formula rio en texmaker para latex

Download Formula Rio en Texmaker Para LaTex

If you can't read please download the document

Upload: erik

Post on 21-Apr-2015

100 views

Category:

Documents


8 download

DESCRIPTION

Código en Texmaker para la creación de un formulario en LaTex

TRANSCRIPT

Cdigo para la realizacin de este formulario en Texmaker:\documentclass[12pt,letterpaper, spanish]{book} \usepackage[left=3cm,right=3cm,top=2cm,bottom=2cm]{geometry} %\usepackage[total={18cm,21cm},top=3cm,left=2cm]{geometry} %\textheight=27.94cm %\textwidth=21.59cm %\topmargin=-1cm %\oddsidemargin=-2cm \parindent=0mm \usepackage{amsmath,amssymb,amsfonts,latexsym,cancel} \usepackage[latin1]{inputenc} \usepackage{graphicx} \begin{document} \title{\Huge \bf F\'ORMULAS MATEM\'ATICAS} \author{\huge \bf Erik Alejandro Ibarra Reta} \date{\bf S\'abado 31 de marzo del a\~no 2012} \maketitle \newpage \pagestyle{empty} \begin{center} {\huge \bf Estudiante de Ingenier\'ia Mecatr\'onica en la Universidad Polit\'ecnica de Victoria} \end{center} { Agradecimientos a LaTex por ser gratuito para los jodidos que no tenemos ni computadora y tenemos que andar pidi\'endola prestada a los camaradas.}\footnote{\'Este es mi primer formulario en LaTex.} \\ \\ {\bf Resoluci\'on de la ecuaci\'on de segundo grado} \\ \\ $ \displaystyle x_{1,2}={{b^{2}\pm \sqrt{b^{2}-4ac}} \over {2a}}$ \\ \\ {\bf Logaritmos} \\ \\ I.\,\,\,\,\,$\displaystyle log\,ab=log\,a+log\,b$\\ II.\,\,\,\,\,$\displaystyle log\,a^{n}=n\,log\,a$\\ III.\,\,\,\,\,$\displaystyle log\,1=0$\\ IV.\,\,\,\,\,$\displaystyle log\,{a \over b}=log\,a-log\,b$\\ V.\,\,\,\,\,$\displaystyle {log\,\sqrt[n]{a}}={1 \over n}\,log\,a$\\ VI.\,\,\,\,\,$\displaystyle {log_{a}\,a}=1$\\ \\ \\ {\bf Medida de los \'angulos \\ \\ $\displaystyle 1\,grado={{\pi} \over 180}=0.017453292...$ \\ \\ $\displaystyle 1\,radi\acute{a}n={180 \over {\pi}}=57.29577951^{\circ}$ \\ \\ {\bf F\'ormulas para reducir \'angulos} \\ \begin{table}[h] \begin{tabular}{|c|c|c|c|c|c|c|} \hline $\acute{A}ngulo$&$Seno$&$Coseno$&$Tangente$&$Cotangente$&$Secante$&$Cosecante$\\\hline

-x&-sen\,x&cos\,x&-tg\,x&-ctg\,x&sec\,x&-csc\,x $90^{\circ}-x$&cos\,x&sen\,x&ctg\,x&tg\,x&csc\,x&sec\,x \\ $90^{\circ}+x$&cos\,x&-sen\,x&-ctg\,x&-tg\,x&-csc\,x&sec\,x \\ $180^{\circ}-x$&sen\,x&-cos\,x&-tg\,x&-ctg\,x&-sec\,x&csc\,x \\ $180^{\circ}+x$&-sen\,x&-cos\,x&tg\,x&ctg\,x&-sec\,x&-csc\,x \\ $270^{\circ}-x$&-cos\,x&-sen\,x&ctg\,x&tg\,x&-csc\,x&-sec\,x \\ $270^{\circ}+x$&-cos\,x&sen\,x&-ctg\,x&-tg\,x&csc\,x&-sec\,x \\ $360^{\circ}-x$&-sen\,x&cos\,x&-tg\,x&-ctg\,x&sec\,x&-csc\,x \\\hline \end{tabular} \end{table} \\ \\ \\ \\ {\bf Relaciones entre las funciones trigonom\'etricas} \\ \\ $\displaystyle ctg\,x={1 \over tg\,x};\,csc\,x={1 \over sen\,x};\,sec\,x={1 \over cos\,x};\,tg\,x={sen\,x \over cos\,x};\,ctg\,x={cos\,x \over sen\,x}$ \\ \\ $\displaystyle sen^{2}\,x+cos^{2}\,x=1;\,1+tg^{2}\,x=sec^{2}\,x;\,1+ctg^{2}\,x=csc^{2}\,x$ \\ \\ \\ \\ {\bf Funciones trigonom\'etricas de ( x + y ) y ( x - y ) }\\ $\displaystyle sen\,(x\,+\,y)=sen\,x\,cos\,y\,+\,cos\,x\,sen\,y$\\ $\displaystyle sen\,(x\,-\,y)=sen\,x\,cos\,y\,-\,cos\,x\,sen\,y$\\ $\displaystyle cos\,(x\,+\,y)=cos\,x\,cos\,y\,+\,sen\,x\,sen\,y$\\ $\displaystyle cos\,(x\,-\,y)=cos\,x\,cos\,y\,-\,sen\,x\,sen\,y$\\ \\ $\displaystyle {sen\,(\,x\,+\,y\,)\,}={\,{tg\,x\,+\,tg\,y} \over {1\,\,tg\,x\,tg\,y}};\,{sen\,(\,x\,-\,y\,)\,}={\,{tg\,x\,-\,tg\,y} \over {1\,+\,tg\,x\,tg\,y}}$ \\ \\ {\bf Funciones trigonom\'etricas de 2x y de 1/2 x.} \\ \\ $\displaystyle sen\,2x\,=\,2\,sen\,x\,\,cos\,x;\,cos\,2x\,=\,cos^{2}\,x\,\,sen^{2}\,x;\,tg\,2x\,=\,{{2\,tg\,x} \over {1\,-\,tg^{2}\,x}}$ \\ \\ $\displaystyle {sen\,{x \over 2}=\,\pm\,\sqrt{{1\,-\,cos\,x} \over 2}};\,{cos\,{x \over 2}=\,\pm\,\sqrt{{1\,+\,cos\,x} \over 2}};\,{tg\,{x \over 2}=\,\pm\,\sqrt{{1\,-\,cos\,x} \over {1\,+\,cos\,x}}}$ \\ \\ $\displaystyle {sen^{2}\,x\,=\,{1 \over 2}\,-\,{1 \over 2}\,cos\,2x};\,{cos^{2}\,x\,=\,{1 \over 2}\,+\,{1 \over 2}\,cos\,2x}$ \\ \\ {\bf Transformaci\'on de sumas y diferencias de senos y cosenos en productos.} \\ \\ $\displaystyle sen\,x\,+\,sen\,y\,=\,2\,sen\,{1 \over 2}\,(x\,+\,y)\,cos\,{1 \over 2}\,(x\,\,y).$\\ $\displaystyle sen\,x\,-\,sen\,y\,=\,2\,cos\,{1 \over 2}\,(x\,+\,y)\,sen\,{1 \over 2}\,(x\,\,y).$\\ $\displaystyle cos\,x\,+\,cos\,y\,=\,2\,cos\,{1 \over 2}\,(x\,+\,y)\,cos\,{1 \over 2}\,(x\,\,y).$\\ $\displaystyle cos\,x\,-\,cos\,y\,=\,-2\,sen\,{1 \over 2}\,(x\,+\,y)\,sen\,{1 \over 2}\,(x\,-\,y).$\\

\\ \\ {\bf Relaciones en un tri\'angulo cualquiera.} \\ \\ $\displaystyle {\it Ley\,de\,los\,senos}\,\,\,\,\,{a \over sen\,A}={b \over sen\,B}={c \over sen\,C}$ \\ \\ $\displaystyle {\it Ley\,de\,los\,cosenos}\,\,\,\,\,a^{2}\,=\,b^{2}\,+\,c^{2}\,\,2\,bc\,cos\,A$ \\ \\ {\bf Exponentes} \\ \\ I.\,\,\,\,\,$\displaystyle a^{m} \cdot a^{n}=a^{m+n}$\\ II.\,\,\,\,\,$\displaystyle (a^{m})^{n}=a^{mn}$\\ III.\,\,\,\,\,$\displaystyle (ab)^{m}=a^{m} \cdot b^{m}$\\ IV.\,\,\,\,\,$\displaystyle ({a \over b})^m={a^{m} \over b^{m}}$\\ V.\,\,\,\,\,$\displaystyle {a^{m} \over a^{n}}={a^{m-n}}, m>n.$\\ VI.\,\,\,\,\,$\displaystyle {a^{m} \over a^{n}}={1 \over a^{n-m}}, m\,a^{2})$ \\ \\ (19a)\,\,\,\,\,$\displaystyle {\int {dv \over {a^{2}\,-\,v^{2}}}}=\,{1 \over 2a}\,ln\,{{a+v} \over {a-v}}\,+\,;C\,\,\,\,\,\,\,\,\,\,\,\,(v^{2}\,