fly ash so /no - cheric · fly ash so2/nox 405 hwahak konghak vol. 41, no. 3, june, 2003 5 g 3...

7
403 HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 403-409 Fly Ash SO 2 /NO x * ** *** **** 780-711 165 * 356-706 360 ** 139-701 447-1 *** 790-784 31 **** 305-343 71-2 (2003 2 28 , 2003 3 24 ) Simultaneous Removal of SO 2 and NO x by the Absorbent from Coal Fly Ash Jong-Hyeon Jung , Byung-Hyun Shon*, Kyung-Seun Yoo**, Hyun-Gyu Kim*** and Hyung-Kun Lee**** Division of Biotechnology & Health Engineering, Sorabol College, Gyeongju 780-711, Korea *Department of Environmental Engineering, Hanseo University, Seosan 356-706, Korea **Department of Environmental Engineering, Kawngwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 139-701, Korea ***Department of Environmental Science & Engineering, Pohang University of Science & Technology, San 31 Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Korea ****Department of Clean Energy Research, Korea Institute Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Korea (Received 28 February 2003; accepted 24 March 2003) , SEM-EDX, ICP, BET, XRD . ‘fly ash SO 2 NO x , SO 2 NO x . ‘fly ash . , SO 2 NO x 1:9 . Abstract - The simultaneous removal of SO 2 and NO x by advanced absorbent from coal fly ash was examined in a packed bed reactor. Also, the physicochemical properties of prepared absorbents have been measured using ICP, BET, SEM-EDX and XRD. We have found that both SO 2 and NO x in simulated flue gas can be effectively removed by use of fly ash advanced absorbent which was prepared by hydration of calcined limestone with or without coal fly ash. The addition of fly ash into the absorbents can result in the highly efficient simultaneous removal of SO 2 and NO x from simulated flue gas. This is because the addition of fly ash into limestone and advanced absorbent increases the specific surface area and hygroscopicity of fly ash advanced absorbents by pozzolanic reaction which leads to the formation of calcium silicate compounds. The test results indi- cated that the optimal mixing ratio of fly ash to advanced absorbent sample is about 1:9 for the effective removal of SO x /NO x . Key words: Advanced Absorbent, Fly Ash, SO 2 , NO x , Pozzolanic Reaction, Calcium Silicate, Waste Incinerator, Flue Gas Des- ulfurization To whom correspondence should be addressed. E-mail: [email protected]

Upload: dinhhanh

Post on 30-Aug-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 403-409

Fly Ash� ��� ���� SO2/NOx ��

���†����*���**���***�� �****

����� ����780-711 �� � � ��� 165

*����� �����356-706 �� ��� ��� ��� 360

**����� �����139-701 � � !"# $%� 447-1

***&'����� ����790-784 �� &'� �# �(� � 31

**** �)*+,-./#" 01*+,/#305-343 �2� 34# 5� 71-2

(20036 2$ 287 89, 20036 3$ 247 :;)

Simultaneous Removal of SO2 and NOx by the Absorbent from Coal Fly Ash

Jong-Hyeon Jung†, Byung-Hyun Shon*, Kyung-Seun Yoo**, Hyun-Gyu Kim *** and Hyung-Kun Lee****

Division of Biotechnology & Health Engineering, Sorabol College, Gyeongju 780-711, Korea*Department of Environmental Engineering, Hanseo University, Seosan 356-706, Korea

**Department of Environmental Engineering, Kawngwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 139-701, Korea***Department of Environmental Science & Engineering, Pohang University of Science & Technology,

San 31 Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Korea****Department of Clean Energy Research, Korea Institute Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Korea

(Received 28 February 2003; accepted 24 March 2003)

� �

� ����� �� �� ����� ���� ����� ������ ��� � �! "�� #$%&'!

()� �*�+,-, �. /0���� SEM-EDX, ICP, BET, XRD 1� ���� �234� �*�+5. �2 46

4� �� /0�� ���7 ‘fly ash �����’� SO28 NOx ��� 9:;,< � = � >?,-, �� �

��� �. ������ ���@ AB ���� ��� SO28 NOx ��� � C 9�;�?5. �D ()E��

464� ������ ��F ��< G�� H�IJ 1� KB ��� L2,< G�� MNO&'� PQRS ‘fly ash

�����’F �TU;� �V2 1� W�R?! XY�5. Z , �� SO2 [ NOx ��� � ���< \��! "

��8 �����F ]; ���:B 1:9G ^,< _`a5.

Abstract − The simultaneous removal of SO2 and NOx by advanced absorbent from coal fly ash was examined in a packed

bed reactor. Also, the physicochemical properties of prepared absorbents have been measured using ICP, BET, SEM-EDX and

XRD. We have found that both SO2 and NOx in simulated flue gas can be effectively removed by use of fly ash advanced

absorbent which was prepared by hydration of calcined limestone with or without coal fly ash. The addition of fly ash into the

absorbents can result in the highly efficient simultaneous removal of SO2 and NOx from simulated flue gas. This is because the

addition of fly ash into limestone and advanced absorbent increases the specific surface area and hygroscopicity of fly ash

advanced absorbents by pozzolanic reaction which leads to the formation of calcium silicate compounds. The test results indi-

cated that the optimal mixing ratio of fly ash to advanced absorbent sample is about 1:9 for the effective removal of SOx/NOx.

Key words: Advanced Absorbent, Fly Ash, SO2, NOx, Pozzolanic Reaction, Calcium Silicate, Waste Incinerator, Flue Gas Des-

ulfurization

403

†To whom correspondence should be addressed.E-mail: [email protected]

404 ��������������� �

0

1. � �

�� ��� ��� �� ���� � �� ����� ���

���� ���� ��� � !"#$ %&', ��( )* +,-

./0 .1� 234, �5 67�&� 89: ��; �<� ,=

>2;�, ./ (? �@#� ABCD� ��� E0 FGH I

JK LM %N. �� ��( )*�- ./ (O0 PQ RS ��#

T U$ 500 MW-1,000 MW�� V4��WX 2010QY> >��&�

��K Z[;N. ;, \� 1)/� (O � ��]� �@O ^�

2005Q,� 300,000 ton/day, ;X _&� `abN[1-4].

�c, � dZ�&�M eF� f�� gh ij � kl#m-

fn k9ABCDo, k� pM GG qV#$ %&', fn ��

rs +tWuWf�,- vw#� 15 v�x,� SO2, NOx, HCl,

VOCs y Nz� n{� k9ABCD; |1#T %T }~��� }

~9��� ;oH � �&� T�9� T�N[5-8]. \�- ��,

-� SOx, NOx y ���x{s N;�� yH �?, ��K L %�

�L � �7, i� )�� !"#$ %� �7;N[9-11]. �� �

�� EPRIs HSTC,-� ;��� ���xX ��� )�� !"

#$ %&', �� � ����7 ku �8,- �@�� )Wv�x

X ���9 �� �L �, i� )�� !"#$ %N[2-3, 12].

^�, ~�� LILAC(Lively Intensified Lime-Ash Compound) �7,-

� ��], @.�, .$X ;(�� �LX ��� ����H L

"��&', ADVACATE(ADVAnced siliCATE) �7,-� ]�e �

L, ��] � W.�X ���� �O�LX ���N[13-15].

;s |  ¡~� Sorbalit �7,-� W.�, 19 � ¢9£�X

���� �LX ���&', ;X ;(�� SOx, HCl � N;��

yH 90% ;a ��� �LX ���� � �7, ;(�$ %

� �7;N[3, 16-17]. ¤¥� Sorbalit �7� � NOx� ��<;

¦$, � b ~� N§ �7� �,M $�� ¨P� V©ª«�

(; ¬h�', �­ � �� ®��(; E; Wh#��, �7; ̄ °

�$ �L �? ±�?:; ²S Wh#T �³� �>� E; ´

µ %� �7;N[1-2, 12-17].

\�- � )�,-� v)���7 � +tWuWf�� v�x �

��¶ �·�H ¸a?¹9 ���, W� � LV�º yH �» �

Ls ��]X ���� ¼�® �LX ���&', ��] ��

�t½� �º�H � �� ��]� ���7, ( �<� ��X

� �$3 �N. ;X �5 ��� �>¾ �Ls ��]X ;(��

���LX ���&', �º� ¸aH ¿��9 �5 �¥ �> 9

9À.H �?��N. ^� � )�,- �� ���LX ;(��

��VC DW�VC ��¶H ÁÂ�9 �5 ��� pÃ� $7

Ä �º9X ;(�� �� � �D �º��H L"��N.

2. � �

~��&� ��]s .�.H ;(�� �LX ���� )��

�¥ )�3o[18-24], ��� L"#Å&', ��]X ���� W�

� LVX �» �O�L, �� ��,- SO2, k� �º�H ¨

!�� h�0 p�ÆÇ LVC ÈÉÊ�ÆÇ LVC, �� �L

Ë3 Ìm�� ��, �� _&� ÍÎ>$ %N. Kinds Rochelle[23]

0 Ï0 Ìm�� calcium slicateX Ð9 �5 ��]s @.�s� �

ºH ÑÒ��S � ��$, Ueno y[15]0 CaO, CaSO4, ��] y&

� �b �L� �� ���7,- Ï0 Ca ;(ÓH �ÔÕH �

Ö��N. ; �L� �� v)�� Z×,- �� ;(#T>$

%&', SO2� calcium sulfite uØ� $7#� N§ ���7 NÙ

S ; �7,-� calcium sulfate� u�#� _; �Ú;N[25].

Ca(OH)2+SiO2ÛCaSiO3+H2O (1)

Ca(OH)2+SiO2+H2OÛ(CaO)x(SiO2)y(H2O)z (2)

Calcium Silicate Hydrates

Ca(OH)2+Al2O3+H2OÛ(CaO)x(Al2O3)y(H2O)z (3)

Calcium Aluminate Hydrates

Ca(OH)2+Al2O3+SiO2+H2OÛ(CaO)x(Al2O3)y(SiO2)z(H2O)w (4)

Calcium Aluminate Silicate Hydrates

Ca(OH)2+Al2O3+SO3+H2OÛ(CaO)x(Al2O3)y(CaSO3)z(H2O)w (5)

Calcium Aluminate Calcium Sulfite Hydrates

(CaO)3SiO2+(1.3+x)H2OÛ(CaO)1.7(SiO2)(H2O)x+ 1.3Ca(OH)2 (6)

Tricalcium Silicate

�c, p�ÆÇ LVC ÈÉÊ�ÆÇ LVC; @�#� 70 p

�D ^� ÈÉÊ� p�D ]*� �d� ÀÜ; LÀ � ÈÆ�/ÈÆ

�Ý{� LVC aÞ,- �º�� ?ßàs á0 �DH >â C

DH @��� ‘pozzolanic reaction’, �5 @�#� _&� ã}#$

%&' ¤ �º0 � (1)-(6)� �ºH ×�� !"bN. �� � (2)s � (3)

� �ºH ‘pozzolanic reaction’;� �', ;¥� �ºH ~&¹� CDH

‘pozzolan’;� �N. Rochelles Jozewicz[20]0 ��]s W.� ä¥�

� �å7D V�CH �æ&', LVÞM� Ï0 ]�eb �L�

SO2 �, Ï0 ��MX ç;� _&� ç$��N. ~��&� kÌ�

� è)éêë&�� p�Ýs V�] y; %&', ./ )W 7� �

�C� �@�� ��]� ìí�&� SiO2 28-52%, Al2O3 15-34% |1

#T %� éêë� CD� .�s� LV�º, �5 å7V� �� ;

ÉT>> î0 aØ� Ìm�; P� ï0 p�ÆÇ ^� ÈÉÊ�ÆÇ

� LVCH @��S #� _;N. ̂ � éêë �º 70 � (6) á

0 ?ßà� V�º M 1 �ð� �º Ë3� qMñVX �º�

��� >�M ( �<� _&� �$ %N[19-24].

3. � �

3-1. �� � ��

~��&� Wf � V.)*� )W? �@�� v�xX ���9

��� �8 ò� (#� �L� Ca(OH)2, CaO, CaCO3, Na2CO3,

NaHCO3, NaOH, KOH y;', �L ³ó? �8 +h� �3� �

L< �ô;N[3, 8, 17]. � )�, (b ?*� }z>õ, 7³>

õ, Ñ!>õ, ¤�$ ì5>õ,- @�#� .�.H ;(��&',

?*� ö÷ øÀ� 3) ��?ù ½ Jaw crusher� 1ú Àû� ½ ball

mill� 2ú Àû�$, U.S standard meshX ;(�� Ë3X r�ü �

� ý?þ;� �,- çi� ?*X Ìÿ?*� (��N. ^� ¼

�® ���LX ��9 �5 (� ��]� 1)/H (� ç

�V4��W, vw#� ��]X (��N.

~��&� ��]� kÌ�� �(À�� ��Ý� À�;', ?ß

à �V], �R�à �V] � N�D qr ��]� 2*�- (#

$ %N. ��]� �u�; �T� Àr�- ��; ¦$ BÀ y,

q�', V©� ���H ç1�� GM� Ï$ í; @9> î&

' ���; z��� �L� $1�� �R�àX �K L %N. ^

� ��]� ��O�]� �X �5 (#T U&', � ~

�H +j&� ��� AJ ��� )�#T Þ À�� �,-� )

: 50� �; �� ��]� ��O�]� �(#$ %H 7M;N[3].

� )�,-� ?*� ��H ÁÂ�9 �5 ICP, TGA, SEM-EDX,

BET, pore volume, Ñ�� ËMÀ.9 y �¥ �> ��H ;(��

N. �L� ��À.+,- 2W� �ÀÀ.H �5 1Må� ���

� 23�ÑÀÑ9(Inductively Coupled Plasma Model ICPS-750

Shimadzu, Japan)X ;(��&', .�.� Ìm �d��H i��9

���� �41� �3� 2003� 6�

Fly Ash� ��� ���� SO2/NOx ���� 405

�5 g �3��(Scanning Electron Microscopy, SEM, �����,

JEOL superprobe JSM-5400)H ;(��N. ^�, £�� ;(� �

�]� dry oven,- ��?ù ½ ~7� R9� Àû� ½ Ñ�� Ë

MÀ.9(Japan, Seishin, Model: Prp-7000S Laser)X ;(�� ?*,

k� ËMÀ.H L"��N. ;s |  �L� Ìm�0 BET 7

��(Micromeritics Co., ASAP 2010C)&�, !�M 1×10−3 torr, 180oC

,- L�9 yH ��9 �5 2?: ���� ½ 30% N2-70% He

�xX ;(� single point technique BET��H ;(�� À.��N. �

L� å7aØ � �º �!½� @�CH ¿��9 ��� X-ray �

�9(XRD, Siemens D500)X ;(��&', X-ray ��9� ����

&�� ?*X �d�S Àû(<325 mesh)� ½ X-rayi 30 kV, 20 mA

¤�$ scan speed 2o/min,- "�#Å$ 2θ Ò�� 20-80o,- À.

��N.

3-2. ��� � ���

��]s ?*X #�, $$ 24?: �6 LV?% �� ��

�L� drying oven,- ��?ù ½ �x �º� �� ;�, N?

C�­X 2ú À.��N. ^�, Ìÿ?* � W� LV�ºH }Z

�&� �» �Ob �L� lab-scale $7Ä�º9,- NO, NOx, �

SO2 �º� ��H L"��N. �L� �<H 7�9 ��� $7

Ä �º9X air bath �, �­��&', �º9� � 25 mm, Ï;

250 mm� stainless steel i&�-, �º9 �,� ����� 150 mm

>G, Wå&�� ¬�X �­��N. �L� à �x� 'üH

í~�S �$ ?*� (�#� �aH �>�9 ��� �Ls quartz

sand(Aldrich , 50-70 mesh)X ~7� �¶� ���� Wå&� ¬

� �, ø���N. �º9� ÞMX ~7�S 1>�9 ��� ÞM

��9s �kX ;(�� air bath ��� ÞMX 0-300oCY> ±1 oC

�� ����N.

� )�, (� $7Ä �º9 ?x)0 à �x ���À, �º

9 �À, �º�x À. � *;� 7�À y&� ����N. �º9

, 1Ë#� �x� SO2, NO, �9 � N2�x� ��b à �x�-

MFC(Brooks Ins.)X ;(�� 1OH 3.0 L/min� ����N. �º9

�� +MX ~7�S 1>�9 ��� syringe pump(Kd scientific,

Model:100 series)X ;(�� CH gË��&', ��9X × �m-

180oC,- ,�� ��#T �9aØ� ��?-N. �º9 ��� L

ÀH 7�9 ��� Thermo Hygrometer(DAGATRON, Model:1701)

X �º ½ �x vw�, �­�� LÀ.MX 7��N. �º½�

�x� º�9s CaSO4X ø!� Æ/H × ?% LÀ � À!H ,

�� �� ½ À.9 1Ë�, �­b 1OZX ×5 75! 1OH

À.9, ����N. �0�� ��8­� Fig. 1, �Ô�ÅN.

?*X �º9 ��, ø�� ½ DW�xX gË�� �WX ��

�&', à �xs +MX �~�S 1>�9 ��� 7aa� 1>

1 2Y> ~7.M� LÀ DW�xX gË��&', 3-way 34X

;(�� NO, SO2, �9 y� �xX g�� à �x� .MX ��

��N. à �x� .M� ~7�S 1>#m ��H ?"��&', �

º9, 1Ë#� �x � �º ½� SO2, NO � NOxX )��&� 7

��N. SO2� Chung Engineering � IR type� SO2 AnalyzerX (

��$, NO, NOx � NO2X À.�9 �5- Thermo Environmental �

Table 1. Experimental variables and conditions

Experimental variables Experimental conditions

SO2 conc.(ppm) 1,800NOx conc. (ppm) 250

O2 conc. (%) 6Hydration time (hr) 24

Hydration temperature (oC) 90Slurrying velocity (rpm) 200

Reaction temp. (oC) 150Water content (%) 10

Absorbent amount (g) 1, 2Absorbents DY, JS, KG, PH

Advanced DY, JS, KG, PHAdditive Fly Ash

Fig. 1. Schematic diagram of the packed-bed experimental apparatus.

HWAHAK KONGHAK Vol. 41, No. 3, June, 2003

406 ��������������� �

Chemiluminescent type� NO-NO2-NOx Analyzer(Model: 42C, USA)X ;

(��&', O2s N§ ���xX À.�9 ��� Eutron(Model: Italy)

gas analyzerX ;(��N. ��ñL � ��0 Table 1 áN.

4. � ��

4.1. � �� ��� ����

� )�, (b ?*� ��� }z>õ, 7³>õ, Ñ!>õ ¤�

$ ì5>õ,- @�#� .�.H ;(��&', ;½�� }z� .

�.0 DY, 7³� .�.0 JS, Ñ!� .�.0 KJ, ì5� .�.0

PH� �À�� Ì���N. Table 2, ���� 23�ÑÀÑ9X ;

(�� À.� 4�> �>¾ .�.� À. å X �Ô�ÅN. Table 2

,- 5 L %6;, Ã7 .�.� @.� |O 9ÿ­ 50%X a��

9 2F, � )�, (b .�.0 Ãl Wf� � v)�� �L

� �( �<|H ¿���N.

�c, à �xs� �º�H ¸a?¹9 �5 ~7�¶� ��]X

W� � LV�ºH �» �L, ����N. � ��, (b ��

]� ç�V4��W,- LË1)/H )W?ù ½ �@b _&�-,

���� 23�ÑÀÑ9� V©� ��H À.� å � Table 3 á

N. ��, ;(� ��]� drying oven,- ��, Àû� ½ Ñ��

ËMÀ.9(Japan, Seishin, Model : Prp-7000S Laser)X ;(�� ?*

, k� ËMÀ.H L"��&', ËMÀé ñV� Fig. 2, �Ô�Å

N. 1)/ ��], k� ËMÀ. å 200-1µm ;�Y> Nz� R

9� Ë3o� ��#T %&� ��, (� ��]� ìíË0

18µm;Å&', ��]� �)/À |O0 4.98%� ~��� ��]

�)/À |OçN� ¦µ )WaØ� 8�H ¿���N. Fig. 30 �

)�,- (� ��]� XRD À.å X �Ô9 _&�- ��]�

mullite(3Al2!SiO2)s quartz(SiO2) y; g�ÀH ú>�$ %ÅN. �

�],-� ÑC��0 f V©�À; }¡&� :]�� _; µ;�

(<, �5 V�C; #T :]�', NO� �å7D 1�À . ,

mullite, magnetite(Fe3O4) y å7D ÑC� ��#T %N.

4.2. ��� �(advanced absorbent)� ��/�� ����

�>¾ .�.H W� � LV�ºH ×�� �� ‘�O�L

(advanced absorbent)’, ��]X ~7 �¶ £�� ‘fly ash �O�L

’X ��� SO2s NOx� �º� ��H L"��N. Fig. 4,-�

�O�L� C�À.H ¿��9 ��� (1) .�. aØ� 2?*,

(2) ��]X £��� LV�ºH �» ���L ¤�$ (3) W� �

LV�ºH �» �L, ��]X £�� �O�L� 9�Àé ñ

VX � �� M?��N. 2?*� DW �t�=O0 0.035-1.079 cm3/

g ;� >H �Ô�Å&�, ��]s ���� LV�ºH �» ��

�L� � �t�=O0 0.025-9.76 cm3/gH �Ô�Å&', W� �

LV�ºH �» �L, ��]X £�� ‘fly ash �O�L’�

� �t�=O0 6.89-127 cm3/g� �ô�S ����N. ^�, Ë3�

9�Àé, %T-M 2?*s W� � LV�ºH �» �L, �

�]X £�� �O�L� 180 Å 2,173 Å&� ú;X �Ô�Å&

', BET �Ìm� ^� 2.31 m2/g,- 19.14 m3/g&� �ô�S ���

�N. ;s |  ?*� 9�� 9�ÀéX ;(�� pore size

distributionH ��� å , .�. aØ� 2?*� Ãl 20-5,000 Å Ò

��� 9�ÀéX 1>��&�, W� � LV�ºH �» �L,

��]X £�� �O�L� 20-5,000 Å Ò�,- 92.32%, 20 Å ;

�� Ò�,- 7.68%X �Ô�ÅN. ;¥� å � Fig. 2, M?� ?

s á; ��]� ìíË; 18µm&� P� "@9 2F&� *#

', �?, éêë�º, �� ¼�® 9�� @�; 1M#Å9 2F

&� ã}bN.

W� � LV�ºH �» �O�L� �Ìm� ?*X W�� ½

Fig. 2. Passing volume percentage and size analysis of fly ash.

Table 3. Analysis of fly ash (wt.%)

SiO2 Al2O3 Fe2O3 MnO BaO TiO2 CaO MgO P2O5Na2O K2O

Fly Ash 55.83 27.48 8.28 0.126 - 1.25 2.93 0.96 0.74 0.62 1.79

Fig. 3. XRD analysis of fly ash. Fig. 4. Pore volume of fly ash and advanced absorbent by BET.

Table 2. Analysis of domestic limestone in Korea (wt.%)

Components SiO2 Al2O3 Fe2O3 CaO MgO Igloss Test method

Contents

DY 1.62 0.07 0.12 54.7 0.25 42.9

KSE 3071-93JS 2.43 0.25 0.14 53.8 0.85 42.5KG 4.88 0.11 0.50 52.3 1.14 40.5PH 2.99 0.37 0.61 50.9 1.14 40.5

���� �41� �3� 2003� 6�

Fly Ash� ��� ���� SO2/NOx ���� 407

��]X £��� LV�ºH �?� ‘fly ash �O�L’� �Ìm�

H � �� Fig. 5, M?��N. �>¾ DY, JS, KG � PHX W� �

LV�º?ù �O�L� � 11.979 m2/g, 11.338 m2/g, 9.865 m2/g,

8.562 m2/g� �Ìm�H �Ô�Å&', ��]X £��� LV�ºH

�?� ‘fly ash �O�L’� �Ìm�0 19.143 m2/g, 18.12 m2/g,

17.78 m2/g, 16.51 m2/g&� ����N. � b ��� .�.+,-

DY �L� �8 Ï0 �Ìm� >H �ÔA&' ��X £���

�� ‘fly ash �O�L’,-M �8 Ï0 �Ìm�>H �ÔAN.

;¥� ;1� DY .�.� � 2WÀ. å ,- �Ô� ?s á;

�8 Ï0 CaO |OH ç�9 2F&� ã}bN. ¤¥� �Ìm��

��¶0 DY, JS� � 1.59 � �ÔB&' KG, PH� �� 1.8, 1.92

� çN ����N. ;� KG .�.� � SiO2 |O; PH .�.

� �� Al2O3� |O; Ï@9 2F&� *bN.

Fig. 6,-� ��] £� CtD, �5 �b �O�LX ;(

�� $7Ä�º9,- ����H L"� å X �Ô�ÅN. � ��

,-� ;�� )�[8]X ?E&� ����0 SO2 1,800 ppm, �ºÞ

M 150oC, LÀ|O 6%� à �xX (�� ‘�O�L’s ‘fly ash

�O�L’� SO2 �º�H ¿���N. ��å ‘�O�L’,- 20

À: �b SO2z0 DY 0.726 mmol, JS 0.71 mmol, KG 0.68 mmol,

PH 0.542 mmol� 9F#Å$, ‘fly ash �O�L’X ;(�� 20À:

�� SO2z0 DY 1.026 mmol, JS 1.01 mmol, KG 0.98 mmol, PH

0.84 mmol� 9F#ÅN. Fig. 6� å ��� ��]X £�� ‘fly ash

�O�L’� SO2 �<; }� �O�LçN �L|H ¿�K L

%ÅN. ;¥� å � Jozewicz Rochelle� å s 7��&� ~

­��N. Jozewicz Rochelle0 ��] £�, ��� @�#�

calcium silicate hydrate(CaSiO3-H2O); �º� ��, gh� 2�;

�$ ç$��&' �Ìm� ��s |  LÀ|O� ��� ��bN

$ g8��N[18-21].

Fig. 7,-� �L� ���, \§ ?*� C�ñV 7H À.

�9 ��� SEM-EDXX ;(�� �dË ñVX i ��N. Fig. 7(a)

� 2?* aØ� .�., (b)� ç�V4��W 1)/ ��], (c)�

W� � LV�ºH �» �O�L, (d)� W��ºH ?ù �L,

��]X ~7 �¶� £��� �� ‘fly ash �O�L’X �Ô9

_;N. Fig. 7(a),- � b 3)� .�.0 }m; }}�$ 9�
és �L!�=<; NW �GK _&� ã}#�, Fig. 7(b)� ��

]X 7� �,� 10µ;�� �uË3� E; |1#T %$ é

Hu Ë3s �d�m- IpJ� Ãz� �å7D Ë3o� ��#T

%�H ç� ÿN. Fig. 7(c)� W� � LV�ºH �» �O�L�

I9 (a)� �k å7mo; W� LV�º, ��� P� "0 Ë3

o� �e#Å�H ç�g$ %N. Fig. 7(d)� ��]X £�� ‘fly ash

�O�L’� �,� Ë3Ìm, K�!u�b éêë� CD; LV

�º, �5 å7V� �� ;ÉT>> î0 aØ� Ìm�; P� ï0

p�ÆÇ ^� ÈÉÊ�ÆÇ� LVCH @��S #$, Ë3� BET �

Ìm�, 9��L � 9�R9X ��?¹� _&� ¿�#ÅN[1-3].

Fig. 8 9,-� ��]� £� CtDs £��¶, �� SO2 �

NOx �?� �º�� ú;X ¿��9 ��� ‘�O�L’s £�

�¶; �7b ‘fly ash �O�L’X ;(�� �� � �D ���

H L"��N. ����0 à �x + LÀ|1O0 10%, �x�º

9 ��ÞM 150oC, �x1O 3 L/min, SO2, NO, NOx� 1Ë.M

1,800 ppm, 250 ppms 280 ppm&� ~7�S 1Ë?ù ½ 20À: L

"��N. ö÷ Fig. 8(a),-� ?*s ��]X 9:1� �¶� ���

� �� �O�LX ;(�� ��VC DW�VC� �?�

��å X L"� å ;', ��å 9:1� £� �¶� ‘fly ash �

O�L’ 2 g, 20À: �b SO2, NO, NOx� �O0 2.501, 0.249,

0.271 mmol ;ÅN. Fig. 8(b),-� ?*s ��]X 8:2� �¶� �

��� �� ‘fly ash �O�LX ;(�� �� � �D��H L

"� å ;', ?*s ��]X 8:2� £� �¶~ 2� ‘fly ash �O

�L’ 2 g, 20À: �b SO2, NO, NOx� �O0 ff 2.086,

Fig. 6. Total removal efficiency of SO2 for advanced absorbent and flyash.

Fig. 7. Comparison of SEM depend on absorbent shape and prepara-tion methods. (a) limestone fresh, (b) fly ash, (c) advancedabsorbent, and (d) fly ash advanced absorbent.

Fig. 5. Effect of absorbent kinds on surface area of fly ash and advancedabsorbent.

HWAHAK KONGHAK Vol. 41, No. 3, June, 2003

408 ��������������� �

on

n-

on

I

-

ical

or-

H.,

0.236, 0.236 mmol ;ÅN. \�- ��]� £�� ��� ��VC

DW�VC ��¶, M7�� ¸H g� _&� ¿�#Å&', �

�]� £�� ��� SO2N� µ;� NOx � �º� õ? ���

� _&� ¿�#ÅN.

Fig. 9,-� ��]� O� ���X å7�9 ��� ��] ��

�¶H ñV?¹' ‘fly ash �O�L’X ��� ��/�D �?

� ��H L"� å X M?��N. ����0 LÀ|1O 10%, �

LO 2 g, SO2� 1Ë.M 1,800 ppm, NO� .M 250 ppm, �x�

º9 ��ÞM 150oC, �x1O 3 L/minX 9ÿ&� ��H L"��

N. �O�L�H ;(�� �b ?* 2 g, 20À: �b SO2,

NO, NOx �O0 ff 1.9530, 0.1570, 0.1750 mmolH �Ô�Å&', ?

*s ��]X 7:3� �¶� £�� ‘fly ash �O�L’ 2 g, 20À:

�b SO2, NO, NOx� �O0 2.042, 0.199, 0.221 mmolH �Ô�

ÅN. Fig. 9� å X n�K 2 SO2/NOx Ãl ��]X 10% £��

9:1� �¶,- �8 �L� SO2/NOx �¶H �Ô�ÅN. ;¥� å

� ��] £�� ��� W�!LV �ºb �Ls� éêë �

º; 1M#T p�ÆÇ(calcium silicate), calcium aluminate, calcium

aluminate silicate y; @�#Å9 2F� _&� ã}bN[1-3, 26]. ̂

� éêë �º, ��� @�b p�Z CD; å7V� �� ;ÉT

>> î0 LVCH @�[18-23]�� �L� �+�H ��?% çN

� �� SO2/NOx �L� !"#� _&� *bN. \�- ��]X

£�� ‘fly ash �O�L’� � �Ìm� 9��Ls á0 C�

� �a; ¸a#$ @�b LVC, �� �+<; ���� ���

x ��, çN � �� _&� ¿�#ÅN.

5. � �

P9CWf� � v)���7,- �@�� )Wv�xs �L�

�º��H � �9 ��� SEM-EDX, ICP, BET, pore volume, Ñ�

� ËMÀ.9 yH ;(�� C�À.H L"��&', ��]s �L

X ;(�� �� ¯��LX ;(�� +tWuWf� � v)

���7,- �@�� ���xs DW�VCH �?, ��9 �

� $7Ä�º9 ��H L"��N. ;a� ��H L"� å N�

á0 åQH ÐÅN. ��]X £�� �L� �Ìm� 9�À

é� ��]X £��> î0 �Ls ���� p�ÆÇ(calcium

silicate), calcium aluminate, calcium aluminate silicate y á0 LV

C @�&� ��� éêë�º; 1M#T ���� _&� ¿�#Å

&', ���x ��¶ � �L!�=<; 9: ?*, �5 ��|

H ¿���N. ;s |  ‘�O�L’s ‘fly ash �O�L’� SO2

���H L"� å , �>¾ ?*� ��VC� �O0 DYRJSR

KGRPH�&� �8 �º�; 80 ?*� DY;ÅN. ¤�$ ��]

X SO2 � NOx �?�( £�� �(K L %�H ¿���&',

��]s �O�L� O� £��¶0 1:9,- O�� ��H �Ô�

ÅN. ^�, ��]X £�� ‘fly ash �O�L’� SO2/NOx �(

�L, P9C Wf� � v)���7( �L� øÀ� �(K L

%H _&� ã}bN.

���

1. KIER, “Development of Elemental Technologies for the Emissi

Controls(III),” KIER-992405, 3-6(1999).

2. KIER, “Development of Advanced Technology for Removal of Enviro

mental Pollutants from Flue Gas,” KIER-966405/1, 25-27(1996).

3. KIER, “Development of Elemental Technologies for the Emissi

Control,” KIER-972116, 25-42(1997).

4. Sim, Y. S. and Lee, W. K., “Preparation of Absorbent from MSW

Ash(I),” J. of Korean Society of Env. Engineers, 23(8), 1379-1387(2001).

5. Kunio, K. and Hidenori, S., “Effective Dry Desulfurization by a Pow

der-Particle Fludized Bed,”J. of Chem. Eng. of Japan, 27(3), 276-278

(1994).

6. Jung, J. H., Shon, B. H., Yoo, K. S. and Oh, K. J., “Physicochem

Characteristics of Waste Sea Shell for Acid Gas Cleaning Abs

bent,”Korean J. Chem. Eng., 17(5), 585-592(2000).

7. Tsuchiai, H., Ishizuka, T., Nakamura, H., Ueno, T. and Hattori,

Fig. 9. Total removal efficiency of SO2 and NOx for advanced absor-bent and fly ash mixing ratio.

Fig. 8. Total removal efficiency of SO2 and NOx with respect to absor-bent and additive ratio. (a) advanced adsorbent(9)+fly ash(1),(b) advanced adsorbent(8)+fly ash(2).

���� �41� �3� 2003� 6�

Fly Ash� ��� ���� SO2/NOx ���� 409

ns

or-

er-

b-

Ash

s

om

of

te

ly

ing

H.,

e-

r,”

“Study of Flue Gas Desulfurization Absorbent Prepared from Coal

Fly Ash: Effects of the Composition of the Absorbent on the Activ-

ity,” Ind. Eng. Chem. Res., 35, 2322-2326(1996).

8. Jung, J. H., Yoo, K. S., Lee, G. W., Oh, K. J. and Lee, H. H., “A Study on

the Ca(OH)2-SO2 Reaction Characteristics in a Fixed Bed Reactor

Using Shirinking Core Model,”J. of Korean Society of Env. Engineers,

24(11), 1911-1922(2002).

9. Acharya, P., DeCicco, S. G. and Novak, R. G., “Factors that Can Influ-

ence and Control the Emissions of Dioxins and Furans from Hazard-

ous Waste Incinerators,”J. Air Waste Manage. Assoc., 41, 12(1991).

10. Breault, R. W., Litka, A. F., Beittel, R. and Darguzas, J. N., “SO2

Control in Low Emissions Boiler Systems with the COBRA Process,”

EPRI, SO2 Control Symposium, Miami, FL(1995).

11. Yang, C. L. and Shaw, H., “Aqueous Absorption of NOx Induced by

Sodium Chlorite Oxidation in the Presence of Sulfur Dioxide,”Envi-

ron. Progr., 17(2), 80-85(1998).

12. Kokkinos, A., Cichanowicz, J. E., Eskinazi, D., Stallings, J. and Offen, G.,

“NOx Controls for Utility Boiler,” Highlights of the EPRI July 1992 Work-

shop, J. Air Waste Manage. Assoc., 42, 11(1992).

13. Nakamura, H., Ueno, T., Tatani, A. and Kotake, S., “Pilot-scale Test

Results of Simultaneous SO2 and NOx Removal Using Powdery Form of

LILAC Absorbent,” EPRI, 1995 SO2 Control Symposium, Miami, FL(1995).

14. Lepovitz, L. R., Brown, C. A., Pearson, T. E., Boyer, J. F., Burnett, T. A.,

Norwood, V. M., Puschaver, E. J., Sedman, C. B. and TooleO’Neil,

B., “10 MW Demonstration of the ADVACATE Flue Gas Desulfur-

ization Process,”EPRI, 1993 SO2 Control Symposium, Boston, MA(1993).

15. Ueno, T., Tsuchiai, H., Nakamura, H., Ishizuka, T. and Mori, K., “Flue

Gas Cleaning Technology Using Fly Ash Derived Absorbent(Japa-

nese),”Nippon Kagaku Kaishi, 9, 763-770(1994).

16. Lancia A., Despina K., Dino M. and Francesco P., “Adsorption of

Mercuric Chloride from Simulated Incinerator Exhaust Gas by Mea

of Sorbalit Particles,” J. of Chem. Eng. of Japan, 29, 6(1996).

17. Jung, J. H., Cho, S. W., Kim, Y. S., Lee, H. K. and Oh, K. J., “Abs

bent Hydration Reaction Measurements for FGD and Waste Incin

ator Process,” Kor. J. Env. Hlth. Soc., 25(1), 10-21(1999).

18. Jozewicz, W. and Rochelle, G. T., “Fly Ash Recycle in Dry Scru

bing,” Env. Prog., 5, 219-223(1986).

19. Peterson, J. R. and Rochelle, G. T., “Aqueous Reaction of Fly

and Ca(OH)2 to Produce Calcium Silicate Absorbent for Flue Ga

Desulfurization,”Env. Sci. Tech., 22, 11(1988).

20. Rochelle, G. T. and Jozewicz, W., “Process for Removing Sulfur fr

Sulfur-Containing Gases,” U.S.Patent No. 4,804,521(1989).

21. Martinez, J. C., “Reactivation of Fly Ash & Ca(OH)2 Mixtures for

SO2 Removal of Flue Gas,” Ind. Eng. Chem. Res., 30, 2143(1991).

22. Izquierdo, J. F., “Fly Ash Reactivation for the Desulfurization

Coal Fired Utility Station’s Flue Gas,” Separation Sci. & Tech., 27,

61(1992).

23. Kind K. K. and Rochelle, G. T., “Preparation of Calcium Silica

Regeant from Fly Ash Lime in Flow Reactor,” J. Air & Waste Manage.

Assoc., 44, 869(1994).

24. Tsuchiai, H., Ishizuka, T., Ueno, T., Hattori, H. and Kita, H., “High

Active Absorbent for SO2 Removal Prepared from Coal Fly Ash,”

Ind. Eng. Chem. Res., 34, 1404-1411(1995).

25. Ueno, T., “Process for Preparing Desulfurizing and Denitreat

Agents,” U.S.Patent No. 4,629,721(1986).

26. Tsuchiai, H., Ishizuka, T., Nakamura, H., Ueno, T. and Hattori,

“Removal of Sulfur Dioxide from Flue Gas by the Absorbent Pr

pared from Coal Ash: Effects of Nitrogen Oxide and Water Vapo

Ind. Eng. Chem. Res., 35, 851-855(1996).

HWAHAK KONGHAK Vol. 41, No. 3, June, 2003