fluid dynamics - applications

Upload: vidya-muthukrishnan

Post on 07-Jul-2018

227 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/19/2019 Fluid Dynamics - Applications

    1/42

    1http://www.physics.usyd.edu.au/teach_res/jp/fluids/wfluids.htm

    web notes: Fluidslect5.pdf

    flow4.pdf flight.pdf

    Lecture 5

    Dr Julia Bryant

    Fluid dynamics - Applications

    of Bernoulli’s principleFluid statics• What is a fluid?Density

    Pressure • Fluid pressure and depthPascal’s principle 

    • BuoyancyArchimedes’ principle

    Fluid dynamics • Reynolds number

    • Equation of continuity • Bernoulli’s principle 

    • Viscosity and turbulent flow

    • Poiseuille’s equation

  • 8/19/2019 Fluid Dynamics - Applications

    2/42

    2

    Bernoulli’s Equationfor any point along a flow tube or streamline

     p + 1 v 2 + g y = constant2

    Between any two points along a flow tube or streamline  p1 + 1 " v 1

    2 + " g y 1  =  p2 + 1 " v 22 + " g y 2

    2 2 Dimensions

     p  [Pa] = [N.m-2] = [N.m.m-3] = [J.m-3]

    1 " v 2  [kg.m-3.m2.s-2] = [kg.m-1.s-2] = [N.m.m-3] = [J.m-3]2  

    " g h [kg.m-3 m.s-2. m] = [kg.m.s-2.m.m-3] = [N.m.m-3] = [J.m-3]

    Each term has the dimensions of energy / volume or energy density.

    1 " v  2

      KE of bulk motion of fluid2  " g h  GPE for location of fluid

     p  pressure energy density arising from internal forces within

    moving fluid (similar to energy stored in a spring)

  • 8/19/2019 Fluid Dynamics - Applications

    3/42

    3

    Solving Bernoulli’s Equation 

    1. Establish points 1 and 2 along the flow.

    2. Define the coordinate system - where is

    y=0?

    3. List your known and unknown variables.4. Solve for the unknown variables, possibly

    using the continuity equation.

  • 8/19/2019 Fluid Dynamics - Applications

    4/42

    4

    (1) Surface of liquid 

    (2) Just outside hole 

    v 2 = ? m.s-1 

    What is the speed with which liquid flows from a hole at

    the bottom of a tank? Where does it hit the ground?

    R?

    Fluid is flowing from thesurface ==> Bernoulli’s applies

  • 8/19/2019 Fluid Dynamics - Applications

    5/42

    5

    (1) Surface of liquid 

    (2) Just outside hole 

    v 2 = ? m.s-1 

    y 2 = 0 

    v 1 ~ 0 m.s-1 (large tank) 

    y  = h 

     p1 = patm

     p2 = patm

    Firstly, what is the speed with which liquid flows from a hole at

    the bottom of a tank?

    y 1 

    y 2 

    h = (y 1  - y2 ) 

  • 8/19/2019 Fluid Dynamics - Applications

    6/42

    6

     Assume liquid behaves as an ideal fluid, Bernoulli's equation

    can be applied

     p1 + 1 " v 

    1

    2 + " g y 1  =  p

    2 + 1 " v 

    2

    2 + " g y 22 2

     A small hole is at level (2) and the water level at (1) drops

    slowly (if tank is large) # v 1 = 0

     p1 = patm   p2 = patm

    " g y 1  = 1 "v 22 + " g y 2

    2

    v 22 = 2 g  (y 1 – y 2) = 2 g h h = (y 1  - y2 ) 

    v 2 =  $ (2 g h)  Torricelli formula (1608 – 1647)

    This is the same velocity as a particle falling freely through a

    height h 

    y 1 

    y 2 

    h

    y = 0 

    p 1 

    p 2 

  • 8/19/2019 Fluid Dynamics - Applications

    7/42

    7

    Recall d=1 a t2 

    2 t= # (2d/a) 

    So, time taken to fall d= y 1 - h ist= #  {2(y 

    1

    - h)/g}  

    Distance,R = v2 t 

    =  $ (2 g h) . #  {2(y 1 - h)/g}  =2 #  {h(y 

    1- h)}  

    v 2 =  $ (2 g h)

    Secondly, where does it hit the ground?

    y 1 

    y 2 

    h

    R?

  • 8/19/2019 Fluid Dynamics - Applications

    8/42

    8

    0

    5

    10

    15

    20

    25

    0 2 4 6 8 10 12 14 16 18 20

    h

           R

    R =2 #  {h(y 1 - h)}  

    Secondly, where does it hit the ground?

    h=4 

    R?

    DEMO

    h=8.5 

    h=14 

    y 1=20 

  • 8/19/2019 Fluid Dynamics - Applications

    9/42

    9

    R =2 #  {h(y 1 - h)}  

    Secondly, where does it hit the ground?

    Y 1=16 

    R?

    DEMO

    4.5 

    10 

    0

    5

    10

    15

    20

    0 2 4 6 8 10 12 14 16

    h

           R

  • 8/19/2019 Fluid Dynamics - Applications

    10/42

    10

    Venturi Meter  

    A Venturi meter is used to measure the speed of the flow

    in a pipe.

    What is the speed v1 of flow in section 1 of the system? 

    DEMO

  • 8/19/2019 Fluid Dynamics - Applications

    11/42

    11

    Venturi Meter  

    Bernoulli’s equation only applies along the same

    streamline. Therefore we must choose points 1 and 2

    along the pipe, but not in the vertical tubes. 

  • 8/19/2019 Fluid Dynamics - Applications

    12/42

    12

    Venturi Meter  

    Q: What do we know? y 1  = y 2 no height difference 

    We will need to use:

    • Bernoulli$s equation ( Assume liquid behaves as an ideal fluid) 

     p1 + 1 " v 12 + " g y 1  =  p2 + 1 " v 2

    2 + " g y 22 2 

    • Continuity equation A1 v 1  = A2 v 2 

    • hydrostatic equation for the vertical pipes p 1  - p 2  = "m g h  

  • 8/19/2019 Fluid Dynamics - Applications

    13/42

    13

    From Bernoulli: 

    p 1 + 1 " v 12 + " g y 1  = p 2 + 1 " v 2

    2 + " g y 2 2 2

    y 1

      = y 2

     

    p 1  – p 2  = 1 " (v 22  - v 1

    2) From the continuity equation v 2 = v 1 (A1 / A2) 2

    p 1  p 2 

    d  

    v 1 = 2 gh

     {(A1 / A2)2  - 1}  

    So, p 1  – p 2  = 1 " ((A1 / A2)2 v 1

    2  - v 12) 

    p 1  – p 2  = 1 " v 12 ((A1 / A2)

    2  - 1)  A1 > A2 so  p 1  – p 2>0 p 1 > p 2 

    2 From hydrostatics p 1 = p 0 + " g (d+h)

    p 2 = p 0 + " g d  p 1  - p 2  = " g h  

    "g h   = 1 " v 12 {(A1 / A2)

    2  - 1}  2

  • 8/19/2019 Fluid Dynamics - Applications

    14/42

    14

    DEMO

    or

    Bernoulli’s Bar  

  • 8/19/2019 Fluid Dynamics - Applications

    15/42

    15

    How to impress your mother in a pub!From Bernoulli: 

    p 1 + 1 " v 12 + " g y 1  = p 2 + 1 " v 2

    2 + " g y 2 

    2 2y 1  = y 2 = 0 

    p 1  – p 2  = 1 " (v 22  - v 1

    2)

    2

      Continuity equation A2 v 2 = A1 v 1%  A2  v 1 p 2

  • 8/19/2019 Fluid Dynamics - Applications

    16/42

    16

    How does a

    siphon work?

  • 8/19/2019 Fluid Dynamics - Applications

    17/42

    17

    y A 

    y B 

    y C 

     Assume that the

    liquid behaves as an

    ideal fluid, theequation of continuity

    and Bernoulli's

    equation can be

    used.

    y D = 0

     p A = patm = pD 

  • 8/19/2019 Fluid Dynamics - Applications

    18/42

    18

    y A 

    y B 

    y C 

    y D = 0

    What do we know?

     p A = patm = pD 

    v A =0 approximately

    What do we need to find? 

    vD = ?

    yC = ?

    Focus on falling water

    not rising water

     patm - pC % 0 patm % " g  y C 

  • 8/19/2019 Fluid Dynamics - Applications

    19/42

    19

     pC + 1 " v C2 + " g y C  =  pD + 1 " v D

    2 + " g y D2 2 

    From equation of continuity v C = v D  pC  =  pD  + " g  (y D - y C) =  patm  + " g  (y D - y C)

    The pressure at point C can not be negative 

     pC  %  0 and y D = 0

     pC = patm - " g y C % 0y C  &  patm / (" g )

    For a water siphon 

     patm ~ 105 Pa

    g  ~ 10 m.s-1

      " ~ 103

      kg.m-3

    y C  &  105 / {(10)(103)} m

    y C  10 m

    Consider points C and D and apply Bernoulli's principle.

    y A 

    y B 

    y C 

    y D = 0

  • 8/19/2019 Fluid Dynamics - Applications

    20/42

    20

    y A 

    y B 

    y C 

    How fast does

    the liquidcome out?

  • 8/19/2019 Fluid Dynamics - Applications

    21/42

    21

     p A + 1 " v  A2 + " g y  A  =  pD + 1 " v D

    2 + " g y D2 2 

    v D2  = 2 ( p A – pD) / "  + v  A

    2  + 2 g   (y  A  - y D)

     p A – pD = 0 y D = 0 assume v  A2 

  • 8/19/2019 Fluid Dynamics - Applications

    22/42

    22

    FLUID FLOW 

    MOTION OF OBJECTS IN FLUIDS

    How can a plane fly?

    Why does a cricket ball swing or a baseball curve?

    web notes: flow4.pdf flight.pdf

  • 8/19/2019 Fluid Dynamics - Applications

    23/42

    23

    Lift F L 

    drag F D 

    Resultant F R 

    Motion of object through fluid

    Fluid moving around stationary object

    FORCES ACTING ON OBJECT MOVING THROUGH FLUID

    Forward thrust

    by engine

  • 8/19/2019 Fluid Dynamics - Applications

    24/42

    24

    B A 

    Uniform motion of an object through an ideal fluid

    (' = 0) 

    • Consider a cylinder.• The fluid will slide freely over the

    surface.

    • Pressure near A and B are equal and

    greater than undisturbed flow(streamlines further apart).

    • Pressure near C and D are equal andlower then undisturbed flow

    # Resultant force = zero

    • No drag or lift.• The pattern is symmetrical

  • 8/19/2019 Fluid Dynamics - Applications

    25/42

    25

    When real  fluids flow they have a certain

    internal friction called viscosity. It exists in

    both liquids and gases and is essentially a

    frictional force between different layers of

    fluid as they move past one another.

    In liquids the viscosity is due to the cohesive

    forces between the molecules whilst in

    gases the viscosity is due to collisions

    between the molecules.

    “VISCOSITY IS DIFFERENT TO DENSITY” 

  • 8/19/2019 Fluid Dynamics - Applications

    26/42

    26

    Drag force 

    In a viscous fluid, a thin layer of fluid sticks to thesurface of an object and the resulting friction leads to a

    drag force on the object.

    The flow is no longer complete around the object, and

    the flow lines break away from the surface resulting ineddies behind the object. The pressure in the eddies is

    lowered and the pressure difference gives pressure drag

    force.

  • 8/19/2019 Fluid Dynamics - Applications

    27/42

    27

    low pressure region 

    high pressure region 

    rotational KE of eddies # heating effect # increasein internal energy # 

    temperature increases 

    Drag force due to pressure difference 

    Drag force is

    opposite to thedirection of motion 

    motion of air

    motion of object

  • 8/19/2019 Fluid Dynamics - Applications

    28/42

    28low pressure region 

    high pressure region 

    Drag force due 

    to pressure difference 

    v  

    v  

    flow speed (high) v air + v  

    # reduced pressure 

    flow speed (low) v air - v  # increased pressure 

    v air (v ball) 

    Boundary layer – airsticks to ball(viscosity) – airdragged around withball 

    MAGNUS EFFECT

    motion of air

    motion of object

    What happens if the object is spinning?

  • 8/19/2019 Fluid Dynamics - Applications

    29/42

    29

  • 8/19/2019 Fluid Dynamics - Applications

    30/42

    30

    Golf ball with backspin (rotating CW) with air stream going from

    left to right. Note that the air stream is deflected downward with a

    downward force. The reaction force on the ball is upward. This

    gives the longer hang time and hence distance carried.

    The trajectory of a

    golf ball is notparabolic

  • 8/19/2019 Fluid Dynamics - Applications

    31/42

    31

  • 8/19/2019 Fluid Dynamics - Applications

    32/42

    32

    Professional golf drive

    Initial speed v 0 ~ 70 m.s-1

     Angle ~ 6°

    Spin ( ~ 3500 rpm

    Range ~ 100 m (no Magnus effect)

    Range ~ 300 m (Magnus effect)

  • 8/19/2019 Fluid Dynamics - Applications

    33/42

    33

    Stagnation line

    Higher v, lower pressure

    Lift increases

    with angle ofattack, untilstall.

    10°

    How can a plane fly?

  • 8/19/2019 Fluid Dynamics - Applications

    34/42

    34

    Direction plane is moving w.r.t. the air

    Direction air is moving w.r.t. plane

    low pressure drag

    !

    attack angle

    lift

    downwash 

    huge vortices 

    momentum transfer

    low

    pressure

    high

    pressure

    DEMO

  • 8/19/2019 Fluid Dynamics - Applications

    35/42

    35

  • 8/19/2019 Fluid Dynamics - Applications

    36/42

    36

    Why do some liquidssplash more? 

  • 8/19/2019 Fluid Dynamics - Applications

    37/42

    37

    Why do cars need different oils in hot

    and cold countries?

    Why do engines run more freely as it

    heats up?

    Have you noticed that skin lotions are

    easier to pour in summer than winter?

    Why is honey sticky?

  • 8/19/2019 Fluid Dynamics - Applications

    38/42

    38

    When real  fluids flow they have a certain

    internal friction called viscosity. It exists in

    both liquids and gases and is essentially africtional force between different layers of

    fluid as they move past one another.

    In liquids the viscosity is due to the cohesive

    forces between the molecules whilst in

    gases the viscosity is due to collisions

    between the molecules.

    “VISCOSITY IS DIFFERENT TO DENSITY” 

  • 8/19/2019 Fluid Dynamics - Applications

    39/42

    39

    stationary wall 

    L  A viscous fluid 

    plate 

    X

    Z

    A useful model

     Assumptions

  • 8/19/2019 Fluid Dynamics - Applications

    40/42

    40

    stationary wall 

    Viscous fluid will flow 

    plate moves with speed v  

    X

    Z

    A useful model

    Q: Direction?

    Q: Highest speeds?Q: Lowest speeds?

  • 8/19/2019 Fluid Dynamics - Applications

    41/42

    41

    stationary wall 

    low speed 

    high speed 

    plate moves with speed v  

    X

    Z

    v x = 0 

    v x = v  

    A useful model:

    Newtonian fluids

    water, most gases

    linearvelocity

    gradient 

    L  v x 

  • 8/19/2019 Fluid Dynamics - Applications

    42/42

    42

    stationary wall 

    plate exerts force F  

    velocitygradient 

    is proportional toshearstress 

    (F/A) = ' (v  / L)

    A useful model:

    Newtonian fluidsover area A