flow visualization - tu wien...st d tisteady vs time-ddtfldependent flow direct vs. indirect flow...

92
Flow Visualization

Upload: others

Post on 25-Jul-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Flow Visualization

Page 2: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Overview: Flow Visualization (1)

Introduction, overviewFl d tFlow dataSimulation vs. measurement vs. modellingg2D vs. surfaces vs. 3DSt d ti d d t flSteady vs time-dependent flowDirect vs. indirect flow visualization

Experimental flow visualizationB i ibilitiBasic possibilitiesPIV (Particle Image Velocimetry) + Example

Eduard Gröller, Helwig Hauser 2

( g y) p

Page 3: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Overview: Flow Visualization (2)Visualization of modelsFlow visualization with arrowsNumerical integration

Euler-integrationEuler integrationRunge-Kutta-integration

StreamlinesStreamlinesIn 2DParticle pathsParticle pathsIn 3D, sweepsIlluminated streamlinesIlluminated streamlines

Streamline placement

Eduard Gröller, Helwig Hauser 3

Page 4: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Overview: Flow Visualization (3)

Flow visualization with integral objectsSt ibbStreamribbons, Streamsurfaces, stream arrows

Line integral convolutionAl ithAlgorithmExamples, alternatives

Glyphs & icons, flow topology

Eduard Gröller, Helwig Hauser 4

Page 5: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Flow Visualization

Introduction:FlowVis = visualization of flowsFlowVis = visualization of flows

Visualization of change informationT i ll th 3 d t di iTypically: more than 3 data dimensionsGeneral overview: even more difficult

Flow data:nDnD data, 1D2 /2D2/nD2 (models), 2D2/3D2

(simulations, measurements)Vector data (nD) in nD data space

User goals:Overview vs details (with context)

Eduard Gröller, Helwig Hauser 5

Overview vs. details (with context)

Page 6: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Flow Data

Where do the data come from:Flow simulation:Flow simulation:

Airplane- / ship- / car-designW th i l ti ( i fl )Weather simulation (air-, sea-flows)Medicine (blood flows, etc.)

Flow measurements:Wind tunnel, fluid tunnelSchlieren-, shadow-technique

Flow models:Flow models:Differential equation systems (ODE)(dynamical systems)

Eduard Gröller, Helwig Hauser 6

(dynamical systems)

Page 7: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Data Source – Examples 1/2

Eduard Gröller, Helwig Hauser 7

Page 8: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Data Source – Examples 2/2

Eduard Gröller, Helwig Hauser 8

Page 9: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Comparison with Reality

Experiment

SimulationEduard Gröller, Helwig Hauser 9

Simulation

Page 10: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

2D vs. Surfaces vs. 3D

2D-Flow visualization2D 2D Fl2D2D-FlowsModels, slice flows (2D out of 3D)( )

Visualization of surface flows3D fl d “ b t l ”3D-flows around “obstacles”Boundary flows on surfaces (2D)y ( )

3D-Flow visualization3D3D-flowsSimulations, 3D-models

Eduard Gröller, Helwig Hauser 10

Simulations, 3D models

Page 11: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

2D/Surfaces/3D – Examples

3D

S fSurface

Eduard Gröller, Helwig Hauser 112D

Page 12: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Steady vs. Time-Dependent Flows

Steady (time-independent) flows:Fl t ti tiFlow static over timev(x): RnRn, e.g., laminar flows( ) , g ,Simpler interrelationship

Ti d d t ( t d ) flTime-dependent (unsteady) flows:Flow itself changes over timegv(x,t): RnR1Rn, e.g., turbulent flowsM l i t l ti hiMore complex interrelationship

Eduard Gröller, Helwig Hauser 12

Page 13: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Time-Dependent vs. Steady Flow

Eduard Gröller, Helwig Hauser 13

Page 14: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Direct vs. Indirect Flow Visualization

Direct flow visualization:O i t fl t tOverview on current flow state Visualization of vectorsArrow plots, smearing techniques

I di t fl i li tiIndirect flow visualization:Usage of intermediate representation:g pvector-field integration over timeVisualization of temporal evolutionVisualization of temporal evolutionStreamlines, streamsurfaces

Eduard Gröller, Helwig Hauser 14

Page 15: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Direct vs. Indirect Flow Vis. – Example

Eduard Gröller, Helwig Hauser 15

Page 16: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

ExperimentalExperimental Flow VisualizationFlow VisualizationOptical Methods, etc.

Page 17: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

With Smoke rsp. Color Injection

Injectionof colorof color,smoke, particlesOpticalOpticalmethods:

SSchlieren, shadows

Eduard Gröller, Helwig Hauser 17

Page 18: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Example: Car-Design

Ferrari-model,so called fiveso-called five-hole probe (no back flows)

Eduard Gröller, Helwig Hauser 18

Page 19: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

PIV: Particle Image Velocimetry

Laser + correlation analysis:R l fl i i d t lReal flow, e.g., in wind tunnelInjection of particles (as uniform as possible)j p ( p )At interesting locations:2 times fast illumination with laser slice2-times fast illumination with laser-sliceImage capture (high-speed camera), then correlation analysis of particlesVector calculation / reconstructionVector calculation / reconstruction,typically only 2D-vectors

Eduard Gröller, Helwig Hauser 19

Page 20: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

PIV - Measurements

Setup and typical result:

Eduard Gröller, Helwig Hauser 20

Page 21: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Example: Wing-Tip Vortex

Problem: Air behind airplanes is turbulent

Eduard Gröller, Helwig Hauser 21

Page 22: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

fVisualization of Models

Dynamical Systems

Page 23: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Dynamical Systems VisualizationDifferences:

Flow analytically def.:Flow analytically def.:dx/dt = v(x)Navier-Stokes equationsNavier Stokes equationsE.G.: Lorenz-system:dx/dt = (y-x)(y )dy/dt = rx-y-xzdz/dt = xy-bzLarger variety in data:

2D, 3D, nDSometimes no natural constraints like non-compressibility or similar

Eduard Gröller, Helwig Hauser 23

Page 24: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Visualization of Models

Sketchy, “hand drawn”hand drawn

Eduard Gröller, Helwig Hauser 24

Page 25: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Visualization of 3D Models

Eduard Gröller, Helwig Hauser 25

Page 26: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Flow VisualizationFlow Visualization with Arrowswith Arrows

Hedgehog plots etcHedgehog plots, etc.

Page 27: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Flow Visualization with Arrows

Aspects:Di t Fl Vi li tiDirect Flow VisualizationNormalized arrows vs. scaling with velocity2D: quite usable2D: quite usable,3D: often problematicSometimes limitedexpressivity (temporal p y ( pcomponent missing)Often used!

Eduard Gröller, Helwig Hauser 27

Often used!

Page 28: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Arrows in 2D

Scaled arrows vs. color-coded arrows

Eduard Gröller, Helwig Hauser 28

Page 29: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Arrows in 3D

Following problems:AmbiguityAmbiguityPerspective Sh t iShortening1D-objects in 3D:difficult spatial perceptionVisual clutter

Improvement:Improvement:3D-arrows (help to a certain extent)

Eduard Gröller, Helwig Hauser 29

Page 30: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Arrows in 3D

Compromise:Arrows only in slicesArrows only in slices

Eduard Gröller, Helwig Hauser 30

Page 31: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Arrows in 3D

Well integrable within “real” 3D:

Eduard Gröller, Helwig Hauser 31

Page 32: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Integration of Streamlines

Numerical Integration

Page 33: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Streamlines – Theory

Correlations:fl d t d i ti i f tiflow data v: derivative informationdx/dt = v(x); spatial points xRn, time tR, flow vectors vRn

streamline s: integration over time,g ,also called trajectory, solution, curves(t) = s0 + 0ut v(s(u)) du;s(t) s0 0ut v(s(u)) du;seed point s0, integration variable udifficulty: result s also in the integral analyticaldifficulty: result s also in the integral analytical solution usually impossible!

Helwig Hauser, Eduard Gröller 33

Page 34: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Streamlines – Practice

Basic approach:th (t) + ( ( )) dtheory: s(t) = s0 + 0ut v(s(u)) dupractice: numerical integrationidea: (very) locally, the solution is (approx.) linear( y) y, ( pp )

Euler integration: follow the current flow vector v(si) from the currentfollow the current flow vector v(si) from the current streamline point si for a very small time (dt) and therefore distanceEuler integration: si+1 = si + dt · v(si),integration of small steps (dt very small)

Helwig Hauser 34

integration of small steps (dt very small)

Page 35: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Euler Integration – Example

2D model data: vx = dx/dt = yvy = dy/dt = x/2y y

Sample arrows:2

True 0

1

Truesolution:ellipses!

0 1 2 3 4

0

p

Helwig Hauser 35

Page 36: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Euler Integration – Example

Seed point s0 = (0 | -1 )T;current flow vector v(s0) = (1 |0)T;( 0) ( | ) ;dt = 1/2

2

0

1

0 1 2 3 4

0

Helwig Hauser 36

Page 37: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Euler Integration – Example

New point s1 = s0 + v(s0) ·dt = (1/2 | -1)T;current flow vector v(s1) = (1 |1/4)T;( 1) ( | ) ;

2

0

1

0 1 2 3 4

0

Helwig Hauser 37

Page 38: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Euler Integration – Example

New point s2 = s1 + v(s1) ·dt = (1 | -7/8)T;current flow vector v(s2) = (7/8 |1/2)T;( 2) ( | ) ;

2

0

1

0 1 2 3 4

0

Helwig Hauser 38

Page 39: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Euler Integration – Example

s3 = (23/16| -5/8)T (1.44| -0.63)T;v(s3) = (5/8 |23/32)T (0.63 |0.72)T;( 3) ( | ) ( | ) ;

2

0

1

0 1 2 3 4

0

Helwig Hauser 39

Page 40: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Euler Integration – Example

s4 = (7/4 | -17/64)T (1.75| -0.27)T;v(s4) = (17/64|7/8)T (0.27 |0.88)T;( 4) ( | ) ( | ) ;

2

0

1

0 1 2 3 4

0

Helwig Hauser 40

Page 41: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Euler Integration – Example

s9 (0.20|1.69)T;v(s9) ( -1.69 |0.10)T;( 9) ( | ) ;

2

0

1

0 1 2 3 4

0

Helwig Hauser 41

Page 42: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Euler Integration – Example

s14 ( -3.22 | -0.10)T;v(s14) (0.10 | -1.61)T;( 14) ( | ) ;

2

0

1

0 1 2 3 4

0

Helwig Hauser 42

Page 43: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Euler Integration – Example

s19 (0.75| -3.02)T; v(s19) (3.02|0.37)T;clearly: large integration error dt too large!clearly: large integration error, dt too large!19 steps

2

0

1

0 1 2 3 4

0

Helwig Hauser 43

Page 44: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Euler Integration – Example

dt smaller (1/4): more steps, more exact! s36 (0.04| -1.74)T; v(s36) (1.74|0.02)T;36 ( | ) ; ( 36) ( | ) ;36 steps

2

0

1

0 1 2 3 4

0

Helwig Hauser 44

Page 45: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Comparison Euler, Step Sizes

Euler is gettingis gettingbetter propor-propor-tionally to dtto dt

Helwig Hauser 45

Page 46: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Euler Example – Error Table

dt #steps error

1/2 19 ~200%1/4 36 ~75%

1/10 89 25%1/10 89 ~25%1/100 889 ~2%

1/1000 8889 ~0.2%

Helwig Hauser 46

Page 47: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Better than Euler Integr.: RK

Runge-Kutta Approach:theory: s(t) = s + v(s(u)) dutheory: s(t) = s0 + 0ut v(s(u)) duEuler: si = s0 + 0u<i v(su) dtRunge-Kutta integration:

idea: cut short the curve arcidea: cut short the curve arcRK-2 (second order RK):1.: do half a Euler step1.: do half a Euler step2.: evaluate flow vector there3.: use it in the originRK-2 (two evaluations of v per step):si+1 = si + v(si+v(si)·dt /2) ·dt

Helwig Hauser 47

Page 48: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

RK-2 Integration – One Step

Seed point s0 = (0 | -2 )T;current flow vector v(s0) = (2 |0)T;( 0) ( | ) ;preview vector v(s0+v(s0)·dt /2) = (2|0.5)T; dt = 1

2

0

1

0 1 2 3 4

0

Helwig Hauser 48

Page 49: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

RK-2 – One more step

Seed point s1 = (2 | -1.5)T;current flow vector v(s1) = (1.5 |1)T;( 1) ( | ) ;preview vector v(s1+v(s1)·dt /2) (1|1.4)T; dt = 1

2

0

1

0 1 2 3 4

0

Helwig Hauser 49

Page 50: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

RK-2 – A Quick Round

RK-2: even with dt=1 (9 steps) betterbetter than Euler with dt=1/8with dt 1/8(72 steps)

Helwig Hauser 50

Page 51: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Integration, Conclusions

Summary:analytic determination of streamlinesanalytic determination of streamlines usually not possibleh i l i t tihence: numerical integrationseveral methods available(Euler, Runge-Kutta, etc.)Euler: simple, imprecise, esp. with small dtu e s p e, p ec se, esp s a dRK: more accurate in higher ordersf rthermore adapti e methods implicit methodsfurthermore: adaptive methods, implicit methods, etc.

Helwig Hauser 51

Page 52: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Flow Visualizationwith Streamlines

StreamlinesStreamlines, Particle Paths, etc.

Page 53: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Streamlines in 2D

Adequatefor overviewfor overview

Helwig Hauser 53

Page 54: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Visualization with Particles

Particle paths =streamlinesstreamlines(steady flows)

Variants (time-dependent data):dependent data):

streak lines:steadily newsteadily newparticlespath lines:path lines:long-term pathof one particleof one particle

Helwig Hauser 54

Page 55: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Streamlines in 3D

Color coding:gSpeedSelectiveSelectivePlacement

Helwig Hauser, Eduard Gröller 55

Page 56: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

3D Streamlines with Sweeps

Sweeps: better spatial 3Dbetter spatial 3D perception

Helwig Hauser 56

Page 57: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Illuminated Streamlines

Illuminated 3D curves 3D curves better 3Dperception!perception!

Helwig Hauser 57

Page 58: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

SStreamline Placement

in 2D

Page 59: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Problem: Choice of Seed Points

Streamline placement:If regular grid used: very irregular resultIf regular grid used: very irregular result

Helwig Hauser 59

Page 60: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Overview of Algorithm

Idea: streamlines should not get too close to each othereach otherApproach:

choose a seed point with distance dsep from an already existing streamliney gforward- and backward-integration until distance dtest is reached (or …).test ( )

two parameters:d start distancedsep … start distancedtest … minimum distance

Helwig Hauser, Eduard Gröller 60

Page 61: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Algorithm – Pseudocode

Compute initial streamline, put it into a queueInitial streamline becomes current streamlineInitial streamline becomes current streamlineWHILE not finished DO:

TRY: get new seed point which is dsep away fromcurrent streamline

fIF successful THEN compute new streamline and put to queue

ELSE IF no more streamline in queueELSE IF no more streamline in queue THEN exit loopELSE next streamline in queue becomesq

current streamline

Helwig Hauser 61

Page 62: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Streamline Termination

When to stop streamline integration:when dist to neighboring streamline ≤ dwhen dist. to neighboring streamline ≤ dtest

when streamline leaves flow domainwhen streamline runs into fixed point (v=0)when streamline gets too near to itselfwhen streamline gets too near to itselfafter a certain amount of maximal steps

Helwig Hauser 62

Page 63: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

New Streamlines

Helwig Hauser 63

Page 64: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Different Streamline Densities

Variations of dsep in rel. to image width:

6% 3% 1.5%

Helwig Hauser 64

Page 65: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

dsep vs. dtest

dtest = 0.9 · dsep dtest = 0.5 · dsep

Helwig Hauser 65

Page 66: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Tapering and Glyphs

Thickness in rel. to distto dist.

DirectionalDirectionalglyphs:

Helwig Hauser 66

Page 67: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Flow Visualizationith I t l Obj twith Integral Objects

Streamribbons, Streamsurfaces,

etc.

Page 68: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Integral Objects in 3D 1/3

Streamribbons

Helwig Hauser 68

Page 69: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Integral Objects in 3D 2/3

Streamsurfaces

Helwig Hauser 69

Page 70: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Stream Arrows

Helwig Hauser 70

Page 71: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Integral Objects in 3D 3/3

Flow volumes …

vs. streamtubes(similar to streamribbon)

Helwig Hauser 71

Page 72: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Relation to Seed Objects

IntegralObj. Dim. SeedObj. Dim.______________________________________________________________________________________________________

Streamline,… 1D Point 0DStreamribbon 1D++ Point+pt. 0D+0DSt t b 1D++ Pt + t 0D+1DStreamtube 1D++ Pt.+cont. 0D+1D______________________________________________________________________________________________________

Streamsurface 2D Curve 1DStreamsurface 2D Curve 1D______________________________________________________________________________________________________

Flow volume 3D Patch 2D

Helwig Hauser 72

Page 73: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

CLine Integral Convolution

Flow VisualizationFlow Visualization in 2D or on surfaces

Page 74: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

LIC – Introduction

Aspects:goal: general overview of flowgoal: general overview of flowApproach: usage of texturesIdea: flow visual correlationExample:Example:

Helwig Hauser 74

Page 75: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

LIC – Approach

LIC idea:for every texel: let the texture valuefor every texel: let the texture value…

… correlate with neighboring texture values along the flow (in flow direction)along the flow (in flow direction)… not correlate with neighboring texture values across the flow (normal to flow dir )across the flow (normal to flow dir.)

result: l t li th t t lalong streamlines the texture values are

correlated visually coherent!approach: “smudge” white noise (no a priori correlations) along flow

Helwig Hauser, Eduard Gröller 75

Page 76: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

LIC – Steps

Calculation of a texture value: Flow Datatexture value:

look at streamline through point

Flow Data

Integratthrough pointfilter white noise l t li

Streamline (DDA)

g

along streamline (DDA)Convoluwith

White Noiseresults i

LIC Texel

results i

Helwig Hauser 76

Page 77: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

LIC – Convolution with Noise

Calculation of LIC texture:input 1: flow data v(x): RnRninput 1: flow data v(x): RnRn, analytically or interpolatedi t 2 hit i ( ) Rn R1input 2: white noise n(x): RnR1, normally precomputed as texturet li ( ) th h R1 Rnstreamline sx(u) through x: R1Rn,

sx(u) = x + sgn(u) 0t|u| v(sx(sgn(u)t)) dti t 3 filt h(t) R1 R1 Ginput 3: filter h(t): R1R1, e.g., Gaussresult: texture value lic(x): RnR1,

( )

lic(x) = lic(sx(0)) = n(sx(u))·h(u) du

Helwig Hauser 77

Page 78: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

More Explanation

So:LIC lic(x) is a convolution ofLIC – lic(x) – is a convolution of

white noise n (or …)and a smoothing filter h (e.g. a Gaussian)

The noise texture values are picked pup along streamlines sx through x

Helwig Hauser 78

Page 79: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

LIC – Example in 2D

quite laminar flow

Helwig Hauser 79quite turbulent flow

Page 80: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

LIC – Examples on Surfaces

Helwig Hauser 80

Page 81: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Arrows vs. StrLines vs. Textures

Streamlines: selectiveA llArrows: well..

Textures: 2D-filling

Helwig Hauser 81

g

Page 82: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Alternatives to LICSimilar approaches:

spot noise

spot noise

t t d l tspot noisevector kernelline bundles / splats

textured splats

line bundles / splatstextured splatsparticle systemsparticle systemsflow volumest t d titexture advection

motionblurred

Helwig Hauser 82

particlesflow volume

Page 83: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Flow Visualizationdependent on local props.

Visualization of v

Page 84: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Glyphs resp. Icons

Local / topologicaltopologicalproperties

Helwig Hauser 84

Page 85: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Icons in 2D

Helwig Hauser 85

Page 86: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Icons & Glyphs in 3D

Helwig Hauser 86

Page 87: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Flow Topology

Topology:abstractabstractstructureof a flowof a flow

differentelements, e.g.:

checkpoints, defined through v(x)=0cycles, defined through sx(t+T)=sx(t)y , g x( ) x( )connecting structures (separatrices, etc.)

Helwig Hauser 87

Page 88: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Flow Topology in 3D

Topology on surfaces:surfaces:

fixedpointspointssepara-t itrices

Helwig Hauser 88

Page 89: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Flow Topology in 3D

Lorenz system:system:

1 saddle2 saddlefoci1 chaotic attractor

Helwig Hauser 89

Page 90: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Timesurfaces

Idea:start surface e g part of a planestart surface, e.g. part of a planemove whole surface along flow over timetime surface: surface at one point in time

Helwig Hauser 90

Page 91: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

Literature, ReferencesB. Jobard & W. Lefer: “Creating Evenly-Spaced Streamlines of Arbitrary Density” in Proceedings of 8th Eurographics Workshop on Visualization in ScientificEurographics Workshop on Visualization in Scientific Computing, April 1997, pp. 45-55

B. Cabral & L. Leedom: “Imaging Vector Fields Using Line Integral Convolution” in Proceedings g g gof SIGGRAPH ‘93 = Computer Graphics 27, 1993, pp. 263-270

D. Stalling & H.-C. Hege: “Fast and Resolution g gIndependent Line Integral Convolution” in Proceedings of SIGGRAPH ‘95 = Computer Graphics 29 1995 pp 249 256Graphics 29, 1995, pp. 249-256

Eduard Gröller, Helwig Hauser 91

Page 92: Flow Visualization - TU Wien...St d tiSteady vs time-ddtfldependent flow Direct vs. indirect flow visualization Experimental flow visualization B i ibilitiBasic possibilities PIV (Particle

AcknowledgementsFor material for this lecture unit

Hans-Georg PagendarmRoger CrawfisRoger CrawfisLloyd TreinishDavid KenwrightTerry HewittTerry HewittBruno JobardMalte ZöcklerGeorg FischelGeorg FischelHelwig HauserBruno JobardJeff HultquistJeff HultquistLukas Mroz, Rainer WegenkittlNelson Max, Will Schroeder et al.Brian Cabral & Leith LeedomBrian Cabral & Leith LeedomDavid KenwrightRüdiger WestermannJack van Wijk Freik Reinders Frits Post Alexandru Telea Ari SadarjoenJack van Wijk, Freik Reinders, Frits Post, Alexandru Telea, Ari Sadarjoen

Eduard Gröller, Helwig Hauser 92