fourier series 2

96
Fourier Series 2 N. B. Vyas Department of Mathematics, Atmiya Institute of Tech. & Science, Rajkot (Guj.)- INDIA N. B. Vyas Fourier Series 2

Upload: nirav-vyas

Post on 29-Nov-2014

668 views

Category:

Career


2 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Fourier series 2

Fourier Series 2

N. B. Vyas

Department of Mathematics,Atmiya Institute of Tech. & Science,

Rajkot (Guj.)- INDIA

N. B. Vyas Fourier Series 2

Page 2: Fourier series 2

Functions of any Period p = 2L

Let f(x) be a periodic function with an arbitrary period 2Ldefined in the interval c < x < c+ 2L

The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ c+2L

c

f(x) dx

an =1

L

∫ c+2L

c

f(x) cos(nπxL

)dx

bn =1

L

∫ c+2L

c

f(x) sin(nπxL

)dx

N. B. Vyas Fourier Series 2

Page 3: Fourier series 2

Functions of any Period p = 2L

Let f(x) be a periodic function with an arbitrary period 2Ldefined in the interval c < x < c+ 2L

The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ c+2L

c

f(x) dx

an =1

L

∫ c+2L

c

f(x) cos(nπxL

)dx

bn =1

L

∫ c+2L

c

f(x) sin(nπxL

)dx

N. B. Vyas Fourier Series 2

Page 4: Fourier series 2

Functions of any Period p = 2L

Let f(x) be a periodic function with an arbitrary period 2Ldefined in the interval c < x < c+ 2L

The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]

where a0 =1

L

∫ c+2L

c

f(x) dx

an =1

L

∫ c+2L

c

f(x) cos(nπxL

)dx

bn =1

L

∫ c+2L

c

f(x) sin(nπxL

)dx

N. B. Vyas Fourier Series 2

Page 5: Fourier series 2

Functions of any Period p = 2L

Let f(x) be a periodic function with an arbitrary period 2Ldefined in the interval c < x < c+ 2L

The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ c+2L

c

f(x) dx

an =1

L

∫ c+2L

c

f(x) cos(nπxL

)dx

bn =1

L

∫ c+2L

c

f(x) sin(nπxL

)dx

N. B. Vyas Fourier Series 2

Page 6: Fourier series 2

Functions of any Period p = 2L

Let f(x) be a periodic function with an arbitrary period 2Ldefined in the interval c < x < c+ 2L

The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ c+2L

c

f(x) dx

an =1

L

∫ c+2L

c

f(x) cos(nπxL

)dx

bn =1

L

∫ c+2L

c

f(x) sin(nπxL

)dx

N. B. Vyas Fourier Series 2

Page 7: Fourier series 2

Functions of any Period p = 2L

Let f(x) be a periodic function with an arbitrary period 2Ldefined in the interval c < x < c+ 2L

The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ c+2L

c

f(x) dx

an =1

L

∫ c+2L

c

f(x) cos(nπxL

)dx

bn =1

L

∫ c+2L

c

f(x) sin(nπxL

)dx

N. B. Vyas Fourier Series 2

Page 8: Fourier series 2

Functions of any Period p = 2L

Corollary 1: If c = 0 the interval becomes 0 < x < 2L

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ 2L

0

f(x) dx

an =1

L

∫ 2L

0

f(x) cos(nπxL

)dx

bn =1

L

∫ 2L

0

f(x) sin(nπxL

)dx

N. B. Vyas Fourier Series 2

Page 9: Fourier series 2

Functions of any Period p = 2L

Corollary 1: If c = 0 the interval becomes 0 < x < 2L

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]

where a0 =1

L

∫ 2L

0

f(x) dx

an =1

L

∫ 2L

0

f(x) cos(nπxL

)dx

bn =1

L

∫ 2L

0

f(x) sin(nπxL

)dx

N. B. Vyas Fourier Series 2

Page 10: Fourier series 2

Functions of any Period p = 2L

Corollary 1: If c = 0 the interval becomes 0 < x < 2L

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ 2L

0

f(x) dx

an =1

L

∫ 2L

0

f(x) cos(nπxL

)dx

bn =1

L

∫ 2L

0

f(x) sin(nπxL

)dx

N. B. Vyas Fourier Series 2

Page 11: Fourier series 2

Functions of any Period p = 2L

Corollary 1: If c = 0 the interval becomes 0 < x < 2L

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ 2L

0

f(x) dx

an =1

L

∫ 2L

0

f(x) cos(nπxL

)dx

bn =1

L

∫ 2L

0

f(x) sin(nπxL

)dx

N. B. Vyas Fourier Series 2

Page 12: Fourier series 2

Functions of any Period p = 2L

Corollary 1: If c = 0 the interval becomes 0 < x < 2L

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ 2L

0

f(x) dx

an =1

L

∫ 2L

0

f(x) cos(nπxL

)dx

bn =1

L

∫ 2L

0

f(x) sin(nπxL

)dx

N. B. Vyas Fourier Series 2

Page 13: Fourier series 2

Functions of any Period p = 2L

Corollary 2: If c = −L the interval becomes −L < x < L

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ L

−Lf(x) dx

an =1

L

∫ L

−Lf(x) cos

(nπxL

)dx

bn =1

L

∫ L

−Lf(x) sin

(nπxL

)dx

N. B. Vyas Fourier Series 2

Page 14: Fourier series 2

Functions of any Period p = 2L

Corollary 2: If c = −L the interval becomes −L < x < L

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]

where a0 =1

L

∫ L

−Lf(x) dx

an =1

L

∫ L

−Lf(x) cos

(nπxL

)dx

bn =1

L

∫ L

−Lf(x) sin

(nπxL

)dx

N. B. Vyas Fourier Series 2

Page 15: Fourier series 2

Functions of any Period p = 2L

Corollary 2: If c = −L the interval becomes −L < x < L

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ L

−Lf(x) dx

an =1

L

∫ L

−Lf(x) cos

(nπxL

)dx

bn =1

L

∫ L

−Lf(x) sin

(nπxL

)dx

N. B. Vyas Fourier Series 2

Page 16: Fourier series 2

Functions of any Period p = 2L

Corollary 2: If c = −L the interval becomes −L < x < L

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ L

−Lf(x) dx

an =1

L

∫ L

−Lf(x) cos

(nπxL

)dx

bn =1

L

∫ L

−Lf(x) sin

(nπxL

)dx

N. B. Vyas Fourier Series 2

Page 17: Fourier series 2

Functions of any Period p = 2L

Corollary 2: If c = −L the interval becomes −L < x < L

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ L

−Lf(x) dx

an =1

L

∫ L

−Lf(x) cos

(nπxL

)dx

bn =1

L

∫ L

−Lf(x) sin

(nπxL

)dx

N. B. Vyas Fourier Series 2

Page 18: Fourier series 2

Example

Ex. The Fourier series of f(x) = x2, 0 < x < 2 wheref(x+ 2) = f(x).

Hence deduce that 1− 1

22+

1

32− 1

42+ . . . =

π2

12

N. B. Vyas Fourier Series 2

Page 19: Fourier series 2

Example

Ex. The Fourier series of f(x) = x2, 0 < x < 2 wheref(x+ 2) = f(x).

Hence deduce that 1− 1

22+

1

32− 1

42+ . . . =

π2

12

N. B. Vyas Fourier Series 2

Page 20: Fourier series 2

Example

Sol. Step 1: The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ 2

0

f(x) dx

an =1

L

∫ 2

0

f(x) cos(nπxL

)dx

bn =1

L

∫ 2

0

f(x) sin(nπxL

)dx

Here p = 2L = 2⇒ L = 1

N. B. Vyas Fourier Series 2

Page 21: Fourier series 2

Example

Sol. Step 1: The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]

where a0 =1

L

∫ 2

0

f(x) dx

an =1

L

∫ 2

0

f(x) cos(nπxL

)dx

bn =1

L

∫ 2

0

f(x) sin(nπxL

)dx

Here p = 2L = 2⇒ L = 1

N. B. Vyas Fourier Series 2

Page 22: Fourier series 2

Example

Sol. Step 1: The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ 2

0

f(x) dx

an =1

L

∫ 2

0

f(x) cos(nπxL

)dx

bn =1

L

∫ 2

0

f(x) sin(nπxL

)dx

Here p = 2L = 2⇒ L = 1

N. B. Vyas Fourier Series 2

Page 23: Fourier series 2

Example

Sol. Step 1: The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ 2

0

f(x) dx

an =1

L

∫ 2

0

f(x) cos(nπxL

)dx

bn =1

L

∫ 2

0

f(x) sin(nπxL

)dx

Here p = 2L = 2⇒ L = 1

N. B. Vyas Fourier Series 2

Page 24: Fourier series 2

Example

Sol. Step 1: The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ 2

0

f(x) dx

an =1

L

∫ 2

0

f(x) cos(nπxL

)dx

bn =1

L

∫ 2

0

f(x) sin(nπxL

)dx

Here p = 2L = 2⇒ L = 1

N. B. Vyas Fourier Series 2

Page 25: Fourier series 2

Example

Sol. Step 1: The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ 2

0

f(x) dx

an =1

L

∫ 2

0

f(x) cos(nπxL

)dx

bn =1

L

∫ 2

0

f(x) sin(nπxL

)dx

Here p = 2L = 2⇒ L = 1

N. B. Vyas Fourier Series 2

Page 26: Fourier series 2

Example

Step 2. Now a0 =1

1

∫ 2

0

f(x) dx

a0 =

∫ 2

0

(x)2 dx

=

[x3

3

]20

=8

3

N. B. Vyas Fourier Series 2

Page 27: Fourier series 2

Example

Step 2. Now a0 =1

1

∫ 2

0

f(x) dx

a0 =

∫ 2

0

(x)2 dx

=

[x3

3

]20

=8

3

N. B. Vyas Fourier Series 2

Page 28: Fourier series 2

Example

Step 2. Now a0 =1

1

∫ 2

0

f(x) dx

a0 =

∫ 2

0

(x)2 dx

=

[x3

3

]20

=8

3

N. B. Vyas Fourier Series 2

Page 29: Fourier series 2

Example

Step 2. Now a0 =1

1

∫ 2

0

f(x) dx

a0 =

∫ 2

0

(x)2 dx

=

[x3

3

]20

=8

3

N. B. Vyas Fourier Series 2

Page 30: Fourier series 2

Example

Step 3. an =1

1

∫ 2

0

f(x) cos(nπx

1

)dx

an =

∫ 2

0

x2 cos(nπx) dx

=

[x2(sin nπx

)− (2x)

(−cos nπx

n2π2

)+ 2

(−sin nπx

n3π3

)]20

=4

n2π2

N. B. Vyas Fourier Series 2

Page 31: Fourier series 2

Example

Step 3. an =1

1

∫ 2

0

f(x) cos(nπx

1

)dx

an =

∫ 2

0

x2 cos(nπx) dx

=

[x2(sin nπx

)− (2x)

(−cos nπx

n2π2

)+ 2

(−sin nπx

n3π3

)]20

=4

n2π2

N. B. Vyas Fourier Series 2

Page 32: Fourier series 2

Example

Step 3. an =1

1

∫ 2

0

f(x) cos(nπx

1

)dx

an =

∫ 2

0

x2 cos(nπx) dx

=

[x2(sin nπx

)− (2x)

(−cos nπx

n2π2

)+ 2

(−sin nπx

n3π3

)]20

=4

n2π2

N. B. Vyas Fourier Series 2

Page 33: Fourier series 2

Example

Step 3. an =1

1

∫ 2

0

f(x) cos(nπx

1

)dx

an =

∫ 2

0

x2 cos(nπx) dx

=

[x2(sin nπx

)− (2x)

(−cos nπx

n2π2

)+ 2

(−sin nπx

n3π3

)]20

=4

n2π2

N. B. Vyas Fourier Series 2

Page 34: Fourier series 2

Example

Step 4. bn =1

1

∫ 2

0

f(x) sin(nπx

1

)dx

bn =

∫ 2

0

x2 sin(nπx) dx

=

[x2(−cos nπx

)− (2x)

(−sin nπx

n2π2

)+ 2

(cos nπxn3π3

)]20

= − 4

N. B. Vyas Fourier Series 2

Page 35: Fourier series 2

Example

Step 4. bn =1

1

∫ 2

0

f(x) sin(nπx

1

)dx

bn =

∫ 2

0

x2 sin(nπx) dx

=

[x2(−cos nπx

)− (2x)

(−sin nπx

n2π2

)+ 2

(cos nπxn3π3

)]20

= − 4

N. B. Vyas Fourier Series 2

Page 36: Fourier series 2

Example

Step 4. bn =1

1

∫ 2

0

f(x) sin(nπx

1

)dx

bn =

∫ 2

0

x2 sin(nπx) dx

=

[x2(−cos nπx

)− (2x)

(−sin nπx

n2π2

)+ 2

(cos nπxn3π3

)]20

= − 4

N. B. Vyas Fourier Series 2

Page 37: Fourier series 2

Example

Step 4. bn =1

1

∫ 2

0

f(x) sin(nπx

1

)dx

bn =

∫ 2

0

x2 sin(nπx) dx

=

[x2(−cos nπx

)− (2x)

(−sin nπx

n2π2

)+ 2

(cos nπxn3π3

)]20

= − 4

N. B. Vyas Fourier Series 2

Page 38: Fourier series 2

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval (0, 2)

f(x) =8

6+∞∑n=1

(4

n2π2

)cos(nπx

1

)+∞∑n=1

(− 4

)sin(nπx

1

)=

4

3+

4

π2

∞∑n=1

cos(nπx)

n2− 4

π

∞∑n=1

sin(nπx)

n

Putting x = 1, we get

1 =4

3+

4

π2

[− 1

11+

1

22− 1

32+ . . .

]−1

3=

4

π2

[− 1

11+

1

22− 1

32+ . . .

]π2

12=

1

12− 1

22+

1

32− 1

42+ . . .

N. B. Vyas Fourier Series 2

Page 39: Fourier series 2

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval (0, 2)

f(x) =8

6+∞∑n=1

(4

n2π2

)cos(nπx

1

)+∞∑n=1

(− 4

)sin(nπx

1

)

=4

3+

4

π2

∞∑n=1

cos(nπx)

n2− 4

π

∞∑n=1

sin(nπx)

n

Putting x = 1, we get

1 =4

3+

4

π2

[− 1

11+

1

22− 1

32+ . . .

]−1

3=

4

π2

[− 1

11+

1

22− 1

32+ . . .

]π2

12=

1

12− 1

22+

1

32− 1

42+ . . .

N. B. Vyas Fourier Series 2

Page 40: Fourier series 2

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval (0, 2)

f(x) =8

6+∞∑n=1

(4

n2π2

)cos(nπx

1

)+∞∑n=1

(− 4

)sin(nπx

1

)=

4

3+

4

π2

∞∑n=1

cos(nπx)

n2− 4

π

∞∑n=1

sin(nπx)

n

Putting x = 1, we get

1 =4

3+

4

π2

[− 1

11+

1

22− 1

32+ . . .

]−1

3=

4

π2

[− 1

11+

1

22− 1

32+ . . .

]π2

12=

1

12− 1

22+

1

32− 1

42+ . . .

N. B. Vyas Fourier Series 2

Page 41: Fourier series 2

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval (0, 2)

f(x) =8

6+∞∑n=1

(4

n2π2

)cos(nπx

1

)+∞∑n=1

(− 4

)sin(nπx

1

)=

4

3+

4

π2

∞∑n=1

cos(nπx)

n2− 4

π

∞∑n=1

sin(nπx)

n

Putting x = 1, we get

1 =4

3+

4

π2

[− 1

11+

1

22− 1

32+ . . .

]−1

3=

4

π2

[− 1

11+

1

22− 1

32+ . . .

]π2

12=

1

12− 1

22+

1

32− 1

42+ . . .

N. B. Vyas Fourier Series 2

Page 42: Fourier series 2

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval (0, 2)

f(x) =8

6+∞∑n=1

(4

n2π2

)cos(nπx

1

)+∞∑n=1

(− 4

)sin(nπx

1

)=

4

3+

4

π2

∞∑n=1

cos(nπx)

n2− 4

π

∞∑n=1

sin(nπx)

n

Putting x = 1, we get

1 =4

3+

4

π2

[− 1

11+

1

22− 1

32+ . . .

]

−1

3=

4

π2

[− 1

11+

1

22− 1

32+ . . .

]π2

12=

1

12− 1

22+

1

32− 1

42+ . . .

N. B. Vyas Fourier Series 2

Page 43: Fourier series 2

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval (0, 2)

f(x) =8

6+∞∑n=1

(4

n2π2

)cos(nπx

1

)+∞∑n=1

(− 4

)sin(nπx

1

)=

4

3+

4

π2

∞∑n=1

cos(nπx)

n2− 4

π

∞∑n=1

sin(nπx)

n

Putting x = 1, we get

1 =4

3+

4

π2

[− 1

11+

1

22− 1

32+ . . .

]−1

3=

4

π2

[− 1

11+

1

22− 1

32+ . . .

]

π2

12=

1

12− 1

22+

1

32− 1

42+ . . .

N. B. Vyas Fourier Series 2

Page 44: Fourier series 2

Example

Step 5. Substituting values of a0, an and bn in (1), we get therequired Fourier series of f(x) in the interval (0, 2)

f(x) =8

6+∞∑n=1

(4

n2π2

)cos(nπx

1

)+∞∑n=1

(− 4

)sin(nπx

1

)=

4

3+

4

π2

∞∑n=1

cos(nπx)

n2− 4

π

∞∑n=1

sin(nπx)

n

Putting x = 1, we get

1 =4

3+

4

π2

[− 1

11+

1

22− 1

32+ . . .

]−1

3=

4

π2

[− 1

11+

1

22− 1

32+ . . .

]π2

12=

1

12− 1

22+

1

32− 1

42+ . . .

N. B. Vyas Fourier Series 2

Page 45: Fourier series 2

Example

Ex. Find the Fourier series of f(x) = 2x in −1 < x < 1where p = 2L = 2.

N. B. Vyas Fourier Series 2

Page 46: Fourier series 2

Example

Sol. Step 1: The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ 1

−1f(x) dx

an =1

L

∫ 1

−1f(x) cos

(nπxL

)dx

bn =1

L

∫ 1

−1f(x) sin

(nπxL

)dx

Here p = 2L = 2⇒ L = 1

N. B. Vyas Fourier Series 2

Page 47: Fourier series 2

Example

Sol. Step 1: The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]

where a0 =1

L

∫ 1

−1f(x) dx

an =1

L

∫ 1

−1f(x) cos

(nπxL

)dx

bn =1

L

∫ 1

−1f(x) sin

(nπxL

)dx

Here p = 2L = 2⇒ L = 1

N. B. Vyas Fourier Series 2

Page 48: Fourier series 2

Example

Sol. Step 1: The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ 1

−1f(x) dx

an =1

L

∫ 1

−1f(x) cos

(nπxL

)dx

bn =1

L

∫ 1

−1f(x) sin

(nπxL

)dx

Here p = 2L = 2⇒ L = 1

N. B. Vyas Fourier Series 2

Page 49: Fourier series 2

Example

Sol. Step 1: The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ 1

−1f(x) dx

an =1

L

∫ 1

−1f(x) cos

(nπxL

)dx

bn =1

L

∫ 1

−1f(x) sin

(nπxL

)dx

Here p = 2L = 2⇒ L = 1

N. B. Vyas Fourier Series 2

Page 50: Fourier series 2

Example

Sol. Step 1: The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ 1

−1f(x) dx

an =1

L

∫ 1

−1f(x) cos

(nπxL

)dx

bn =1

L

∫ 1

−1f(x) sin

(nπxL

)dx

Here p = 2L = 2⇒ L = 1

N. B. Vyas Fourier Series 2

Page 51: Fourier series 2

Example

Sol. Step 1: The Fourier series of f(x) is given by

f(x) =a02

+∞∑n=1

[an cos

(nπxL

)+ bn sin

(nπxL

)]where a0 =

1

L

∫ 1

−1f(x) dx

an =1

L

∫ 1

−1f(x) cos

(nπxL

)dx

bn =1

L

∫ 1

−1f(x) sin

(nπxL

)dx

Here p = 2L = 2⇒ L = 1

N. B. Vyas Fourier Series 2

Page 52: Fourier series 2

Example

Step 2. Now a0 =1

1

∫ 1

−1f(x) dx

a0 =

∫ 1

−12x dx

= 0

N. B. Vyas Fourier Series 2

Page 53: Fourier series 2

Example

Step 2. Now a0 =1

1

∫ 1

−1f(x) dx

a0 =

∫ 1

−12x dx

= 0

N. B. Vyas Fourier Series 2

Page 54: Fourier series 2

Example

Step 2. Now a0 =1

1

∫ 1

−1f(x) dx

a0 =

∫ 1

−12x dx

= 0

N. B. Vyas Fourier Series 2

Page 55: Fourier series 2

Example

Step 3. an =1

1

∫ 1

−1f(x) cos

(nπx1

)dx

an =

∫ 1

−12x cos(nπx) dx

=

[2x

(sin nπx

)− (2)

(−cos nπx

n2π2

)]1−1

=

[0 +

2(−1)n

n2π2− 0− 2(−1)n

n2π2

]= 0

N. B. Vyas Fourier Series 2

Page 56: Fourier series 2

Example

Step 3. an =1

1

∫ 1

−1f(x) cos

(nπx1

)dx

an =

∫ 1

−12x cos(nπx) dx

=

[2x

(sin nπx

)− (2)

(−cos nπx

n2π2

)]1−1

=

[0 +

2(−1)n

n2π2− 0− 2(−1)n

n2π2

]= 0

N. B. Vyas Fourier Series 2

Page 57: Fourier series 2

Example

Step 3. an =1

1

∫ 1

−1f(x) cos

(nπx1

)dx

an =

∫ 1

−12x cos(nπx) dx

=

[2x

(sin nπx

)− (2)

(−cos nπx

n2π2

)]1−1

=

[0 +

2(−1)n

n2π2− 0− 2(−1)n

n2π2

]= 0

N. B. Vyas Fourier Series 2

Page 58: Fourier series 2

Example

Step 3. an =1

1

∫ 1

−1f(x) cos

(nπx1

)dx

an =

∫ 1

−12x cos(nπx) dx

=

[2x

(sin nπx

)− (2)

(−cos nπx

n2π2

)]1−1

=

[0 +

2(−1)n

n2π2

− 0− 2(−1)n

n2π2

]= 0

N. B. Vyas Fourier Series 2

Page 59: Fourier series 2

Example

Step 3. an =1

1

∫ 1

−1f(x) cos

(nπx1

)dx

an =

∫ 1

−12x cos(nπx) dx

=

[2x

(sin nπx

)− (2)

(−cos nπx

n2π2

)]1−1

=

[0 +

2(−1)n

n2π2− 0− 2(−1)n

n2π2

]

= 0

N. B. Vyas Fourier Series 2

Page 60: Fourier series 2

Example

Step 3. an =1

1

∫ 1

−1f(x) cos

(nπx1

)dx

an =

∫ 1

−12x cos(nπx) dx

=

[2x

(sin nπx

)− (2)

(−cos nπx

n2π2

)]1−1

=

[0 +

2(−1)n

n2π2− 0− 2(−1)n

n2π2

]= 0

N. B. Vyas Fourier Series 2

Page 61: Fourier series 2

Example

Ex. Find the Fourier series of periodic function

f(x)= −1;−1 < x < 0= 1; 0 < x < 1

p = 2L = 2

N. B. Vyas Fourier Series 2

Page 62: Fourier series 2

Example

Ex. Find the Fourier series of periodic function

f(x)= 0;−2 < x < 0= 2; 0 < x < 2

p = 2L = 4

N. B. Vyas Fourier Series 2

Page 63: Fourier series 2

Fourier Half Range Series

A function f(x) defined only on the interval of the form0 < x < L.

If f(x) is represented on this interval by a Fourier series ofperiod 2L

Then such Fourier series are known as half range Fourierseries or half range expansions.

Types of Half Range Fourier series

1 Fourier Cosine Series

2 Fourier Sine Series

N. B. Vyas Fourier Series 2

Page 64: Fourier series 2

Fourier Half Range Series

A function f(x) defined only on the interval of the form0 < x < L.

If f(x) is represented on this interval by a Fourier series ofperiod 2L

Then such Fourier series are known as half range Fourierseries or half range expansions.

Types of Half Range Fourier series

1 Fourier Cosine Series

2 Fourier Sine Series

N. B. Vyas Fourier Series 2

Page 65: Fourier series 2

Fourier Half Range Series

A function f(x) defined only on the interval of the form0 < x < L.

If f(x) is represented on this interval by a Fourier series ofperiod 2L

Then such Fourier series are known as half range Fourierseries or half range expansions.

Types of Half Range Fourier series

1 Fourier Cosine Series

2 Fourier Sine Series

N. B. Vyas Fourier Series 2

Page 66: Fourier series 2

Fourier Half Range Series

A function f(x) defined only on the interval of the form0 < x < L.

If f(x) is represented on this interval by a Fourier series ofperiod 2L

Then such Fourier series are known as half range Fourierseries or half range expansions.

Types of Half Range Fourier series

1 Fourier Cosine Series

2 Fourier Sine Series

N. B. Vyas Fourier Series 2

Page 67: Fourier series 2

Fourier Half Range Series

A function f(x) defined only on the interval of the form0 < x < L.

If f(x) is represented on this interval by a Fourier series ofperiod 2L

Then such Fourier series are known as half range Fourierseries or half range expansions.

Types of Half Range Fourier series

1 Fourier Cosine Series

2 Fourier Sine Series

N. B. Vyas Fourier Series 2

Page 68: Fourier series 2

Fourier Half Range Series

A function f(x) defined only on the interval of the form0 < x < L.

If f(x) is represented on this interval by a Fourier series ofperiod 2L

Then such Fourier series are known as half range Fourierseries or half range expansions.

Types of Half Range Fourier series

1 Fourier Cosine Series

2 Fourier Sine Series

N. B. Vyas Fourier Series 2

Page 69: Fourier series 2

Fourier Cosine Series

Let f(x) be piecewise continuous on [o, l].

the Fourier cosine series expansion of f(x) on the half rangeinterval [0, l] is given by

f(x) =ao2

+∞∑n=1

an cos(nπx

l

)where a0 =

2

l

∫ l

0

f(x) dx

an =2

l

∫ l

0

f(x) cos(nπx

l

)dx

N. B. Vyas Fourier Series 2

Page 70: Fourier series 2

Fourier Cosine Series

Let f(x) be piecewise continuous on [o, l].

the Fourier cosine series expansion of f(x) on the half rangeinterval [0, l] is given by

f(x) =ao2

+∞∑n=1

an cos(nπx

l

)where a0 =

2

l

∫ l

0

f(x) dx

an =2

l

∫ l

0

f(x) cos(nπx

l

)dx

N. B. Vyas Fourier Series 2

Page 71: Fourier series 2

Fourier Cosine Series

Let f(x) be piecewise continuous on [o, l].

the Fourier cosine series expansion of f(x) on the half rangeinterval [0, l] is given by

f(x) =ao2

+∞∑n=1

an cos(nπx

l

)

where a0 =2

l

∫ l

0

f(x) dx

an =2

l

∫ l

0

f(x) cos(nπx

l

)dx

N. B. Vyas Fourier Series 2

Page 72: Fourier series 2

Fourier Cosine Series

Let f(x) be piecewise continuous on [o, l].

the Fourier cosine series expansion of f(x) on the half rangeinterval [0, l] is given by

f(x) =ao2

+∞∑n=1

an cos(nπx

l

)where a0 =

2

l

∫ l

0

f(x) dx

an =2

l

∫ l

0

f(x) cos(nπx

l

)dx

N. B. Vyas Fourier Series 2

Page 73: Fourier series 2

Fourier Cosine Series

Let f(x) be piecewise continuous on [o, l].

the Fourier cosine series expansion of f(x) on the half rangeinterval [0, l] is given by

f(x) =ao2

+∞∑n=1

an cos(nπx

l

)where a0 =

2

l

∫ l

0

f(x) dx

an =2

l

∫ l

0

f(x) cos(nπx

l

)dx

N. B. Vyas Fourier Series 2

Page 74: Fourier series 2

Fourier Sine Series

Let f(x) be piecewise continuous on [o, l].

the Fourier sine series expansion of f(x) on the half rangeinterval [0, l] is given by

f(x) =∞∑n=1

bn sin(nπx

l

)bn =

2

l

∫ l

0

f(x) sin(nπx

l

)dx

N. B. Vyas Fourier Series 2

Page 75: Fourier series 2

Fourier Sine Series

Let f(x) be piecewise continuous on [o, l].

the Fourier sine series expansion of f(x) on the half rangeinterval [0, l] is given by

f(x) =∞∑n=1

bn sin(nπx

l

)bn =

2

l

∫ l

0

f(x) sin(nπx

l

)dx

N. B. Vyas Fourier Series 2

Page 76: Fourier series 2

Fourier Sine Series

Let f(x) be piecewise continuous on [o, l].

the Fourier sine series expansion of f(x) on the half rangeinterval [0, l] is given by

f(x) =∞∑n=1

bn sin(nπx

l

)

bn =2

l

∫ l

0

f(x) sin(nπx

l

)dx

N. B. Vyas Fourier Series 2

Page 77: Fourier series 2

Fourier Sine Series

Let f(x) be piecewise continuous on [o, l].

the Fourier sine series expansion of f(x) on the half rangeinterval [0, l] is given by

f(x) =∞∑n=1

bn sin(nπx

l

)bn =

2

l

∫ l

0

f(x) sin(nπx

l

)dx

N. B. Vyas Fourier Series 2

Page 78: Fourier series 2

Example

Ex. Find Fourier cosine and sine series of the functionf(x) = 1 for 0 ≤ x ≤ 2

N. B. Vyas Fourier Series 2

Page 79: Fourier series 2

Example

Sol. Here given interval is 0 ≤ x ≤ 2

∴ l = 2

N. B. Vyas Fourier Series 2

Page 80: Fourier series 2

Example

Sol. Here given interval is 0 ≤ x ≤ 2

∴ l = 2

N. B. Vyas Fourier Series 2

Page 81: Fourier series 2

Example

1 Fourier cosine series

Step 1. f(x) =a02

+∞∑n=1

an cos(nπx

l

)

where a0 =2

l

∫ l

0

f(x)dx

an =2

l

∫ l

0

f(x) cos(nπx

l

)

N. B. Vyas Fourier Series 2

Page 82: Fourier series 2

Example

1 Fourier cosine series

Step 1. f(x) =a02

+∞∑n=1

an cos(nπx

l

)where a0 =

2

l

∫ l

0

f(x)dx

an =2

l

∫ l

0

f(x) cos(nπx

l

)

N. B. Vyas Fourier Series 2

Page 83: Fourier series 2

Example

1 Fourier cosine series

Step 1. f(x) =a02

+∞∑n=1

an cos(nπx

l

)where a0 =

2

l

∫ l

0

f(x)dx

an =2

l

∫ l

0

f(x) cos(nπx

l

)

N. B. Vyas Fourier Series 2

Page 84: Fourier series 2

Example

Step 2. a0 =2

2

∫ 2

0

f(x)dx

=

∫ 2

0

1dx = [x]20 = 2.

N. B. Vyas Fourier Series 2

Page 85: Fourier series 2

Example

Step 2. a0 =2

2

∫ 2

0

f(x)dx

=

∫ 2

0

1dx

= [x]20 = 2.

N. B. Vyas Fourier Series 2

Page 86: Fourier series 2

Example

Step 2. a0 =2

2

∫ 2

0

f(x)dx

=

∫ 2

0

1dx = [x]20

= 2.

N. B. Vyas Fourier Series 2

Page 87: Fourier series 2

Example

Step 2. a0 =2

2

∫ 2

0

f(x)dx

=

∫ 2

0

1dx = [x]20 = 2.

N. B. Vyas Fourier Series 2

Page 88: Fourier series 2

Example

Step 3. an =2

2

∫ 2

0

f(x)cos(nπx

2

)dx

=

∫ 2

0

(1) cos(nπx

2

)dx

=

sin(nπx

2

)(nπ

2

)2

0

=

(2

)(sin (nπ)− sin (0)) = 0

N. B. Vyas Fourier Series 2

Page 89: Fourier series 2

Example

Step 3. an =2

2

∫ 2

0

f(x)cos(nπx

2

)dx

=

∫ 2

0

(1) cos(nπx

2

)dx

=

sin(nπx

2

)(nπ

2

)2

0

=

(2

)(sin (nπ)− sin (0)) = 0

N. B. Vyas Fourier Series 2

Page 90: Fourier series 2

Example

Step 3. an =2

2

∫ 2

0

f(x)cos(nπx

2

)dx

=

∫ 2

0

(1) cos(nπx

2

)dx

=

sin(nπx

2

)(nπ

2

)2

0

=

(2

)(sin (nπ)− sin (0)) = 0

N. B. Vyas Fourier Series 2

Page 91: Fourier series 2

Example

Step 3. an =2

2

∫ 2

0

f(x)cos(nπx

2

)dx

=

∫ 2

0

(1) cos(nπx

2

)dx

=

sin(nπx

2

)(nπ

2

)2

0

=

(2

)(sin (nπ)− sin (0))

= 0

N. B. Vyas Fourier Series 2

Page 92: Fourier series 2

Example

Step 3. an =2

2

∫ 2

0

f(x)cos(nπx

2

)dx

=

∫ 2

0

(1) cos(nπx

2

)dx

=

sin(nπx

2

)(nπ

2

)2

0

=

(2

)(sin (nπ)− sin (0)) = 0

N. B. Vyas Fourier Series 2

Page 93: Fourier series 2

Example

∴ Fourier cosine series of f(x) is

f(x) =a02

+∞∑n=1

an cos(nπx

l

)=

2

2+ 0 = 1

N. B. Vyas Fourier Series 2

Page 94: Fourier series 2

Example

∴ Fourier cosine series of f(x) is

f(x) =a02

+∞∑n=1

an cos(nπx

l

)

=2

2+ 0 = 1

N. B. Vyas Fourier Series 2

Page 95: Fourier series 2

Example

∴ Fourier cosine series of f(x) is

f(x) =a02

+∞∑n=1

an cos(nπx

l

)=

2

2+ 0

= 1

N. B. Vyas Fourier Series 2

Page 96: Fourier series 2

Example

∴ Fourier cosine series of f(x) is

f(x) =a02

+∞∑n=1

an cos(nπx

l

)=

2

2+ 0 = 1

N. B. Vyas Fourier Series 2