forest dynamics note

Upload: soliano-alfonso

Post on 29-May-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Forest Dynamics Note

    1/43

    FOREST DYNAMICSFOREST DYNAMICS

  • 8/9/2019 Forest Dynamics Note

    2/43

    Forest is an important biological resources. It has the characteristicsof wide distributions and long growing period. Changes often take

    place under the actions of man-made elements and natural

    elements.

    Promptly and accurately monitoring dynamic changes of forest

    resources, mastering the changing regularity of forest resources,have an important social, economic and ecological significance.

    Gaps, the result of natural canopy perforation, are the kernels of

    forest regeneration of tropical rainforests.

    The process of canopy perforation, and hence the formation of

    canopy gaps drives the regeneration cycle of the tropical rainforest.

  • 8/9/2019 Forest Dynamics Note

    3/43

    Canopy gaps constitute small to mid-scaled disturbances created

    by the fall of the structural elements of the forest.

    In places where gaps are formed, new forest patches start to

    regenerate and grow until they eventually reach a stage of maturity,

    from which gaps are formed again.

    In general, gaps create spatial and temporal habitat heterogeneity,release a free space for tree regeneration, and allow sunlight to

    reach the understory.

    All of these factors, bound to plant response to gaps influence

    forest diversity, structure, and composition.

    Gap shape, together with gap area and orientation has been

    considered as an additional factor influencing habitat

    heterogeneity.

  • 8/9/2019 Forest Dynamics Note

    4/43

    Gap shape is of crucial importance for the penetration of sunlight to

    the understory, hence having a share in the influence of the gap

    microclimate.

    Gap size, instead of shape and orientation, is more important for

    the determination of the general gap light regime. Finally, the height

    of the trees that create gaps is the main determinant of gapmorphology, especially gap size.

    Gaps in the rainforest are also created anthropogenically (e.g. by

    logging). Therefore, the application of gap theory, and the

    understanding of the functioning of the forest are very important

    and promising issues to be considered in the conservation of

    tropical rainforests.

  • 8/9/2019 Forest Dynamics Note

    5/43

    A PRELIMINARY ASSESSMENT OF FOREST GAPS

    CAUSED BY WINDSTORM IN PASOH FOREST

    RESERVE, MALAYSIA

    By,

    Zulhazman Hamzah1, Rongsheng Li2,

    NorZaneedarwaty Norman3 & Nor Aznan Mahmood4

    Study Case 1

  • 8/9/2019 Forest Dynamics Note

    6/43

    Gaps are colonized by seedlings, which grow up and become

    saplings. Then they transforms into poles before attaining maturity.

    Where a tree dies of old age, its crown slowly dies back and then

    the limbs and finally the bole disintegrate. In other cases, tree may

    die suddenly, struck by lightning or blown over, or snapped off by

    wind. Such instances are very rare in tropical rain forest especially

    in Malaysia where windstorm blows and creates a huge forest gap.

    In Pasoh Forest Reserve (F.R.), Malaysia, a windstorm incidence in

    July 2001 created unusually huge forest gaps. Many large-sized

    trees were thrown over resulting in gaps which were in the form of

    discontinued clearing or pockets.

    The sizes of gaps also differ from place to place depending on

    velocity and intensity of the windstorm, altitude, canopy tree sizes

    and distribution patterns, existence of climbers or lianas and

    whether or not tree has buttress or root.

  • 8/9/2019 Forest Dynamics Note

    7/43

  • 8/9/2019 Forest Dynamics Note

    8/43

    Class Direct fall Hit by tree Pull by climbers Total %

    Emergent 2 0 0 2 1.44

    Main canopy 17 3 9 29 19.42

    Understorey 9 36 63 108 79.13

    Total 28 72 39 139 -

    % 20.14 51.80 28.06 - 100.00

    Percentage of tree canopy category and tree fall pattern.

    Result

  • 8/9/2019 Forest Dynamics Note

    9/43

    FOREST FILLED WITH GAPSThe effect of gap size on microclimate, water and

    nutrient cycling: A study in Guyana.

    By:

    Oscar van Dam

    Summary PhD thesis Utrecht University, defended on 14 May 2001

    Study Case 2

  • 8/9/2019 Forest Dynamics Note

    10/43

    This thesis is about gaps; about canopy gaps in the tropical rain

    forest of Guyana which are created by selective harvesting of trees,and about gaps in our knowledge on how these canopy gaps affect

    microclimatic and edaphic conditions.

    Canopy gaps are a natural feature of the forest and important for

    the regeneration of plant species (Bongers and Popma 1988,

    Brokaw and Schneider 1989, Whitmore 1989).

    As such, trees and gaps define the forest. However, large parts of

    the forests in Guyana are logged selectively and as a result,

    logging gaps are created. The commercial tree species that are

    felled often have heavy seeds, which have a small dispersal radiusso that a clumped distribution of these species is common (ter

    Steege 1990). Exploitation of these species ultimately results in

    areas of variable sizes being opened up.

  • 8/9/2019 Forest Dynamics Note

    11/43

    The size of the gap is of particular importance, since research has

    shown that trees partition gaps of different sizes (Brown and

    Whitmore 1992, Denslow 1980), caused by differences in

    microclimatic conditions, soil water availability and nutrient

    limitations.

    Extensive knowledge of these abiotic variables is needed to assess

    the effects of gaps on the regeneration of the forest in general and

    for tropical rain forest management of commercial tree species in

    specific. This information is needed to devise a forest management

    system that is economically beneficial and ecologically sustainable.

  • 8/9/2019 Forest Dynamics Note

    12/43

    Microclimate in gaps: size matters

    Microclimatic conditions were strongly affected by gap size and

    shape. The effect of the gap on the microclimate was noticeablebeyond the perpendicular projection of the canopy opening, up to

    10m from the gap edge in the largest 3200m2 gap.

    Gaps with irregular shaped edges experienced microclimatic

    conditions that were similar to smaller gaps, which implies that gapsize alone was not always a good indicator of the potential impact

    of a gap on the microclimate.

    Microclimate in gaps was regulated by the amount of solar

    radiation, which increases soil and air temperature and decreases

    air humidity.

    The amount of radiation increased with increasing gap size, but air

    temperature did not increase above a gap size of approximately

    600m2.

  • 8/9/2019 Forest Dynamics Note

    13/43

    Due to the regeneration of the vegetation in the gaps, airtemperature decreased after two to three years. Soil temperature

    was more influenced by soil moisture content and especially by soil

    cover than by gap size.

    In conclusion, the increasing radiation, temperature and decreasing

    humidity with increasing gap size increased the vapour pressure

    deficit and thus the amount of direct soil evaporation, which

    reduces the amount of soil moisture in the topsoil.

    A decreasing amount of soil moisture with increasing gap size can

    seriously limit seedling establishment and growth in large gaps.

  • 8/9/2019 Forest Dynamics Note

    14/43

    A Licence to Fell?

    A study on the forest dynamics of the undisturbed forest in the PGEresearch site showed that 95% of the natural tree fall gaps were

    smaller than 300m2 and 55% of the gaps were between 25 and

    100m2.

    These are important figures, since they indicate that the naturalregeneration of the forest occurs within these gap sizes. If it is the

    objective of a forest management system to preserve the current

    species composition and biodiversity, any logging operation should

    not disrupt these figures too much.

    Preferably, logging gaps should not be larger than 300m2. Byway of illustration, the mean gap size area that is opened up by

    conventional selective logging of one single tree is 181m2 and by

    two trees 355m2 (van der Hout 1999).

  • 8/9/2019 Forest Dynamics Note

    15/43

    Microclimatic conditions in gaps are regulated by the amount of

    solar radiation, which is directly related to gap size.

    The study of Rose (2000) showed that with increasing gap size,

    pioneer species are likely to thrive better than shade-tolerant

    species. These latter species are usually commercially interesting

    trees.

    Modelling the amount of radiation in gaps showed that elongated

    gaps, gaps with irregular edges and forest fragments in gaps

    notably decrease the amount of radiation in gaps.

    A forest management that aims at providing optimal growthconditions for commercial tree species should be aware that

    irregular gap edges and forest fragments in logged sites can

    promote the growth performance of commercial tree species.

  • 8/9/2019 Forest Dynamics Note

    16/43

    Nutrient availability can act as a discriminating factor between species

    performance in relation to gap size.

    In gaps smaller than 200m2, no nutrients were lost due to leaching

    and little leaching occurred in gaps of 200 to 400m2.

    In gaps larger than 400m2, leaching, acidification and the

    mobilisation aluminium strongly increased with gap size.

    Considering these aspects of hydrochemistry, logging gaps

    should not exceed 400m2.

    In conclusion, the research has pointed out that in logging gaps, the

    disturbance of the nutrient cycle in gaps larger than 400m2 generatesedaphic conditions that are potentially limiting for all plant species.

    Gaps created by selective logging should preferably be smaller that

    400m2 size.

  • 8/9/2019 Forest Dynamics Note

    17/43

    Forest Microclimates

    Species differ in the microclimate in which they successfully

    regenerate. It is important therefore to gain an understanding of the

    microclimates within the rainforest. They are mainly determined

    by size of canopy gap.

    The microclimate above the forest canopy, which is similar to that in

    a large clearing, is substantially different from that near the floor

    below mature phase forest.

    Close to the ground within to the forest, CO2 content of the air

    remains high all the time but up in the canopy it drop in the day dueto uptake by photosynthesis.

  • 8/9/2019 Forest Dynamics Note

    18/43

    The light climate within the forest is complex. There are 4

    components:

    1) Skylight coming through canopy holes

    2) Direct sunlightseen as sunflecks on the forest floor

    3) Light transmitted through leaves

    4) Light reflected from leaves, trunks and other surfaces

    Light transmitted through or reflected from leaves is greenish

    because the orange to red wavelength have been absorbed and

    utilized for photosynthesis.

    The waveband 400 to 700 nm (approx. the visible spectrum) is

    utilized for photosynthesis and is known as photosynthetically Active

    Radiation (PAR).

  • 8/9/2019 Forest Dynamics Note

    19/43

    The forest floor only receives up to 0.2% of PAR incident on the

    forest canopy, and 50-80% of this is contained in sunflecks.

    Plants living below closed forest probably rely on the sunfleck

    component of the light climate for photosynthesis, the other

    components are too small to be utilizable.

    Within a gap, the microclimate is most extreme in the centre andchanges outwards to the physical gap edge and beyond. The larger

    the gap the more extreme the microclimate of its centre.

  • 8/9/2019 Forest Dynamics Note

    20/43

    Pioneer Tree Species

    Pioneer species germinate and establish in a gap after its creation.

    They grow fast in height and laggards are suppressed so the canopy

    grows up with a strong tendency to be one-layeded.

    Below the canopy seedlings of climax species establish and, as the

    pioneer canopy breaks up after the death of individual trees, the climaxspecies are released and grow up as a second growth cycle.

    Succession has occurred as a group of climax species replaces the group

    of pioneer species.

    Pioneer species are also called light-demanders or (shade-) intolerants in

    reference to their seedling requirements for solar radiation.

    Sometimes they are called secondary species because they form

    secondary or regrowth forest on cleared surfaces

  • 8/9/2019 Forest Dynamics Note

    21/43

    Climax Species

    Climax species usually germinate and establish below a canopy,

    therefore they are perpetuate in situ.

    They are called primary species or, with reference to their

    seedlings, (shade-) tolerants or shade-bearers.

    This is the group which climax (primary) forest is composed, and

    climax plant communities are defined as those that are self-

    perpetuating, in a state of dynamic equilibrium.

  • 8/9/2019 Forest Dynamics Note

    22/43

    The main characters of pioneer and climax tree species in tropical rain forests

    Character Pioneer Climax

    1) Common alternative name Light-demander. (shade-) intolerant,secondary

    Shade-bearer, (shade-) tolerant,primary

    2) Germination Only in canopy gaps open to the sky

    which receive some full sunlight

    Usually below canopy

    3) Seedlings Cannot survive below canopy in

    shade, never found there

    Can survive below canopy,

    forming a seedling bank

    4) Seeds Usually small, produced copiouslyand more or less continuously, and

    from early in life

    Often large, not copious, oftenproduced annually or less

    frequently and only on trees that

    have (almost) reached full height

    Soil seed bank Many species Few species

    Dispersal By wind or animals, often for a

    considerable distance

    By diverse means, including

    gravity, sometimes by only a

    short distanceDormancy Capable of dormancy (orthodox),

    commonly abundant in forest soil as

    a seed bank

    Often with no capacity for

    dormancy (recalcitrant), seldom

    found in soil seed bank

    5) Growth rate Carbon fixation rate, unit leaf rate,

    and relative growth rates high

    These rates low

  • 8/9/2019 Forest Dynamics Note

    23/43

    Character Pioneer Climax

    6) Compensation point High Low

    7) Height growth Fast Often slow

    8) Branching Sparse, few orders Often copious, often several

    orders

    9) Growth periodicity Indeterminate (sylleptic), no

    resting buds

    Determinate (proleptic), with

    resting buds

    10) Leaf life Short, one generation present, viz.high turn-over rate

    Long, sometimes severalgenerations, present so slow

    turn-over rate

    11) Herbivory Leaves susceptible, soft, little

    chemical defense

    Leaves sometimes less

    susceptible due to mechanical

    toughness or toxic chemicals

    12) Wood Usually pale, low density, not

    siliceous

    Variable, pale to very dark, low to

    high density, sometimes siliceous

    13) Ecology range Wide Sometimes narrow

    14) Stand table Negative Positive

    15) Longevity Often short Sometimes very long

  • 8/9/2019 Forest Dynamics Note

    24/43

    SuccessionSuccession

    The shift from a secondary forest of pioneers to a primary forest of climaxspecies is called succession

    In some big gap pioneer and climax species grow up together, the former

    from seed the latter either from seedlings which survived gap formation or

    from stem or root sucker shoots.

    In this case, where the forest floor has not been completely disrupted,

    succession is by simultaneous colonization with the pioneers growing

    fastest and initially dominant.

    Both modes of succession can be found in the same forest, dependent on the

    severity of disturbance.

  • 8/9/2019 Forest Dynamics Note

    25/43

    Climax species arrive a canopy and establish seedlings under the canopy of a

    secondary forest. As the mature phase of pioneers ages, individual trees orsmall groups die and create small gaps.

    In these, the climax seedlings are released and grow up as a second growth

    cycle below whose canopy climax species establish again.

    As that mature phase canopy breaks up these seedlings are released asanother growth cycle.

    Climax species as a group thus perpetuate themselves in situ, there is no

    directional change in species composition. This is called cyclic regeneration

    or replacement.

    In a small gap, pre-existing climax seedlings are released. In a large gap,

    pioneers which appear after gap creation, form the next forest growth cycle.

  • 8/9/2019 Forest Dynamics Note

    26/43

    As with pioneers, different climax species may be more successful on someparts of the forest floor.

    Dipterocarps are confined to the lowlands and do not penetrate lower

    montane rainforest.

    The upper limit was shown to be set by the inability of the radicle of agerminating seed to penetrate peat, which develops on the surface above

    1050 m elevation.

    Seedling establishment is most successful on flat microsites; seedling

    stocking diminishes with increasing slope, rapidly at microsites steeper than

    45 and falling to nil at 65 slope.

    This explains the decrease in numbers of dipterocarps with elevation where

    the land becomes more rugged.

    Microsite for EstablishmentMicrosite for Establishment

  • 8/9/2019 Forest Dynamics Note

    27/43

    Many seeds fall near the parent tree and dense carpet of seedlings form.

    In several forests, mortality has been shown to be density dependent and,therefore, is greatest near the parent, due to pathogens and herbivores.

    The fewer seeds which disperse to a greatest distance are most likely to

    grow into seedlings that survive.

    This so-called escape hypothesis has been invoked as a mechanism

    which prevents rain forest trees forming single-species stands, although

    there are exceptions.

    For the dipterocarps Shorea leprosula and S. macroptera it was found that

    mortality depended more on microsite, and had no relationship to density

    or to distance from the parent.

    Dipterocarps bear fruit heavily only once every several years. Seedling

    populations are then augmented and many attain a density of over one

    million per hectare.

    Seedling SurvivalSeedling Survival

  • 8/9/2019 Forest Dynamics Note

    28/43

    Di HHT - Musim pembungaan dan buah berlaku pada setiap waktu di

    sepanjang tahun

    Tetapi spp. pokok secara individu yang berbunga sepanjang tahun adalah

    sangat sedikit

    Majoriti pokok - berbunga sekali @ lebih sepanjang tahun dengan renj

    yang berbeza

    Spp. yang sama biasanya adalah berbunga hampir serentak dalam j/masa

    yang panjang merangkumi satu kawasan yang luas

    HHT sebagai satu komuniti mempunyai waktu berbunga dan berbuah yang

    maksimum dan minimum

    Waktu max & min - tidak boleh ditentukan dengan tepat dan berubah-ubah

    setiap tahun bergantung kepada faktor-faktor abiotik seperti iklim

    Cont: hujan tahunan - jika dapat disukat dengan tepat dan konsisten pada

    setiap tahun - waktu 'peak' berbunga dapat dijangkakan

    FinologiFinologi

  • 8/9/2019 Forest Dynamics Note

    29/43

    McClure (1966) dan Medway (1972)

    Mixed dipterocarp forest - Ulu Gombak, Selangor

    Mencatatkan pembungaan & pembuahan drp 61 pokok (45 spp.) - tahun

    1960-69

    Kesemua pokok adalah berstrata kinopi

    Pemerhatian:Pembungaan adalah max pada bulan Feb-Jun (5 bulan) -

    bermula pada awal musim kemarau sehingga mula musim hujan

    Bulan Julai - musim berbunga mula menurun

    Bulan Dis-Jan - pembungaan di tahap minimum (musimtengkujuh - the wettest of the year)

    Musim bunga dan buah adalah bergantung kepada musim hujan

    di mana ianya tidak seragam dari tahun ke tahun (1960-69)

  • 8/9/2019 Forest Dynamics Note

    30/43

    Frankie et al. (1974)

    La Selva, Costa Rica

    Pemerhatian terhadap pembungaan dan pembuahan selama 2 tahun

    Iklim adalah > bermusim berbanding dengan Ulu Gombak. Hujan tahunan

    adalah tinggi

    Gambarajah A - Pokok-pokok 'overstorey'

    - Terdapat 2 'peak of flowering' - but not clearly separated

    - Pembungaan bermula dari musim hujan yg pertama (Mei-Jun)

    - Minimum of flowering - bulan Nov - 2nd raining season

    Gambarajah B - Pokok-pokok 'understorey'- Kurang jelas musim berbunga berbanding dengan pokok besar

    - Menunjukkan 3 'peak of flowering' - 2 drpnya terkeluar drp fasa

    berbunga pokok besar

  • 8/9/2019 Forest Dynamics Note

    31/43

    Frankie et al. (1974)

    Deciduous forest (tropical dry forest) - Comelco Ranch, western CostaRica

    Hujan tahunan - 1533 mm

    Musim kering yang panjang (5 bulan) - purata hujan tahunan pada bulan-

    bulan tersebut - < drp 100 mm

    Pemerhatian:

    - Semua pokok adalah 'strongly seasonal in behaviour'

    - 'Peak periods of flowering' bermula semasa musim kering yang

    panjang - Dis-April

    - Menurun apabila bermula musim hujan - Mei-Jun- Musim buah yang max adalah pada penghujung musim kering

    tersebut

    - Hanya sedikit sahaja spp. pokok yang berbunga pada 3 bulan

    terakhir setiap tahun

  • 8/9/2019 Forest Dynamics Note

    32/43

    Di Afrika - maklumat mengenai musim berbunga adalah amat sedikit

    J. S. Gartlan's data (unpublished) (1975-78):

    - Dauala Edea Reserve, Cameroon

    - Hujan tahunan - 3000-4000 mm- 3 musim kering

    - Kajian menunjukkan peratusan pokok-pokok secara individu

    berbunga sangat tinggi pada lewat musim kering dan di awal

    musim hujan (Feb-Mei)

    - Pembungaan adalah minimum pada bulan Ogos - bulan yang

    terlembap

    Di HHT - musim berbunga dan berbuah, seperti juga penghasilan daun

    adalah juga dipengaruhi secara langsung atau tidak oleh faktor keadaan

    tanah

    Cont: Hutan Paya di Amazonia dan Zaire

    - Air pasang berlaku dalam satu jangka masa yang panjang

    - 'Mass flowering' berlaku apabila tiba musim air surut

  • 8/9/2019 Forest Dynamics Note

    33/43

    Kebanyakkan pokok-pokok di HHT adalah berbunga pada masa-masatertentu sahaja

    Corner (1988)

    - Terdapat spp. pokok di HHT di Malaysia adalah sentiasa

    berbunga - 'ever-flowering

    - Iaitu ianya mula berbunga pada umur yang muda dan

    berterusan sehingga pokok mati

    - Kebanyakkannya adalah drp spp. pokok perintis - contohnya:

    Adinandra dumosa (Tetiup) - mula berbunga pada umur 2/3

    tahun dan berterusan sehingga pokok mati

    - Dillenia suffruticosa (Simpoh ayer) - mula berbunga pada umur

    18 bulan dan berterusan sehingga 40-50 tahun

    Pembungaan Bagi Spesies individuPembungaan Bagi Spesies individu

  • 8/9/2019 Forest Dynamics Note

    34/43

    'Ever-flowering' bermaksud pokok-pokok secara individu boleh dijumpai

    berbunga pada setiap masa di sepanjang tahun tetapi tiada individu pokok

    yang dapat berbunga secara berterusan tanpa waktu 'rehat'

    Contohnya:

    - Dillenia triquetra (Simpoh spp.) di Sri Lanka - ianya berbunga

    sepanjang tahun, tetapi pada tahun berikutnya terdapat 1 atau 2

    tempoh rehat

    - Rhizophora mangle (bakau spp.) di Hutan Bakau Florida -

    bunga sentiasa kelihatan sepanjang tahun tetapi tiada pokok

    individu yang berbunga secara berterusan

    Bagi hutan primer - pokok pokok 'ever-flowering' jarang dijumpai - hanya

    berlaku kepada pokok-pokok perintis

    Kebanyakkan pokok-pokok di HHT mempunyai musim-musim berbunga

    yang tertentu dan pelbagai dari segi frekuensi, j/masa dan keseragaman

    waktu berbunga

  • 8/9/2019 Forest Dynamics Note

    35/43

    Rekod pembungaan pokok di hutan asli dan pokok yang di tanam

    (arboretum) menunjukkan perlakuan yang berbeza

    - Ashton (1982) mencatatkan 2 spp. pokok dipterocarp di

    Arboretum (FRIM, Kepong) adalah berbunga setiap tahun- Tetapi di habitat sebenar ianya berbunga selang beberapa tahun

    Corner (1988):

    - Pokok-pokok di pinggir hutan di Malaysia biasanya berbunga

    setahun sekali, contohnya: Koompassia excelsa (Tualang), Parkia

    speciosa (Petai)- Albizia falcataria - 2 tahun sekali

    - Syzygium grandis (Kelat) dan Rhodamnia cinerea (Mempoyan) -

    beberapa tahun sekali

    Holttum (1931; 1935; 1940 & 1953) di Singapura

    - Kebanyakkan pokok berbunga dalam j/masa yang seragam - 12

    bulan sekali

    - Delonixregia dan Lagerstroemia (Bungor) - 7-10 bulan secara

    seragam

    - Homalium grandiflorum (Telor buaya) - dicatatkan berbunga 12

    dan 26 tahun sekali - sangat tidak konsisten

  • 8/9/2019 Forest Dynamics Note

    36/43

    Pembungaan yang berlaku serentak terhadap sebahagian besar individu

    daripada spp. yang sama pada satu-satu masa

    Biasanya fenomena ini akan merangkumi satu kawasan hutan yang luas -

    > drp 100 km2

    Contohnya:

    - Dipterocarpaceae - very well known

    - Buluh

    - Orkid dan pepanjat - kebanyakkan di Malaysia

    - Calycolobus heudelotii- di Afrika

    Kuantiti bunga yang dihasikan adalah tidak terkira dan diikuti dengan

    jumlah biji benih dan anak benih pokok yang sangat banyak

    Mass FloweringMass Flowering

  • 8/9/2019 Forest Dynamics Note

    37/43

    Pembungaan yang tinggi spp. Dipterocarp di H. S. Sepilok, Sabah (1955)

    menghuraikan:

    "lantai hutan dipenuhi oleh bunga-bunga yang kelihatan seperti

    hamparan permaidani"

    Gerard (1960):

    - Mass flowering of Gilbertiodendron dewevrei, di Zaire

    - 11,042,325 bunga dan 10,721 biji benih terdapat dalam satu ha

    Biasanya setiap pembungaan secara menyeluruh ini akan mengambil

    masa beberapa minggu

  • 8/9/2019 Forest Dynamics Note

    38/43

    Kebanyakkan spp. drp pelbagai genera ini adalah berbunga dengan

    banyak dalam sesuatu masa dan merangkumi satu kawasan yang luas

    Tujuannya:

    - Menghasilkan bekalan anak benih yang mencukupi dalam

    j/masa yang singkat- Sebagai strategi untuk mengelakkan drp pemangsa biji benih

    Malesian Dipterocarpaceae:

    - Berbunga sekali dalam beberapa tahun, tidak seperti hutan di

    Southest Asia yang berbunga setiap tahun

    - Secara puratanya 9-11 tahun sekali - 'heavy' flowering- Merangkumi kawasan yang luas

    Flowering of DipterocarpsFlowering of Dipterocarps

  • 8/9/2019 Forest Dynamics Note

    39/43

    Contohnya di Borneo (1955):

    - Seluruh Sabah dan Sarawak dipenuhi oleh bunga-bunga drp

    famili dipterocarp

    - 'Light' flowerings occur between heavy flowerings- > drp 100 spp. dipterocarp yang berlainan berbunga serentak

    - tetapi tidak semua spp. individu yang matang berbunga

    - juga dicatatkan, terdapat spp. daripada famili lain juga berbunga

    pada ketika itu - Koompassia excelsa

    Di S. Malaysia, kebanyakkan dipterocarp berbunga di antara bulan Mac-Mei - di hujung musim kemarau pada sesuatu tahun

    - J/masa berbunga adalah berbeza di antara spp.

    - Biasanya 2-3 minggu

    Finologi dipterocarp adalah berbeza mengikut habitat - Shorea albida di

    Sarawak tidak berbunga pada masa yang paling kering dalam sesuatutahun

    Di Sabah pada tahun 1955 - dipterocarp di kawasan berbukit berbunga

    lewat 2 minggu berbanding dengan kawasan pamah

  • 8/9/2019 Forest Dynamics Note

    40/43

    Buah dipterocarp mengambil masa kira-kira 3 bulan untuk masak. Chan

    (1980) mencatatkan buah drp spp. yang lewat berbunga mengambil masa

    lebih cepat untuk berkembang berbanding dengan spp. yang berbunga

    cepat- Jadi, fenomena ini menjadikan buah daripada spp-spp. tersebut

    akan masak serentak

    Kehilangan/kerosakan buah dan bunga yang disebabkan oleh pemangsa

    dan hujan yang lebat adalah sangat serius

    - Oleh itu, 'heavy flowering' adalah penting untuk menghasilkananak benih yang mencukupi untuk survival

    - Hanya sedikit sahaja anak benih yang sihat dihasilkan pada

    ketika lain

    Kajian secara praktikal terhadap fisiologi pembungaan dipterocarp adalahsangat sedikit

    Namun, telah terbukti bahawa faktor-faktor iklim memainkan peranan yang

    penting - tetapi saling hubungan di antara keduanya adalah terlalu

    kompleks dan sukar dihuraikan

  • 8/9/2019 Forest Dynamics Note

    41/43

    Contohnya, Poore (1968) menyatakan pembungaan dipterocarp adalah

    bergantung kepada kekurangan air (water stress) dan diikuti dengan

    musim kemarau/kering

    Tetapi di Borneo (Wood, 1955) dan di S. Malaysia (Burgess, 1975)

    menyatakan 'heavy flowering' yang terjadi adalah tidak konsisten dengan

    kadar hujan yang rendah

    Terdapat juga bukti menunjukkan terdapat hubungan di antara

    pembungaan dipterocarp dengan ketinggian kawasan

    Wycherley (1973) menerangkan pembungaan spp. dipterocarp di S.

    Malaysia dan Sarawak tidak begitu jelas dipengaruhi oleh kadar hujan

    yang rendah tetapi menunjukkan ianya mempunyai hubungan korelasi

    yang signifikan dengan renj dan min suhu tahunan

    Ashton (1982) menyatakan spp. dipterocarp tidak akan berbunga sehingga

    ianya mencapai ketinggian yang secukupnya ataupun sekurang-kurangnya

    sebahagian drp kinopinya terdedah kepada cahaya matahari

  • 8/9/2019 Forest Dynamics Note

    42/43

    Kadar pembungaan pokok yang maksimum dan minimum selalunya akan

    diikuti oleh penghasilan buah yang juga maksimum dan minimum

    Di S. Malaysia, Medway (1972) menyatakan pada tahun 1963-69, purata

    peratusan pokok berbunga sangat tinggi pada bulan Jun-Julai dan diikuti

    oleh penghasilan buah yang maksimum kira-kira 8 minggu kamudian

    Di La Selva, Costa Rica - 'Peak of flowering' bagi pokok 'overstorey' adalah

    pada bulan Mei dan diikuti dengan 'peak of fruiting' pada bulan September

    - beberapa bulan kamudian buah akan masak seterusnya

    mengugurkan biji benih

    - 'Peak of fruiting' bagi pokok 'understorey' adalah lambat sedikit

    berbanding dengan pokok 'overstorey' iaitu pada bulan Oktober

    (Frankie et al., 1974)

    FruitingFruiting

  • 8/9/2019 Forest Dynamics Note

    43/43

    Penghasilan bunga yang banyak tidak semestinya akan menghasilkan

    buah yang banyak

    Terdapat beberapa faktor di mana bunga dan buah yang belum cukupmatang akan rosak/musnah oleh hujan lebat, fungi dan pemangsa

    Terdapat beberapa variasi j/masa yang diambil oleh pokok daripada

    perkembangan buah sehingga ianya masak

    - Kebanyakkan spp. mengambil masa 2-3 bulan untuk masak

    - Durian (3 bulan); Mangga (2-5 bulan); Koko (4-5 bulan)

    Bagi spp. pokok yang mempunyai buah yang kecil dan disebarkan oleh

    angin, biasanya perkembangan buah adalah lebih cepat

    Proses perkembangan buah drp pembungaa tidak semestinya berterusan

    Hymenaea courbaril- buah membesar sehingga ke saiz matang hanya

    dalam j/masa 1/2 bulan sahaja drp waktu berbunga, tetapi masih lagi kekal

    di atas pokok untuk beberapa bulan lagi dan seterusnya buah yang masak

    akan jatuh pada musim kering