallari (2017),Buccini and Reichel (2019),...

    Flexible Arnoldi methods (for square problems)Gazzola and Nagy (2014)...

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 5 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Applying variational regularization...

    xreg = arg minx∈RN

    ‖Ax− b‖22 + λR(x) , λ > 0

    `p regularization(we will consider R(x) = ‖x‖pp , R(x) = ‖Ψx‖pp , R(x) = TVp(x); p ≥ 1, p > 0)

    Sub-gradient strategiesShevade and Keerthi (2003), Perkins (2003), Andrew and Gao (2007), ...

    Constrained optimizationChen et al (1999), Bertsekas (2004), Gafni and Bertsekas (1984), ...

    Iterative shinkage-thresholding algorithms (ISTA)Bioucas-Dias and Figueiredo(2007), Giryes, Elad and Eldar (2011), Beck andTeboulle (2009), Goldstein and Osher (2009), Osher et al (2005) ....

    Iteratively re-weighted normRodriguez and Wohlberg (2008), Renaut et al (2017), ...

    Generalized Krylov methods for `p − `qLanza et al (2015), Huang, Lanza, Morigi, Reichel, Sgallari (2017),Buccini and Reichel (2019),...

    Flexible Arnoldi methods (for square problems)Gazzola and Nagy (2014)...

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 5 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    A basic Iteratively Re-weighted Norm (IRN) strategy ...

    [Rodriguez and Wohlberg (2008)]

    Let Ψ = I, p = 1.

    Turn `1-problems into a sequence of `2-problems:

    ‖x‖1 ≈ ‖L(x)x‖22

    IRN algorithmInput: A, b, x0(= 0), L0 = L(x0)(= I)

    For k = 1, . . . , till a stopping criterion is satisfiedTill a stopping criterion is satisfied: run an (iterative) solver for

    xk = arg minx∈RN

    ‖b− Ax‖22 + λ‖Lk−1x‖22

    Update Lk = diag(

    1/√

    fτ (|xk |))

    , fτ (|[xk ]i |) ={|[xk ]i | if |[xk ]i | ≥ τ1τ2 if |[xk ]i | < τ1

    Let Lk = L(xk), then xk+1 = L−1k yk+1 where

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 6 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    A basic Iteratively Re-weighted Norm (IRN) strategy ...

    [Rodriguez and Wohlberg (2008)]

    Let Ψ = I, p = 1. Turn `1-problems into a sequence of `2-problems:

    ‖x‖1 ≈ ‖L(x)x‖22

    IRN algorithmInput: A, b, x0(= 0), L0 = L(x0)(= I)

    For k = 1, . . . , till a stopping criterion is satisfiedTill a stopping criterion is satisfied: run an (iterative) solver for

    xk = arg minx∈RN

    ‖b− Ax‖22 + λ‖Lk−1x‖22

    Update Lk = diag(

    1/√

    fτ (|xk |))

    , fτ (|[xk ]i |) ={|[xk ]i | if |[xk ]i | ≥ τ1τ2 if |[xk ]i | < τ1

    Let Lk = L(xk), then xk+1 = L−1k yk+1 where

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 6 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    A basic Iteratively Re-weighted Norm (IRN) strategy ...

    [Rodriguez and Wohlberg (2008)]

    Let Ψ = I, p = 1. Turn `1-problems into a sequence of `2-problems:

    ‖x‖1 ≈ ‖L(x)x‖22

    IRN algorithmInput: A, b, x0(= 0), L0 = L(x0)(= I)

    For k = 1, . . . , till a stopping criterion is satisfiedTill a stopping criterion is satisfied: run an (iterative) solver for

    xk = arg minx∈RN

    ‖b− Ax‖22 + λ‖Lk−1x‖22

    Update Lk = diag(

    1/√

    fτ (|xk |))

    , fτ (|[xk ]i |) ={|[xk ]i | if |[xk ]i | ≥ τ1τ2 if |[xk ]i | < τ1

    Let Lk = L(xk), then xk+1 = L−1k yk+1 where

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 6 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    A basic Iteratively Re-weighted Norm (IRN) strategy ...[Rodriguez and Wohlberg (2008)]Let Ψ = I, p = 1. Turn `1-problems into a sequence of `2-problems:

    ‖x‖1 ≈ ‖L(x)x‖22

    IRN algorithmInput: A, b, x0(= 0), L0 = L(x0)(= I)

    For k = 1, . . . , till a stopping criterion is satisfied

    Till a stopping criterion is satisfied: run an (iterative) solver for

    xk = arg minx∈RN

    ‖b− Ax‖22 + λ‖Lk−1x‖22

    Update Lk = diag(

    1/√

    fτ (|xk |))

    , fτ (|[xk ]i |) ={|[xk ]i | if |[xk ]i | ≥ τ1τ2 if |[xk ]i | < τ1

    Let Lk = L(xk), then xk+1 = L−1k yk+1 where

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 6 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    A basic Iteratively Re-weighted Norm (IRN) strategy ...[Rodriguez and Wohlberg (2008)]Let Ψ = I, p = 1. Turn `1-problems into a sequence of `2-problems:

    ‖x‖1 ≈ ‖L(x)x‖22

    IRN algorithmInput: A, b, x0(= 0), L0 = L(x0)(= I)

    For k = 1, . . . , till a stopping criterion is satisfiedTill a stopping criterion is satisfied: run an (iterative) solver for

    xk = arg minx∈RN

    ‖b− Ax‖22 + λ‖Lk−1x‖22

    Update Lk = diag(

    1/√

    fτ (|xk |))

    , fτ (|[xk ]i |) ={|[xk ]i | if |[xk ]i | ≥ τ1τ2 if |[xk ]i | < τ1

    Let Lk = L(xk), then xk+1 = L−1k yk+1 where

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 6 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    A basic Iteratively Re-weighted Norm (IRN) strategy ...[Rodriguez and Wohlberg (2008)]Let Ψ = I, p = 1. Turn `1-problems into a sequence of `2-problems:

    ‖x‖1 ≈ ‖L(x)x‖22

    IRN algorithmInput: A, b, x0(= 0), L0 = L(x0)(= I)

    For k = 1, . . . , till a stopping criterion is satisfiedTill a stopping criterion is satisfied: run an (iterative) solver for

    xk = arg minx∈RN

    ‖b− Ax‖22 + λ‖Lk−1x‖22

    Update Lk = diag(

    1/√

    fτ (|xk |))

    , fτ (|[xk ]i |) ={|[xk ]i | if |[xk ]i | ≥ τ1τ2 if |[xk ]i | < τ1

    Let Lk = L(xk), then xk+1 = L−1k yk+1 where

    yk+1 = arg miny

    ∥∥∥AL−1k y− b∥∥∥22 + λ ‖y‖22S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 6 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    A basic Iteratively Re-weighted Norm (IRN) strategy ...[Rodriguez and Wohlberg (2008)]Let Ψ = I, p = 1. Turn `1-problems into a sequence of `2-problems:

    ‖x‖1 ≈ ‖L(x)x‖22

    IRN algorithmInput: A, b, x0(= 0), L0 = L(x0)(= I)

    For k = 1, . . . , till a stopping criterion is satisfiedTill a stopping criterion is satisfied: run an (iterative) solver for

    xk = arg minx∈RN

    ‖b− Ax‖22 + λ‖Lk−1x‖22

    Update Lk = diag(

    1/√

    fτ (|xk |))

    , fτ (|[xk ]i |) ={|[xk ]i | if |[xk ]i | ≥ τ1τ2 if |[xk ]i | < τ1

    Let Lk = L(xk), then xk+1 = L−1k yk+1 where

    yk+1 = arg miny

    ∥∥∥AL−1k y− b∥∥∥22 + λ ‖y‖22S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 6 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    ... revisited within Flexible Krylov methods ...[G. and Nagy (2014)]

    1 For A ∈ RN×N , use flexible Arnoldi to generate basis vectors:[Saad (1993, 2003)]

    Zk =[L−11 v1 · · · L

    −1k vk

    ]∈ RN×k

    whereAZk = Vk+1Hk

    Vk+1 =[v1 . . . vk+1

    ]∈ RN×(k+1) has orthonormal columns (ONC)

    Hk ∈ R(k+1)×k is upper Hessenberg

    2 Compute solution xk = x0 + Zkyk where

    yk = arg miny

    12 ‖Hky− ‖r0‖2 e1‖

    22 + λ ‖y‖

    22

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 7 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    ... revisited within Flexible Krylov methods ...[G. and Nagy (2014)]

    1 For A ∈ RN×N , use flexible Arnoldi to generate basis vectors:[Saad (1993, 2003)]

    Zk =[L−11 v1 · · · L

    −1k vk

    ]∈ RN×k

    whereAZk = Vk+1Hk

    Vk+1 =[v1 . . . vk+1

    ]∈ RN×(k+1) has orthonormal columns (ONC)

    Hk ∈ R(k+1)×k is upper Hessenberg

    2 Compute solution xk = x0 + Zkyk where

    yk = arg miny

    12 ‖Hky− ‖r0‖2 e1‖

    22 + λ ‖y‖

    22

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 7 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Flexible Golub-Kahan (FGK) Process[Chung and G. (2018)]

    A new flexible factorization

    Given A ∈ RM×N ,b ∈ RM , initialize u1 = b/β1 where β1 = ‖b‖.After k iterations with changing preconditioners Lk , we haveRelated to inexact Krylov methods [Simoncini and Szyld (2007)]

    Zk =[L−11 v1 · · · L

    −1k vk

    ]∈ RN×k

    Mk ∈ R(k+1)×k upper HessenbergTk ∈ Rk×k upper triangularUk+1 =

    [u1 . . . uk+1

    ]∈ RM×(k+1) ONC

    Vk =[v1 . . . vk

    ]∈ RN×k ONC

    such thatAZk = Uk+1Mk and A>Uk+1 = Vk+1Tk+1

    Remarks:If Lk = L, get right-preconditioned GK bidiagonalizationAdditional orthogonalizations and storage

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 8 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Flexible Golub-Kahan (FGK) Process[Chung and G. (2018)]Given A ∈ RM×N ,b ∈ RM , initialize u1 = b/β1 where β1 = ‖b‖.After k iterations with changing preconditioners Lk , we haveRelated to inexact Krylov methods [Simoncini and Szyld (2007)]

    Zk =[L−11 v1 · · · L

    −1k vk

    ]∈ RN×k

    Mk ∈ R(k+1)×k upper HessenbergTk ∈ Rk×k upper triangularUk+1 =

    [u1 . . . uk+1

    ]∈ RM×(k+1) ONC

    Vk =[v1 . . . vk

    ]∈ RN×k ONC

    such thatAZk = Uk+1Mk and A>Uk+1 = Vk+1Tk+1

    Remarks:If Lk = L, get right-preconditioned GK bidiagonalizationAdditional orthogonalizations and storage

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 8 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Flexible Golub-Kahan (FGK) Process[Chung and G. (2018)]Given A ∈ RM×N ,b ∈ RM , initialize u1 = b/β1 where β1 = ‖b‖.After k iterations with changing preconditioners Lk , we haveRelated to inexact Krylov methods [Simoncini and Szyld (2007)]

    Zk =[L−11 v1 · · · L

    −1k vk

    ]∈ RN×k

    Mk ∈ R(k+1)×k upper HessenbergTk ∈ Rk×k upper triangularUk+1 =

    [u1 . . . uk+1

    ]∈ RM×(k+1) ONC

    Vk =[v1 . . . vk

    ]∈ RN×k ONC

    such thatAZk = Uk+1Mk and A>Uk+1 = Vk+1Tk+1

    Remarks:If Lk = L, get right-preconditioned GK bidiagonalizationAdditional orthogonalizations and storage

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 8 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Flexible LSQR and flexible LSMR

    New flexible solvers

    1 Use flexible GK to generate basis vectors:

    Zk =[L−11 v1 · · · L

    −1k vk

    ]∈ Rn×k

    AZk = Uk+1Mk and A>Uk+1 = Vk+1Tk+1

    2 Compute solution xk = Zkyk whereFlexible LSQR (FLSQR)

    yk = arg miny∈Rk

    ‖Mky− β1e1‖22Optimality property:xk minimizes ‖Axk − b‖2 over x0 + span{Zk}.Flexible LSMR (FLSMR)

    yk = arg miny∈Rk

    ‖Tk+1Mky− β1m11e1‖22Optimality property:xk minimizes

    ∥∥A>(Axk − b)∥∥2 over x0 + span{Zk}.Equivalency result:FLSMR is equivalent to FGMRES applied to the normal equations.

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 9 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Flexible LSQR and flexible LSMR1 Use flexible GK to generate basis vectors:

    Zk =[L−11 v1 · · · L

    −1k vk

    ]∈ Rn×k

    AZk = Uk+1Mk and A>Uk+1 = Vk+1Tk+1

    2 Compute solution xk = Zkyk whereFlexible LSQR (FLSQR)

    yk = arg miny∈Rk

    ‖Mky− β1e1‖22Optimality property:xk minimizes ‖Axk − b‖2 over x0 + span{Zk}.Flexible LSMR (FLSMR)

    yk = arg miny∈Rk

    ‖Tk+1Mky− β1m11e1‖22Optimality property:xk minimizes

    ∥∥A>(Axk − b)∥∥2 over x0 + span{Zk}.Equivalency result:FLSMR is equivalent to FGMRES applied to the normal equations.

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 9 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Flexible LSQR and flexible LSMR1 Use flexible GK to generate basis vectors:

    Zk =[L−11 v1 · · · L

    −1k vk

    ]∈ Rn×k

    AZk = Uk+1Mk and A>Uk+1 = Vk+1Tk+12 Compute solution xk = Zkyk where

    Flexible LSQR (FLSQR)

    yk = arg miny∈Rk

    ‖Mky− β1e1‖22

    Optimality property:xk minimizes ‖Axk − b‖2 over x0 + span{Zk}.

    Flexible LSMR (FLSMR)yk = arg min

    y∈Rk‖Tk+1Mky− β1m11e1‖22

    Optimality property:xk minimizes

    ∥∥A>(Axk − b)∥∥2 over x0 + span{Zk}.Equivalency result:FLSMR is equivalent to FGMRES applied to the normal equations.

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 9 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Flexible LSQR and flexible LSMR1 Use flexible GK to generate basis vectors:

    Zk =[L−11 v1 · · · L

    −1k vk

    ]∈ Rn×k

    AZk = Uk+1Mk and A>Uk+1 = Vk+1Tk+12 Compute solution xk = Zkyk where

    Flexible LSQR (FLSQR)

    yk = arg miny∈Rk

    ‖Mky− β1e1‖22Optimality property:xk minimizes ‖Axk − b‖2 over x0 + span{Zk}.Flexible LSMR (FLSMR)

    yk = arg miny∈Rk

    ‖Tk+1Mky− β1m11e1‖22

    Optimality property:xk minimizes

    ∥∥A>(Axk − b)∥∥2 over x0 + span{Zk}.Equivalency result:FLSMR is equivalent to FGMRES applied to the normal equations.

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 9 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Flexible LSQR and flexible LSMR1 Use flexible GK to generate basis vectors:

    Zk =[L−11 v1 · · · L

    −1k vk

    ]∈ Rn×k

    AZk = Uk+1Mk and A>Uk+1 = Vk+1Tk+12 Compute solution xk = Zkyk where

    Flexible LSQR (FLSQR)

    yk = arg miny∈Rk

    ‖Mky− β1e1‖22Optimality property:xk minimizes ‖Axk − b‖2 over x0 + span{Zk}.Flexible LSMR (FLSMR)

    yk = arg miny∈Rk

    ‖Tk+1Mky− β1m11e1‖22Optimality property:xk minimizes

    ∥∥A>(Axk − b)∥∥2 over x0 + span{Zk}.Equivalency result:FLSMR is equivalent to FGMRES applied to the normal equations.

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 9 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Flexible GK (FGK) hybrid methods

    New flexible solversused in a hybrid framework

    1 Use flexible GK to generate basis vectors:

    Zk =[L−11 v1 · · · L

    −1k vk

    ]∈ RN×k

    AZk = Uk+1Mk and A>Uk+1 = Vk+1Tk+1

    2 Compute solution xk = Zkyk , whereFlexible GK Tikhonov - R (FLSQR-R)

    yk = arg miny∈Rk

    ‖Mky− β1e1‖22 + λk ‖Rky‖22 , Zk = QkRk

    Flexible GK Tikhonov - I (FLSQR-I)

    yk = arg miny∈Rk

    ‖Mky− β1e1‖22 + λk ‖y‖22

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 10 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Flexible GK (FGK) hybrid methods

    1 Use flexible GK to generate basis vectors:

    Zk =[L−11 v1 · · · L

    −1k vk

    ]∈ RN×k

    AZk = Uk+1Mk and A>Uk+1 = Vk+1Tk+1

    2 Compute solution xk = Zkyk , whereFlexible GK Tikhonov - R (FLSQR-R)

    yk = arg miny∈Rk

    ‖Mky− β1e1‖22 + λk ‖Rky‖22 , Zk = QkRk

    Flexible GK Tikhonov - I (FLSQR-I)

    yk = arg miny∈Rk

    ‖Mky− β1e1‖22 + λk ‖y‖22

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 10 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Flexible GK (FGK) hybrid methods

    1 Use flexible GK to generate basis vectors:

    Zk =[L−11 v1 · · · L

    −1k vk

    ]∈ RN×k

    AZk = Uk+1Mk and A>Uk+1 = Vk+1Tk+1

    2 Compute solution xk = Zkyk

    , whereFlexible GK Tikhonov - R (FLSQR-R)

    yk = arg miny∈Rk

    ‖Mky− β1e1‖22 + λk ‖Rky‖22 , Zk = QkRk

    Flexible GK Tikhonov - I (FLSQR-I)

    yk = arg miny∈Rk

    ‖Mky− β1e1‖22 + λk ‖y‖22

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 10 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Flexible GK (FGK) hybrid methods

    1 Use flexible GK to generate basis vectors:

    Zk =[L−11 v1 · · · L

    −1k vk

    ]∈ RN×k

    AZk = Uk+1Mk and A>Uk+1 = Vk+1Tk+1

    2 Compute solution xk = Zkyk , whereFlexible GK Tikhonov - R (FLSQR-R)

    yk = arg miny∈Rk

    ‖Mky− β1e1‖22 + λk ‖Rky‖22 , Zk = QkRk

    Flexible GK Tikhonov - I (FLSQR-I)

    yk = arg miny∈Rk

    ‖Mky− β1e1‖22 + λk ‖y‖22

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 10 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Flexible GK (FGK) hybrid methods

    1 Use flexible GK to generate basis vectors:

    Zk =[L−11 v1 · · · L

    −1k vk

    ]∈ RN×k

    AZk = Uk+1Mk and A>Uk+1 = Vk+1Tk+1

    2 Compute solution xk = Zkyk , whereFlexible GK Tikhonov - R (FLSQR-R)

    yk = arg miny∈Rk

    ‖Mky− β1e1‖22 + λk ‖Rky‖22 , Zk = QkRk

    Flexible GK Tikhonov - I (FLSQR-I)

    yk = arg miny∈Rk

    ‖Mky− β1e1‖22 + λk ‖y‖22

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 10 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    FLSQR-R: Approximate singular values of A

    R−>k M>k MkR−1k = R

    −>k M

    >k U>k+1Uk+1MkR−1k = Q

    >k A>AQk

    50 100 150 200 250 300 350 400 450 500

    iteration k

    10-15

    10-10

    10-5

    100

    Singular values of A

    FLSQR

    FLSQR-R

    Figure: This plot compares the singular values of A to the singular values of Mkfrom FLSQR and of MkR−1k from FLSQR-R, for iterations k between 20 and 420in increments of 100.

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 11 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Solving the transformed problem

    Let Ψ 6= I (invertible), p = 1 (e.g., Ψ : image domain → wavelet domain)

    Equivalent problems (for Ψ̃ orthogonal):[Belge, Kilmer, Miller (2000)]

    minx∈RN

    ‖Ax− b‖22 + λ ‖Ψx‖1 ⇔ minx∈RN‖Ψ̃AΨ−1︸ ︷︷ ︸

    H

    Ψx︸︷︷︸s− Ψ̃b︸︷︷︸

    d

    ‖22 + λ‖Ψx︸︷︷︸s‖1

    Solution subspace for flexible Arnoldi:

    sk ∈ span{L−11 v̂1,L−12 v̂2, . . . ,L

    −1k v̂k}, where

    v̂1 = d/‖d‖2v̂2 = ONC(HL−11 v̂1)v̂3 = ONC(HL−12 v̂2)...xk = Ψ−1sk

    Analogously for flexible Golub-Kahan (possibly without Ψ̃).

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 12 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Solving the transformed problem

    Let Ψ 6= I (invertible), p = 1 (e.g., Ψ : image domain → wavelet domain)Equivalent problems (for Ψ̃ orthogonal):[Belge, Kilmer, Miller (2000)]

    minx∈RN

    ‖Ax− b‖22 + λ ‖Ψx‖1 ⇔ minx∈RN‖Ψ̃AΨ−1︸ ︷︷ ︸

    H

    Ψx︸︷︷︸s− Ψ̃b︸︷︷︸

    d

    ‖22 + λ‖Ψx︸︷︷︸s‖1

    Solution subspace for flexible Arnoldi:

    sk ∈ span{L−11 v̂1,L−12 v̂2, . . . ,L

    −1k v̂k}, where

    v̂1 = d/‖d‖2v̂2 = ONC(HL−11 v̂1)v̂3 = ONC(HL−12 v̂2)...

    xk = Ψ−1skAnalogously for flexible Golub-Kahan (possibly without Ψ̃).

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 12 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Solving the transformed problem

    Let Ψ 6= I (invertible), p = 1 (e.g., Ψ : image domain → wavelet domain)Equivalent problems (for Ψ̃ orthogonal):[Belge, Kilmer, Miller (2000)]

    minx∈RN

    ‖Ax− b‖22 + λ ‖Ψx‖1 ⇔ minx∈RN‖Ψ̃AΨ−1︸ ︷︷ ︸

    H

    Ψx︸︷︷︸s− Ψ̃b︸︷︷︸

    d

    ‖22 + λ‖Ψx︸︷︷︸s‖1

    Solution subspace for flexible Arnoldi:

    sk ∈ span{L−11 v̂1,L−12 v̂2, . . . ,L

    −1k v̂k}, where

    v̂1 = d/‖d‖2v̂2 = ONC(HL−11 v̂1)v̂3 = ONC(HL−12 v̂2)...xk = Ψ−1sk

    Analogously for flexible Golub-Kahan (possibly without Ψ̃).

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 12 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Solving the transformed problem

    Let Ψ 6= I (invertible), p = 1 (e.g., Ψ : image domain → wavelet domain)Equivalent problems (for Ψ̃ orthogonal):[Belge, Kilmer, Miller (2000)]

    minx∈RN

    ‖Ax− b‖22 + λ ‖Ψx‖1 ⇔ minx∈RN‖Ψ̃AΨ−1︸ ︷︷ ︸

    H

    Ψx︸︷︷︸s− Ψ̃b︸︷︷︸

    d

    ‖22 + λ‖Ψx︸︷︷︸s‖1

    Solution subspace for flexible Arnoldi:

    sk ∈ span{L−11 v̂1,L−12 v̂2, . . . ,L

    −1k v̂k}, where

    v̂1 = d/‖d‖2v̂2 = ONC(HL−11 v̂1)v̂3 = ONC(HL−12 v̂2)...xk = Ψ−1sk

    Analogously for flexible Golub-Kahan (possibly without Ψ̃).S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 12 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    An illustration: sparsity in a wavelet domainSignal Wavelet

    10 20 30 40 50 60-0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6exact

    corrupted

    10 20 30 40 50 60

    -1

    -0.5

    0

    0.5

    1

    10 20 30 40 50 60-1

    -0.5

    0

    0.5

    1

    GMRES

    FGMRES

    10 20 30 40 50 60

    -1

    -0.5

    0

    0.5

    1

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 13 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    An illustration: 2nd and 4th basis vectorsSignal Wavelet

    10 20 30 40 50 60-0.4

    -0.2

    0

    0.2

    0.4

    10 20 30 40 50 60-0.5

    0

    0.5

    10 20 30 40 50 60-0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    10 20 30 40 50 60

    -0.4

    -0.2

    0

    0.2

    0.4

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 14 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    TV penalization

    Let R(x) = TV(x).1d case:TV(x) = ‖D1dx‖1' ‖W1dDx‖22, where

    D1d =

    1 −1. . . . . .1 −1

    ∈ R(N−1)×N , W = diag (|D1dx|−1/2)2d case:[Wohlberg and Rodriguez. An iteratively reweighted norm algorithm for TV. IEEE, 2007]TV(x) = ‖

    ((Dhx)2 + (Dvx)2

    )1/2 ‖1' ‖WD2dx‖22, whereD2d =

    [DhDv]

    =[

    D1d ⊗ II⊗D1d

    ], Ŵ = diag

    (((Dhx)2 + (Dvx)2

    )−1/4),W =

    [Ŵ 00 Ŵ

    ]

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 15 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Smoothing Norm, A ∈ RN×N

    Standard form transformation:

    ȳL = arg minȳ‖Āȳ− b̄‖22 + λ‖ȳ‖22 , where

    Ā = AL†A = A[I− (A(I− L†L))†A]

    b̄ = b− Ax0xL = L†AȳL + x0 = x̄L + x0

    .

    [Hansen and Jensen. Smoothing-Norm Preconditioning for Reg. Min.-Res. SIMAX, 2007]

    Write:

    xL = x̄L + x0 = L†AȳL + x0 = L†AȳL + Kt0 , where R(K) = N (L) , L

    †A rectangular .

    Equivalently:

    A[L†A, K

    ] [ ȳLt0

    ]= b ,

    and, further: [(L†A)

    T AL†A (L†A)

    T AKKT AL†A K

    T AK

    ][ȳLt0

    ]=[

    (L†A)T b

    KT b

    ].

    Schur complement system:

    (L†A)T PAL†Aȳ = (L

    †A)

    T Pb, where P = I− AK(KT AK)−1KT ∈ RN×N .

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 16 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Smoothing Norm, A ∈ RN×N

    Standard form transformation:

    ȳL = arg minȳ‖Āȳ− b̄‖22 + λ‖ȳ‖22 , where

    Ā = AL†A = A[I− (A(I− L†L))†A]

    b̄ = b− Ax0xL = L†AȳL + x0 = x̄L + x0

    .

    [Hansen and Jensen. Smoothing-Norm Preconditioning for Reg. Min.-Res. SIMAX, 2007]

    Write:

    xL = x̄L + x0 = L†AȳL + x0 = L†AȳL + Kt0 , where R(K) = N (L) , L

    †A rectangular .

    Equivalently:

    A[L†A, K

    ] [ ȳLt0

    ]= b ,

    and, further: [(L†A)

    T AL†A (L†A)

    T AKKT AL†A K

    T AK

    ][ȳLt0

    ]=[

    (L†A)T b

    KT b

    ].

    Schur complement system:

    (L†A)T PAL†Aȳ = (L

    †A)

    T Pb, where P = I− AK(KT AK)−1KT ∈ RN×N .

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 16 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Smoothing Norm, A ∈ RN×N

    Standard form transformation:

    ȳL = arg minȳ‖Āȳ− b̄‖22 + λ‖ȳ‖22 , where

    Ā = AL†A = A[I− (A(I− L†L))†A]

    b̄ = b− Ax0xL = L†AȳL + x0 = x̄L + x0

    .

    [Hansen and Jensen. Smoothing-Norm Preconditioning for Reg. Min.-Res. SIMAX, 2007]

    Write:

    xL = x̄L + x0 = L†AȳL + x0 = L†AȳL + Kt0 , where R(K) = N (L) , L

    †A rectangular .

    Equivalently:

    A[L†A, K

    ] [ ȳLt0

    ]= b ,

    and, further: [(L†A)

    T AL†A (L†A)

    T AKKT AL†A K

    T AK

    ][ȳLt0

    ]=[

    (L†A)T b

    KT b

    ].

    Schur complement system:

    (L†A)T PAL†Aȳ = (L

    †A)

    T Pb, where P = I− AK(KT AK)−1KT ∈ RN×N .

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 16 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    TV regularization, A ∈ RN×N[G. and Sabaté Landman (2019)]

    Similar idea, with reweighting...

    (D†)T PA(WD)†Aȳ = (D†)T Pb

    Building a better approximation subspace for the solution!

    L = WD (with W = W(xk)):flexible GMRES (instead of restarted GMRES);large-scale computations:

    approximating L†(exploiting structure, and running preconditioned LSQR or LSMR)thresholding the weights

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 17 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    TV regularization, A ∈ RN×N[G. and Sabaté Landman (2019)]

    Similar idea, with reweighting...

    (D†)T PA(WD)†Aȳ = (D†)T Pb

    Building a better approximation subspace for the solution!

    L = WD (with W = W(xk)):flexible GMRES (instead of restarted GMRES);

    large-scale computations:approximating L†(exploiting structure, and running preconditioned LSQR or LSMR)thresholding the weights

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 17 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    TV regularization, A ∈ RN×N[G. and Sabaté Landman (2019)]

    Similar idea, with reweighting...

    (D†)T PA(WD)†Aȳ = (D†)T Pb

    Building a better approximation subspace for the solution!

    L = WD (with W = W(xk)):flexible GMRES (instead of restarted GMRES);large-scale computations:

    approximating L†(exploiting structure, and running preconditioned LSQR or LSMR)thresholding the weights

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 17 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    A simple 1D example...

    50 100 150 200 250-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5exact

    corrupted

    50 100 150 200 250-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5GMRES

    GMRES (D)

    TV-FGMRES

    basis vectors

    50 100 150 200 250-0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    v1

    v2

    v3

    50 100 150 200 250-6

    -4

    -2

    0

    2

    4

    6

    8

    50 100 150 200 250-0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    50 100 150 200 250-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    z1

    z2

    z6

    z8

    z20

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 18 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    A simple 1D example...

    50 100 150 200 250-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5exact

    corrupted

    50 100 150 200 250-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5GMRES

    GMRES (D)

    TV-FGMRES

    basis vectors

    50 100 150 200 250-0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    v1

    v2

    v3

    50 100 150 200 250-6

    -4

    -2

    0

    2

    4

    6

    8

    50 100 150 200 250-0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    50 100 150 200 250-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    z1

    z2

    z6

    z8

    z20

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 18 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    A simple 1D example...

    50 100 150 200 250-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5exact

    corrupted

    50 100 150 200 250-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5GMRES

    GMRES (D)

    TV-FGMRES

    basis vectors

    50 100 150 200 250-0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    v1

    v2

    v3

    50 100 150 200 250-6

    -4

    -2

    0

    2

    4

    6

    8

    50 100 150 200 250-0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    50 100 150 200 250-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    z1

    z2

    z6

    z8

    z20

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 18 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Image deblurring example with Ψ = I[G., Hansen, Nagy. IR Tools (2018)]https://github.com/silviagazzola/IRtools

    http://www2.compute.dtu.dk/ pcha/IRtools/

    true PSF observed

    Image is 256× 256 pixelsNoise level is 5× 10−2

    Reflexive boundary conditions

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 19 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Reconstruction errors

    0 20 40 60 80 100

    Iteration

    0

    0.5

    1

    1.5

    2

    Rela

    tive E

    rror

    FLSQR

    FLSQR-I

    FLSQR-R

    LSQR

    HyBR DP

    Reconstruction errors computed as ‖xk−xtrue‖2‖xtrue‖2λ for FLSQR-I and FLSQR-R use discrepancy principle

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 20 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Basis imagesk=10

    FLS

    QR

    -RLS

    QR

    k=20 k=100

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 21 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Comparison to other methods

    0 100 200 300 400 500

    Iteration

    0

    0.2

    0.4

    0.6

    0.8

    1R

    ela

    tive

    Err

    or

    FLSQR-R

    GAT

    PIRN

    FISTA

    SpaRSA

    GAT = Generalized Arnoldi-TikhonovPIRN† = Preconditioned iteratively re-weighted normFISTA† = Fast iterative-shrinkage-thresholding algorithmSpaRSA† = Sparse Reconstruction by Separable Approximation

    († uses λ from FLSQR-R)S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 22 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Tomography example with Φ 6= I

    [G., Hansen, Nagy. IR Tools (2018)]

    n = 256; optn = PRtomo(‘defaults’);optn=PRset(optn,‘angles’,0:2:179,‘p’,round(sqrt(2)*n),‘d’,sqrt(2)*n);[A, b, x, ProbInfo] = PRtomo(n, optn);figure, PRshowx(x, ProbInfo)bn = PRnoise(b, 1e-2);

    phantom is 256× 256 pixelsA has size 32580× 65536 (approx. 50% undersampling)Ψ is a 4-level 2D Haar wavelet transform

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 23 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Tomography example with Φ 6= I[G., Hansen, Nagy. IR Tools (2018)]

    n = 256; optn = PRtomo(‘defaults’);optn=PRset(optn,‘angles’,0:2:179,‘p’,round(sqrt(2)*n),‘d’,sqrt(2)*n);[A, b, x, ProbInfo] = PRtomo(n, optn);

    figure, PRshowx(x, ProbInfo)bn = PRnoise(b, 1e-2);

    phantom is 256× 256 pixelsA has size 32580× 65536 (approx. 50% undersampling)

    Ψ is a 4-level 2D Haar wavelet transform

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 23 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Tomography example with Φ 6= I[G., Hansen, Nagy. IR Tools (2018)]

    n = 256; optn = PRtomo(‘defaults’);optn=PRset(optn,‘angles’,0:2:179,‘p’,round(sqrt(2)*n),‘d’,sqrt(2)*n);[A, b, x, ProbInfo] = PRtomo(n, optn);figure, PRshowx(x, ProbInfo)

    bn = PRnoise(b, 1e-2);

    phantom is 256× 256 pixelsA has size 32580× 65536 (approx. 50% undersampling)

    Ψ is a 4-level 2D Haar wavelet transform

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 23 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Tomography example with Φ 6= I[G., Hansen, Nagy. IR Tools (2018)]

    n = 256; optn = PRtomo(‘defaults’);optn=PRset(optn,‘angles’,0:2:179,‘p’,round(sqrt(2)*n),‘d’,sqrt(2)*n);[A, b, x, ProbInfo] = PRtomo(n, optn);figure, PRshowx(x, ProbInfo)bn = PRnoise(b, 1e-2);

    phantom is 256× 256 pixelsA has size 32580× 65536 (approx. 50% undersampling)

    Ψ is a 4-level 2D Haar wavelet transform

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 23 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Tomography example with Φ 6= I[G., Hansen, Nagy. IR Tools (2018)]

    n = 256; optn = PRtomo(‘defaults’);optn=PRset(optn,‘angles’,0:2:179,‘p’,round(sqrt(2)*n),‘d’,sqrt(2)*n);[A, b, x, ProbInfo] = PRtomo(n, optn);figure, PRshowx(x, ProbInfo)bn = PRnoise(b, 1e-2);

    phantom is 256× 256 pixelsA has size 32580× 65536 (approx. 50% undersampling)Ψ is a 4-level 2D Haar wavelet transform

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 23 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Reconstructed phantoms

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 24 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Image deblurring example[G., Hansen, Nagy. IR Tools (2018)]Cameraman example: 256× 256 pixels.

    blurred & noisy SN-GMRES

    TV-FGMRES fast gradient-based method

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 25 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Image deblurring example

    0 20 40 60 8010

    -1

    100

    GMRES(D)

    FGMRES(1)

    FGMRES(0.1)

    FBTV

    ReSt-GAT

    ReSt-GKB

    0 20 40 60 8010

    4

    106

    108

    1010

    Relative Error History Total Variation History

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 25 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Tomography example with flexible TV regularization

    small PRtomo example: 32× 32 pixels; A ∈ R2025×1024... ongoing work

    5 10 15 20 25 30

    5

    10

    15

    20

    25

    30

    -1

    40

    -0.8

    -0.6

    30 40

    -0.4

    3020

    -0.2

    20

    0

    1010

    0 0

    Exact phantomnoisy (Gaussian white noise, ‖e‖/‖btrue‖ = 10−2) image

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 26 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Tomography example with flexible TV regularization

    small PRtomo example: 32× 32 pixels; A ∈ R2025×1024... ongoing work

    5 10 15 20 25 30

    5

    10

    15

    20

    25

    30

    -1.2

    40

    -1

    -0.8

    -0.6

    30 40

    -0.4

    -0.2

    3020

    0

    20

    0.2

    1010

    0 0

    LSQR

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 26 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Tomography example with flexible TV regularization

    small PRtomo example: 32× 32 pixels; A ∈ R2025×1024... ongoing work

    5 10 15 20 25 30

    5

    10

    15

    20

    25

    30

    -1.2

    40

    -1

    -0.8

    -0.6

    30 40

    -0.4

    -0.2

    3020

    0

    20

    0.2

    1010

    0 0

    LSQR (D)

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 26 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Tomography example with flexible TV regularization

    small PRtomo example: 32× 32 pixels; A ∈ R2025×1024... ongoing work

    5 10 15 20 25 30

    5

    10

    15

    20

    25

    30

    -1.2

    40

    -1

    -0.8

    -0.6

    30 40

    -0.4

    -0.2

    3020

    0

    20

    0.2

    1010

    0 0

    TV-LSQR

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 26 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Tomography example with flexible TV regularization

    small PRtomo example: 32× 32 pixels; A ∈ R2025×1024... ongoing work

    5 10 15 20 25 30

    5

    10

    15

    20

    25

    30

    -1.2

    40

    -1

    -0.8

    -0.6

    30 40

    -0.4

    -0.2

    3020

    0

    20

    0.2

    1010

    0 0

    TV-LSQR “0 norm”

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 26 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    Summary of benefits ...

    Flexible Krylov methods4 Avoid inner-outer schemes (current solution immediately incorporated

    in basis)4 Both square (flexible Arnoldi) non-square problems (flexible

    Golub-Kahan)4 Optimality and equivalency results

    Hybrid method4 Stabilize reconstruction errors4 Automatic choice of λ and stopping criteria

    Transformed problem4 Enforce sparsity in a transform4 Connections to multi-parameter regularization

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 27 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    ... and (hopefully) (much) more work to do ...

    deeper theoretical analysis (convergence, recovery guarantees);extension to yet other regularization terms or constraints;parameter choice for nonlinear problems and solvers;

    References

    J. Chung and S. G. Flexible Krylov methods for `p regularization. SISC, 2019.S. G. and M. Sabaté Landman. Flexible GMRES for Total Variation regularization.BIT, 2019.S. G., P. C. Hansen, and J. Nagy. IR Tools: A MATLAB Package of IterativeRegularization Methods and Large-Scale Test Problems. Numer. Algorithms, 2018.https://github.com/silviagazzola/IRtools

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 28 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    ... and (hopefully) (much) more work to do ...

    deeper theoretical analysis (convergence, recovery guarantees);

    extension to yet other regularization terms or constraints;parameter choice for nonlinear problems and solvers;

    References

    J. Chung and S. G. Flexible Krylov methods for `p regularization. SISC, 2019.S. G. and M. Sabaté Landman. Flexible GMRES for Total Variation regularization.BIT, 2019.S. G., P. C. Hansen, and J. Nagy. IR Tools: A MATLAB Package of IterativeRegularization Methods and Large-Scale Test Problems. Numer. Algorithms, 2018.https://github.com/silviagazzola/IRtools

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 28 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    ... and (hopefully) (much) more work to do ...

    deeper theoretical analysis (convergence, recovery guarantees);extension to yet other regularization terms or constraints;

    parameter choice for nonlinear problems and solvers;

    References

    J. Chung and S. G. Flexible Krylov methods for `p regularization. SISC, 2019.S. G. and M. Sabaté Landman. Flexible GMRES for Total Variation regularization.BIT, 2019.S. G., P. C. Hansen, and J. Nagy. IR Tools: A MATLAB Package of IterativeRegularization Methods and Large-Scale Test Problems. Numer. Algorithms, 2018.https://github.com/silviagazzola/IRtools

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 28 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    ... and (hopefully) (much) more work to do ...

    deeper theoretical analysis (convergence, recovery guarantees);extension to yet other regularization terms or constraints;parameter choice for nonlinear problems and solvers;

    References

    J. Chung and S. G. Flexible Krylov methods for `p regularization. SISC, 2019.S. G. and M. Sabaté Landman. Flexible GMRES for Total Variation regularization.BIT, 2019.S. G., P. C. Hansen, and J. Nagy. IR Tools: A MATLAB Package of IterativeRegularization Methods and Large-Scale Test Problems. Numer. Algorithms, 2018.https://github.com/silviagazzola/IRtools

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 28 / 28

  • Introduction Methods based on FGK Sparsity under transform Numerical experiments Conclusions

    ... and (hopefully) (much) more work to do ...

    deeper theoretical analysis (convergence, recovery guarantees);extension to yet other regularization terms or constraints;parameter choice for nonlinear problems and solvers;

    References

    J. Chung and S. G. Flexible Krylov methods for `p regularization. SISC, 2019.S. G. and M. Sabaté Landman. Flexible GMRES for Total Variation regularization.BIT, 2019.S. G., P. C. Hansen, and J. Nagy. IR Tools: A MATLAB Package of IterativeRegularization Methods and Large-Scale Test Problems. Numer. Algorithms, 2018.https://github.com/silviagazzola/IRtools

    S. Gazzola (UoB) Regularization by Flexible Krylov Methods August 6, 2019 28 / 28

    Introductionp variational regularizationIteratively Re-weighted Norm (IRN) methods

    Methods based on the Flexible Golub-Kahan (FGK) algorithmFlexible Golub-Kahan (FGK) AlgortihmFLSQR and FLSMRHybrid FLSQR and Hybrid FLSMR

    Sparsity under transformInvertible transforms (wavelets)Non-Invertible transforms (TV)

    Numerical experimentsConclusions