fourier series analysis

24
Fourier Series Analysis Trig and Exponential Series MODIFIED BY TLH

Upload: others

Post on 20-Apr-2022

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fourier Series Analysis

Fourier Series Analysis

Trig and Exponential Series

MODIFIED BY TLH

Page 2: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 2

Page 3: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 3

Page 4: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 4

Page 5: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 5

Page 6: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 6

Harmonic Signal->Periodic

tFkj

k

keatx 02)(

0

0

0

00

1or

22

FT

TF

Sums of Harmonic

complex exponentials

are Periodic signals

PERIOD/FREQUENCY of COMPLEX EXPONENTIAL:

Page 7: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 8

Page 8: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 9

Page 9: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 10

LECTURE OBJECTIVES

Work with the Fourier Series Integral

ANALYSIS via Fourier Series

For PERIODIC signals: x(t+T0) = x(t)

Draw spectrum from the Fourier Series coeffs

0

0

0

0

)/2(1 )(T

dtetxatTkj

Tk

Page 10: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 11

0 100 250–100–250f (in Hz)

3/7 je3/7 je

2/4 je 2/4 je

10

SPECTRUM DIAGRAM

Recall Complex Amplitude vs. Freq

kk aX 21

Xk Akejk

12 Xk

*

N

k

tfjk

tfjk

kk eXeXXtx1

2

212

21

0)(

ka{ *ka0a

Page 11: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 12

Harmonic Signal->Periodic

tFkj

k

keatx 02)(

0

0

0

00

1or

22

FT

TF

Sums of Harmonic

complex exponentials

are Periodic signals

PERIOD/FREQUENCY of COMPLEX EXPONENTIAL:

Page 12: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 13

Notation for Fundamental

Frequency in Fourier Series

The k-th frequency is fk = kF0

Thus, f0 = 0 is DC

This is why we use upper case F0 for the

Fundamental Frequency

tfj

k

k

tFkj

k

kkeaeatx

22 0)(

Page 13: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 15

STRATEGY: x(t) ak

ANALYSIS

Get representation from the signal

Works for PERIODIC Signals

Measure similarity between signal & harmonic

Fourier Series

Answer is: an INTEGRAL over one period

0

0

0

0)(1

T

dtetxatkj

Tk

Page 14: Fourier Series Analysis

CALCULUS for complex exp

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 16

ttjtt ejedt

dee

dt

d

ab

b

a

t

b

a

t eeedte

11

ajbj

b

a

tj

b

a

tj eej

ej

dte

11

Page 15: Fourier Series Analysis

component) (DC)(

)(

0

0

0

0

0

0

10

0

)/2(1

T

T

T

tkTj

Tk

dttxa

dtetxa

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 18

00 /1

Freq.lFundamenta

TF

Fourier Series Integral

Use orthogonality to determine ak from x(t)

real is )( when* txaa kk

THIS IS THE AVERAGE!

Page 16: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 19

Fourier Series: x(t) ak

ANALYSIS

Given a PERIODIC Signal

Fourier Series coefficients are obtained via

an INTEGRAL over one period

Next, consider a specific signal, the FWRS

Full Wave Rectified Sine

0

0

0

0)(1

T

dtetxatkj

Tk

Page 17: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 20

Full-Wave Rectified Sine

121

01 is Period)/2sin()( TTTttx

Absolute value flips the

negative lobes of a sine wave

Frequency

Doubles

Page 18: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 21

Full-Wave Rectified Sine {ak}

0

0

0

)/2(

0

)(1

T

ktTj

k dtetxT

a

0

00

00

00

0

0

0

0

0

0

0

0

0

00

0

0

0

00

0

))12)(/((2

)12)(/(

0

))12)(/((2

)12)(/(

0

)12)(/(

21

0

)12)(/(

21

0

)/2()/()/(

1

0

)/2(1

2

)sin(

T

kTjTj

tkTjT

kTjTj

tkTj

T

tkTj

Tj

T

tkTj

Tj

T

ktTjtTjtTj

T

T

ktTj

TTk

ee

dtedte

dtej

ee

dteta

Full-Wave Rectified Sine

)/sin()(

:

)/2sin()(

0

121

0

1

Tttx

TTPeriod

Tttx

Page 19: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 22

)14(

21)1(

11

11

2

2

)14(

)12(12

)12(

)12(1)12(

)12(1

)12)(/(

)12(21)12)(/(

)12(21

0

))12)(/((2

)12)(/(

0

))12)(/((2

)12)(/(

2

0000

0

00

00

00

0

k

ee

ee

eea

k

k

kk

kj

k

kj

k

TkTj

k

TkTj

k

T

kTjTj

tkTjT

kTjTj

tkTj

k

Full-Wave Rectified Sine {ak}

Page 20: Fourier Series Analysis

Fourier Coefficients: ak

ak is a function of k

Complex Amplitude for k-th Harmonic

NOTE: 1

𝑘2𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑘

Does not depend on the period, T0

DC value is

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 23

)14(

22

kak

6336.0/20 a

Page 21: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 24

Spectrum from Fourier Series

Plot a for Full-Wave Rectified Sinusoid

0000 2and/1 FTF

)14(

22

kak

ka

Page 22: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 25

Reconstruct From Finite Number

of Harmonic Components

Full-Wave Rectified Sinusoid

Hz100

ms10

0

0

F

T

)/sin()( 0Tttx

6336.0/20 a

)14(

22

kak

N

k

tFkj

k

tFkj

kN eaeaatx1

22

000)(

?)/sin()( to)( is closeHow 0TttxtxN

Page 23: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 26

Reconstruct From Finite Number

of Spectrum Components

Full-Wave Rectified Sinusoid )/sin()( 0Tttx

Hz100

ms10

0

0

F

T

6336.0/20 a

)14(

22

kak

Page 24: Fourier Series Analysis

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 32

Synthesis: up to 7th Harmonic)350sin(

7

2)250sin(

5

2)150sin(

3

2)50cos(

2

2

1)(

2ttttty