fluid structure interactions in ascending thoracic aortic

29
[email protected] Fluid structure interactions in ascending thoracic aortic aneurysms Prof . Stéphane AVRIL

Upload: others

Post on 19-Oct-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]

Fluid structure interactions

in ascending thoracic

aortic aneurysms

Prof. Stéphane AVRIL

Page 2: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]

PARIS

AUVERGNERHONE-ALPES

MINES SAINT-ETIENNE

First Grande Ecole

outside Paris

Founded in 1816

Page 3: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr

Prediction of risk of rupture and dissection

Stéphane Avril - 2018 Dec 19 - ISBM Nanjing

dissection

3

Page 4: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr

Context

More and more aneurysms are detected at an early stage

(incidence >8% for males >65 years old).

An intervention is recommended if the aneurysm grows

more >1cm/year or it is >5.5cm. This represents >90000

interventions per year in Europe and USA

BUT:

• 25% aneurysms <5.5cm rupture : 15000 deaths**!

• 60% of aneurysms >5.5 cm never experience rupture!

In summary: very high rate of inappropriate decisions and

misprogramed surgical interventions!!

Stéphane Avril - 2018 Dec 19 - ISBM Nanjing

** Pape et al, Aortic Diameter ≥5.5 cm Is Not a Good Predictor of Type A Aortic Dissection Observations From the International Registry

of Acute Aortic Dissection (IRAD), Circulation, 2007

4

Page 5: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr Stéphane Avril - 2018 Dec 19 - ISBM Nanjing

Bulge inflation test

III) Inflation test device. Speckle

pattern is made before starting the

inflation test

Circumferential

Ax

ial

Romo et al. Journal of Biomechanics -

2014

5

Page 6: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr Stéphane Avril - 2018 Dec 19 - ISBM Nanjing6

Davis et al. BMMB – 2015.

Davis et al. JMBBM – 2016

Zhao et al. Acta Biomaterialia - 2016

Identification of local material

properties

Page 7: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr7

Rupture risk estimation

Physiological

Stress

Stretch

Stretch/Stress Curve

Rupture Stress

Ein-vitro = Tangent elastic

modulusCau

ch

y S

tress (

MP

a)

1 1.1 1.2 1.3

Physiological

Stretch

1.4 1.5 1.6 1.7

Rupture Stretch

γstress = Physiological stress

Rupture stress

γstretch = Physiological stretchRupture stretch

Stéphane Avril - 2018 Dec 19 - ISBM Nanjing

Page 8: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr8

Correlation between the stretch-based rupture

risk and the tangent elastic modulus

Duprey A, et al. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomaterialia 2016.

Stéphane Avril - 2018 Dec 19 - ISBM Nanjing

Ein-vitro (MPa)

Ru

ptu

reri

sk

Page 9: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]

Olfa Trabelsi, Miguel A Gutierrez Cambron, Solmaz Farzaneh, Ambroise Duprey, Stéphane Avril. A non-invasive methodology

for ATAA rupture risk estimation. Journal of Biomechanics 2017.

Relationship with aortic stiffness?

Is the stretch based rupture risk criterion correlated to the aortic

stiffness which could be measured by elastography techniques?

Page 10: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]

Methodology

• STL files of 10 Phases for each patient

• Structural mesh for all phases

• Mesh morphing function between the geometries of each phase

• Writing the coordinates of all phases

x(t) = 𝑎0+σ𝑛=1∞ 𝑎𝑛 cos(𝑛𝑓𝑡) +σ𝑛=1

∞ 𝑏𝑛 sin(𝑛𝑓𝑡)

Discrete Fourier transform of the aortic deformation at every position

DC

term

n=1 Fundamental

magnitude

Average geometryDisplacements over a

cardiac cycle

Page 11: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]

Equation of local membrane stiffness

∆𝑟1 , ∆𝑟2:Fundamental circumferential and

longitudinal radii of curvature

Q = ∆𝑃+

𝜏10∆𝑟1

(𝑟10)2

+𝜏20∆𝑟2

(𝑟20)2

𝜀1 𝑡 +𝜈𝜀2 𝑡

𝑟10 +

𝜈𝜀1 𝑡 +𝜀2 𝑡

𝑟20

∆𝑃 =∆𝑃02

=𝑃𝑠𝑦𝑠 − 𝑃𝑑𝑖𝑎

2

𝑟10 , 𝑟2

0 : Circumferential and longitudinal

radii of curvature in average geometry

𝜀1 , 𝜀2 : Circumferential and longitudinal

strains𝜏10, 𝜏2

0: Pretensions in circumferential and

longitudinal directions

Farzaneh et al, BMMB 2018

Page 12: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]

Validation

Stiffness [MPa.mm]Stiffness [MPa.mm]

Displacement [mm]

Page 13: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]

Results

Farzaneh et al, ABME 2018

Page 14: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr14

Summary

2 ways of defining rupture:

PWS – but unknown patient-specific strength

γstretch correlated with in vivo circumferential stiffness

Stéphane Avril - 2018 Dec 19 - ISBM Nanjing

Higher stiffness less risk because the

aneurysm can more easily withstand

volume variation

C. Martin et al., Acta Biomater. 9 (2013) 9392–9400

Page 15: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr Stéphane Avril - 2018 Dec 19 - ISBM Nanjing15

RELATIONSHIP WITH HEMODYNAMICS

Preoperative dynamic imaging

4D MRI

CAD MeshNumerical

Solution

Streamlines, velocity

TAWSS

Page 16: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr

Material and Methods- 4D MRI images

Stéphane Avril - 2018 Dec 19 - ISBM Nanjing16

Siemens 3T Prisma

Page 17: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr

MATERIAL AND METHODS- FSI

Stéphane Avril - 2018 Dec 19 - ISBM Nanjing17

4D MRI data Velocity

Profile

FSI analysis

[m/s]

Condemi et al, ABME 2017

Page 18: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr

Boundary conditions for the fluid domain

Stéphane Avril - 2018 Dec 19 - ISBM Nanjing18

Page 19: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr

Boundary conditions for the solid domain

Stéphane Avril - 2018 Dec 19 - ISBM Nanjing19

Page 20: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr

Validation of the computational model

Stéphane Avril - 2018 Dec 19 - ISBM Nanjing20

Sigovan, M., M.D. Hope, P. Dyverfeldt, D. Saloner. Comparison of four‐dimensional flow parameters for quantification of flow eccentricity in

the ascending aorta. J Magn Reson Imaging. 34(5):1226-30, 2011.

Page 21: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr Stéphane Avril - 2018 Dec 19 - ISBM Nanjing21

COMPLIANT

STIFF

110MPa 330MPa

150MPa 930MPa

Compobasso et al, CVET 2018

Page 22: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr

Wall shear stress analysis

Stéphane Avril - 2018 Dec 19 - ISBM Nanjing22

𝑇𝐴𝑊𝑆𝑆 =1

𝑇න0

𝑇

𝑊𝑆𝑆 𝑑𝑡

where T is the period of the cardiac cycle and WSS is the instantaneous wall shear

stress.

𝑂𝑆𝐼 = 0.5 1 −0𝑇𝑊𝑆𝑆(𝑠, 𝑡) ∙ 𝑑𝑡

0𝑇𝑊𝑆𝑆(𝑠, 𝑡) ∙ 𝑑𝑡

Time averaged wall shear stress (WSS):

Oscillatory Shear Index:

Page 23: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr Stéphane Avril - 2018 Dec 19 - ISBM Nanjing23

RESULTS

Page 24: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr Stéphane Avril - 2018 Dec 19 - ISBM Nanjing24

Statistical Analysis-Spearman Rho:

λrupture vs. TAWSSmax [Pa]

Spearman rho 0.867

P-value 0.001

Page 25: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr

DISCUSSION

Protective role of larger TAWSS, associated with low oscillatory

wall shear stress?

Proteolytic effects

Stéphane Avril - 2018 Dec 19 - ISBM Nanjing25

Guzzardi et al. JACC 2015

Page 26: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr

Continuous process of proteolytic

injury and tissue adaptation

26

PROTEOLYTIC

INJURY

Strain

HEALING

Stéphane Avril - 2018 Dec 19 - ISBM Nanjing

Stress

Stress

Page 27: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr

Growth and remodeling with continuous

medial proteolytic injury

Stéphane Avril - 2018 Dec 19 - ISBM Nanjing27

Mousavi et al, BMMB 2018

Page 28: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected] 28

Computational mechanics in the

OR for vascular surgery?

www.predisurge.com

Page 29: Fluid structure interactions in ascending thoracic aortic

Institut Mines-Télé[email protected]@emse.fr

Acknowledgements

Stéphane Avril - 2018 Dec 19 - ISBM Nanjing

Funding:

ERC-2014-CoG BIOLOCHANICS

Olfa Trabelsi

Aaron Romo

Jin Kim

Pierre Badel

Frances Davis

Victor Acosta

Jamal Mousavi

Solmaz Farzeneh

Francesca Condemi

Cristina Cavinato

Jérôme Molimard

Baptiste Pierrat

Joan Laubrie

Claudie Petit

Jayendiran Raja

Miquel Aguirre

Ambroise Duprey

Jean-Pierre Favre

Jean-Noël Albertini

Salvatore Campisi

Magalie Viallon

Pierre Croisille

Chiara Bellini

Matthew Bersi

Jay Humphrey

Katia Genovese

29