for materials science : assessing experimental feasibility · 2018-07-05 · ion beam analysis...

1
Laser-driven hadron sources for materials science : assessing experimental feasibility A. Maffini, F. Mirani, A. Formenti, L. Fedeli, A. Tentori, F. M. Arioli, A. Pazzaglia, D. Dellasega, V. Russo, M. Passoni Dipartimento di Energia, Politecnico di Milano, Milan, Italy ERC-2014-CoG No. 647554 idea: a «near-critical» layer to enhance laser-target coupling Primary beam handling Advanced targets for laser-driven ions Detectors for laser-driven PIXE Laser-driven hadron beams 30 fs 1 ps 0.1 J 10 J 10 18 -10 22 W/cm 2 Superintense laserxx Accelerated ions E max 10s MeV/nucleon Exponential spectrum 10 8 -10 12 ions/bunch Collimated, ps duration Ion Beam Analysis (IBA) x-rays g-rays Laser-driven hadron beams for material science Towards a cheaper, portable alternative to conventional accelerators Unconventional features to be explored: P.I.X.E. P.I.G.E. Detectors Non-monochromatic, tunable ion energy Pulsed, short duration of ion bunch Same laser, different applications Laser thickness 0.1 10 mm «standard» mircometric foil «Near critical» carbon foam Foams grown by PLD technique (<10 x air density!!!) Foam-based targets do the job! Controlled nanostructure and composition Tunable density (6 100 mg/cm 2 ) Virtually any kind of substrate Wei Hong et al., Chin. Phys. B 26, 025204 (2017) Magnetic dipole Quadrupole system H + Charge separation plus collimation Expensive, difficult to plug-in Optimized for a specific spectrum M Scisciò et al., Sci. Reports 8 (2018), 6299. Standard” requirements Laser-driven constraints High detection efficiency High X-ray energy resolution Rejection of “noise” from laser-plasma Very short (few ns) x-rays / g-rays burst Von Hamos Spectrometer Single photon X-ray CCD Passive detector High energy resolution Low detection efficiency Complex, expensive setup Active detector Lower energy resolution Higher detection efficiency Relatively simpler & cheaper Proposed solutions: L. Anklamm et al., Rev. Sci. Inst 85.5 (2014) 053110 Detector requirements Simplest and cheapest setup No collimation of the beam Spatial energy spread 5 10 15 20 25 30 1E9 1E10 1E11 Particles [1/MeV*sr] Proton Energy [MeV] 4 mm C foam on 1.5 mm Al 1.5 mm Al, no foam www.ensure.polimi.it Conclusion and perspectives www.ensure.polimi.it 1) Foam attached target: to enhance the ion acceleration mechanism 2) Beam handling: dipoles & quadrupole to clean and collimate primary ions 3) Neutron converter: to be optimized also exploring unconventional solutions 4) PIXE detector: diffractive crystals and CCDs are best suited Experimental campaigns in preparation! Design of an Innovative Neutron source for non destructive TEsting and tReatments Assess the feasibility of a compact laser-driven proton source for material science applications Neutron conversion engineering Advanced configuration Pros Cons Li High σ at low energy Both (p,n) and (d,n) Explosive Low melting point Be/ BeO Acceptable σ at moderate energy Highly toxic Hydrogen embrittlement Cu High, broad σ for E>5 MeV Easy manufacturing Excellent heat conduction Very low σ for E<4 MeV Material choice Pitcher-Catcher reactions 20 0.2 0.2 20 Cross-section σ [b] Projectile Energy E [MeV] 15 5 10 Not all ions converted All ions converted Less neutron scattering More directional Higher energy More neutron scattering More isotropic Less energy Easier to reach T melting Lower thermal stresses Thinner Thicker Thickness optimization Deuterated foam t1 t2 Li Cu Laser Theoretical / numerical investigation! Target Primary beam handling Neutron generation A. Zani et al., Carbon 56 (2013) 358-365 M. Passoni et al., Phys. Rev. Accel. Beams 19, 061301(2016) @ Draco (150 TW, ) B = 0.15 T protons electrons x-rays adapted from: A. Alejo et al., Il Nuovo Cimento 38 C (2015) 188 M. Passoni, submitted to Sci. Reports (2018) Conventional detectors not suited for laser-driven PIXE x-ray energy [KeV] counts per second

Upload: others

Post on 11-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: for materials science : assessing experimental feasibility · 2018-07-05 · Ion Beam Analysis (IBA) x-rays g-rays Laser-driven hadron beams for material science Towards a cheaper,

Laser-driven hadron sources for materials science :assessing experimental feasibility A. Maffini, F. Mirani, A. Formenti, L. Fedeli, A. Tentori, F. M. Arioli,A. Pazzaglia, D. Dellasega, V. Russo, M. Passoni

Dipartimento di Energia, Politecnico di Milano, Milan, Italy

ERC-2014-CoG No. 647554

idea: a «near-critical» layer to enhance laser-target coupling

Primary beam handlingAdvanced targets for laser-driven ions

Detectors for laser-driven PIXE

Laser-driven hadron beams

30 fs – 1 ps

0.1 J – 10 J

1018 -1022 W/cm2

Superintense

laserxxAccelerated

ions

Emax ∼ 10s MeV/nucleon

Exponential spectrum

108 -1012 ions/bunch

Collimated, ps duration

Ion Beam Analysis (IBA)

x-rays

g-rays

Laser-driven hadron beams for material science

Towards a cheaper, portable alternative

to conventional accelerators

Unconventional features to be explored:

P.I.X.E.

P.I.G.E.

Detectors

Non-monochromatic, tunable ion energy

Pulsed, short duration of ion bunch

Same laser, different applications

Laser

thickness

0.1 – 10 mm

«standard» mircometric foil

«Near critical» carbon foam

Foams grown by PLD technique

(<10 x air density!!!)

Foam-based targets do the job!

Controlled nanostructure and composition

Tunable density (6 – 100 mg/cm2)

Virtually any kind of substrate

Wei Hong et al., Chin. Phys. B 26, 025204 (2017)

Magnetic dipole Quadrupole system

H+

Charge separation plus collimation

Expensive, difficult to plug-in

Optimized for a specific spectrum

M Scisciò et al., Sci. Reports 8 (2018), 6299.

“Standard” requirements Laser-driven constraints

High detection efficiency

High X-ray energy resolution

Rejection of “noise” from laser-plasma

Very short (few ns) x-rays / g-rays burst

Von Hamos Spectrometer Single photon X-ray CCD

Passive detector

High energy resolution

Low detection efficiency

Complex, expensive setup

Active detector

Lower energy resolution

Higher detection efficiency

Relatively simpler & cheaper

Proposed solutions:

L. Anklamm et al., Rev. Sci. Inst 85.5 (2014) 053110

Detector requirements

Simplest and cheapest setup

No collimation of the beam

Spatial energy spread

5 10 15 20 25 30

1E9

1E10

1E11

Part

icle

s [1/M

eV

*sr]

Proton Energy [MeV]

4 mm C foam on 1.5 mm Al

1.5 mm Al, no foam

www.ensure.polimi.it

Conclusion and perspectives

www.ensure.polimi.it

1) Foam attached target: to enhance the ion acceleration mechanism

2) Beam handling: dipoles & quadrupole to clean and collimate primary ions

3) Neutron converter: to be optimized also exploring unconventional solutions

4) PIXE detector: diffractive crystals and CCDs are best suited Experimental campaigns in preparation!

Design of an Innovative Neutron source for non destructive

TEsting and tReatments

Assess the feasibility of a compact laser-driven proton source

for material science applications

Neutron conversion engineering

Advanced configuration

Pros Cons

Li High σ at low energy

Both (p,n) and (d,n)

Explosive

Low melting point

Be/

BeO

Acceptable σ at moderate

energy

Highly toxic

Hydrogen embrittlement

Cu High, broad σ for E>5 MeV

Easy manufacturing

Excellent heat conduction

Very low σ for E<4 MeV

Material choicePitcher-Catcher reactions

200.2

0.2

20

Cro

ss-s

ectio

n σ

[b

]

Projectile Energy E [MeV]

155 10

Not all ions converted All ions converted

Less neutron scattering

→ More directional

→ Higher energy

More neutron scattering

→ More isotropic

→ Less energy

Easier to reach Tmelting Lower thermal stresses

Thinner Thicker

Thickness optimization

Deuterated foam t1 t2

Li CuLaser

Theoretical / numerical investigation!

TargetPrimary beam

handling

Neutron generation

A. Zani et al., Carbon 56 (2013) 358-365 M. Passoni et al., Phys. Rev. Accel. Beams 19, 061301(2016)

@ Draco (150 TW, )B = 0.15 T

protons

electrons

x-rays

adapted from: A. Alejo et al., Il Nuovo Cimento 38 C (2015) 188

M. Passoni, submitted to Sci. Reports (2018)

Conventional detectors not

suited for laser-driven PIXE

x-ray energy [KeV]

cou

nts

per

sec

on

d