food structure from the inside with neutron scattering · food structure from the inside with...

22
Food structure from the inside with neutron scattering Wim G. Bouwman Neutrons Small angle neutron scattering (SANS) Spin-echo small-angle neutron scattering (SESANS) Margarine Milk, yoghurt Tuneable colloids Water holding proteins Plant protein meat

Upload: others

Post on 25-Jun-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

  • Food structure from the inside with neutron scattering

    Wim G. Bouwman

    • Neutrons• Small angle neutron

    scattering (SANS)• Spin-echo small-angle

    neutron scattering (SESANS)

    • Margarine• Milk, yoghurt• Tuneable colloids• Water holding proteins• Plant protein meat

  • has a magnetic moment – magnetic fields to detect path

    no electric charge - penetrates deep into specimen (easy sample environment)

    Interaction element and isotopic sensitive – contrast variation

    N

    S

    Why neutrons for food?

  • Contrast matching to make parts structure (in)visible

    Morna Fisken, Britlabhttps://youtu.be/OZxtwIc3ieM

    https://youtu.be/OZxtwIc3ieM

  • Small angle scattering(neutrons, X-rays or light same principle)

    Brian Pauwhttps://youtu.be/n-8Y2p4kN4M

    https://youtu.be/n-8Y2p4kN4M

  • γ-oryzanol

    The phytosterol compoundsstructure oils without solid fats

    β-sitosterol

    Me

    Me

    Me

    H

    H

    H

    HO

    Me

    H Me

    Me H

    O

    HO

    MeO

    O

    Me Me

    A. Bot (Unilever), et al.Faraday Discuss. 158, 223-238 (2012)

  • β-sitosterol and γ-oryzanol in d-decane

    10-2

    10-1

    10-1

    100

    101

    102

    103

    104

    Q [A-1]

    I [cm

    -1]

    Me

    H Me

    Me H

    OHO

    Me OO

    MeMe

    2.0 nm7.8 nm

  • Double walled helical ribbon

    r2

    r1rsolv

    ρ2 ρ1 ρsolv

    0.8 nm

    7.2 nm

    rin routrc

    0.8 nm 2.3 nm

    9.5 nm

  • SANS vs SESANS

    • Sensitivity: 1 nm – 500 nm

    • Length instrument:12 – 80 m

    • Reciprocal space

    • Sensitivity: 30 nm – 20 µm

    • Length instrument:5 m

    • Real space

  • SESANS = Fourier transform scattering ⇒projected density correlation function

    0 100 200 300 400 5000.50.60.70.80.91.0

    z [nm]

    Pd

    Sterically stabilised silica particles d=298 nm in deuterated cyclohexaneφv=0.05

    sam

    ple

    θ0θ

  • Casein micelle in milk polydisperse: 50 - 200 nm

    Structure determined of dairy products

    Hans TrompNIZO food researchthe Netherlands

  • Size distribution is visible in measurementsLog-normal distribution

    0.9

    0.92

    0.94

    0.96

    0.98

    1

    1.02

    0 100 200 300 400 500

    spin echo length [nm]

    P/P0

    0.E+005.E-061.E-052.E-052.E-053.E-053.E-054.E-054.E-055.E-05

    0 50 100 150 200 250 300

    radius [nm]

    size

    dis

    t. [

    nm-1

    ] SESANS

    sedimentation fieldflow

    SESANS measures size distribution of milk (casein micelles)

  • 0.7

    0.8

    0.9

    1

    0 1 2 3 4spin echo length [um]

    pola

    risat

    ion

    milk

    0.7

    0.8

    0.9

    1

    0 1 2 3 4 5spin echo length [um]

    pola

    risat

    ion

    milk yogurt

    0.7

    0.8

    0.9

    1

    0 1 2 3 4 5

    pola

    risat

    ion

    spin echo length [um]

    milk

    yogurt

    curd

    Tromp et al. Food Hydrocolloids 21, 154-158 (2007)

    Single casein micelle

    50-200nm

    From milk to yogurt and curd

  • Depletion interactions in charged, aqueous colloid-polymer mixtures (model for e.g. milk)

    Kitty van Gruijthuijsen Peter Schurtenberger, Anna Stradner - Lund University

    Adolphe Merkle Institute, Université de Fribourg

    ++ ++

    polymer depletion

    zone

    salt reduces repulsion

    polymers give attraction

    +

    -

    +

    -+ -+

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -+ -+

    -

    +

    -

    +

    -

    +

    -

    +

    -

  • Colloids

    -140

    -120

    -100

    -80

    -60

    -40

    -20

    00 0.2 0.4 0.6 0.8

    z [µm]

    ln P

    (z) / t

    32 wt% in 2mM

    26 wt% in 1.5mM

    26 wt% in 3mM

    20 wt% in 50mM

    Attr

    actio

    ns

    cp

    φspheres

    [NaCl]

    -- --

    ------

    - -

    --+

    + +

    ++ +

    -- --

    ------

    - -

    -- +

    +

    +

  • Gels

    -1000

    -900

    -800

    -700

    -600

    -500

    -400

    -300

    -200

    -100

    00 0.5 1 1.5 2 2.5 3

    z [µm]

    ln P

    (z) /

    t

    + 3.3 wt% polymer

    + 3.5 wt% polymer

    + 3.8 wt% polymer

    + 4.6 wt% polymer

    -1000

    -900

    -800

    -700

    -600

    -500

    -400

    -300

    -200

    -100

    00 0.5 1 1.5 2 2.5 3

    z [µm]

    ln P

    (z) /

    t

    + 0.7 wt% polymer

    + 0.9 wt% polymer

    + 1.0 wt% polymer

    + 1.4 wt% polymer

    Attr

    actio

    ns

    cp

    φspheres

    [NaCl]

    In 1.5 mM

    In 50 mM

  • Water holding of ovalbumin gelsJuiciness, release tastants

    Maaike Nieuwland, TNO & TI Food and Nutrition

  • Acid reduces water holding

  • Vegetarian steakMechanism of fibre formation of sheared plant proteins?

    George Krintiras

  • Neutron refraction: # layers + orientation

    36 ± 4 layers / 5 mm± 35o orientation

  • Food and neutrons are a tasty combination

    Wim G. Bouwman

    • Bulk• Texture micrometre• Quantitative• In principle in-situ

    • Interaction• Aggregation• Water holding• Alignment

  • Acknowledgements

    Delft: Chris Duif, Jeroen Plomp, Theo Rekveldt, Jurrian Bakker, Bei Tian & EvgeniiVelichko

    Relating water holding of ovalbumin gels to aggregate structure, M. Nieuwland, W.G. Bouwman, L. Pouvreau, A.H. Martin, H.H.J. de Jongh, Food Hydrocolloids 52 87-94 (2016)

    On characterization of anisotropic plant protein structures, G.A. Krintiras, J. Göbel, W.G. Bouwman, A.J. van der Goot and G.D. Stefanidis, Food & Function 5 3233-3240 (2014)

    Direct comparison of SESANS and SAXS to measure colloidal interactions, K. van Gruijthuijsen, W.G. Bouwman, P. Schurtenberger and A. Stradner, EPL 106 28002 (2014)

    A. Bot, E.P. Gilbert, W.G. Bouwman, H. Sawalha, R. den Adel, V.M. Garamus, P. Venema, E. van der Linden and E. Flöter, Faraday Discuss. 158, 223-238 (2012)

    Milk Gelation Studied with Small Angle Neutron Scattering Techniques and Monte Carlo Simulations, L.F. van Heijkamp, I.M. de Schepper, M. Strobl, R.H. Tromp, J.R. Heringa, W.G. Bouwman, J. Phys. Chem. A 114 2412-2426 (2010)

    Effect of processing on droplet cluster structure in emulsion gels, A. Bot, F.P. Duval, and, W.G. Bouwman, Food Hydrocolloids 21 844–854 (2007)

    Food structure from the inside with neutron scatteringWhy neutrons for food?Contrast matching to make parts structure (in)visibleSmall angle scattering�(neutrons, X-rays or light same principle)Slide Number 5The phytosterol compounds�structure oils without solid fatsβ-sitosterol and γ-oryzanol in d-decaneDouble walled helical ribbonSANS vs SESANSSESANS = Fourier transform scattering projected density correlation functionStructure determined of dairy productsSESANS measures size distribution of milk (casein micelles)From milk to yogurt and curdDepletion interactions in charged, aqueous colloid-polymer mixtures (model for e.g. milk) ColloidsGelsWater holding of ovalbumin gels�Juiciness, release tastantsAcid reduces water holdingVegetarian steak�Mechanism of fibre formation of sheared plant proteins?Neutron refraction: # layers + orientationFood and neutrons are a tasty combinationAcknowledgements