floating cylinder

Upload: egwuatu-uchenna

Post on 14-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Floating Cylinder

    1/35

    Ocean Engng, Vol. 15, No 6, pp. 549-583, 1988. 0029-8018/88 $3.00 + .00Printed in Gre at Britain. Pergamo n Press plc

    H Y D R O D Y N A M I C I N T E R A C T I O N S I N F L O A T I N GC Y L I N D E R A R R A Y S - - I . W A V E S C A T T E R I N G

    A . N . W I L L I A M SDepartmen t of Civil Engineering, University of Houston, Houston, TX 77004 , U.S.A.

    a n dZ. DEMIRBILEKProduction Research Division, Conoco Inc., Ponca City, OK 74603, U.S.A.

    Ab stract--T he hydrodynamic interactions due to wa ve scattering between the numbers of anarray o f stationary, truncated circular cylinders simulating the colum ns of an idealized tension-leg platform (TLP) are investigated. Th e m ethod of solution fo r the fluid velocity potentialinvolves replacing scattered waves by equivalent plane w aves together with non-planar correctionterms. This technique is, therefore, essentially a large spacing approximation. Use of thisapproach makes it poss ible to determine the hydrod ynamic interactions between the arraymembers utilizing only the diffraction characteristics of an isolated cylinder.Numerical results are presented for six array configurations consisting of 2-6 cylindersrepresenting the le gs of idealized TLPs. Calculations of the wave loads on these cy linders havebeen perform ed for a range of wave and structural parameters. It is found that, for certainparameter combinations, the influence of neighbouring bodies on the total wave field leads tohydrodyn amic loading on individual colum ns which is significantly greater than the loadingthey would experience in isolation. Th e presented results demon strate the significance ofhydrodynamic interactions between TLP columns and clearly indicate that these effects shouldbe considered b y the designers and researchers associated with TLP s.

    1. I N T R O D U C T I O NT H E HY DR OD YN AM IC i n t e r a c t i o n s b e t w e e n t h e v a r i o u s m e m b e r s o f c o m p l e xm u l t i c o m p o n e n t o c e a n s t r u c t u r e s s u b j e c t e d t o w a v e a c t i o n is o f c o n s i d e r a b l e p r a c ti c a li m p o r t a n c e . I n t h is c a s e o f a te n s i o n - l e g p l a t f o r m ( T L P ) w h i c h c o n t a i n s s e v e ra l v e r t ic a lc o l u m n s o f r e l a t i v e l y l a r g e d i a m e t e r , i t is e x p e c t e d t h a t t h e i n f lu e n c e o f t h e n e i g h b o r i n gm e m b e r s o n t h e t o t a l w a v e f ie ld m a y l e a d t o h y d r o d y n a m i c l o a d i n g o n in d i v id u a lc o l u m n s w h i c h d i ff e r s si g n if i ca n tl y f r o m t h e l o a d i n g t h e y e a c h w o u l d e x p e r i e n c e i ni s o l a t i o n .

    I n p ri n c ip l e , t h e h y d r o d y n a m i c l o a d i n g o n a n y t h r e e - d i m e n s i o n a l s t r u c t u r e o f a r b i t r a r yg e o m e t r y m a y b e c a lc u l a t e d n u m e r i c a l ly t h r o u g h t h e u s e o f s o u r c e d i s tr i b u t io n o rG r e e n ' s f u n c t i o n t e c h n i q u e s ( s e e , f o r e x a m p l e , S a r p k a y a a n d I s a a c s o n , 1 98 1 ). H o w e v e r ,s u c h a n a p p r o a c h m a y b e c o m p u t a t i o n a l l y e x p e n s i v e s in c e th e w e t t e d s u r f a c e o f t h ee n t i r e s t r u c t u r e m u s t b e d i s c r e t i z e d i n t o a n u m b e r o f sm a l l f a c e t s a n d a l a r g e s y s t e mo f a l g e b r a i c e q u a t i o n s s o l v e d t o o b t a i n t h e f lu i d v e l o c i t y p o t e n t i a l o n t h e s t r u c t u r a ls u r f a ce . A l s o , o n e o f se v e r a l a l te r n a t i v e s e m i - a n a l y t i ca l a p p r o a c h e s m a y b e u s e d t os o l v e t h e h y d r o d y n a m i c i n t e r a c t io n p r o b l e m ; f o r e x a m p l e , a d i r e ct m e t h o d i n v o l v i n gt h e s o l u ti o n o f a m a t r i x e q u a t i o n t o d e t e r m i n e t h e u n k n o w n c o e ff i c i e n ts o f a n a s s u m e df o r m f o r t h e t o ta l s c a t t e r e d w a v e f ie ld ( S p r i n g a n d M o n k m e y e r , 1 9 74 ) o r a m u l ti p le

    549

  • 7/30/2019 Floating Cylinder

    2/35

    550 A.N. WU.I.IAMSand Z. DI~MIRBIL~Kscattering technique in which each scattering event within the array is treatedsuccessively (Ohkusu, 1974). Recently, Kagemoto and Yue (1986) have presented anapproach which combines the features of the direct matrix method and the multiplescattering technique and which is algebraically exact within the context of the linearizedwave theory.However, when both the member spacing to incident wavelength ratio and themember spacing to cylinder diameter ratio are sufficiently large, then the full diffractionproblem which includes the consideration of the evanescent wavefield in the interactionsolution need not be solved and a theory based on a large-spacing assumption mayreasonably be used (Martin, 1984). One such method is the modified plane-wavetechnique in which a cylindrical wave scattered by one body is replaced in the vicinityof another body by an equivalent plane wave together with a non-planar correctionterm, and evanescent waves are neglected when computing interference effects (Mclverand Evans, 1984; McIver, 1984; Abul-Azm and Williams, 1987). The method is anextension of the plane wave approach of Simon (1982) and has been shown to providea major saving in computational effort when compared to the direct method or themultiple scattering technique (Mclver and Evans, 1984; Mclver, 1984). In commonwith the method of Kagemoto and Yue (1986) and Ohkusu (1974), the modified plane-wave method enables the hydrodynamic loading on a structural array to be determinedfrom a knowledge of the wave scattering characteristics of the individual members only.

    In the present paper the modified plane wave method is utilized to calculate thehydrodynamic interactions between the members of an array of stationary truncatedcircular cylinders of equal radius. The fluid is assumed to be inviscid and incompressibleand to undergo small-amplitude, irrotational motion. Numerical results are presentedfor arrays of 2-6 cylinders for a range of wave and structural parameters. Comparisonsare made with published results obtained from the potentially more accurate sourcedistribution technique and good agreement with the present method is shown. It isfound that for certain parameter combinations individual cylinders may experiencehydrodynamic loading significantly greater than that which they would experience inisolation, even at a relatively large spacing.

    2, THEORETICAL DEVELOPMENTAn array of N stationary truncated circular cylinders of equal draft b and radius aare situated in water of uniform depth d, the clearance beneath each cylinder will be

    denoted by h ( = d - b ) . Cartesian coordinates will be employed with the x- and y-axesin the horizontal plane of the sea-bed and the z-axis pointing vertically upwards froman origin on the sea-bed directly below the center of cylinder 1. The center of eachcylinder, at point ( x j , y fl j = 1 ,2 . . . . N is taken as the origin for a local polar coordinatesystem (r j , Oj ) where 0 is measured counterclockwise from the positive x-axis. Thecenter of the kth cylinder has polar coordinates (R~k, e~j~) relative to that of the jthcylinder for j , k = 1 ,2 ,. . .N . A horizontal section showing the coordinate relationshipsbetween the jth and kth cylinders is shown in Fig. 1. The cylinder array is subjectedto an incident train of regular surface waves of amplitude H (crest-to-trough height2H), angular frequency to and wavenumber ko propagating at an angle 13 to the positivex-direction.

  • 7/30/2019 Floating Cylinder

    3/35

    Hydrodynamic in te rac t ions in f loa t ing cyl inder a r rays - - - Ip k

    rjR~k

    J

    Fro. 1 . H or izonta l c ross -sec t ion showing coordina te re l a t ionships be tw een cyl inders j a nd k .

    55 1

    A s s u m i n g t h a t t h e f l u i d i s i n v i s c i d a n d i n c o m p r e s s i b l e , t h e s m a l l a m p l i t u d e ,i r r o t a t i o n a l f l u i d m o t i o n m a y b e d e s c r i b e d i n t e r m s o f a v e l o c i t y p o t e n t i a l ~ b( x, y , z , t ) ,w h e r e t h e f l u id v e l o c i t y v e c t o r q -- V ~b . I t f o l l o w s t h a t t h i s fl u i d p o t e n t i a l m u s t s a t i s f yL a p l a c e ' s e q u a t i o n

    V2~b = 0 (1 )i n t h e r e g i o n o f f l o w . T h e s e a - b e d b o u n d a r y c o n d i t i o n i s

    O~_~= 0 o n z = O , ( 2 )O zw h i l s t t h e l i n e a r i z e d f r e e - s u r f a c e b o u n d a r y c o n d i t i o n i s

    a2,1, + a ~0 t- T g ~ z = 0 o n z = d , ( 3 )w h e r e g i s t h e a c c e l e r a t i o n d u e t o g r a v i t y . T h e b o u n d a r y c o n d i t i o n s o n t h e i m m e r s e dc y l i n d e r s u r fa c e s a r e b e s t e x p r e s s e d i n t e r m s o f t h e i r l o c a l p o l a r c o o r d i n a t e s , t h a t i s

    O r j = 0 o n r j = a , h < - z < d , ( 4 a )0~_~ = 0 o n z = h , O < - r j < a , ( 4 b )O z

    f o r j = 1 , 2 . . . . N . In a d d i t i o n t h e r e i s a r a d i a t i o n c o n d i t i o n o n t h e s c a t t e r e d c o m p o n e n to f 6 w h i c h e n s u r e s t h a t t h e s c a t te r e d w a v e s p r o p a g a t e a w a y f r o m t h e d i f f r a c t i n gc y l i n d e r .

  • 7/30/2019 Floating Cylinder

    4/35

    5 5 2 A . N . W . J a A M S a n d Z . [ )E M ,R m L t! K

    Y

    ~ X

    Z =~7(r, o, t) + d ~

    2 I dII - 2 a - II I h

    I // / / / / / / / / / / / / / / / ~ / / / / / / / / / / /FIG. 2. De finition sketch for isolated cylinder.

    3 . S O L U T I O N F O R A N I S O L A T E D C Y L I N D E RB e f o r e i n v e s t i g a t i n g t h e h y d r o d y n a m i c i n t e r a c t i o n s b e t w e e n t h e v a r i o u s m e m b e r s

    o f a c y l i n d e r a r r a y i t i s f i r s t n e c e s s a r y t o o b t a i n a d e s c r i p t i o n o f t h e i n t e r a c t i o n o f as in g l e s tr u c t u r e a n d t h e i n c i d e n t w a v e f i e ld . T h i s s o l u t i o n w a s f ir st o b t a i n e d b y G a r r e t t( 1 9 7 1 ) .

    C o n s i d e r a s t a t i o n a r y , i s o l a te d , t r u n c a t e d c y l i n d e r ] o f d r a f t b a n d r a d i u s a s i t u a t e di n w a t e r o f u n i f o r m d e p t h d a s d e p i c t e d i n Fi g. 2 . T h e f lu id d o m a i n is d i v i d e d i n t o 2r e g i o n s , o n e b e n e a t h t h e c y l i n d e r , t h e i n t e r i o r re g i o n ( 1 ) , th e o t h e r e x t e r i o r t o t h ec y l i n d e r a n d e x t e n d i n g t o i n f in i ty in t h e h o r i z o n t a l p l a n e ( 2 ). T h e p o t e n t i a l i n th ee x t e r i o r r e g i o n is d e c o m p o s e d i n to i n c i d e n t a n d s c a t te r e d c o m p o n e n t s , t h a t is

    d~ = ~bl fo r O < - r < - a, O < - z < - h , ( 5 a )d~ = d ~ 2 1 + d ~ f o r a < - - r < - ~ , O < ~ z< ~ d , ( 5 b )

    w h e r e , f o r c o n v e n i e n c e t h e s u p e r s cr i p t j h a s b e e n d r o p p e d . T h e m a t c h i n g c o n d i ti o n sa t t h e i n t e r f a c e b e t w e e n t h e t w o r e g i o n s r e p r e s e n t i n g c o n t i n u i t y o f p r e s s u r e a n d m a s sf l u x a c r o s s t h e i n t e r f a c e m a y b e w r i t t e n

    ( ~ 1 = ( I ) 2 1 + l ~ )2 s f o r O < - z < - h , o n r = a , ( 6 a )~- for O < - z < - h , o n r = a . ( 6 b )a r O r O r

  • 7/30/2019 Floating Cylinder

    5/35

    Hy drodynam ic interactions in floating cylind er arrays---I 553I n e q u a t i o n s ( 5 ) a n d ( 6 ) t h e i n c i d e n t p o t e n t i a l +2 i i s t h a t c o r r e s p o n d i n g t o a r e g u l a rw a v e o f a m p l i t u d e H p r o p a g a t i n g i n t h e p o s i t i v e x - d i r e c t i o n a n d i s g i v e n i n p o l a rc o o r d i n a t e s b y

    g H c o s h k o z ~ 2 1R ~ ~ c o ~ s h - k ( ~ m / ~ = O m i m + l J m ( k r ) co s m O e - i ~ t , (7 )i n w h i c h Jm d e n o t e s a B e s s e l f u n c t i o n o f t h e f i r s t k i n d o f o r d e r m a n d R e d e n o t e s t h er e a l p a r t o f a c o m p l e x e x p r e s s i o n . I n e q u a t i o n ( 7) e, , is N e u m a n n ' s n u m b e r , % = 1 ,e,~ = 2 , m --- 1 a n d t h e w a v e f r e q u e n c y a n d w a v e n u m b e r a r e l i n k e d t h r o u g h t h ed i s p e r s i o n r e l a t i o n

    o 2 = g k o t a n h k o d . (8 )T h e v e l o c it y p o t e n t i a ls i n e a c h d o m a i n a r e n o w e x p r e s s e d in t h e f o r m

    ~cd ?l - g n ~ a t t tm ) ( r ,z ) C O S m O e - R t, (9a )R e o m =O~ c~b2 = ~ ~ ~ [ m ) ( r , z ) c o s m O e - i ~ ' . ( 9 b )R e w m : O

    I n r e g i o n ( 1 ) t h e d i m e n s i o n l e s s s p a t i a l s o l u t i o n i s e x p r e s s e d a sA ' g { r_ ] : I m ( n ~ rr /h )~ m ) ( r , z ) = 2 - ~ a] + z .,~ A(m)--, ( n lr z/ h ) (10), = ~ i m ( n T r a/ h ) c o s

    w h e r e Im d e n o t e s a m o d i f ie d B e s s e l fu n c t i o n o f t h e f i rs t k i n d o f o r d e r m . T h e f o r m o fe q u a t i o n ( 1 0 ) e n s u r e s t h a t +1 s a ti s fi e s t h e g o v e r n i n g L a p l a c e e q u a t i o n a n d t h e s e a - b e db o u n d a r y c o n d i t i o n i n r e g i o n ( 1 ) . S e t t i n g r = a , e q u a t i o n ( 1 0 ) b e c o m e s a c o s i n e F o u r i e rs e r i e s w i t h c o m p l e x c o e f f i c i e n ts A ~~) w h i c h a r e g i v e n b yA ( ,m ) = ~ ~ ( f O ( a , z) c o s ( n ~ r z / h ) d z (11)

    f o r n = 0 , 1 , 2 . . .I n t h e e x t e r i o r r e g i o n ( 2 ) t h e d i m e n s i o n l e s s s p a t i a l s o l u t i o n m a y b e w r i t t e n a s, ~ m ) ( r , z ) = e m i m + ] C o s h k (r z { j m ( k o r ) J '~ ( k o a) }c o s h k o~ d H ' ~ ( k o a ) H m ( k ( )

    H m ( k o r ) q ~ l B (q m ) g r n (k q F )+ n 6 r n ) n ' m ( k o a ) Z o ( z ) + = g ' ~ ( k q a ) q ( z ) , (12)w h e r e H , , i s th e H a n k e l f u n c t io n o f th e f i rs t k i n d o f o r d e r m , c h o s e n i n o r d e r t h a t t h es c a t t e r e d c o m p o n e n t o f + 2 s a ti sf ie s t h e a p p r o p r i a t e r a d i a t i o n b o u n d a r y c o n d i t i o n . I ne q u a t i o n ( 1 2) t h e f u n c t i o n s K , , d e n o t e t h e m o d i f i e d B e s s e l f u n c t io n o f t h e s e c o n d k i n do f o r d e r m , p r i m e s d e n o t e d i f f e r e n t ia t i o n w i t h re s p e c t t o a r g u m e n t a n d t h e e i g e n v a l u e sk q f o r q = 1 ,2 . . . . a r e t h e p o s it iv e r ea l r o o t s o f

    (o2 + gk q t a n k q d = 0. (13)

  • 7/30/2019 Floating Cylinder

    6/35

    554 A .N . WILLIAMSand Z. DEMIRBILEKT h e f u n c t i o n s Z q ( Z ) a r e o r t h o n o r m a l o v e r t h e i n t e r v a l [ O ,d ] a n d a r e d e f i n e d b y

    7 -~ 2 c o s h k o zZ o ( z ) = [ f ~ s i n h 2 k o d / 2 k ~ d ] ~ for q -> 0 , (14)

    ~2"COS k q zZ q ( z ) - [1 + sin 2 k q d / 2 k q d ] or q - I . (15)

    T h e c o m p le x c o e f f i c i e n t s B~ qm ) a p p e a r in g i n e q u a t i o n ( 1 2 ) a r e , a t p r e s e n t , u n k n o w n .T h e f o r m o f e q u a t i o n ( 1 2 ) e n s u r e s t h a t qb2 s a t is f ie s t h e g o v e r n in g L a p l a c e e q u a t i o nt o g e t h e r w i t h t h e r a d i a t i o n , s e a - b e d a n d l i n e a r i z e d f r e e - s u r f a c e b o u n d a r y c o n d i t i o n s i nr e g io n ( 2 ) . D i f f e r e n t i a t i n g e q u a t i o n ( 1 2 ) w i th r e s p e c t t o r a n d s e t t i n g r = a , t h e nm u l t i p ly in g b o th s i d e s b y Z q ( z ) a n d i n t e g r a t i n g o v e r [ 0 ,d ] , l e a d s t o t h e f o l l o win ge x p r e s s io n f o r t h e c o m p le x c o e f f i c i e n t s B~ qm),

    1 I d O ~ t ,~ 'mB

  • 7/30/2019 Floating Cylinder

    7/35

    Hydrodynamic nteractions in floating cylinder arrays---I 555

    F~ = - p Jo Jo 0~- r dr dO (20b)

    M = - 2 a o i S f [ ( z - h ) ,= cos(xr-O) d0 dz(27 (. 0~bl ~=hCOS 0r_0 ) rE dr dO (20c )-Jo JoT h e f o r c e s a n d m o m e n t o n a n i s o l a t e d c y li n d e r t a k e t h e f o l lo w i n g f o r m s

    F,, ~,o, 2i (s in h k o d - s inh koh)p g~ - w a 2 - e - ~ ~ - - ~ o d

    i B ~ l ) H l ( k o a ) V r 2 (s inh kod - s inh k ,h )k o a H ~ ( k o a ) [1 + sinh 2 k o d / 2 k o d ] ~

    = B~ q l )K l ( k q a ) ~ - ( s i n k q d - s in k q h ) ]- ~ k q a I ( i ( k q a ) [1 + sin 2 k q d / Z k q d ] ~ j , (21a)q=l

    F ~ . ( i A ~ ) 2 ih = ( - 1 ) " l l ( m r a / h ) lp g ~ - a 2 - e ' 0 " 1 ~ + - - Z A # ') (21b)a n , = x n lo(n~ra/h ) J '

    [cos2k,g/(Jl(ka) H'l(koa)Jl(ka)Hl(/q,a))i B [ ~ ) H ~ ( k o a) ~ - 2

    H~(koa)[1 + sinh 2 k o d / 2 k o d Pg ( 1 ) g l ( k q a ) ~ ] i A h 1 )

    - i Z g ~ ( k q a) [ 1 + sin 2 k q d / 2 k q d ] J 8q=l A . ( - X ) h- t ~ . . . . . ( - - l o (n ~ r a/h ) 2 l l (n ' r r a / h ) . (21c), ,= 1 t l ( n 'c r a m ) \ m r a n

    4 . E X T E N S I O N T O C Y L I N D E R A R R A YTh e d i f f icu l ty in general iz ing the resu l ts fo r an i so la ted cy l inde r to the case o f a cy l indera r ray a r i ses f ro m th e mu tu a l h y d ro d y n am ic in t e r fe ren ce e ffec t s b e tw een th e cy l in d er s an dt h e p r o b l e m o f h o w t o s u m t h e v a r i o u s s c a t t e r e d w a v e c o m p o n e n t s o n e a c h i n d i v i d u a l

    cy l inder . In o rd er to s im pl i fy the so lu t ion , the spacings R ~ k ] , k = 1 ,2 . . . . . N b e t w e e n t h e

  • 7/30/2019 Floating Cylinder

    8/35

    556 A . N . WII.LIAMS nd Z. DEMIRBILEKc y l i n d e r s w i l l b e a s s u m e d t o b e m u c h l a r g e r t h a n t h e i n c id e n t wa v e l e n g th , i . e . k o R j k1 . U n d e r t h i s a s s u m p t i o n t h e d i v e r g i n g w a v e s e m a n a t i n g f r o m o n e c y l i n d e r m a y b er e p l a c e d i n t h e v i ci n it y o f a n o t h e r c y l i n d e r b y a p l a n e w a v e t o g e t h e r w i t h a n o n - p l a n a rc o r r e c t io n t e r m ( M c l v e r a n d E v a n s , 1 9 8 4 ; M c l v e r , 1 9 8 4 ; A b u l - A z m a n d W i l li a m s , 1 98 7) .

    C o n s i d e r t h e j th c y l i n d e r i n t h e a r r a y , c e n t e r e d a t (x j,y y) . T h e v e l o c i t y p o t e n t i a l d u et o a r e g u l a r w a v e p r o p a g a t i n g a t a n a n g l e 13 t o t h e p o s i t i v e x - a x is r e f e r r e d t o t h e ( x , y )C a r t e s i a n c o o r d i n a t e s y s t e m i sg H c o s h k o zbzt - ~ cosslak o d sin (kox cos13 + k o y sin13 - ~ot). (22)

    T h i s p o t e n t i a l m a y b e r e f e r r e d t o t h e l o c a l p o l a r c o o r d i n a t e s y s t e m ( r j , 0 j ) c e n t e r e d a t( x j , y j ) a sg H c o s h k o z

    +~ ' R e ~ ~ P i i e x p {ik ,)r jcos(0 i -13)}e - i ' ' (23 )w h e r e P j i s a p h a s e f a c t o r d e f i n e d b y P j = e x p {i(k~rxjcos13 + k o y j s in13)} . Th is express ionm a y b e r e w r i t t e n a s

    g H c o s h k o zd)~, R e ~ co~shkod v] ~ ~ .mim+|Jm(kor]) COS m(O j--13)e i 't . (24)m : 1}

    R e f e r r e d t o a n o r ig i n a t t h e c e n t e r o f c y l i n d e r j t h e i n t e r io r a n d e x t e r i o r p o t e n t i a l sh a v e t h e f o r m s

    _ g Hf~){R e ~ P ] ~ ~ I ttm ) ( r] 'z) cos m (O j-13 )e i ,, ,, (25a)m=O

    oc+~ =~ g H p ~ ~ , ~ m ) ( r j , z ) c o s m ( O i - 1 3 ) e - i '% ( 2 5 b )/~e 00 m=O

    I t c a n b e s e e n t h a t t h e e q u a t i o n s w h i c h d e t e r m i n e t h e p o t e n t i a l c o e f f i c i e n t s A (,m) a n dB(~m) w i l l b e i d e n t i c a l t o t h o s e o b t a i n e d p r e v i o u s l y in t h e i s o l a t e d c y l i n d e r c a s e , i .e . t h ep o t e n t i a l c o e f f ic i e n ts a re i n d e p e n d e n t o f t h e p a r t i c u l a r c y l i n d e r , ] . T h u s t h e s c a t t e r e dp o t e n t i a l i n t h e e x t e r i o r d o m a i n c a u s e d b y a w a v e i n c i d e n t o n c y l i n d e r j h a s t h e f o r m

    w h e r e( D ~ ( r J ' O ] ' z ' 1 3 ) ; e ~ - PJ m= o ~Zt~sm)(rJ'z) s m ( O j - 1 3 ) e - i ' " (26)

    ~ ) ( r i , z ) = _ +1 co sh k o z J ' , . ( k o a ) Hm( k o r j )e , . t " c o s h k o d H ~ ( k ( ~ )H , ,,( ko rj) ~ K m ( k q r j )+ B~ ") H ' ., ( koa) Zo (z ) + ~ B(qm) Z o ( z ) .q = l g'~(kqa) (27)

  • 7/30/2019 Floating Cylinder

    9/35

    Hydrodynam ic nteractions in floating cylind erarrays---I 557C o n s i d e r a n o t h e r c y l i n d e r , k , a d i s t a n c e R j k a w a y f r o m c y l i n d e r j a s s h o w n i n F ig . 1 .T h e w a v e s c a t t e r e d f r o m c y l i n d e r j m a y h e r e f e r r e d t o a n o r i g i n a t c y l in d e r k b y t h eB e s s e l f u n c t i o n a d d i t i o n t h e o r e m ( W a t s o n , 1 9 4 4 ) . B y t h e a d d i t i o n t h e o r e m ,

    oo

    H , , , ( k o r i ) c o s m ( O j - a i k ) = E

    H , , , ( k o r i ) s in m ( 0 j - % , ) = EH , , ,+ e ( k o R j k ) J e ( k o r k ) cos e (0tk/--0k) (28a)

    H m + e ( k o R j k ) J e ( k o r k ) sin e (akj--Ok). (28 b)S o r e f e r r e d t o a n o r i g in a t c y l i n d e r , k , t h e s c a t t e r e d w a v e e m a n a t i n g f r o m c y l i n d e r j i sg i v e n a p p r o x i m a t e l y b y

    + ~ . ,( r , O t , ,z , f t ) - g Hm = O

    . ( _ ~mim+lco sh k o z J ' , , ( k o a ) B ( ~ ' ) o ( z ) ]co sh k o d H m ( k o a ) + H " ( k o a ) / "(, , ,+ e ( k o R i k ) J e ( k o r k ) cos m(%k--13) COS e(a kj--0 k) (29)

    - s i n m ( % k - f i ) s i n , ( o t k j - O k ) ) } e - i ' t ,s i n c e t h e e v a n e s c e n t m o d e s m a y b e n e g l e c t e d f o r l a r g e k o R i k . A lso , fo r l a rg e k o R j , ,H , , , + e ( k , r R , ) _ ( _ i ) ~ H m ( k o R j ~ , ) { 1 + i (, 2 + 2 m , ) }2 k , ~ j k + O [ (k o R j k ) 2 ] (30)a n d s o t h e s c a t t e r e d p o t e n t i a l a t c y l i n d e r k c a u s e d b y a w a v e i n c i d e n t o n c y l i n d e r j m a yb e w r i t t e n a s

    l ~ ( r k , O k , z , f 3 ) R e O ) P j S ( R j , , a j k , f3 ) e-ik,"ks(~*F%

    in w h ich+ D(r,,0k,13)} cosh k o z e - i " ' ,

    m = 0 H~,(koa)[1 + sinh 2 k o d / 2 k o d ] ~ m m + l J 'm ( k ( l ) I- co sh k o d H ~ , (k o a)J n , , , ( k , r R j , ) co s m ( a j , - ~ )

    i s t h e a m p l i t u d e o f t h e e q u i v a l e n t p l a n e w a v e a n d

    (31)

    (32)

  • 7/30/2019 Floating Cylinder

    10/35

    558 A . N . WILLIAMS and Z. DEMIRBILEKDk j ( f3 ) = D ( rk , Ok , f 3 )

    = lq;i~,jk Ski(13) ~ (- -1 ) e g2je (kork ) COS W OLkj--Ok) (33)#-4 )

    + rk / (~) ~ e t ( - - i ) ~'t J e ( k o r k ) sin e (~kj--Ok)[ =11

    i s t h e n o n - p l a n a r c o r r e c t i o n t e r m , w h e r e

    T k j( [3 = T ( R j k , % k , [ 3 ) = m=o 1 + sin h 2 k o d / 2 k o d ] ~e m m + l : /~ ,, (koa) / . . . . . s inm(% k--f3 ) . (34)co sh k o d H m ( k o a ) ] n ,. tX ( ~ X j k ) m

    S in ce th e ex p ress io n fo r ~ i s v a l id t o O [ ( k o R / k ) - 3 / 2 ] , i t i s co n s i s t en t t o ap p ro x imateH m ( k o R j k ) b y { im a }H , . ( k o R j k ) ~ H o ( k ( ~ i k ) 1 + 2 ~ + O [ ( k R j k )- 2 ] (35)a n d t o s u b s t i t u t e t h e a s y m p t o t i c f o r m o f t h e H a n k e l f u n c t i o n o f z e r o o r d e r , ( W a t s o n ,1944) to y ie ld a s impl i f ied fo rm for Sk i ( f 3 ) , n a m e l y

    { B ,~ _ _ , , H ' . , ( k o a ) [1 + sinh 2 k o d / 2 k o d ] ~

    (36)i ( 4 m 2 - 1 ) te , ,, i " + ' J ' ~ ( k o a ) / 1 + c o s m ( O t / k - - ~ ) e i ( k o R / k - ' r / 4 ) .

    - co sh k o d H ~ ( k ( a ) ] ~ }T h e to t a l i n c id en t p o ten t i a l o n cy l in d er j i n an a r ray o f N cy l in d er s co n s i s ts o f t h reec o m p o n e n t s :( 1) t h e i n c i d e n t p l a n e w a v e f r o m o u t s i d e t h e c y l i nd e r g r o u p w h i c h h a s a p o t e n t i a l ,m e a s u r e d r e l a ti v e t o c y l i n d e r j , o f

    g H co sh k(,z e,,,i,,,+ 1 Jm (k0rj) c os m ( O j - ~ ) e - i j t , (37)(2 ) th e p l an e w av e ap p ro x imat io n to th e w av e f i e ld a t t h e j t h cy l in d er d u e tos c a t t e r i n g f r o m t h e r e m a i n i n g ( N - l ) c y l i n d e r s , t h i s h a s t h e p o t e n t i a l

    o / 4O~ Z CJ e--iko~fs(~Jk--OPcos h koz e-i~ '0O k=lk g * /

    (38)

  • 7/30/2019 Floating Cylinder

    11/35

    Hydrod ynam ic interactions in floating cylinder arr ay s-- I 559w h e r e c jk is th e ( u n k n o w n ) c o m p l e x a m p l i t u d e o f t h e r e s u l t a n t a p p r o x i m a t i n g p l a n ew a v e a t t h e j t h c y l i n d e r , r e p r e s e n t i n g s c a t t e r in g f r o m t h e k t h c y l i n d e r ,( 3 ) t h e n o n - p l a n a r f i r s t - c o r r e c t i o n t o t h e s c a t t e r e d p l a n e w a v e s . T h i s d e p e n d s o n t h ep l a n e w a v e s s c a t t e r e d b y a l l o f t h e c y l i n d e r s ( t y p i f i e d b y t h e k t h c y l i n d e r ) a n d c o n s i s t so f tw o p a r t s , ( a ) t h e c o r r e c t i o n d u e t o t h e s c a t te r in g o f th e i n c i d e n t w a v e f r o m o u t s i d et h e c y l in d e r g r o u p b y th e o t h e r ( N - 1 ) c y l in d e r s an d ( b ) t h e c o r re c t i o n t o t h e s c at te r in go f t h e p l a n e w a v e s i n (2 ) fr o m t h e o t h e r ( N - l ) c y l in d e r s, i .e . t h e c o r r e c t io n s t o th e" b a c k - s c a t t e r e d ' w a v e s . T h i s p o t e n t i a l , c o n s i s t i n g o f p a r t ( a ) a n d p a r t ( b ) , i s g i v e n b y

    P g D ( r j ,O j ,~ ) + C k e D ( r j ,O j ,e t ,~ ) c o s h k o z e - i t . (39)k g : j e ~ k

    T h e e q u i v a l e n t p l a n e w a v e a m p l i t u d e Cjk i s t h e t o t a l s c a t t e r e d w a v e f r o m t h e k t hc y l in d e r e v a l u a t e d a t t h e j t h c y l in d e r a s d is c u s se d a b o v e a n d m a y b e d e t e r m i n e d a sf o l lo w s . T h e p l a n e w a v e a m p l i t u d e cjk c o n s i s t s o f t w o p a r t s , o n e d u e t o t h e s c a t t e r i n go f t h e i n c i d e n t w a v e b y c y l i n d e r k a n d t h e o t h e r d u e t o t h e s c a t t e r i n g b y c y l i n d e r k o ft h e p l a n e w a v e s s c a tt e r e d b y all t h e o t h e r c y l i n d e rs i .e . t h e p l a n e w a v e c o m p o n e n t s o ft h e b a c k - s c a t t e r e d w a v e s . S o ,

    Nc jk = P k S ( R k j , a k j , ~ ) + ~ C ke S ( R k j ,e t k i, ae g ) (40)

    ~ =1 ~ k

    a n d a p p l y in g t hi s co n d i t i o n f o r j , k = 1 ,2 . . . . N , j : /: k , g iv e s N ( N - 1 ) e q u a t i o n s f o r t h ee q u i v a l e n t p l a n e w a v e a m p l i t u d e s c j k .T h e t o t a l w a v e p o t e n t i a l f o r e a c h c y l i n d e r m a y n o w b e o b t a i n e d b y r e - s o l v i n g t h ei s o l a t e d c y l i n d e r p r o b l e m d i s c u s s e d i n t h e p r e v i o u s s e c t i o n w h e r e i n e a c h c a s e t h ei n c i d e n t w a v e f i e l d h a s b e e n m o d i f i e d a c c o r d i n g t o t h e a b o v e a n a l y s i s t o t a k e i n t oc o n s i d e r a t i o n h y d r o d y n a m i c i n t e r f e r e n c e e f f e c t s .

    5 . N U M E R I C A L R E S U L T S A N D D I S C U S S I O NI n t h i s s e c t i o n , n u m e r i c a l r e s u l t s f o r a n u m b e r o f t e s t c a s e s a r e p r e s e n t e d . F o r e a c ho f t h e t e s t c a s e s a n a l y z e d , t h e r e s u l t s w i l l b e p r e s e n t e d a s d i m e n s i o n l e s s f o r c e o rm o m e n t c o e f f i ci e n ts w h e r e t h e l o a di n g o n t h e a r ra y m e m b e r h a s b e e n n o r m a l i z e d b yt h e c o r r e s p o n d i n g l o a d i n g c o m p o n e n t o n a n i s o l a t e d c y l i n d e r .F i g u r e 3 p r e s e n t s s i m p l e s k e t c h e s o f a l l s i x a r r a y c o n f i g u r a t i o n s n u m e r i c a l l yi n v e s t i g a t e d i n th i s s t u d y . D u e t o t h e d i r e c t a p p l i c a t i o n o f th e p r e s e n t w o r k t o t h et e n s i o n l e g p l a t f o r m d e s i g n c o n c e p t t h e a c r o n y m T L P p r e c e d e s t h e s e c a s e s .F o r c o n v e n i e n c e , a l l c o l u m n s a r e a s s u m e d t o b e o f e q u a l r a d iu s a a n d d r a f t b = 3 a ,t h e w a t e r d e p t h i n a ll c a s e s w a s t a k e n t o b e e q u a l t o t e n r a d ii , i . e . d = 1 0a . A l s o , t h ec e n t e r - t o - c e n t e r s p a c i n g b e t w e e n a d j a c e n t c y l i n d e r s w a s t a k e n t o b e u n i f o r m , R = 5 a .T h e o n l y e x c e p t i o n t o t h e a b o v e o c c u r s i n F i g . 4 w h e r e t h e n u m e r i c a l r e s u l t s o b t a i n e du s in g t h e p r e s e n t a p p r o a c h a r e c o m p a r e d t o t h o s e o f M a t s u i a n d T a m a k i ( 1 98 1 ). F o rt h is c a s e d = 1 0 a , b = 0 . 5 a a n d a n a d d i t i o n a l s p a c i n g o f R = 3 a is a l s o c o n s i d e r e d .O n e c o n s e q u e n c e o f t h e d r a f t b = 3 a c h o s e n f o r t h e n u m e r i c a l e x a m p l e s is t h a t t h ev e r t i c a l ( h e a v e ) f o r c e c o m p o n e n t i s v e r y m u c h l e s s t h a n t h e h o r i z o n t a l ( s u r g e , s w a y )c o m p o n e n t s w h e n e v e r t h e s e a r e n o n - z e r o . T h u s t h e n o r m a l i z e d p i t c h a n d r o l l

  • 7/30/2019 Floating Cylinder

    12/35

    560 A.N. WILLIAMS and Z, DEMIRBII.EK

    R

    TLP 2

    R//, I

    J R"-,,# ITLP 5 2 L ~ R

    # 'I RI

    " " I~ - . . .TL P 3 t ) z

    X/ \" / , , "

    / \

    \ /\ /R\ / R\ /

    TLP 6

    I II I R

    T L P 4 I Ii I

    I I II I IR I I I

    Flo. 3. Geo me tric configurations investigated in this study.TLP6R

    o v e r t u r n i n g m o m e n t s a r e i n d is t in g u i sh a b l e f r o m t h e n o r m a l i z e d s u rg e a n d s w a y f or c e si n t h e f o l l o w i n g f i g u r e s . I t i s e m p h a s i z e d t h a t t h i s i s s i m p l y a c o n s e q u e n c e o f t h ee x a m p l e g e o m e t r y c h o s e n a n d , i n g e n e r a l , t h e p it c h a n d r o ll m o m e n t s w i ll c o n t a i ns ig n if ic a nt c o n tr i b u t io n s f r o m t h e h y d r o d y n a m i c p r e s s u r e c o m p o n e n t a c ti n g b o t h o nt h e s i d e w a l l s a n d o n t h e u n d e r s i d e o f t h e s t r u c t u r e . T h e c o n t r i b u t i o n f r o m t h e v e r t i c a l

  • 7/30/2019 Floating Cylinder

    13/35

    Hyd rodyna m ic in te rac t ions in f loa t ing cy l inder a r ray s - -I 561

    2 5

    2

    tC

    P R E S E N TS T U D Yox

    0.'.

    M & TS E P A R A TION D IS TA N C E R = 50S E P A R A TION D IS TA N C E R = 50

    . . . . . S I NG L E B O D Y

    / 3 , ' , . 4 " . , ' - X t .. . . .I I I I I

    0.5 1 .0 1 .5 2 .0 2 .5k o O

    I5 ,0

    2 .5

    2 . 0

    1.5o l

    i. o

    0.,5

    0 0

    P R E S E N TS T U D Y M S T ~ SEPARATION DISTANCE R=~k: l

    I , X ~ ,~ S E P A R A TION ;D ISTA N C E R = 50" .~k , . . . . . S IN GLE B OD Y'.~~ , _ . - - - @

    "-~..

    I I I I I I0.5 1 .0 1 .5 2 . 0 2 .5 3 .0%0

    C y l i n d e r 1

    2~

    2,C

    N o 1.5:=

    N I . Gu-

    Q ~

    P R E S E N TS T U D Y M a T SEPARATION DISTANCE R = 50x ~ S E P A R A TION D IS TA N C E R = 5a

    . . . . . . . . S I N G L E B O D Y

    - - - , - @ . .. .. . . . . .. z ; ; t . . . . . . . . .

    0 O.D 1 .0 1 .5 2 .0 2 .5k o O

    I3 ,0

    2 ~

    2

    t , . " I.C

    0. ~

    P R E S E N TS T U D Y M S T

    . . . . . . . . S I N G L E BO D Y

    I I I I I0 5 I .O 1 . 5 2 D 2 . 5 5 0

    k o O

    C y l i n d e r 2FiG. 4 . Su rge and hea ve exc i t ing fo r c e s on two cy l inder a r ray fo r 13 = 0 , b /a = 0 .5 , d /a = 10 . Compar i s ono f p r e s e n t m e th o d w i th r es u l t s o f M a t s u i a n d T a m a k i ( 1 9 81 ) .

    p r e s s u r e c o m p o n e n t t o t h e o v e r t u r n i n g m o m e n t m a y b e e x p e c t e d t o b e m o s t s i g n i f i c a n tf o r b o d i e s o f s h a l l o w d r a ft .5. 1 . T w o c y lin d e r a r r a y ( T L P 2 )

    O n e o b j e c t i v e i n s t u d y i n g t h i s g e o m e t r y w a s t o c o m p a r e t h e r e s u l t s f r o m t h e p r e s e n tt h e o r e t i c a l s t u d y w i t h t h o s e o b t a i n e d b y M a t s u i a n d T a m a k i ( 1 9 8 1 ) , w h o s o l v e d t h e

  • 7/30/2019 Floating Cylinder

    14/35

    562 A. N, WILLIAMS and Z. DFMIRBII.[ K

    t w o c y li n d e r p r o b l e m u s in g a n a x i s y m m e t r i c G r e e n ' s f u n c ti o n a p p r o a c h . T h e o v e r a l la g r e e m e n t b e t w e e n t h e t w o a p p r o a c h e s h a s b e e n f o u n d t o b e v er y g o o d , as c a n b cs e e n f r o m F ig . 4 . F o r t h e s m a l l e r s e p a r a t i o n d i s t a n c e ( R = 3 a ) , th e p r e s e n t m e t h o do v e r e s t i m a t e s t h e n e t s u r g e f o r c e o n c y l i n d e r 2 e s p e c i a ll y i n t h e m i d f r e q u e n c y r a n g e .H o w e v e r , a t a s e p a r a t i o n d i s t a n c e o f R = 5 a t h e p r e d i c t io n s e x h i b it m u c h b e t t e ra g r e e m e n t , v a l i d a t i n g t h e p r e s e n t t h e o r y .

    F u r t h e r a n a l y s is o f t h e T L P 2 c o n f i g u r a t i o n h a s b e e n m a d e f o r c o n s t a n t R / a , b / a a n dd /a w i t h 13 = 0 , 4 5 a n d 9 0 , t h e d e t a i l e d r e s u l t s o f w h i c h a r e p r e s e n t e d i n F i g s 5 - 7 .I t is n o t e d t h a t t h e h y d r o d y n a m i c in t e r a c t i o n e f f e c t s d e p e n d s t r o n g ly o n t h e w a v ef r e q u e n c y . F r o m t h e f i g u r e s it c a n b e s e e n t h a t i n t e r a c t i o n e f f e c t s a r e n o t s ig n i f ic a n t a tv e r y lo w f r e q u e n c i e s a n d t h e r e f o r e m i g h t r e a s o n a b l y b e n e g l e c t e d w h e n e s t i m a t i n g d r if tf o r c e s .

    I t is a l s o n o t e d f r o m t h e f i g u r e s t h a t t h e a n g l e o f w a v e i n c i d e n c e p l a y s a m a j o r r o l ein d e t e r m i n i n g t h e d e g r e e o f h y d r o d y n a m i c in t e r fe r e n c e . T h e m a x i m u m s u rg e f o rc ea n d p i t c h m o m e n t o c c u r a t 13 = 0 , b u t t h e i r m a x i m a f o r t h e u p s t r e a m ( 1 ) c y l i n d e r a r er e d u c e d b y a b o u t 3 0 - 4 0 % w h e n 13 = 4 5 a n d b y a p p r o x i m a t e l y 7 0 % w h e n 13 = 9 0 .A l t h o u g h t h e r e i s a c o r r e s p o n d i n g i n c r e a s e in th e s a m e f o r c e a n d m o m e n t f o r t h ed o w n s t r e a m ( 2 ) c y l i n d e r w i t h i n c r e a s i n g 13, t h i s i n c r e a s e is n o t a s s u b s t a n t i a l . A se x p e c t e d , t h e s w a y f o r c e a n d r o l l m o m e n t e x h i b i t a n o p p o s i t e t r e n d t o t h e s u r g e f o r c ea n d p i t c h m o m e n t b e h a v i o r . F o r o b l i q u e w a v e s w i t h a n i n c i d e n t a n g l e o f 45 , t h ed o w n s t r e a m ( 2 ) c y l i n d e r e x p e r i e n c e s a l a r g e r s w a y f o r c e t h a n t h e u p s t r e a m ( 1 ) c y l i n d e ro v e r n e a r l y a ll t h e f r e q u e n c y r a n g e o f i n te r e s t . O b v i o u s l y , b o t h c o l u m n s w i ll h a v ee q u a l s w a y f o r c e s a n d r o l l m o m e n t s f o r 13 = 9 0 a s d e p i c t e d i n F ig . 7 .

    A l t h o u g h t h e h e a v e f o r c e s o n th e u p s t r e a m ( 1 ) a n d d o w n s t r e a m ( 2 ) c y l i n d e rs a r e n o te q u a l f o r a n y g i v e n k o a a n d 13 t h e y a t t a i n a p p r o x i m a t e l y t h e s a m e m a x i m u m v a l u e so v e r t h e r a n g e o f k o a i n v e s t i g a t e d . F o r 13 = 4 5 , th e h e a v e f o r c e o n t h e d o w n s t r e a m( 2) c o l u m n d e c r e a s e s b y a b o u t 2 0 % a t m o s t f o r k o a < 1 .2 5 . H o w e v e r , f o r k o a > 1 .25 ,t h is f o r c e i n c r e a s e s o v e r t h a t f o r [3 = 0 a n d f o r k ~ a - - 1 . 9 , th i s i n c r e a s e is o f t h e o r d e ro f 3 5 % . F o r t h e c a s e 13 = 9 0 , t h e h e a v e f o r c e o n b o t h c o l u m n s b e c o m e s i d e n t ic a l a ta ll f r e q u e n c i e s , a s e x p e c t e d , a n d m a y d i f f e r f r o m t h a t o n a n i s o l a t e d c o l u m n b y a sm u c h a s 3 0 % .5 . 2 . T h r e e c y lin d e r a r r a y ( T L P 3 )

    R e s u l t s f o r t h i s p a r t i c u l a r T L P c o n f i g u r a t i o n a r e s h o w n i n F i g s 8 - 1 0 . C o m p a r i s o n sw i t h t h e c o r r e s p o n d i n g f i g u r e s f o r t h e T L P 2 c o n f i g u r a t i o n s h o w t h a t t h e l o a d i n g s o nc y l i n d e r N o . 1 e x h i b i t s i m i la r b e h a v i o u r i n b o t h c a s es . H o w e v e r , f o r t h e T L P 3 c a s et h e r e is a m o r e p r o n o u n c e d i n f lu e n c e o f th e i n t e r a c t i o n e f f e c t s . I t is n o t e d t h a t t h es u r g e f o r c e o n c y l i n d e r N o . 1 is i n c r e a s e d b y a p p r o x i m a t e l y 1 0 - 2 0 % o v e r th a t o f t h eT L P 2 c a s e w h e n 1 3 - - - 9 0 o v e r m o s t o f th e f r e q u e n c y c o n s i d e re d . A l s o , a s e x p e c t e d ,t h e s u r g e l o a d s d e c r e a s e s u b s t a n t i a l l y w i t h i n c r e a s i n g 1 3 . H o w e v e r , t h e s u r g e l o a d o nc y l i n d e r 1 m a y b e a s m u c h a s 9 5 % o f t h e i s o l a t e d c y l i n d e r v a l u e f o r 13 = 4 5 a n d 4 0 %fo r 13 = 90 . It is n o t e d t h a t i n c r e a s e s o f 6 0 % o r m o r e m a y o c c u r i n t h e h e a v e f o r c ea t c e r t a i n f r e q u e n c i e s d u e t o i n t e r f e r e n c e e f f e c t s .5 . 3 . F o u r c y li n d e r a r r a y ( T L P 4 )

    T h i s c o n fi g u r at io n m o d e l s a c o n v e n t i o n a l , s q u a re , f o u r c o l u m n T L P . T h e c o m p u t e dw a v e l o a d s o n a l l c o l u m n s a r e d e p i c t e d i n F i g s 1 1 - 1 3 f o r t h r e e d i f f e r e n t i n c i d e n t w a v e

  • 7/30/2019 Floating Cylinder

    15/35

    - 1.0

    0.1~

    2 .00. (0. 0

    1. 4

    L2

    I.C

    u . 0

    O~

    0. ~

    OC0. 0

    , i , i i ,

    ' , + ' ' , 4 , ' ~e. o.o- /l e - . - - - e - - - e , I R , 5 0 /~:,~

    I i I I I i0 .5 1 .0 1 .5

    k o a

    I2 C YLB . O "~'~d 1~

    ., \0. 5 I I I I J1.0 1.5

    k o 02. 0

    I IA I2 C YL/ 9 o 0 . 0 "R m S Ob , 3 ad , 1 0 o

    12

    0.~

    0. ~ I I0 . 0 0 . 5

    H y d r o d y n a m i c i n t e r a c t i o n s i n f l o a ti n g c y l i n d e r a r r a y s - - I 5 6 3

    I I I I I1.0 1 ,5

    k o o2.0

    F IG . 5 . N o r m a l i z e d e x c i t in g f o r c e s a n d m o m e n t s o n t w o c y l i n d e r a r r a y f o r ~ = 0 , R/a = 5 , b/a = 3 ,d/a = 10.

  • 7/30/2019 Floating Cylinder

    16/35

    564 ~ l N. WI[.I.IAMN an d Z. DEMIRBI IIK

    c

    12 1 I I ' I 1 1 ]

    R 5 o| ~'~o ~_.~"I . d IOaO B

    0 6

    i 2Oko O

    080 ' ICYL.0 45 R : 5 ab 3 0d I 0 o

    0 6 5 -

    i ! I i I i I LO . O 0.5 ID 1.5 20k o OI I 2 / Y LB - 4 5 *R , 5 1b - 3 o

    O t

    OJ I I I I L I iO O 05 1.0 15 2 Dko o

    F IG . 6 . N o r m a l i z e d e x c i t i n g f o r c e s a n d m o m e n t s o n t w o c y l i n d e r a r r a y f o r 13 = 4 5 , R / a = 5 , b / a = 3 ,d/a = 10.

  • 7/30/2019 Floating Cylinder

    17/35

    H y d r o d y n a m i c i n t e r a c t i o n s i n f l o a ti n g c y l i n d e r a r r a y s - - I 5 6 5O.t~,

    0 2

    0

    0 OO

    , , '?CYL ( ~~ ' 9 0 "R " ~b " ~ Rd IOo .

    05 1 . 0 1.5k o o

    2.0

    I ' I I , ' I ' I ,CTLj e . 9 0 oR . S ab . 3 od . l O o

    9 0 i I i i i I ,O. 0 0.5 1.0 L5 2.0% 0

    l-41 u I I I5) CYL,8 90"R ' 5 Ob 3 0

    0 8

    06 t I i I , I iO0 05 1.0 1.5 2.0k ~F IG . 7. N o r m a l i z e d e x c i t i n g f o r c e s a n d m o m e n t s o n t w o c y l i n d e r a r r a y f o r [3 = 9 0 , R/a = 5 , b/a = 3 ,d/a = 10.

  • 7/30/2019 Floating Cylinder

    18/35

    566 A . N , WILLIAMS and Z . DEMIRBILEKI I [ t -

    3 CYL/~,0 ~R,Sab,3od lOo13

    I.I

    0 9

    o7

    +, u ' ' + -

    O ~ I ] I , i0.0 0.5 1.0 15 20

    koo

    I I I3 C Y LB ' O *R 5 0b ,3a

    0 l

    02

    O~

    OJ

    O O ~ t I I ~ I J I iO D Q5 I. O 15 2 0

    k a ~

    1 8 I I I i3 CYLB 'O"

    IE R 50b ,30d I0014

    0.(

    O!

    i I i I ~ I iOWo.o 0.5 LO I.S 2DkoQ

    F IG . 8. N o r m a l i z e d e x c i t i n g f o r c e s a n d m o m e n t s o n t h r e e c y l i n d e r a r r a y f o r 13 = 0 , R l a = 5 , b / a = 3 ,d / a = 10.

  • 7/30/2019 Floating Cylinder

    19/35

    H y d r o d y n a m i c i n t e r ac t i o n s i n f l oa t in g c y l i n d e r a r r a y s - - I 5 6 71,0 I I I i I i

    3 C YLD , e o "R . S ab - 3 o0 8 d IO Q

    OJ6

    O2

    0 .0 I I I l I I0 . 0 0 . 5 1 .0 1 5 2 D

    k o O

    1.2

    - ioz

    06

    I I i3 CYL,8 ee,R - 5ob -3o

    C~ J J I ~ IO D 0 5 1 . 0 1 . 5 2 , 0

    ko o

    I.JE I I J i3 C Y L

    I.E ~ " 60=f l , 5 ob , 3 od - I C o

    0. (

    0.~

    02~ i I ~ I I I JO 0 0 .5 1 .0 l , 5 2 .0

    ko .F IG . 9 . N o r m a l i z e d e x c i t i n g f o r c e s a n d m o m e n t s o n t h r e e c y l i n d e r a r r a y f o r 13 = 6 0 , R / a = 5 , b / a = 3 ,

    d / a = 10.

  • 7/30/2019 Floating Cylinder

    20/35

    05

    oo

    o4

    - o ~ .

    OI

    O.C

    I i i , |3 CYL~= 90 'R=Sab - S Qd , t O o

    I I I I

    CYLR fx~b ,3o

    05 1,0 I 5 2 0w@

    12

    IC

    OE

    O(O 0

    5 6 8 A , N . W I L LI A M S a n d Z . D E M I RB I I. EK

    i , , ,0 5 I 0 1 5.ko O

    2 0

    I0

    O 0

    60O

    i i i3 C Y LB = 9 0 R 5~b " 5 o

    05 1.0 1.5 20k@

    F IG . 1 0 . N o r m a l i z e d e x c i t i n g f o r c e s a n d m o m e n t s o n t h r e e c y l i n d e r a r r a y f o r 13 = 9 0 , R / a = 5 , b / a = 3 ,d / a = 10 .

  • 7/30/2019 Floating Cylinder

    21/35

    H y d r o d y n a m i c i n t e r ac t i o n s i n f l oa t in g c y l i n d e r a r r a y s - - I 5 6 9

    t~

    i I.C

    0.~

    02

    O~

    0.1

    0~ 'O O

    ' I ' I I4 C Y LB o O 'R , S Ob J ~ l ad tOo

    , , , ,05 1.0 1.5 2D% *

    o,~ , , , i4 C Y LB , O *R , ~ ob , S o0 .4 d , IO o

    O 00 . 0 0 . 5

    % 0

    I ' I

    I i I i1.0 1.5 2Dko a

    i I ' I i I4 C Y LB , O *d I00

    ( i ) .005 10 1 .5 2 .0to *

    F I ~ . 1 1. N o r m a l i z e d e x c i t i n g f o r c e s a n d m o m e n t s o n f o u r c y l i n d e r a r r a y f o r 13 = 0 % R / a = 5 , b / a = 3 ,d / a = 10.

  • 7/30/2019 Floating Cylinder

    22/35

    57(I A . N . WILIAAMS an d Z . I)EMIRBILI~K

    I1 2

    1. 0

    ~E0 8

    ~ o

    I I I 4 C Y L~ 3 0 ~R 5ob ~a

    I t i0 . 5 I i II 0 1 5ko O

    2 0

    - O (

    0 4

    Coo

    I4 CYLB , 3 0 ~b . 3 ad , l O o

    0.5 1.0 1.5 20koO

    4 CY L I, 3 0 ~R . 5 ob - 3 od - ~ O o1 2

    0 8

    OE

    0 4

    I 1O ~ ~ I 0 5 I 0 I 5 2 0ko a

    F ] o . 1 2 . N o r m a l i z e d e x c i t i n g f o r c e s a n d m o m e n t s o n f o u r c y l i n d e r a r r a y f o r 1 3 = 3 0 , R / a = 5 , b / a = 3 ,d / a = 1 0 .

  • 7/30/2019 Floating Cylinder

    23/35

    H y d r o d y n a m i c i n t e r a c t i o n s i n f l o at i n g c y l i n d e r a r r a y s- - - I 5 7 1

    I

    = , ." O (

    O ~

    O;

    O 0 O 0

    4 5 "R ' 5 ~

    0 . 5 I 0 1 ,5 2 0k o O

    4 CYL I ! I~ , 4 5 b . 3 o

    i '0604

    02O 0 0 5 I 0 1 .5 2 0kO

    2.C4 C Y L

    LiE d IOg

    1 .4

    1.2~ I.C

    O !

    0, (

    0,~

    O |O , C n I I I n I iO ,O 0.5 1.0 1.5 20

    k ~

    F xG. 1 3 . No r m a l i z e d e x c i t in g f o r c e s a n d m o m e n t s o n f o u r c y l in d e r a r r a y f o r 13 = 4 5 , R / a = 5 , b / a = 3 ,d / a = 1 0 .

  • 7/30/2019 Floating Cylinder

    24/35

    572 A . N . Will.tAMS and Z. DI-;MIRRtH~Ka n g l e s . I t is o b s e r v e d t h a t f o r [3 - 0 . t h e n o r m a l i z e d s u r g e f o r c e a n d p i t c h i n g m o m e n tf o r t h e u p s t r e a m (1 a n d 3 ) c o l u m n s f l u c t u a t e b e t w e e n 1 .3 a n d 0 . 6 w h i le t h o s e f o r t h ed o w n s t r e a m ( 2 a n d 4 ) c o l u m n s h a v e a n o r m a l i z e d v a l u e o f a b o u t l .I ) t h r o u g h o u t t h ef r e q u e n c y r a n g e c o n s i d e r e d .

    F o r [3 = 3 0 , th e s u r g e f o r c e a n d p i t c h m o m e n t c o e f f i c i e n t s o f c o l u m n N o s 2 a n d 4a r e a p p r o x i m a t e l y e q u a l f o r k o a < 1 . 25 , w i th s i g n if i c a n t d i f f e r e n c e s b e y o n d t h i s v a l u e .A s e x p e c t e d , t h e s a m e c o e f f ic i e n t s f o r c o l u m n N o . 1 s li g h tl y d e c r e a s e w h i l e t h o s ea s s o c i a t e d w i t h c o l u m n N o . 3 d o n o t d i s p l a y a n y s i g n i f i c a n t c h a n g e w i t h i n c r e a s e i n [ 3 .W i t h a f u r t h e r i n c r e a s e i n 13 t o 4 5 , th e e x p e c t e d s y m m e t r y i n t h e f o r c e c o e f f i c i e n t s f o re a c h o f th e c o l u m n s m a y b e o b s e r v e d .

    W he n 13 = 0 , f o r k o a < 1 .2 , t h e s w a y f o r c e a n d r o l l m o m e n t c o e f f ic e n t s o f t h e f r o n tc o l u m n s a r e l a r g e r t h a n t h o s e o f t h e r e a r c o l u m n s w h i l e f o r k ~ a > 1 .2 t h e r e v e r s e ist r u e . W h i l e t h e s e c o e f f ic i e n t s s h o w o s c i l la t o r y b e h a v i o r f o r c o l u m n N o s 1 a n d 3 , it isr a t h e r i n t e r e s t i n g t o n o t e t h a t f o r t h i s c a s e a s t e a d i l y i n c r e a s i n g t r e n d w i t h i n c r e a s i n gf r e q u e n c y is o b s e r v e d f o r c o l u m n N o s 2 a n d 4 . A v e r y n o t i c e a b l e i n c re a s e i n t h e s w a yf o r c e a n d r o l l m o m e n t c o e f f i c i e n t s is v is i b le w h e n 13 is c h a n g e d f r o m 3 0 t o 4 5 . T h el a r g e s t i n c r e a s e o c c u r s f o r k o a < 1 .75 .

    F o r [3 = 0 , th e n o r m a l i z e d h e a v e f o r c e c o e f f i c i e n t s f o r t h e w e a t h e r s i d e (1 a n d 3 )c o l u m n s o s c i l l a t e s b e t w e e n 0 . 6 a n d 1 . 5 w i t h t w o l o c a l m a x i m a o c c u r r i n g a t k o a ~ 0 . 7 5a n d 1 .7 5 . C o l u m n s N o s 1 a n d 3 e x p e r i e n c e th e l a r g e st h e a v e f o r c e o v e r t h e f r e q u e n c yr a n g e o f t h i s s t u d y f o r a l l t h r e e f l o w a n g l e s c o n s i d e r e d . C o l u m n N o . 4 e x p e r i e n c e s ah e a v e f o r c e w h i c h d e c r e a s e s w i t h i n c r e a s in g f r e q u e n c y a t [3 = 3 0 . I n t h i s c a s e , t h eh e a v e f o r c e o n c o l u m n N o . 2 f l u c tu a t e s a r o u n d t h a t o f c o l u m n N o . 4 w i t h a n o r m a l i z e dm a g n i t u d e o f _ + 0 .2 . F o r 13 = 4 5 , c o l u m n N o . 1 e x p e r i e n c e s a h e a v e f o r c e a p p r o x i m a t e l y8 0 % g r e a t e r t h a n t h a t o n a n i s o l a t e d c y l in d e r at k o a ~ 1 . 0 .5 . 4 . F i v e c y l i n d e r ar r a y ( T L P 5 )

    T h i s p a r t i c u l a r c o n f i g u r a t i o n c o n s is t s o f fi ve c o l u m n s p o s i t i o n e d s o t h a t t h e y f o r mt h e v e r t i c e s o f a r e g u l a r p e n t a g o n . R e s u l t s f o r t h is s p e c if ic g e o m e t r y a r e d e p i c t e d i nF igs 14 and 15 .A s e x p e c t e d , f o r [3 = 0 th e s u r g e f o r c e a n d p i t ch m o m e n t c o e f f ic i e n ts o f c o l u m nN o s 2 a n d 5 a r e t h e s a m e . S i m i l a r l y , c o l u m n N o s 3 a n d 4 h a v e i d e n t i c a l c o e f f i c i e n t ss i n c e t h e y a r e s y m m e t r i c w i t h r e s p e c t t o t h e x - a x i s . M o r e o v e r , i t i s n o t e d t h a t c o l u m nN o s 3 a n d 4 h a v e t h e s m a l l e s t s u r g e a n d p i t c h c o e f f i c i e n t s o f al l t h e c o l u m n s f o r [3 =0 . A s a n t i c i p a t e d , c o l u m n N o . 1 h a s t h e l a r g e s t s u r g e a n d p i t c h c o e f f i c i e n t s i n th i sc a s e .F o r [3 = 9 0 , a s u b s t a n t i a l r e d u c t i o n i n t h e s e c o e f f i c i e n t s i s c l e a r l y s e e n , i n c l u d i n gt h o s e c o l u m n s o n t h e w e a t h e r s i d e o f t h e a p p r o a c h i n g w a v e s . C o l u m n N o . 5 h a s t h es m a l l e s t s u r g e a n d p i t c h c o e f f i c i e n t s f o r [3 = 9 0 ( as i t i n t u i ti v e l y s h o u l d ) , f o l l o w e d b yc o l u m n N o . 4 .C o l u m n s N o s 2 a n d 5 e x h i b i t t h e l a r g e s t s w a y f o r c e a n d p i t c h m o m e n t c o e f f i c i e n t sf o r [3 = 0 f o l l o w e d b y c o l u m n N o s 3 a n d 4 . T h e f r o n t c o l u m n , c o l u m n N o . 1 , h a s z e r ol o a d i n g i n t h i s c a s e . F o r [3 - - 9 0 , v e r y l a r g e i n c r e a s e s a n d f l u c t u a t i o n s f o r t h e s ec o e f f ic i e n t s a r e p r e d i c t e d . C o l u m n N o s 1 , 2 , a n d 3 e x p e r i e n c e t h e l a rg e s t s w a y a n dp i t ch l o a d i n g a s a n t i c ip a t e d . I t s h o u l d a l so b e p o i n t e d o u t t h a t t h e c o e f f ic i e n ts f o rc o l u m n N o s 4 a n d 5 e x h i b i t t h e l e a s t f l u c t u a t i o n a n d t h e i r m a x i m u m n o r m a l i z e d v a l u e sd o n o t e x c e e d 1 . 0 f o r a l l f r e q u e n c i e s .

  • 7/30/2019 Floating Cylinder

    25/35

    H y d r o d y n a m i c i n t e r a c t i o n s i n f l o a t in g c y l i n d e r a r r a y s - - I 5 7 3i I i I

    / 9 . 0 "3 0d - I O o

    , ' ,' ~ 9 . 113

    Q 6

    0E

    O ~

    o r OO 0.5 I0 1.5 2 0ko O

    0.,

    %o

    I I I5 CYLB ' O "R = 5 o

    ,

    0.5 I 0 1.5 20kO0

    2.0

    18

    12

    - o , e lQ 6

    o 4 10. ~

    OCQ O

    F I G . 1 4 . N o r m a l i z e d e x c i t i n g

    ~."~L I I I '5R , S ad , I 0 o

    I I I I I0. ~ ID i .5 2 Dk ~

    f o r c e s a n d m o m e n t s o n f i ve c y l i n d e r a r r a y f o r 13 = 0 , R/a = 5 , b/a = 3 ,d/a = 10.

  • 7/30/2019 Floating Cylinder

    26/35

    5 7 4 A . N . W I L L IA M S a n d Z , D E M I RB I LE K

    O 6

    0 .2

    o0 ,0

    I , t '

    5 C Y L. ~ , 9 0 'R " 5 0b . 3 ad . I O Q

    0 5 1 .0 1 5 2 0koO

    04O0

    I I I5 C T L, e . 9 0 ~ 3o

    0 5 I O 1 5 2 0k o ~

    I i I I5 C Y L~ e . 9 0 ~

    R , 5 0b . 3 014

    1 2

    OE

    0 .(

    O 4

    0 - - 0 0 . 5 1 .0 1 5 2 . 0k@

    F IG . 1 5 . N o r m a l i z e d e x c i t in g f o r c e s a n d m o m e n t s o n f iv e c y l i n d e r a r r a y f o r 13 = 9 0 , R / a = 5 , b / a = 3 ,d / a = 10.

  • 7/30/2019 Floating Cylinder

    27/35

    Hy drodynam ic interactions in floating cylinder arrays---I 575F o r 13 = 0 , t h e l a r g e s t h e a v e c o e f f ic i e n t a n d v a r i a t i o n w i t h f r e q u e n c y o c c u r s f o r

    c o l u m n N o . 1 . T h e s e c o e f f ic i e n t s f o r c o l u m n N o s 3 a n d 4 d e c r e a s e w i t h i n c re a s i n gf r e q u e n c y w h i l e t h o s e o f c o l u m n N o s 2 a n d 5 o s c il la te a r o u n d a n o r m a l i z e d a m p l i tu d eo f 1 . 0 w i t h a v a r i a t i o n o f - --0 .3 . F o r 13 = 9 0 , c o l u m n N o . 5 h a s t h e s m a l l e s t h e a v e f o r c ec o e f f ic i e n t w h i l e c o l u m n N o . 3 d is p l ay s t h e g r e a t e s t e x c u r s i o n s a b o u t 1 .0 f o r t h isc o e f f ic i e n t o v e r th e f r e q u e n c y r a n g e c o n s i d e r e d .I t i s i n s t r u c t i v e a t t h i s s t a g e t o c o m p a r e t h e n u m e r i c a l r e s u l t s o b t a i n e d f o r t h e t h r e ec y l i n d e r a n d f iv e c y l i n d e r c o n f i g u r a t i o n s . C o m p a r i n g F i g . 8 t o F ig . 1 4 , i t c a n b e s e e nt h a t f o r t h e c o r r e s p o n d i n g c o l u m n s i n T L P 5 , a t l e as t a 1 0 % i n c r e a s e i n t h e s u r g e f o r c ea n d p i t c h m o m e n t i s s e e n . T h i s i n c re a s e m u s t s o l e ly b e d u e t o t h e h y d r o d y n a m i ci n t e r f e r e n c e o f t h e a d d i t i o n a l c o l u m n s . A s i m il a r t r e n d a l so e x is t s b e t w e e n t h e s u r g ef o r c e a n d p i t c h m o m e n t c o e f f i c i e n ts o f t h e s e t w o T L P c o n f i g u r a t i o n s w h e n 13 = 9 0 , a sc a n b e s e e n b y c o m p a r i n g F i g s 1 0 a n d 1 5. A s f a r a s t h e s w a y f o r c e a n d r o l l m o m e n tc o e f f ic i e n t s a r e c o n c e r n e d , a n e x a m i n a t i o n o f th e f i g u re s re v e a l s t h a t t h e l o a d i n g o nt h e c o r r e s p o n d i n g c o l u m n s b e t w e e n t h e s e c o n f i g u r a t io n s is , i n m a n y c a s e s l o w e r f o rt h e f i v e c y l i n d e r c o n f i g u r a t i o n , T L P 5 . T h e s e c o e f f i c i e n t s a t 13 = 0 d o n o t m o n o t o n i c a l l yi n c r e a s e a n d , i n f a c t , h a v e s u b s t a n t ia l l y lo w e r v a l u e s fo r T L P 5 c o m p a r e d t o t h o s e f o rT L P 3 a t s o m e f r e q u e n c i e s . F o r t h is w a v e h e a d i n g , t h e s e c o e f f ic i e n t s a r e l a r g e r f o r T L P 5t h a n t h o s e o f T L P 3 o n l y a t v e r y h ig h f r e q u e n c i e s , i . e . b e y o n d kt~ u > 1 .7 5 . A c o m p a r i s o nf o r t h e 13 = 9 0 c a s e i n d i c a t e s m a n y s i m i l a ri t ie s i n t h e s w a y a n d p i t c h l o a d i n g s b e t w e e nt h e t h r e e a n d f iv e c y l i n d e r c o n f i g u ra t i o n s . T h e h e a v e f o r c e c o e f f ic i e n t s o f c o l u m n N o s2 a n d 5 i n T L P 5 a r e , i n g e n e r a l , h i g h e r th a n t h o s e o f t h e i r c o u n t e r p a r t s i n T L P 3 e x c e p tf o r 0 . 4 < k o a < 0 . 6. F o r t h e s e c o l u m n s , t h e l a r g e s t d i f f e r e n c e is a b o u t 5 0 % a t k ~1 .7 f o r 13 = 0 . W h e n 13 = 9 0 , t h e h e a v e f o r c e c o e f f i c i e n t s b e t w e e n t h e c o r r e s p o n d i n gc o l u m n s o f t h e s e T L P s a r e s i m il a r.5 . 5 . S i x c y l in d e r ar r a y -h e x a g o n (T L P 6 )

    F o r t h is c o n f i g u r a t i o n t h e c y l i n d e r s w e r e a r r a n g e d w i t h t h e i r c e n t e r s a t t h e v e r t ic e so f a r e g u l a r h e x a g o n . F i g u r e s 1 6 a n d 1 7 p r e s e n t t h e f o r c e a n d m o m e n t c o e f f ic i e n ts f o rt h e h e x a g o n c o n f i g u r a t i o n .

    F r o m t h e f i g u re s it c a n b e s e e n t h a t c o l u m n N o . 1 e x p e r i e n c e s t h e l a rg e s t s u rg e a n dp i t c h l o a d i n g f o r 13 = 0 . W h e n 13 i s i n c r e a s e d t o 9 0 , t h e l a r g e s t s u r g e l o a d i n g i se x p e r i e n c e d b y c o l u m n N o s 2 a n d 3 f o r 0 . 6 < k oa < 1 .1 , f o r c o l u m n N o s 1 a n d 4 f o r1 .1 < k o a < 1 . 6 a n d f i n a ll y c o l u m n N o s 5 a n d 6 f o r 1 .6 < ko a < 2 . 0 .

    A s e x p e c t e d , t h e s w a y f o r c e a n d r o l l m o m e n t c o e f f ic i e n ts e x h i b i t a s o m e w h a t o p p o s i t et r e n d t o t h e a b o v e o b s e r v a t i o n s . T h e s w a y f o r c e a n d r o l l m o m e n t c o e f f ic i e n ts f o r al lc o l u m n s i n t h i s c o n f i g u r a t i o n s h o w s i g n i fi c a n t in c r e a s e s w i t h i n c r e a s i n g 13. W h e n 13 =0 c o l u m n N o s 3 a n d 5 e x p e r i e n c e s w a y a n d r o ll l o a d s w h i c h i n c r e a s e w i t h f r e q u e n c yu p t o ko a - 1 .6 w h i l e c o l u m n s N o s 2 a n d 6 e x p e r i e n c e l a r g e l o a d s n e a r k~ a - 1 .0 a n d2 . 0 . F o r 13 = 0 c o l u m n N o s 2 a n d 6 h a v e t h e s m a l l e s t l o a d s f o r 1 . 1 < k o a < 1 .8w h e r e a s i t is o v e r th i s ra n g e t h a t t h e m a x i m u m l o a d s o f c o l u m n N o s 3 a n d 5 o c c u r .T h e s w a y f o r c e a n d r o l l m o m e n t c o e f f ic i e n t s f o r c o l u m n N o s 1 a n d 4 a r e z e r o f o r 13 =0 . A s e x p e c t e d , w h e n 13 i s i n c r e a s e d t o 9 0 , c o l u m n N o s 2 a n d 3 e x p e r i e n c e t h e l a r g e s ts w a y a n d r o ll l o a d s , f o l l o w e d b y c o l u m n N o s 1 a n d 4 . A l s o , a t t h is i n c i d e n t w a v e a n g l e ,c o l u m n N o s 5 a n d 6 e x p e r i e n c e t h e s m a l l es t lo a d s .

    F o r 13 = 0 , c o l u m n N o s 1 , 2 a n d 6 e x p e r i e n c e t h e l a r g e st h e a v e f o r c e w h i le c o l u m nN o . 4 sh o w s a n o r m a l i z e d h e a v e l o a d o f b e t w e e n 0 .7 a n d 1 .0 th r o u g h o u t t h e f r e q u e n c y

  • 7/30/2019 Floating Cylinder

    28/35

    576 A , N. WILUAM S an d Z . DErvlIRBII. i~K

    6 C Y Lj 3 . 0 R " 5 o~:,~I I6

    .

    ~0 10 80 60 4 I I I

    O 0 0 5

    2 C

    i16

    Ii141

    I I II 0 I 5 2 0k o 0

    i i r I I I6 C Y L/ ~ = 0 ~R " 5 ob = 3 0d I O o

    ,, -

    o~

    QOO 0 0 5 I 0 I 5 ~ 0k oo

    - o ~

    2 { 6 C Y L I I I Ile , ~ = 0 o1 6 ; d = I 0 o

    I1 4 '1 2 , ' ~

    2 ~ q o0 8

    0 6

    0. 4

    0 2

    O C ~ I i I 1 ib 0 5 t O 1 ,5 2 0k ~

    F IG . 1 6. N o r m a l i z e d e x c i t i n g f o r c e s a n d m o m e n t s o n s i x c y l i n d e r a r r a y ( h e x a g o n ) f o r 13 = 0 , R / a = 5 ,b / a = 3 , d / a = 10.

  • 7/30/2019 Floating Cylinder

    29/35

    H y d r o d y n a m i c i n t e r a c t i o n s i n f l o a t in g c y l i n d e r a r r a y s - - -I 5 7 7

    0 # 1

    O 0

    ' ( 9 ( 9 ' '6 C Y L X ~

    .@O),

    0.5 1.0 1.5tO a

    f

    2 . 0

    ~ 0.6

    0 2 'O 0

    2.0

    t 6

    12

    0 8

    O 6

    O2

    I I I6 CYL

    . ~: ~.

    I I i I i0 . 5 I 0 15 2. 0koO

    II6 CYL~ :~"b w~d , 1 0 o

    O.(9.

    0 5 1 . 0% 0

    oo I ,QO 1.5 2.0

    F IG . 1 7 . N o r m a l i z e d e x c i t i n g f o r c e s a n d m o m e n t s o n s i x c y l i n d e r a r r a y ( h e x a g o n ) f o r 13- = 9 0 , R / a = 5 ,b / a = 3 , d / a = 10.

  • 7/30/2019 Floating Cylinder

    30/35

    578 A .N . WILLIAMS an d Z. DLMIRBU~t:~:

    r a n g e c o n s i d e r e d . W h e n 13 = 0 t h e m a x i m u m h e a v e f o r c e o c c u r s in t h e m i d f r e q u e n c yr a n g e 0 . 8 < k o a < 1 . 6. F o r 13 = 9 0 , t h e m a x i m u m h e a v e f o r c e i s e x p e r i e n c e d b yc o l u m n N o s 2 a n d 3 w i t h t h e l a r g e s t f o r c e o c c u r r i n g a t h i g h e r f r e q u e n c i e s . F o r [3, -9 0 , t h e m i n i m u m h e a v e f o r c e f o r a ll c o l u m n s o c c u r s a t k o a -~ 1.35.5 .6 . S i x c y l i n d e r a r r a y -r e c ta n g le ( T L P 6 R )

    T h e r e c t a n g u l a r a r r a n g e m e n t is a m o r e c o n v e n t i o n a l c o n f i g u r a t io n f o r a s i x- l eg g e dT L P . R e s u l t s f o r t h is g e o m e t r y a r e p r e s e n t e d i n F i g s 1 8 - 2 0 b a s e d o n t h r e e i n c i d e n tw a v e a n g l e s , 13 = 0 , 4 5 a n d 9 0 .

    A c o m p a r i s o n o f t h e s e f i g u re s s h o w s t h a t t h e su r g e f o r c e a n d p it c h m o m e n tc o e f f i c i e n t s d e c r e a s e w i t h i n c r e a s i n g [3. F o r [3 - - 0 , c o l u m n N o s 1 a n d 4 e x p e r i e n c e t h el a r g e s t s u r g e l o a d s f o l l o w e d b y c o l u m n N o s 2 a n d 5 . F o r 13 = 0 c o l u m n N o s 3 a n d 6e x p e r i e n c e t h e s m a l l e s t s u r g e l o a d s . A t [3 = 4 5 , h o w e v e r , t h e r e is s o m e d e c r e a s e int h e c o e f f i c i e n t s o f t h e h e a v i l y l o a d e d c o l u m n s ( 1 a n d 4 ) f r o m t h e [3 = 0 c a s e . H o w e v e r ,c o l u m n N o . 6 r e m a i n s t h e l e a s t l o a d e d i n t e r m s o f s u r g e a n d p i t c h a t [3 = 4 5 . A t [3 =9 0 , t h e c e n t e r c o l u m n s ( i .e . c o l u m n N o s 2 a n d 5 ) e x p e r i e n c e z e r o l o a d s , w h i l e c o l u m nN o s 4 a n d 6 e x p e r i e n c e t h e l a r g e s t l o a d s f o r k o a > 1 . 2. F o r t h i s v a l u e o f [3 , c o l u m nN o s 1 a n d 3 e x p e r i e n c e t h e m a x i m u m w a v e l o a d s f o r k o a < 1 . 2 .

    T h e m a x i m u m s w a y f o r c e a n d r o l l m o m e n t c o e ff i ci en t s fo r th is c o n f ig u r a t io n o c c u rf o r [3 = 9 0 a n d t h e m i n i m u m f o r [3 = 0 . F o r [3 = 0 , c o l u m n N o s 3 a n d 6 e x p e r i e n c et h e s m a l l e s t s w a y l o a d o v e r 0. 2 5 < k o a < 1 .0 w h i l e c o l u m n N o s 1 a n d 4 a r e l e a s th e a v i l y l o a d e d i n t e r m s o f sw a y o v e r 1 . 0 < k o a < 1 . 6 . F o r 13 = 4 5 , t h e l a r g e s t v a r i a t i o no f t h e s w a y a n d r o ll c o e f f ic i e n ts is s e e n f o r c o l u m n N o s 1 , 2 , 3 a n d 6 . M a x i m u m v a l u e so f t h e s w a y l o a d o c c u r b e t w e e n 0 .3 5 < k o a < 0 . 8 5 a n d 1 . 2 < k o a < 1 .7 w h i l e m i n i m ao c c u r a t k o a - 1 . 0 . F o r 13 = 9 0 , c o l u m n N o s 1 , 2 a n d 3 e x p e r i e n c e t h e l a r g e s t s w a yl o a d s w h i l e c o l u m n N o s 4 , 5 a n d 6 a r e t h e l e a s t l o a d e d .F o r [3 = 0 , c o l u m n N o s 1 a n d 4 e x h i b i t l a r g e v a r i a t i o n s i n t h e h e a v e c o e f f i c i e n t o v e rt h e e n t ir e f r e q u e n c y r a n g e c o n s i d e r e d . F o r th is w a v e h ea d i n g , t h e m i n i m u m h e a v el o a d s o c c u r a t k o a ~ 1 . 1 5 . F o r [3 = 4 5 , c o l u m n N o s 1 - 4 a r e a g a i n h e a v i l y l o a d e d i nt e r m s o f h e a v e , t h e m a x i m u m l o a ds o c c u r a r o u n d k ~ j a - 1 .1 f o r a l l c o l u m n s a n d s t e a d i l yi n c r e a s e t h e r e a f t e r w i t h f r e q u e n c y u n t i l k o a ~ 1 .5 . C o l u m n s N o s 1 , 2 a n d 3 e x h i b i tl a r g e v a r i a t i o n s i n t h e h e a v e f o r c e c o e f f i c i e n t w i t h w a v e f r e q u e n c y . F o r [3 = 9 0 , t h eh e a v e l o a d s o n a ll c o l u m n s a r e a m i n i m u m n e a r k o a = 1 . 2 .

    A c o m p a r i s o n b e t w e e n t h e h y d r o d y n a m i c e x ci ti n g f o r c e s a n d m o m e n t s e x p e r i e n c e db y ty p i ca l h e x a g o n a n d r e c t a n g u l a r s ix c y l in d e r T L P c o n f i g u r a t io n s m a y n o w b e m a d e .A t [3 = 0 , b o t h T L P s e x p e r i e n c e a p p r o x i m a t e l y t h e s a m e s u r g e f o r c e a n d p i t c h i n gm o m e n t . T h e s e v a l u e s a p p e a r t o d e c r e a s e m o r e r a p id l y f o r t h e h e x a g o n T L P w i t hi n c r e a s i n g w a v e f r e q u e n c y . A t 13 - - 90 , t h e r e c t a n g u l a r T L P e x p e r i e n c e s a s m a l l e rs u r g e f o rc e a n d p i tc h m o m e n t u p to k o a ~ 0 . 9. T h i s t r e n d r e v e r s e s i n f a v o r o f t h eh e x a g o n T L P f o r 1 . 0 < k o a < 1 .7 5 . I n t e r m s o f t h e s w a y f o r c e a n d r o ll m o m e n tc o e f f ic i e n t s, t h e h e x a g o n T L P i s s u p e r i o r t o t h e r e c t a n g u l a r T L P b e c a u s e it g e n e r a l l ye x p e r i e n c e s s i m i l ar o r s m a l l e r l o a d s o v e r t h e e n t i r e w a v e f r e q u e n c y r a n g e f o r [3 = 0 .T h i s a d v a n t a g e a l so h o l d s t r u e a t [3 = 9 0 f o r t h e a b o v e - m e n t i o n e d c o e f f ic i e n ts , t h eo n l y e x c e p t i o n b e i n g t h e g r e a t e r l o a d s e x p e r i e n c e d b y c o l u m n N o s 2 a n d 3 o f t h eh e x a g o n T L P a t k , ~ ~ 1 .3 8 . T h e h e a v e f o r c e s d i s p l a y e d b y b o t h t h e h e x a g o n a n dr e c t a n g u l a r T L P s g e n e r a l ly h a v e m a x i m a o f t h e s a m e o r d e r o v e r t h e f r e q u e n c y r a n g e

  • 7/30/2019 Floating Cylinder

    31/35

    H y d r o d y n a m i c i n t e r a c t i o n s i n f l o a t in g c y l i n d e r a r r a y s - -- I 5 7 918 I1.6

    I.C

    o~ ~: 'o~

    o~

    0.5

    I6 C Y L R E C T~ , 0 "R 5ob , 3 ed iOo

    i, , @ ~ ' ~ =A R B , O ~B i ~ ~ R,5oR_.p" v db,3o

    LO 15 2.0ko a1 I

    o n

    o z

    . 013 ~ I I ,OD 0.5 LO 1.5 2.0

    ko a~( . . . . I I I

    6 CYL RECTR " 5 0b " 3 0I,E d I0o

    ,

    _ J; I ~LC0, 8

    iO 6; i0.4

    0.2 I I I0.0 0.5 1.0 1,5 2,0%0F IG . 1 8 , N o r m a l i z e d e x c i t i n g f o r c e s a n d m o m e n t s o n s i x c y l i n d e r a r r a y ( r e c t a n g l e ) f o r 13 = 0 , R/a = 5 ,

    b/ a = 3 , d/a = 10.

  • 7/30/2019 Floating Cylinder

    32/35

    IC

    O ~

    u ~ O E

    0 z

    O~

    o o

    0 8

    0 6

    0 4

    6 C Y L R E C I/3 45"R , 5 0b , 3 o

    , e ,0 5 I 0

    ko o, I I1 5 2 0

    !

    O C , I AO 0 0 5

    ' ' ' I ' I6 C T L R E C T/~ 4 5 "R = 5 ob , 5 o

    I 0 15 2 0k ~

    t 6

    14

    12

    OE

    OE

    O i

    5 8 0 A . N . W I L L IA M S a n d Z . D E MI RB IL EK

    , I ' ' I ' 1 " I6 CYL RECT

    b = 3 o

    0 0 0 0 0 . 5 I 0 1 5 2 0

    F IG . 1 9 . N o r m a l i z e d e x c i t in g f o r c e s a n d m o m e n t s o n s i x c y li n d e r a r r a y ( r e c t a n g t l e) f o r 13 = 4 5 , R / a = 5 ,b / a = 3 , d / a = 1 0 .

  • 7/30/2019 Floating Cylinder

    33/35

    H y d r o d y n a m i c i n t e ra c t i o n s i n f lo a t in g c y l i n d e r a r r a y s i I 5 8 1i i i

    6 C Y L R E C E

    d " l O a0. !

    - - o , .

    O0 05 1.0 1.5ko *

    i i I I~ CYI-90E C T " ,R 5ab 3o

    1.6

    I A

    1.2

    IC

    i O.E

    0. (

    0 ~

    2 0

    2 0IBL61.412

    u . " i UEI0 6

    O~0 2OCO0

    l i I I ,0.5 1.0 I 5koO

    I i I6 CYL RECT.~ ' 9 0 "R ' S O

    2 . 0

    , I i I , I ,0.5 1.0 1.5 2Dko o

    F IG . 2 0 . N o r m a l i z e d e x c i t i n g f o r c e s a n d m o m e n t s o n s i x c y l i n d e r a r r a y ( r e c t a n g l e ) f o r I~ = 9 0 , R / a = 5 ,b / a = 3 , d / a = 1 0 .

  • 7/30/2019 Floating Cylinder

    34/35

    582 A . N, WILLIAMS nd Z . DEMIRBILEKc o n s i d e r e d . H o w e v e r , f o r k o a < 1 .0 , t h e h e x a g o n T L P e x p e r i e n c e s c o n s i d e r a b l y s m a l l e rh e a v e f o r c es a n d t h e p o s s i b i l i t y e x is t s o f e x p l o i t i n g th i s a p p a r e n t a d v a n t a g e o f th eh e x a g o n c o n f i g u r a t i o n in a c t u a l d e e p w a t e r T L P d e s i g n .

    6 . C O N C L U S I O N SA n a p p r o x i m a t e , c o m p u t a t i o n a l l y e ff ic i e n t m e t h o d h a s b e e n p r e s e n t e d f o r e s t i m a t in gt h e h y d r o d y n a m i c i n t e r a c t i o n s d u e to w a v e s c a tt e r i n g b e t w e e n t h e m e m b e r s o f a n a r ra yo f s t a t i o n a r y t r u n c a t e d c i r c u la r c y l in d e r s s i m u l a t i n g t h e c o l u m n s o f an i d e a l i z e d T L P .T h e s o l u t i o n t e c h n i q u e i s e s s e n t i a l l y a l a r g e - s p a c i n g a p p r o x i m a t i o n a n d i n v o l v e sr e p l a c i n g d i v e r g e n t s c a t t e r e d w a v e s b y e q u i v a l e n t p l a n e w a v e s t o g e t h e r w i th n o n - p l a n a rc o r r e c t i o n t e rm s . N u m e r i c a l r e s u l ts h a v e b e e n p r e s e n t e d w h i c h s h o w t h e i n f l u e n c e o ft h e v a r i o u s w a v e a n d s t r u c t u ra l p a r a m e t e r s o n t h e h y d r o d y n a m i c l o a d i n g f o r a n u m b e ro f e x a m p l e c y l i n d e r c o n f i g u r a t io n s . I t i s f o u n d t h a t f o r c e r t a in p a r a m e t e r c o m b i n a t i o n s ,l a rg e i n c re a s e s in h y d r o d y n a m i c l o a d i n g a r e p r e d i c t e d c o m p a r e d t o th e l o a d i n g t h a t th ec y l i n d e r w o u l d e x p e r i e n c e i n i s o l a t i o n , e v e n a t r e l a t i v e l y l a rg e s p a c i n g s. T h e s e r e su l tsc l ea r ly i n d i c a te t h a t t h e h y d r o d y n a m i c i n t e r a c t i o n s b e t w e e n n e i g h b o r i n g c o l u m n s s h o u l db e c o n s i d e r e d b y d e s i g n e r s a n d r e s e a r c h e r s a s s o c i a t e d w i t h T L P s .

    R E F E R E N C E SABuL-AzM , A .G . and WILLIAMS,A.N . 1987. Interference effects betwee n f lexible cylinders in waves. O c e a n

    E n g n g 14 (1), 19-38.DEMIRBILEK,Z. and GASTON, J . 1985. No nlinear wave loads on a vertical cylinder. O c e a n E n g n g 12 (5),375-385.GARRETT, C.J .R. 1971. Wave force s on a cir cula r do ck. J . F l u i d M e c h . 4 6 , 129-139.KA6EMmO, H. and YU E, D.K .P. 1986. Interaction s among multiple th ree-dim ension al bod ies in water waves:an exac t a lgebra ic method. J . F l u i d M e c h . 166, 18%209.MClVER, P. 1984. Wav e forces on array s of floating bo die s. J . E n g n g M a t h . 18, 273-285.MCIVER, P. and EVANS, D.V . 1984. App roxim ation of w ave forces on cylind er arrays. A p p l . O c e a n R e s . 6 ,101-107.MARTIN, P.A . 1984. Multiple scatter ing of surface w ater w aves and the null-f ield me thod. P r o c . 1 5 th S y m p .N a v a l H y d r o d y n am i c s, H a m b u r g , G e r m a n y , pp. 119-132.MATSUI,T. and TAr~nKl,T. 1981. Hyd rodynam ic in te rac t ion b e tween groups of ve r t ica l ly axisymmetric b odiesfloating in waves. P r o c . I n t. S y r u p . H y d r o d y n a m i c s O c e a n E n g in e e r i n g , T r o n d h e i m , N o r w a y , Vol. 2, pp.817-836,OHKUSU, M. 1974. Hyd rod yn am ic forces on m ultiple cylinders in waves. P r o c . I n t . S y r u p . D y n a m i c s M a r i n eV e h i c l e s a n d S t r uc tu r e s in W a v e s , L o n d o n , U . K . , pp. 107-112.SARPKAYA,T. and ISAACSON,M. 1981. M e c h a n ic s o f W a v e F o r c e s o n O f f s h o r e S t r uc t ur e s . Van Nost randReinhold , New York.SIMON, M.J. 1982. Multiple s catter ing in array s of axisymmetric wave energy devices, p art 1 a matrix me thodusing a plane-wave approximation. J . F l u i d M e c h . 120 , 1-25.SPRING,B. H. and MONKMEYER, P.L . 1974. Inte ract ion of plan e waves with vertical cylinders. P r o c . 1 4 t h

    C o n f . C o a s t al E n g in e e r i n g , C o p e n h a g e n , D e n m a r k , pp. 1828-1847.WATSON, G .N . 1944 . A T r e a ti se o n t h e T h e o r y o f B e s s e l F u n c ti o n s, 2nd edit ion. Cambridge University Press,Cambr idge .

    A P P E N D I XM a t r i x c o e f f i c i e n t s

    T h i s a p p e n d i x c o n t a i n s t h e e x p r e s s i o n s f o r t h e c o e f f i c ie n t s o f t h e s i m u l t a n e o u s m a t r i x e q u a t i o n s( 1 8 ) a n d ( 1 9 ) u s e d t o d e t e r m i n e t h e p o t e n t i a l c o e f f i c i e n ts i n t h e i s o l a t e d c y l i n d e r c a s e .

    F ~ o ) H , ~ ( k o a ) 2 x /- 2 ko h ( - 1 ) ~ s inh koh 1 ( A . 1 )H ' , , ( k o a ) [1 + s inh 2 k o d / 2 k o d ] t ( k ~ h 2 + n 2 ~ r2 )

  • 7/30/2019 Floating Cylinder

    35/35

    Hyd rodyn amic interactions in f loating cylinder array s--I 583~ , 2 ) = _ K m ( k o a ) 2 ~ r 2 k q h ( - 1 ) n s i n k q h

    K', . (koa) [1 + sin 2 k q d / 2 k q d ] ( k 2q h - n2"tr2)R ~., ) = 2 ~ . , i ' + lk oh ( - 1 ) n s inh ko h { J ' , ,, (koa)

    c o s h k o d (kt~h2 + n2"n 2) J m ( k ( l ) - i f m ( k o a )m sinh koh

    G('2) = ~ a d k 2 [1 + sinh 2 k o d / 2 k o d ] ~m sin k q h

    G~q') = , l ~ ad k2q [1 + sin 2 k q d / 2 k q d ] ~

    G(o,~) -

    for q >- 1,

    G ~ q T =

    f o r q - > 1 ,

    # n r r h ( - 1 ) ~ s inh k o h l ' , , , ( m r a / h )d[1 + s inh 2 k o d / 2 k o d ] ~ I . , ( m r a / h ) ( k ~ h 2 + n 2 rr 2 )

    f f n c t h ( - 1)" sin k q h [ . , , ( n w a / h )d[1 + sin 2 k q d / 2 k q d ] i l ,, , ( n 't r a/ h ) ( k 2 q h 2 - n21r2)

    f o r n - > 1 ,

    f o r n , q > - 1 .

    ( A . 2 )

    ( A . 3 )

    ( A . 4 )

    ( A . 5 )

    ( A . 6 )

    ( A . 7 )