floating wind turbines - amazon web...

23
Floating Wind Turbines by Paul D. Sclavounos MIT Department of Mechanical Engineering Courtesy of NREL

Upload: doandung

Post on 29-May-2018

220 views

Category:

Documents


1 download

TRANSCRIPT

Floating Wind Turbines

by Paul D. SclavounosMIT Department of Mechanical Engineering

Courtesy of NREL

Horns Rev Wind Farm (Denmark) - Rated Power 160 MW – Water Depth 10-15m

Expensive Installation Process for Seafloor Mounted Turbines

Floating Wind Turbine Attributes

• Water depths of 30 – 1,000 m

• 5-MW wind turbine

• 1-2 GW Floating Wind Farm (200-400 Units)

• Flexible installation process:

– Full Assembly at a Coastal Facility– Tow Stably Floating Units Offshore– Anchoring System Preinstalled– Floating Wind Turbine Movable– Concrete Block and Drag Anchor Systems

• Attractive Economic and Financial Attributes

Coastal Zone of Visual Influence (ZVI)

• L Distance from Shore for Turbine to be Invisible

• H Max Height of Turbine Blade Tip (90 + 65=155 m)

• R Earth Radius (~ 6,370,000 m)

• L = 28 Land miles (H=155m - Blade Tip)

• L = 21 Land miles (H=90m - Hub)

2L H R=

Deep Water Offshore Platforms for Oil and Gas Exploration

Spar and TLP SML Simulation Models

of MIT Laboratory for Ship and Platform Flows

5 MW Wind TurbineRotor Orientation Upwind

Control Variable Speed, Collective Pitch

Rotor Diameter/Hub Diameter 126 m/3 m

Hub Height 90 m

Max Rotor/Generator Speed 12.1 rpm/1,173.7 rpm

Maximum Tip Speed 80 m/s

Overhang/Shaft Tilt/Precone 5 m/ 5°/ -2.5°

Rotor Mass 110,000 kg

Nacelle Mass 240,000 kg

Tower Mass 347,460 kg

Overall c.g. location:

(x,y,z)t = (-.2,0,64)m

MIT TLP Design

Diameter 20.0 m

Freeboard 5 m

Draft 47.7 m

Concrete Ballast Height 14.6 m

Water Depth 200 m

Turbine Capacity 5.0 MW

Hub Height 90 m

Rotor Diameter 128 m

Static Tether Tension 507 T

σ of Dynamic Tether

Tension at Hs=10m 90 T

σ of Nacelle

Displacement at Hs=10m 2.3 m

σ of Nacelle

Displacement at Hs=6m 1.2 m

MIT Taut Catenary Design

Diameter 17.0 m

Freeboard 5 m

Draft 50 m

Concrete Ballast Height 18.3 m

Water Depth 200 m

Turbine Capacity 5.0 MW

Hub Height 90 m

Rotor Diameter 128 m

Static Mooring Line

Tension 702 T

σ of Dynamic Mooring

Line Tension at Hs=10m 224 T

σ of Nacelle

Displacement at Hs=10m 8.5 m

σ of Nacelle

Displacement at Hs=6m 6.1 m

MIT Slack Catenary Design

Diameter 32.0 m

Freeboard 5 m

Draft 9.8 m

Concrete Ballast Height 3.6 m

Water Depth 200 m

Turbine Capacity 5.0 MW

Hub Height 90 m

Rotor Diameter 128 m

Static Mooring Line

Tension 75 T

σ of Dynamic Mooring

Line Tension at Hs=10m 69 T

σ of Nacelle

Displacement at Hs=10m 4.0 m

σ of Nacelle

Displacement at Hs=6m 3.1 m

MIT Floater Designs – Hs=10m

Slack Catenaries

Taut Catenaries

TLPs

=Detailed Design

MIT Floater Designs – Hs=6m

Slack Catenaries

Taut Catenaries

TLPs

=Detailed Design

Economics of Offshore Wind Energy

• Breakeven Cost vs Combined Cycle Gas Turbine ~ $ 3 M/MW

• Natural Gas ~ $9-15/MMBtu over 2010-2027

• Onshore Wind Turbine Cost ~ $ 2 M/MW (2007)

• Floater and Mooring System Breakeven Cost for 5MW Turbine ~ $5M; 10MW Turbine ~ $10M

• Revenues from Trading of Carbon Credits

• Coal Plant Emits ~ 1 ton CO2/MWh;

• Combined Cycle Gas Turbine Emits ~ 300 Kg CO2/MWh

Courtesy: John Trowbridge WHOI

Courtesy: John Trowbridge WHOI

Research Themes

• Wind Turbine Floater and Mooring Systems

– Tension Leg Platform Floaters – Damping Systems

– Catenaries with Active Tension Control

• Advanced Blade Materials

• Economics of Offshore Wind Farms

• NREL Awards Massachusetts Grant for Large Blade Testing Facility (June 2007)