formation and evolution of planetary systems: probing initial conditions and outcomes with e-elt...

30
FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of Physics (and many, many, others) HARMONI Early Science, Oxford, 2 July, 2015

Upload: gwendoline-obrien

Post on 20-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

FORMATION AND EVOLUTION OF PLANETARY SYSTEMS:PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT

Michael R. Meyer

Institute for Astronomy

Department of Physics

(and many, many, others)

HARMONI Early Science, Oxford, 2 July, 2015

Page 2: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

What we need to explain…

Pepe, Ehrenreich, & Meyer, 2014, Nature, V513, 358

Page 3: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

Collapsing Cores & Specific Angular Momentum

Williams & Cieza (2011) ARAA; see also Belloche (2013)

Time

M(accr)

Page 4: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

Structure of Protostellar Disks

From M. Meyer, Physics World, November, 2009 Based on Dullemond et al. (2001) with artwork from R. Hurt (NASA)

1 AU 100 AU

Page 5: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

JWST/ELT Complementary Capabilities

Physical Resolution: 15 pc 50 pc 150 pc 450 pc JWST 1.65 m 1 AU 3 AU 10 AU 30 AU 10 m 7 AU 20 AU 60 AU 180 AU ELT 1.65 m .2 AU .5 AU 1.5 AU 5 AU 10 m 1 AU 3 AU 10 AU 30 AU

Spectral Resolution : R = 100 (molecular features) JWST R = 1000 (atomic features) JWST R = 10,000 (30 km/sec) ELT R = 100,000 (3 km/sec) ELT

Field of View: 2’ (star clusters within 1 kpc) JWST 1.5” (circumstellar disk at 150 pc) ELT

Page 6: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

METIS Instrument Baseline

Imaging at 3 – 19 μm. with low/medium resolution slit spectroscopy as well as coronagraphy for high contrast imaging.

High resolution (R ~ 100,000) IFU spectroscopy at 3 – 5 μm, including extended instantaneous wavelength coverage.

Work at the diffraction limit with single conjugate (SC) and eventually assisted by a laser tomography adaptive optics (LTAO) system.

Page 7: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

Instrument Concept

Common Fore-Optics

AO Wavefront Sensor

Imager

IFU Spectrograph

Warm Calibration Unit

as well as Q!

Page 8: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

LM band

N band

(SC)AO Performance

D=39m, V=6 guide star, 100 Hz closed loop

Page 9: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

Probing Planet-Forming Disks from 1-1000 m

Follette et al. (2015), van der Marel et al. (2013); METIS/MICADO/ALMA Science

Page 10: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

Inner CO Gas vs. Outer Dust Continuum:

Pinella et al. (2015); Pontoppidan et al. (2008); METIS/HARMONI Science

Page 11: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

(Multiple) Planet Forming Disks: HD 100546

L-band Scattered Light Spectro-astrometry with CRIRES

Avenhaus et al. (2014) Brittain et al. (2014)

Page 12: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

(Multiple) Planet Forming Disks: HD 100546

Not yet detected in K-band (Quanz et al. 2013; 2015b)

and there are other examples…

Page 13: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

Direct Detection (and Characterization) of Circumplanetary Disks

Quanz et al. (2015b); METIS/HARMONI/MICADO Science

Page 14: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

Direct Detection of Thermal Emission for Planets of Known Mass with E-ELT: Calibrating the Models

RV+Gaia follow-up requires imaging photometry and IFU spectroscopy!Quanz et al. (2015a); METIS/MICADO/HARMONI Science

Page 15: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

Phenomenological Planet Populations:

RV Data

CA

GI

Benz et al. (2014); Galvagni & Mayer (2014); Forgan & Rice (2013)

Page 16: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

Direct (Non-) Detections of Gas Giant Planets

Few massive planets at large orbital radii.

[>3 Mjup @ > 50 AU]

dN/da ~ a

Lafrenerie et al. (2007);

Nielssen & Close (2009);

Heinze et al. (2010);

Chauvin et al. (2010);

Delorme et al. (2011);

Vigan et al. (2012); Reggiani et al. (submitted); SPHERE+ERIS

NACO-LP: Chauvin et al. (2014)

Not good for GI

Page 17: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

DIRECT IMAGING: DISRUPTING PLANET FORMATION THEORY WITH THE E-ELT

a.Start with a fit to RV distributions (Cumming et al. 2008) with brown dwarf companions (Reggiani et al. submitted)

b.Evidence for dependence of Co, planet frequency over range of mass and orbital radius, on stellar mass (Johnson et al. 2010; Clanton et al. 2014).

c.Initial conditions (and theory) suggest dependence on ratio of planet mass to star mass.

d.RV/micro-lensing/Imaging consistent with log-normal surface density peaking at 10 AU (Meyer et al. in prep).

Page 18: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

METISThe Survey:75 G stars< 50 pc< 300 Myr

HARMONIFollow-upRequired!

10 20 30 40 50 Separation (AU)

10 20 30 40 50 Separation (AU)

Log

(Ju

pit

er M

ass)

-

0.5

0.0

0.

5

1

.0

1.5

Log

(Ju

pit

er M

ass)

-

0.5

0.0

0.

5

1

.0

1.5

Page 19: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

High Resolution Spectra of Brown Dwarfs and Planets:METIS/HARMONI Characterization Science

Brown dwarf doppler imaging with CRIRES Wind speeds on planets with CRIRES Crossfield et al. (2014) Snellen et al. (2014)

Page 20: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

Star Clusters, Disks, & Planets: E-ELT Opportunities

SYNERGIES

=> Building on legacy of VLT: E-ELT, JWST, and ALMA.

=> METIS and first-light instruments HARMONI & MICADO.

STAR CLUSTERS => Resolved IMFs within 10 Mpc.

DISKS

=> E-ELT will resolve planet-forming disks (gas and dust) inside 10 AU.

=> Spectro-astrometry: of what are forming planets in disks made?

=> E-ELT will detect planets in formation (and circumplanetary disks).

PLANETS

=> Direct detection of planets with known mass (constrain models).

=> Collide planet formation theory with planet populations vs. stellar mass.

=> Characterize gas giant planets, including phase maps, and weather!

=> Possible to image (and characterize) a handful of super-earths.

Page 21: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

BACKUP SLIDES

Page 22: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

MMT-AO 6.5m PSF Simulated Trapezium Observations R(Sky Noise) = 1 Rc = 0.2 pc from Close et al. 2003. using Hillenbrand & Carpenter (2000). Hcomp(at Rc) < 24 mag

R(sky noise) = 2.5 Rc = 0.5 pc R(Sky Noise) = 4 Rc = 0.8 pc R(Sky Noise) > 20 Rc = 4-5 pc Hcomp(at Rc) < 17.8 mag. Hcomp(at Rc) < 15.3 mags. Core Radius not resolved.

25 kpc 50 kpc 0.5 Mpc

5 kpcPSF 0.5 kpc

Resolved Stellar Pops: HARMONI/MICADO @ Confusion Limit

Page 23: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

Primordial Disk Evolution: A Scenario…

Williams & Cieza ARAA (2011); Effects of Photoevaporation? Ercolano et al. (2015)

Few AU

Volatiles(Ciesla et al; Banzatti et al.)

Page 24: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

Typical Disk ParametersParameter Median ~1σ Range

Log(M(disk)/M(star))[all ~1 Myr] [detected disks only]

-3.0 dex-2.3 dex

±1.3 dex±0.5 dex

Disk lifetime 2-3 Myr 1-6 Myr

Temperature power law [T(r)~r-q]

0.6 0.4-0.7

Taken from (or interpolated/extrapolated from):

Muzerolle et al. (2003), Andrews & Williams (2007), Hernandez et al. (2008), Isella et al. (2009)

Parameter Median ~1σ Range

R(inner) 0.1 AU ~0.08-0.4 AU

R(outer) 200 AU ~90-480 AU

Surface density power [Σ(r) ~ r-p] [Hayashi min. mass nebula][steady state viscous α disk]

0.61.51.0

0.2-1.0(predicted)(predicted)

Surface density norm. Σo (5AU)

14 g cm-2 ±1 dex

Page 25: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

Circumplanetary Disk Detection with ALMA (mm grains)

From Pineda et al. Cycle 3 Proposal (submitted)

Page 26: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

CA Phenomenology: Planet Masses and Orbits

Solid growth time: tp ~ Rp rp / [ d x d]

with d ~ M*/a and d~ sqrt(M*/a3)

tp ~ a5/2/ [M*3/2] cf. gas disk lifetime td ~ 1/M*

Given aouter, there is a timescale td ~ 1/M* giving Rp.

aouter ~ [td M*3/2]2/5 ~ M*

1/5

Very hard to form critical mass core beyond 10s of AU (all stars).

If Mp set by disk accretion: Mp ~ [dMacc/dt ] td ~ M*2 x (1/M*) ~ M*

Planet Mass linearly related to star mass.

Page 27: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

GI Phenomenology: Planet Masses and Orbits

Toomre Parameter: Q ~ cs(a) / G(a)

with d ~ M*/a, d~ sqrt(M*/a3), and cs ~ sqrt(T) ~ (M*/a)1/4

Q ~ 1/ [M*1/4 a3/4]

Depends “weakly” on stellar mass, more strongly on radius. For typical disk parameters, should operate > 50 AU.

Typical fragment mass would be ~ cs4/(a) ~ 5 Mjupiter.

Massive planets, beyond 50 AU, independent of stellar mass.

Page 28: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

Companions to Stars: Brown Dwarfs and Planets

Reggiani et al. (2011; 2013; 2015); Sahlman et al. (2011)

Page 29: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

Meyer, Reggiani, & Quanz (in preparation)

Co ~ M*

Mp/M*

Planet Populations versus Stellar Mass:

Page 30: FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROBING INITIAL CONDITIONS AND OUTCOMES WITH E-ELT Michael R. Meyer Institute for Astronomy Department of

Can ELTs Directly Image Super-Earths?

Hinz et al. (2010), Quanz et al. (2015) and the METIS Science Team