fourier series and transforms revision lecturethe basic idea fourier series and transforms revision...

104
Fourier Series and Transforms Revision Lecture Fourier Series and Transforms Revision Lecture The Basic Idea Real v Complex Series v Transform Fourier Analysis Power Conservation Gibbs Phenomenon Coefficient Decay Rate Periodic Extension Dirac Delta Function Fourier Transform Convolution Correlation E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 1 / 13

Upload: others

Post on 04-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Series and TransformsRevision Lecture

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 1 / 13

Page 2: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

The Basic Idea

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 2 / 13

Periodic signals can be written as a sum of sine and cosine waves:

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Page 3: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

The Basic Idea

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 2 / 13

Periodic signals can be written as a sum of sine and cosine waves:

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Tu(t)

Page 4: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

The Basic Idea

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 2 / 13

Periodic signals can be written as a sum of sine and cosine waves:

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Tu(t)

=

T +0.65sin(2πFt)

Page 5: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

The Basic Idea

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 2 / 13

Periodic signals can be written as a sum of sine and cosine waves:

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Tu(t)

=

T +0.65sin(2πFt)

+

T/2-0.26sin(2πFt)

Page 6: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

The Basic Idea

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 2 / 13

Periodic signals can be written as a sum of sine and cosine waves:

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Tu(t)

=

T +0.65sin(2πFt)

+

T/2-0.26sin(2πFt)

+

T/3+0.26sin(2πFt)

Page 7: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

The Basic Idea

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 2 / 13

Periodic signals can be written as a sum of sine and cosine waves:

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Tu(t)

=

T +0.65sin(2πFt)

+

T/2-0.26sin(2πFt)

+

T/3+0.26sin(2πFt)

+

T/4

-0.13cos(2πFt)

Page 8: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

The Basic Idea

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 2 / 13

Periodic signals can be written as a sum of sine and cosine waves:

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Tu(t)

=

T +0.65sin(2πFt)

+

T/2-0.26sin(2πFt)

+

T/3+0.26sin(2πFt)

+

T/4

-0.13cos(2πFt)

Fundamental Period: the smallest T > 0 for which u(t+ T ) = u(t).

Page 9: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

The Basic Idea

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 2 / 13

Periodic signals can be written as a sum of sine and cosine waves:

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Tu(t)

=

T +0.65sin(2πFt)

+

T/2-0.26sin(2πFt)

+

T/3+0.26sin(2πFt)

+

T/4

-0.13cos(2πFt)

Fundamental Period: the smallest T > 0 for which u(t+ T ) = u(t).Fundamental Frequency: F = 1

T.

Page 10: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

The Basic Idea

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 2 / 13

Periodic signals can be written as a sum of sine and cosine waves:

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Tu(t)

=

T +0.65sin(2πFt)

+

T/2-0.26sin(2πFt)

+

T/3+0.26sin(2πFt)

+

T/4

-0.13cos(2πFt)

Fundamental Period: the smallest T > 0 for which u(t+ T ) = u(t).Fundamental Frequency: F = 1

T. The nth harmonic is at frequency nF .

Page 11: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

The Basic Idea

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 2 / 13

Periodic signals can be written as a sum of sine and cosine waves:

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Tu(t)

=

T +0.65sin(2πFt)

+

T/2-0.26sin(2πFt)

+

T/3+0.26sin(2πFt)

+

T/4

-0.13cos(2πFt)

Fundamental Period: the smallest T > 0 for which u(t+ T ) = u(t).Fundamental Frequency: F = 1

T. The nth harmonic is at frequency nF .

Some waveforms need infinitely many harmonics (countable infinity).

Page 12: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Real versus Complex Fourier Series

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 3 / 13

All the algebra is much easier if we use eiωt instead of cosωt and sinωt

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Page 13: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Real versus Complex Fourier Series

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 3 / 13

All the algebra is much easier if we use eiωt instead of cosωt and sinωt

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Substitute: cosωt = 12e

iωt + 12e

−iωt sinωt = −i2 eiωt + i

2e−iωt

Page 14: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Real versus Complex Fourier Series

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 3 / 13

All the algebra is much easier if we use eiωt instead of cosωt and sinωt

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Substitute: cosωt = 12e

iωt + 12e

−iωt sinωt = −i2 eiωt + i

2e−iωt

u(t) = a0

2 +∑∞

n=1

(

12 (an − ibn) e

i2πnFt + 12 (an + ibn) e

−i2πnFt)

Page 15: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Real versus Complex Fourier Series

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 3 / 13

All the algebra is much easier if we use eiωt instead of cosωt and sinωt

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Substitute: cosωt = 12e

iωt + 12e

−iωt sinωt = −i2 eiωt + i

2e−iωt

u(t) = a0

2 +∑∞

n=1

(

12 (an − ibn) e

i2πnFt + 12 (an + ibn) e

−i2πnFt)

=∑∞

n=−∞ Unei2πnFt

Page 16: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Real versus Complex Fourier Series

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 3 / 13

All the algebra is much easier if we use eiωt instead of cosωt and sinωt

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Substitute: cosωt = 12e

iωt + 12e

−iωt sinωt = −i2 eiωt + i

2e−iωt

u(t) = a0

2 +∑∞

n=1

(

12 (an − ibn) e

i2πnFt + 12 (an + ibn) e

−i2πnFt)

=∑∞

n=−∞ Unei2πnFt

• U+n = 12 (an − ibn)

Page 17: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Real versus Complex Fourier Series

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 3 / 13

All the algebra is much easier if we use eiωt instead of cosωt and sinωt

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Substitute: cosωt = 12e

iωt + 12e

−iωt sinωt = −i2 eiωt + i

2e−iωt

u(t) = a0

2 +∑∞

n=1

(

12 (an − ibn) e

i2πnFt + 12 (an + ibn) e

−i2πnFt)

=∑∞

n=−∞ Unei2πnFt

• U+n = 12 (an − ibn) and U−n = 1

2 (an + ibn) .

Page 18: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Real versus Complex Fourier Series

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 3 / 13

All the algebra is much easier if we use eiωt instead of cosωt and sinωt

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Substitute: cosωt = 12e

iωt + 12e

−iωt sinωt = −i2 eiωt + i

2e−iωt

u(t) = a0

2 +∑∞

n=1

(

12 (an − ibn) e

i2πnFt + 12 (an + ibn) e

−i2πnFt)

=∑∞

n=−∞ Unei2πnFt

• U+n = 12 (an − ibn) and U−n = 1

2 (an + ibn) .

• U+n and U−n are complex conjugates.

Page 19: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Real versus Complex Fourier Series

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 3 / 13

All the algebra is much easier if we use eiωt instead of cosωt and sinωt

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Substitute: cosωt = 12e

iωt + 12e

−iωt sinωt = −i2 eiωt + i

2e−iωt

u(t) = a0

2 +∑∞

n=1

(

12 (an − ibn) e

i2πnFt + 12 (an + ibn) e

−i2πnFt)

=∑∞

n=−∞ Unei2πnFt

• U+n = 12 (an − ibn) and U−n = 1

2 (an + ibn) .

• U+n and U−n are complex conjugates.

• U+n is half the equivalent phasor in Analysis of Circuits.

Page 20: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Real versus Complex Fourier Series

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 3 / 13

All the algebra is much easier if we use eiωt instead of cosωt and sinωt

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Substitute: cosωt = 12e

iωt + 12e

−iωt sinωt = −i2 eiωt + i

2e−iωt

u(t) = a0

2 +∑∞

n=1

(

12 (an − ibn) e

i2πnFt + 12 (an + ibn) e

−i2πnFt)

=∑∞

n=−∞ Unei2πnFt

• U+n = 12 (an − ibn) and U−n = 1

2 (an + ibn) .

• U+n and U−n are complex conjugates.

• U+n is half the equivalent phasor in Analysis of Circuits.

Tu(t)

Plot the magnitude spectrum-4F -3F -2F -F 0 F 2F 3F 4F

0

0.5

1

|U|

Page 21: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Real versus Complex Fourier Series

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 3 / 13

All the algebra is much easier if we use eiωt instead of cosωt and sinωt

u(t) = a0

2 +∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Substitute: cosωt = 12e

iωt + 12e

−iωt sinωt = −i2 eiωt + i

2e−iωt

u(t) = a0

2 +∑∞

n=1

(

12 (an − ibn) e

i2πnFt + 12 (an + ibn) e

−i2πnFt)

=∑∞

n=−∞ Unei2πnFt

• U+n = 12 (an − ibn) and U−n = 1

2 (an + ibn) .

• U+n and U−n are complex conjugates.

• U+n is half the equivalent phasor in Analysis of Circuits.

Tu(t)

Plot the magnitude spectrumand phase spectrum:

-4F -3F -2F -F 0 F 2F 3F 4F0

0.5

1

|U|

-4F -3F -2F -F 0 F 2F 3F 4F

-pi

0

pi

∠U

Page 22: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Series versus Fourier Transform

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 4 / 13

• Periodic signals

Tu(t)

Page 23: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Series versus Fourier Transform

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 4 / 13

• Periodic signals → Fourier Series

Tu(t)

u(t) =∑∞

n=−∞ Unei2πnFt

Page 24: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Series versus Fourier Transform

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 4 / 13

• Periodic signals → Fourier Series→ Discrete spectrum

Tu(t)

u(t) =∑∞

n=−∞ Unei2πnFt

-4F -3F -2F -F 0 F 2F 3F 4F0

0.5

1

|U|

-4F -3F -2F -F 0 F 2F 3F 4F

-pi

0

pi

∠U

Page 25: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Series versus Fourier Transform

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 4 / 13

• Periodic signals → Fourier Series→ Discrete spectrum

Tu(t)

u(t) =∑∞

n=−∞ Unei2πnFt

-4F -3F -2F -F 0 F 2F 3F 4F0

0.5

1

|U|

-4F -3F -2F -F 0 F 2F 3F 4F

-pi

0

pi

∠U

• Aperiodic signals

-5 0 50

0.5

1

Time (s)

u(t)

a=2

Page 26: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Series versus Fourier Transform

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 4 / 13

• Periodic signals → Fourier Series→ Discrete spectrum

Tu(t)

u(t) =∑∞

n=−∞ Unei2πnFt

-4F -3F -2F -F 0 F 2F 3F 4F0

0.5

1

|U|

-4F -3F -2F -F 0 F 2F 3F 4F

-pi

0

pi

∠U

• Aperiodic signals → Fourier Transform

-5 0 50

0.5

1

Time (s)

u(t)

a=2

u(t) =∫∞f=−∞ U(f)ei2πftdf

Page 27: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Series versus Fourier Transform

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 4 / 13

• Periodic signals → Fourier Series→ Discrete spectrum

Tu(t)

u(t) =∑∞

n=−∞ Unei2πnFt

-4F -3F -2F -F 0 F 2F 3F 4F0

0.5

1

|U|

-4F -3F -2F -F 0 F 2F 3F 4F

-pi

0

pi

∠U

• Aperiodic signals → Fourier Transform→ Continuous Spectrum

-5 0 50

0.5

1

Time (s)

u(t)

a=2

u(t) =∫∞f=−∞ U(f)ei2πftdf

-5 0 50.10.20.30.40.5

Frequency (Hz)

|U(f

)|

-5 0 5-pi/2

0

pi/2

Frequence (Hz)

∠U

(f)

(rad

)

Page 28: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Series versus Fourier Transform

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 4 / 13

• Periodic signals → Fourier Series→ Discrete spectrum

Tu(t)

u(t) =∑∞

n=−∞ Unei2πnFt

-4F -3F -2F -F 0 F 2F 3F 4F0

0.5

1

|U|

-4F -3F -2F -F 0 F 2F 3F 4F

-pi

0

pi

∠U

• Aperiodic signals → Fourier Transform→ Continuous Spectrum

-5 0 50

0.5

1

Time (s)

u(t)

a=2

u(t) =∫∞f=−∞ U(f)ei2πftdf

-5 0 50.10.20.30.40.5

Frequency (Hz)

|U(f

)|

-5 0 5-pi/2

0

pi/2

Frequence (Hz)

∠U

(f)

(rad

)• Both types of spectrum are conjugate symmetric.• If u(t) is periodic, its Fourier transform consists of Dirac δ functions

with amplitudes {Un}.

Page 29: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Analysis

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 5 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Fourier Analysis = “how do you work out the Fourier coefficients, Un ?”

Page 30: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Analysis

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 5 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Fourier Analysis = “how do you work out the Fourier coefficients, Un ?”

Key idea:⟨

eiωt⟩

= 〈cosωt+ i sinωt〉 =

{

1 if ω = 0

0 otherwise

Page 31: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Analysis

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 5 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Fourier Analysis = “how do you work out the Fourier coefficients, Un ?”

Key idea:⟨

eiωt⟩

= 〈cosωt+ i sinωt〉 =

{

1 if ω = 0

0 otherwise

⇒ Orthogonality:⟨

ei2πnFt × e−i2πmFt⟩

=

{

1 for m = n

0 for m 6= n

Page 32: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Analysis

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 5 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Fourier Analysis = “how do you work out the Fourier coefficients, Un ?”

Key idea:⟨

eiωt⟩

= 〈cosωt+ i sinωt〉 =

{

1 if ω = 0

0 otherwise

⇒ Orthogonality:⟨

ei2πnFt × e−i2πmFt⟩

=

{

1 for m = n

0 for m 6= n

So, to find a particular coefficient, Um, we work out⟨

u(t)e−i2πmFt⟩

=⟨ (

∑∞n=−∞ Une

i2πnFt)

e−i2πmFt⟩

Page 33: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Analysis

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 5 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Fourier Analysis = “how do you work out the Fourier coefficients, Un ?”

Key idea:⟨

eiωt⟩

= 〈cosωt+ i sinωt〉 =

{

1 if ω = 0

0 otherwise

⇒ Orthogonality:⟨

ei2πnFt × e−i2πmFt⟩

=

{

1 for m = n

0 for m 6= n

So, to find a particular coefficient, Um, we work out⟨

u(t)e−i2πmFt⟩

=⟨ (

∑∞n=−∞ Une

i2πnFt)

e−i2πmFt⟩

=∑∞

n=−∞ Un

ei2πnFte−i2πmFt⟩

Page 34: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Analysis

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 5 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Fourier Analysis = “how do you work out the Fourier coefficients, Un ?”

Key idea:⟨

eiωt⟩

= 〈cosωt+ i sinωt〉 =

{

1 if ω = 0

0 otherwise

⇒ Orthogonality:⟨

ei2πnFt × e−i2πmFt⟩

=

{

1 for m = n

0 for m 6= n

So, to find a particular coefficient, Um, we work out⟨

u(t)e−i2πmFt⟩

=⟨ (

∑∞n=−∞ Une

i2πnFt)

e−i2πmFt⟩

=∑∞

n=−∞ Un

ei2πnFte−i2πmFt⟩

= Um [since all other terms are zero]

Page 35: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Analysis

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 5 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Fourier Analysis = “how do you work out the Fourier coefficients, Un ?”

Key idea:⟨

eiωt⟩

= 〈cosωt+ i sinωt〉 =

{

1 if ω = 0

0 otherwise

⇒ Orthogonality:⟨

ei2πnFt × e−i2πmFt⟩

=

{

1 for m = n

0 for m 6= n

So, to find a particular coefficient, Um, we work out⟨

u(t)e−i2πmFt⟩

=⟨ (

∑∞n=−∞ Une

i2πnFt)

e−i2πmFt⟩

=∑∞

n=−∞ Un

ei2πnFte−i2πmFt⟩

= Um [since all other terms are zero]

Calculate the average by integrating over any integer number of periods

Um =⟨

u(t)e−i2πmFt⟩

= 1T

∫ T

t=0u(t)e−i2πmFtdt

Page 36: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Analysis

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 5 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Fourier Analysis = “how do you work out the Fourier coefficients, Un ?”

Key idea:⟨

eiωt⟩

= 〈cosωt+ i sinωt〉 =

{

1 if ω = 0

0 otherwise

⇒ Orthogonality:⟨

ei2πnFt × e−i2πmFt⟩

=

{

1 for m = n

0 for m 6= n

So, to find a particular coefficient, Um, we work out⟨

u(t)e−i2πmFt⟩

=⟨ (

∑∞n=−∞ Une

i2πnFt)

e−i2πmFt⟩

=∑∞

n=−∞ Un

ei2πnFte−i2πmFt⟩

= Um [since all other terms are zero]

Calculate the average by integrating over any integer number of periods

Um =⟨

u(t)e−i2πmFt⟩

= 1T

∫ T

t=0u(t)e−i2πmFtdt

Notice the negative sign in Fourier analysis: in order to extract the term inthe series containing e+i2πmFt we need to multiply by e−i2πmFt.

Page 37: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Power Conservation

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 6 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Page 38: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Power Conservation

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 6 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Average power in u(t): Pu ,

|u(t)|2⟩

Page 39: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Power Conservation

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 6 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Average power in u(t): Pu ,

|u(t)|2⟩

= 1T

∫ T

0u2(t)dt [u(t) real]

Page 40: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Power Conservation

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 6 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Average power in u(t): Pu ,

|u(t)|2⟩

= 1T

∫ T

0u2(t)dt [u(t) real]

Average power in Fourier component n:⟨

∣Unei2πnFt

2⟩

=⟨

|Un|2 ∣∣ei2πnFt

2⟩

= |Un|2

Page 41: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Power Conservation

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 6 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Average power in u(t): Pu ,

|u(t)|2⟩

= 1T

∫ T

0u2(t)dt [u(t) real]

Average power in Fourier component n:⟨

∣Unei2πnFt

2⟩

=⟨

|Un|2 ∣∣ei2πnFt

2⟩

= |Un|2

Power conservation (Parseval’s Theorem):

Pu =⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

Page 42: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Power Conservation

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 6 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Average power in u(t): Pu ,

|u(t)|2⟩

= 1T

∫ T

0u2(t)dt [u(t) real]

Average power in Fourier component n:⟨

∣Unei2πnFt

2⟩

=⟨

|Un|2 ∣∣ei2πnFt

2⟩

= |Un|2

Power conservation (Parseval’s Theorem):

Pu =⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

The average power in u(t) is equal to the sum of the averagepowers in all the Fourier components.

Page 43: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Power Conservation

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 6 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Average power in u(t): Pu ,

|u(t)|2⟩

= 1T

∫ T

0u2(t)dt [u(t) real]

Average power in Fourier component n:⟨

∣Unei2πnFt

2⟩

=⟨

|Un|2 ∣∣ei2πnFt

2⟩

= |Un|2

Power conservation (Parseval’s Theorem):

Pu =⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

The average power in u(t) is equal to the sum of the averagepowers in all the Fourier components.

This is a consequence of orthogonality:⟨

|u(t)|2⟩

=⟨(∑∞

n=−∞ Unei2πnFt

) (∑∞

m=−∞ U∗me−i2πmFt

)⟩

Page 44: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Power Conservation

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 6 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Average power in u(t): Pu ,

|u(t)|2⟩

= 1T

∫ T

0u2(t)dt [u(t) real]

Average power in Fourier component n:⟨

∣Unei2πnFt

2⟩

=⟨

|Un|2 ∣∣ei2πnFt

2⟩

= |Un|2

Power conservation (Parseval’s Theorem):

Pu =⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

The average power in u(t) is equal to the sum of the averagepowers in all the Fourier components.

This is a consequence of orthogonality:⟨

|u(t)|2⟩

=⟨(∑∞

n=−∞ Unei2πnFt

) (∑∞

m=−∞ U∗me−i2πmFt

)⟩

=⟨∑∞

n=−∞∑∞

m=−∞ UnU∗mei2πnFte−i2πmFt

Page 45: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Power Conservation

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 6 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Average power in u(t): Pu ,

|u(t)|2⟩

= 1T

∫ T

0u2(t)dt [u(t) real]

Average power in Fourier component n:⟨

∣Unei2πnFt

2⟩

=⟨

|Un|2 ∣∣ei2πnFt

2⟩

= |Un|2

Power conservation (Parseval’s Theorem):

Pu =⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

The average power in u(t) is equal to the sum of the averagepowers in all the Fourier components.

This is a consequence of orthogonality:⟨

|u(t)|2⟩

=⟨(∑∞

n=−∞ Unei2πnFt

) (∑∞

m=−∞ U∗me−i2πmFt

)⟩

=⟨∑∞

n=−∞∑∞

m=−∞ UnU∗mei2πnFte−i2πmFt

=∑∞

n=−∞∑∞

m=−∞ UnU∗m

ei2πnFte−i2πmFt⟩

Page 46: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Power Conservation

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 6 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Average power in u(t): Pu ,

|u(t)|2⟩

= 1T

∫ T

0u2(t)dt [u(t) real]

Average power in Fourier component n:⟨

∣Unei2πnFt

2⟩

=⟨

|Un|2 ∣∣ei2πnFt

2⟩

= |Un|2

Power conservation (Parseval’s Theorem):

Pu =⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

The average power in u(t) is equal to the sum of the averagepowers in all the Fourier components.

This is a consequence of orthogonality:⟨

|u(t)|2⟩

=⟨(∑∞

n=−∞ Unei2πnFt

) (∑∞

m=−∞ U∗me−i2πmFt

)⟩

=⟨∑∞

n=−∞∑∞

m=−∞ UnU∗mei2πnFte−i2πmFt

=∑∞

n=−∞∑∞

m=−∞ UnU∗m

ei2πnFte−i2πmFt⟩

=∑∞

n=−∞ |Un|2

Page 47: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Gibbs Phenomenon

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 7 / 13

Truncated Fourier Series: uN (t) =∑N

n=−N Unei2πnFt

0 5 0 5 0

0 5 0 5 0

0 5 0 5 0

0 5 0 5 0

0 5 0 5 0

-1 .5 0 .5 1

Page 48: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Gibbs Phenomenon

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 7 / 13

Truncated Fourier Series: uN (t) =∑N

n=−N Unei2πnFt

0 5 10 15 20

0

0.5

1 max(u0)=0.500

N=0

0 5 0 5 0

0 5 0 5 0

0 5 0 5 0

0 5 0 5 0

-1 .5 0 .5 1

Page 49: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Gibbs Phenomenon

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 7 / 13

Truncated Fourier Series: uN (t) =∑N

n=−N Unei2πnFt

0 5 10 15 20

0

0.5

1 max(u0)=0.500

N=0

0 5 10 15 20

0

0.5

1 max(u1)=1.137

N=1

0 5 0 5 0

0 5 0 5 0

0 5 0 5 0

-1 .5 0 .5 1

Page 50: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Gibbs Phenomenon

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 7 / 13

Truncated Fourier Series: uN (t) =∑N

n=−N Unei2πnFt

0 5 10 15 20

0

0.5

1 max(u0)=0.500

N=0

0 5 10 15 20

0

0.5

1 max(u1)=1.137

N=1

0 5 10 15 20

0

0.5

1 max(u3)=1.100

N=3

0 5 0 5 0

0 5 0 5 0

-1 .5 0 .5 1

Page 51: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Gibbs Phenomenon

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 7 / 13

Truncated Fourier Series: uN (t) =∑N

n=−N Unei2πnFt

0 5 10 15 20

0

0.5

1 max(u0)=0.500

N=0

0 5 10 15 20

0

0.5

1 max(u1)=1.137

N=1

0 5 10 15 20

0

0.5

1 max(u3)=1.100

N=3

0 5 10 15 20

0

0.5

1 max(u5)=1.094

N=5

0 5 0 5 0

-1 .5 0 .5 1

Page 52: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Gibbs Phenomenon

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 7 / 13

Truncated Fourier Series: uN (t) =∑N

n=−N Unei2πnFt

0 5 10 15 20

0

0.5

1 max(u0)=0.500

N=0

0 5 10 15 20

0

0.5

1 max(u1)=1.137

N=1

0 5 10 15 20

0

0.5

1 max(u3)=1.100

N=3

0 5 10 15 20

0

0.5

1 max(u5)=1.094

N=5

0 5 10 15 20

0

0.5

1 max(u41

)=1.089

N=41

-1 .5 0 .5 1

Page 53: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Gibbs Phenomenon

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 7 / 13

Truncated Fourier Series: uN (t) =∑N

n=−N Unei2πnFt

Approximation error: eN (t) = uN (t)− u(t)0 5 10 15 20

0

0.5

1 max(u0)=0.500

N=0

0 5 10 15 20

0

0.5

1 max(u1)=1.137

N=1

0 5 10 15 20

0

0.5

1 max(u3)=1.100

N=3

0 5 10 15 20

0

0.5

1 max(u5)=1.094

N=5

0 5 10 15 20

0

0.5

1 max(u41

)=1.089

N=41

-1 .5 0 .5 1

Page 54: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Gibbs Phenomenon

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 7 / 13

Truncated Fourier Series: uN (t) =∑N

n=−N Unei2πnFt

Approximation error: eN (t) = uN (t)− u(t)

Average error power PeN =∑

|n|>N |Un|2. 0 5 10 15 20

0

0.5

1 max(u0)=0.500

N=0

0 5 10 15 20

0

0.5

1 max(u1)=1.137

N=1

0 5 10 15 20

0

0.5

1 max(u3)=1.100

N=3

0 5 10 15 20

0

0.5

1 max(u5)=1.094

N=5

0 5 10 15 20

0

0.5

1 max(u41

)=1.089

N=41

-1 .5 0 .5 1

Page 55: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Gibbs Phenomenon

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 7 / 13

Truncated Fourier Series: uN (t) =∑N

n=−N Unei2πnFt

Approximation error: eN (t) = uN (t)− u(t)

Average error power PeN =∑

|n|>N |Un|2.

PeN → 0 monotonically as N → ∞.

0 5 10 15 20

0

0.5

1 max(u0)=0.500

N=0

0 5 10 15 20

0

0.5

1 max(u1)=1.137

N=1

0 5 10 15 20

0

0.5

1 max(u3)=1.100

N=3

0 5 10 15 20

0

0.5

1 max(u5)=1.094

N=5

0 5 10 15 20

0

0.5

1 max(u41

)=1.089

N=41

-1 .5 0 .5 1

Page 56: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Gibbs Phenomenon

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 7 / 13

Truncated Fourier Series: uN (t) =∑N

n=−N Unei2πnFt

Approximation error: eN (t) = uN (t)− u(t)

Average error power PeN =∑

|n|>N |Un|2.

PeN → 0 monotonically as N → ∞.

Gibbs phenomenon

If u(t0) has a discontinuity of height h then:

0 5 10 15 20

0

0.5

1 max(u0)=0.500

N=0

0 5 10 15 20

0

0.5

1 max(u1)=1.137

N=1

0 5 10 15 20

0

0.5

1 max(u3)=1.100

N=3

0 5 10 15 20

0

0.5

1 max(u5)=1.094

N=5

0 5 10 15 20

0

0.5

1 max(u41

)=1.089

N=41

-1 .5 0 .5 1

Page 57: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Gibbs Phenomenon

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 7 / 13

Truncated Fourier Series: uN (t) =∑N

n=−N Unei2πnFt

Approximation error: eN (t) = uN (t)− u(t)

Average error power PeN =∑

|n|>N |Un|2.

PeN → 0 monotonically as N → ∞.

Gibbs phenomenon

If u(t0) has a discontinuity of height h then:

• uN (t0) → the midpoint of thediscontinuity as N → ∞.

0 5 10 15 20

0

0.5

1 max(u0)=0.500

N=0

0 5 10 15 20

0

0.5

1 max(u1)=1.137

N=1

0 5 10 15 20

0

0.5

1 max(u3)=1.100

N=3

0 5 10 15 20

0

0.5

1 max(u5)=1.094

N=5

0 5 10 15 20

0

0.5

1 max(u41

)=1.089

N=41

-1 -0.5 0 0.5 1

0

0.5

1 max(u41

)=1.089

[Enlarged View: u41(t)]

Page 58: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Gibbs Phenomenon

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 7 / 13

Truncated Fourier Series: uN (t) =∑N

n=−N Unei2πnFt

Approximation error: eN (t) = uN (t)− u(t)

Average error power PeN =∑

|n|>N |Un|2.

PeN → 0 monotonically as N → ∞.

Gibbs phenomenon

If u(t0) has a discontinuity of height h then:

• uN (t0) → the midpoint of thediscontinuity as N → ∞.

• uN (t) overshoots by ≈ ±9%× h att ≈ t0 ±

T2N+1 .

0 5 10 15 20

0

0.5

1 max(u0)=0.500

N=0

0 5 10 15 20

0

0.5

1 max(u1)=1.137

N=1

0 5 10 15 20

0

0.5

1 max(u3)=1.100

N=3

0 5 10 15 20

0

0.5

1 max(u5)=1.094

N=5

0 5 10 15 20

0

0.5

1 max(u41

)=1.089

N=41

-1 -0.5 0 0.5 1

0

0.5

1 max(u41

)=1.089

[Enlarged View: u41(t)]

Page 59: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Gibbs Phenomenon

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 7 / 13

Truncated Fourier Series: uN (t) =∑N

n=−N Unei2πnFt

Approximation error: eN (t) = uN (t)− u(t)

Average error power PeN =∑

|n|>N |Un|2.

PeN → 0 monotonically as N → ∞.

Gibbs phenomenon

If u(t0) has a discontinuity of height h then:

• uN (t0) → the midpoint of thediscontinuity as N → ∞.

• uN (t) overshoots by ≈ ±9%× h att ≈ t0 ±

T2N+1 .

• For large N , the overshoots movecloser to the discontinuity but do notdecrease in size.

0 5 10 15 20

0

0.5

1 max(u0)=0.500

N=0

0 5 10 15 20

0

0.5

1 max(u1)=1.137

N=1

0 5 10 15 20

0

0.5

1 max(u3)=1.100

N=3

0 5 10 15 20

0

0.5

1 max(u5)=1.094

N=5

0 5 10 15 20

0

0.5

1 max(u41

)=1.089

N=41

-1 -0.5 0 0.5 1

0

0.5

1 max(u41

)=1.089

[Enlarged View: u41(t)]

Page 60: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Coefficient Decay Rate

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 8 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Page 61: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Coefficient Decay Rate

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 8 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Integration:v(t) =

∫ t

0u(τ )dτ ⇒ Vn = 1

i2πnF Un

provided U0 = V0 = 0.

Page 62: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Coefficient Decay Rate

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 8 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Integration:v(t) =

∫ t

0u(τ )dτ ⇒ Vn = 1

i2πnF Un

provided U0 = V0 = 0.

Differentiation:w(t) = du(t)

dt⇒ Wn = i2πnF × Un

provided w(t) satisfies the Dirichlet conditions.

Page 63: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Coefficient Decay Rate

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 8 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Integration:v(t) =

∫ t

0u(τ )dτ ⇒ Vn = 1

i2πnF Un

provided U0 = V0 = 0.

Differentiation:w(t) = du(t)

dt⇒ Wn = i2πnF × Un

provided w(t) satisfies the Dirichlet conditions.

Coefficient Decay Rate:u(t) has a discontinuity ⇒ |Un| is O

(

1n

)

for large |n|

Page 64: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Coefficient Decay Rate

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 8 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Integration:v(t) =

∫ t

0u(τ )dτ ⇒ Vn = 1

i2πnF Un

provided U0 = V0 = 0.

Differentiation:w(t) = du(t)

dt⇒ Wn = i2πnF × Un

provided w(t) satisfies the Dirichlet conditions.

Coefficient Decay Rate:u(t) has a discontinuity ⇒ |Un| is O

(

1n

)

for large |n|

dku(t)dtk

is the lowest derivative with a discontinuity

⇒ |Un| is O(

1nk+1

)

for large |n|

Page 65: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Coefficient Decay Rate

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 8 / 13

Fourier Series: u(t) =∑∞

n=−∞ Unei2πnFt

Integration:v(t) =

∫ t

0u(τ )dτ ⇒ Vn = 1

i2πnF Un

provided U0 = V0 = 0.

Differentiation:w(t) = du(t)

dt⇒ Wn = i2πnF × Un

provided w(t) satisfies the Dirichlet conditions.

Coefficient Decay Rate:u(t) has a discontinuity ⇒ |Un| is O

(

1n

)

for large |n|

dku(t)dtk

is the lowest derivative with a discontinuity

⇒ |Un| is O(

1nk+1

)

for large |n|

If the coefficients, Un, decrease rapidly then only a few terms areneeded for a good approximation.

Page 66: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Periodic Extension

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 9 / 13

If u(t) is only defined over a finite range, [0, B], we can make it periodicby defining u(t±B) = u(t).

• Coefficients are given by Un = 1B

∫ B

0u(t)e−i2πnFtdt.

-2 0 2 4 -2 0 2 4 -2 0 2 4

-2 0 2 4 -2 0 2 4 -2 0 2 4

Page 67: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Periodic Extension

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 9 / 13

If u(t) is only defined over a finite range, [0, B], we can make it periodicby defining u(t±B) = u(t).

• Coefficients are given by Un = 1B

∫ B

0u(t)e−i2πnFtdt.

Example: u(t) = t2 for 0 ≤ t < 2

-2 0 2 4

0

2

4 N=1

-2 0 2 4 -2 0 2 4

-2 0 2 4 -2 0 2 4 -2 0 2 4

Page 68: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Periodic Extension

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 9 / 13

If u(t) is only defined over a finite range, [0, B], we can make it periodicby defining u(t±B) = u(t).

• Coefficients are given by Un = 1B

∫ B

0u(t)e−i2πnFtdt.

Example: u(t) = t2 for 0 ≤ t < 2

-2 0 2 4

0

2

4 N=1

-2 0 2 4

0

2

4 N=3

-2 0 2 4

-2 0 2 4 -2 0 2 4 -2 0 2 4

Page 69: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Periodic Extension

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 9 / 13

If u(t) is only defined over a finite range, [0, B], we can make it periodicby defining u(t±B) = u(t).

• Coefficients are given by Un = 1B

∫ B

0u(t)e−i2πnFtdt.

Example: u(t) = t2 for 0 ≤ t < 2

-2 0 2 4

0

2

4 N=1

-2 0 2 4

0

2

4 N=3

-2 0 2 4

0

2

4 N=6

-2 0 2 4 -2 0 2 4 -2 0 2 4

Page 70: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Periodic Extension

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 9 / 13

If u(t) is only defined over a finite range, [0, B], we can make it periodicby defining u(t±B) = u(t).

• Coefficients are given by Un = 1B

∫ B

0u(t)e−i2πnFtdt.

Example: u(t) = t2 for 0 ≤ t < 2

-2 0 2 4

0

2

4 N=1

-2 0 2 4

0

2

4 N=3

-2 0 2 4

0

2

4 N=6

Symmetric extension:• To avoid a discontinuity at t = T , we can instead make the period

2B and define u(−t) = u(+t).

-2 0 2 4

0

2

4 N=1

-2 0 2 4 -2 0 2 4

Page 71: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Periodic Extension

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 9 / 13

If u(t) is only defined over a finite range, [0, B], we can make it periodicby defining u(t±B) = u(t).

• Coefficients are given by Un = 1B

∫ B

0u(t)e−i2πnFtdt.

Example: u(t) = t2 for 0 ≤ t < 2

-2 0 2 4

0

2

4 N=1

-2 0 2 4

0

2

4 N=3

-2 0 2 4

0

2

4 N=6

Symmetric extension:• To avoid a discontinuity at t = T , we can instead make the period

2B and define u(−t) = u(+t).

-2 0 2 4

0

2

4 N=1

-2 0 2 4

0

2

4 N=3

-2 0 2 4

Page 72: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Periodic Extension

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 9 / 13

If u(t) is only defined over a finite range, [0, B], we can make it periodicby defining u(t±B) = u(t).

• Coefficients are given by Un = 1B

∫ B

0u(t)e−i2πnFtdt.

Example: u(t) = t2 for 0 ≤ t < 2

-2 0 2 4

0

2

4 N=1

-2 0 2 4

0

2

4 N=3

-2 0 2 4

0

2

4 N=6

Symmetric extension:• To avoid a discontinuity at t = T , we can instead make the period

2B and define u(−t) = u(+t).

-2 0 2 4

0

2

4 N=1

-2 0 2 4

0

2

4 N=3

-2 0 2 4

0

2

4 N=6

Page 73: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Periodic Extension

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 9 / 13

If u(t) is only defined over a finite range, [0, B], we can make it periodicby defining u(t±B) = u(t).

• Coefficients are given by Un = 1B

∫ B

0u(t)e−i2πnFtdt.

Example: u(t) = t2 for 0 ≤ t < 2

-2 0 2 4

0

2

4 N=1

-2 0 2 4

0

2

4 N=3

-2 0 2 4

0

2

4 N=6

Symmetric extension:• To avoid a discontinuity at t = T , we can instead make the period

2B and define u(−t) = u(+t).

-2 0 2 4

0

2

4 N=1

-2 0 2 4

0

2

4 N=3

-2 0 2 4

0

2

4 N=6

• Symmetry around t = 0 means coefficients are real-valued andsymmetric (U−n = U∗

n = Un).

Page 74: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Periodic Extension

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 9 / 13

If u(t) is only defined over a finite range, [0, B], we can make it periodicby defining u(t±B) = u(t).

• Coefficients are given by Un = 1B

∫ B

0u(t)e−i2πnFtdt.

Example: u(t) = t2 for 0 ≤ t < 2

-2 0 2 4

0

2

4 N=1

-2 0 2 4

0

2

4 N=3

-2 0 2 4

0

2

4 N=6

Symmetric extension:• To avoid a discontinuity at t = T , we can instead make the period

2B and define u(−t) = u(+t).

-2 0 2 4

0

2

4 N=1

-2 0 2 4

0

2

4 N=3

-2 0 2 4

0

2

4 N=6

• Symmetry around t = 0 means coefficients are real-valued andsymmetric (U−n = U∗

n = Un).• Still have a first-derivative discontinuity at t = B but now we have

no Gibbs phenomenon and coefficients ∝ n−2 instead of ∝ n−1 soapproximation error power decreases more quickly.

Page 75: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Dirac Delta Function

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 10 / 13

δ(x) is the limiting case as w → 0 of a pulse w wide and 1w

high

-3 -2 -1 0 1 2 30

2

0.2(x)

x

Page 76: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Dirac Delta Function

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 10 / 13

δ(x) is the limiting case as w → 0 of a pulse w wide and 1w

highIt is an infinitely thin, infinitely high pulse at x = 0 with unit area.

-3 -2 -1 0 1 2 30

2

0.2(x)

x-3 -2 -1 0 1 2 3

0

0.5

1

δ(x)

x

Page 77: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Dirac Delta Function

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 10 / 13

δ(x) is the limiting case as w → 0 of a pulse w wide and 1w

highIt is an infinitely thin, infinitely high pulse at x = 0 with unit area.

-3 -2 -1 0 1 2 30

2

0.2(x)

x-3 -2 -1 0 1 2 3

0

0.5

1

δ(x)

x

• Area:∫∞−∞ δ(x)dx = 1

Page 78: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Dirac Delta Function

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 10 / 13

δ(x) is the limiting case as w → 0 of a pulse w wide and 1w

highIt is an infinitely thin, infinitely high pulse at x = 0 with unit area.

-3 -2 -1 0 1 2 30

2

0.2(x)

x-3 -2 -1 0 1 2 3

0

0.5

1

δ(x)

x

• Area:∫∞−∞ δ(x)dx = 1

• Scaling: δ(cx) = 1|c|δ(x)

Page 79: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Dirac Delta Function

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 10 / 13

δ(x) is the limiting case as w → 0 of a pulse w wide and 1w

highIt is an infinitely thin, infinitely high pulse at x = 0 with unit area.

-3 -2 -1 0 1 2 30

2

0.2(x)

x-3 -2 -1 0 1 2 3

0

0.5

1

δ(x)

x

• Area:∫∞−∞ δ(x)dx = 1

• Scaling: δ(cx) = 1|c|δ(x)

• Shifting: δ(x− a) is a pulse at x = a and is zero everywhere else

Page 80: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Dirac Delta Function

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 10 / 13

δ(x) is the limiting case as w → 0 of a pulse w wide and 1w

highIt is an infinitely thin, infinitely high pulse at x = 0 with unit area.

-3 -2 -1 0 1 2 30

2

0.2(x)

x-3 -2 -1 0 1 2 3

0

0.5

1

δ(x)

x

• Area:∫∞−∞ δ(x)dx = 1

• Scaling: δ(cx) = 1|c|δ(x)

• Shifting: δ(x− a) is a pulse at x = a and is zero everywhere else

• Multiplication: f(x)× δ(x− a) = f(a)× δ(x− a)

Page 81: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Dirac Delta Function

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 10 / 13

δ(x) is the limiting case as w → 0 of a pulse w wide and 1w

highIt is an infinitely thin, infinitely high pulse at x = 0 with unit area.

-3 -2 -1 0 1 2 30

2

0.2(x)

x-3 -2 -1 0 1 2 3

0

0.5

1

δ(x)

x

• Area:∫∞−∞ δ(x)dx = 1

• Scaling: δ(cx) = 1|c|δ(x)

• Shifting: δ(x− a) is a pulse at x = a and is zero everywhere else

• Multiplication: f(x)× δ(x− a) = f(a)× δ(x− a)

• Integration:∫∞−∞ f(x)× δ(x− a)dx = f(a)

Page 82: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Dirac Delta Function

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 10 / 13

δ(x) is the limiting case as w → 0 of a pulse w wide and 1w

highIt is an infinitely thin, infinitely high pulse at x = 0 with unit area.

-3 -2 -1 0 1 2 30

2

0.2(x)

x-3 -2 -1 0 1 2 3

0

0.5

1

δ(x)

x

• Area:∫∞−∞ δ(x)dx = 1

• Scaling: δ(cx) = 1|c|δ(x)

• Shifting: δ(x− a) is a pulse at x = a and is zero everywhere else

• Multiplication: f(x)× δ(x− a) = f(a)× δ(x− a)

• Integration:∫∞−∞ f(x)× δ(x− a)dx = f(a)

• Fourier Transform: u(t) = δ(t) ⇔ U(f) = 1

Page 83: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Dirac Delta Function

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 10 / 13

δ(x) is the limiting case as w → 0 of a pulse w wide and 1w

highIt is an infinitely thin, infinitely high pulse at x = 0 with unit area.

-3 -2 -1 0 1 2 30

2

0.2(x)

x-3 -2 -1 0 1 2 3

0

0.5

1

δ(x)

x

• Area:∫∞−∞ δ(x)dx = 1

• Scaling: δ(cx) = 1|c|δ(x)

• Shifting: δ(x− a) is a pulse at x = a and is zero everywhere else

• Multiplication: f(x)× δ(x− a) = f(a)× δ(x− a)

• Integration:∫∞−∞ f(x)× δ(x− a)dx = f(a)

• Fourier Transform: u(t) = δ(t) ⇔ U(f) = 1

• We plot hδ(x) as a pulse of height |h| (instead of its true height of ∞)

Page 84: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Transform

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 11 / 13

Fourier Transform: u(t) =∫∞−∞ U(f)ei2πftdf

U(f) =∫∞−∞ u(t)e−i2πftdt

Page 85: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Transform

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 11 / 13

Fourier Transform: u(t) =∫∞−∞ U(f)ei2πftdf

U(f) =∫∞−∞ u(t)e−i2πftdt

• An “Energy Signal” has finite energy ⇔ Eu =∫∞−∞ |u(t)|2 dt < ∞

◦ Complex-valued spectrum, U(f), decays to zero as f → ±∞

-5 0 50

0.5

1

Time (s)

u(t)

a=2

-5 0 50.10.20.30.40.5

Frequency (Hz)

|U(f

)|

Page 86: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Transform

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 11 / 13

Fourier Transform: u(t) =∫∞−∞ U(f)ei2πftdf

U(f) =∫∞−∞ u(t)e−i2πftdt

• An “Energy Signal” has finite energy ⇔ Eu =∫∞−∞ |u(t)|2 dt < ∞

◦ Complex-valued spectrum, U(f), decays to zero as f → ±∞

◦ Energy Conservation: Eu = EU where EU =∫∞−∞ |U(f)|

2df

-5 0 50

0.5

1

Time (s)

u(t)

a=2

-5 0 50.10.20.30.40.5

Frequency (Hz)

|U(f

)|

Page 87: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Transform

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 11 / 13

Fourier Transform: u(t) =∫∞−∞ U(f)ei2πftdf

U(f) =∫∞−∞ u(t)e−i2πftdt

• An “Energy Signal” has finite energy ⇔ Eu =∫∞−∞ |u(t)|2 dt < ∞

◦ Complex-valued spectrum, U(f), decays to zero as f → ±∞

◦ Energy Conservation: Eu = EU where EU =∫∞−∞ |U(f)|

2df

-5 0 50

0.5

1

Time (s)

u(t)

a=2

-5 0 50.10.20.30.40.5

Frequency (Hz)

|U(f

)|

• Periodic Signals → Dirac δ functions at harmonics.Same complex-valued amplitudes as Un from Fourier Series

Tu(t)

-4F -3F -2F -F 0 F 2F 3F 4F0

0.5

1

|U|

Page 88: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Fourier Transform

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 11 / 13

Fourier Transform: u(t) =∫∞−∞ U(f)ei2πftdf

U(f) =∫∞−∞ u(t)e−i2πftdt

• An “Energy Signal” has finite energy ⇔ Eu =∫∞−∞ |u(t)|2 dt < ∞

◦ Complex-valued spectrum, U(f), decays to zero as f → ±∞

◦ Energy Conservation: Eu = EU where EU =∫∞−∞ |U(f)|

2df

-5 0 50

0.5

1

Time (s)

u(t)

a=2

-5 0 50.10.20.30.40.5

Frequency (Hz)

|U(f

)|

• Periodic Signals → Dirac δ functions at harmonics.Same complex-valued amplitudes as Un from Fourier Series

Tu(t)

-4F -3F -2F -F 0 F 2F 3F 4F0

0.5

1

|U|

◦ Eu = ∞ but ave power is Pu =⟨

|u(t)|2⟩

=∑∞

n=−∞ |Un|2

Page 89: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Convolution

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 12 / 13

Convolution: w(t) = u(t) ∗ v(t) ⇔ w(t) =∫∞−∞ u(τ )v(t− τ )dτ

Page 90: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Convolution

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 12 / 13

Convolution: w(t) = u(t) ∗ v(t) ⇔ w(t) =∫∞−∞ u(τ )v(t− τ )dτ

[In the integral, the arguments of u( ) and v( ) add up to t]

Page 91: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Convolution

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 12 / 13

Convolution: w(t) = u(t) ∗ v(t) ⇔ w(t) =∫∞−∞ u(τ )v(t− τ )dτ

[In the integral, the arguments of u( ) and v( ) add up to t]

∗ acts algebraically like × : Commutative, Associative, Distributive over +.Identity element is δ(t): u(t) ∗ δ(t) = u(t)

Page 92: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Convolution

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 12 / 13

Convolution: w(t) = u(t) ∗ v(t) ⇔ w(t) =∫∞−∞ u(τ )v(t− τ )dτ

[In the integral, the arguments of u( ) and v( ) add up to t]

∗ acts algebraically like × : Commutative, Associative, Distributive over +.Identity element is δ(t): u(t) ∗ δ(t) = u(t)

Multiplication in either the time or frequency domainis equivalent to convolution in the other domain:

w(t) = u(t) ∗ v(t) ⇔ W (f) = U(f)V (f)y(t) = u(t)v(t) ⇔ Y (f) = U(f) ∗ V (f)

Page 93: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Convolution

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 12 / 13

Convolution: w(t) = u(t) ∗ v(t) ⇔ w(t) =∫∞−∞ u(τ )v(t− τ )dτ

[In the integral, the arguments of u( ) and v( ) add up to t]

∗ acts algebraically like × : Commutative, Associative, Distributive over +.Identity element is δ(t): u(t) ∗ δ(t) = u(t)

Multiplication in either the time or frequency domainis equivalent to convolution in the other domain:

w(t) = u(t) ∗ v(t) ⇔ W (f) = U(f)V (f)y(t) = u(t)v(t) ⇔ Y (f) = U(f) ∗ V (f)

Example application:

Page 94: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Convolution

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 12 / 13

Convolution: w(t) = u(t) ∗ v(t) ⇔ w(t) =∫∞−∞ u(τ )v(t− τ )dτ

[In the integral, the arguments of u( ) and v( ) add up to t]

∗ acts algebraically like × : Commutative, Associative, Distributive over +.Identity element is δ(t): u(t) ∗ δ(t) = u(t)

Multiplication in either the time or frequency domainis equivalent to convolution in the other domain:

w(t) = u(t) ∗ v(t) ⇔ W (f) = U(f)V (f)y(t) = u(t)v(t) ⇔ Y (f) = U(f) ∗ V (f)

Example application:

• Impulse Response: [, y(t) for x(t) = δ(t)]

h(t) = 1RC

e−t

RC for t ≥ 0

Page 95: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Convolution

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 12 / 13

Convolution: w(t) = u(t) ∗ v(t) ⇔ w(t) =∫∞−∞ u(τ )v(t− τ )dτ

[In the integral, the arguments of u( ) and v( ) add up to t]

∗ acts algebraically like × : Commutative, Associative, Distributive over +.Identity element is δ(t): u(t) ∗ δ(t) = u(t)

Multiplication in either the time or frequency domainis equivalent to convolution in the other domain:

w(t) = u(t) ∗ v(t) ⇔ W (f) = U(f)V (f)y(t) = u(t)v(t) ⇔ Y (f) = U(f) ∗ V (f)

Example application:

• Impulse Response: [, y(t) for x(t) = δ(t)]

h(t) = 1RC

e−t

RC for t ≥ 0

• Frequency Response: H(f) = 11+i2πfRC

Page 96: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Convolution

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 12 / 13

Convolution: w(t) = u(t) ∗ v(t) ⇔ w(t) =∫∞−∞ u(τ )v(t− τ )dτ

[In the integral, the arguments of u( ) and v( ) add up to t]

∗ acts algebraically like × : Commutative, Associative, Distributive over +.Identity element is δ(t): u(t) ∗ δ(t) = u(t)

Multiplication in either the time or frequency domainis equivalent to convolution in the other domain:

w(t) = u(t) ∗ v(t) ⇔ W (f) = U(f)V (f)y(t) = u(t)v(t) ⇔ Y (f) = U(f) ∗ V (f)

Example application:

• Impulse Response: [, y(t) for x(t) = δ(t)]

h(t) = 1RC

e−t

RC for t ≥ 0

• Frequency Response: H(f) = 11+i2πfRC

• Convolution: y(t) = h(t) ∗ x(t)

Page 97: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Convolution

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 12 / 13

Convolution: w(t) = u(t) ∗ v(t) ⇔ w(t) =∫∞−∞ u(τ )v(t− τ )dτ

[In the integral, the arguments of u( ) and v( ) add up to t]

∗ acts algebraically like × : Commutative, Associative, Distributive over +.Identity element is δ(t): u(t) ∗ δ(t) = u(t)

Multiplication in either the time or frequency domainis equivalent to convolution in the other domain:

w(t) = u(t) ∗ v(t) ⇔ W (f) = U(f)V (f)y(t) = u(t)v(t) ⇔ Y (f) = U(f) ∗ V (f)

Example application:

• Impulse Response: [, y(t) for x(t) = δ(t)]

h(t) = 1RC

e−t

RC for t ≥ 0

• Frequency Response: H(f) = 11+i2πfRC

• Convolution: y(t) = h(t) ∗ x(t)

• Multiplication: Y (f) = H(f)X(f)

Page 98: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Correlation

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 13 / 13

Cross-correlation:w(t) = u(t)⊗ v(t) ⇔ w(t) =

∫∞−∞ u∗(τ − t)v(τ )dτ

Page 99: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Correlation

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 13 / 13

Cross-correlation:w(t) = u(t)⊗ v(t) ⇔ w(t) =

∫∞−∞ u∗(τ − t)v(τ )dτ

[In the integral, the arguments of u∗( ) and v( ) differ by t]

Page 100: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Correlation

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 13 / 13

Cross-correlation:w(t) = u(t)⊗ v(t) ⇔ w(t) =

∫∞−∞ u∗(τ − t)v(τ )dτ

[In the integral, the arguments of u∗( ) and v( ) differ by t]

⊗ is not commutative or associative (unlike ∗)

Page 101: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Correlation

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 13 / 13

Cross-correlation:w(t) = u(t)⊗ v(t) ⇔ w(t) =

∫∞−∞ u∗(τ − t)v(τ )dτ

[In the integral, the arguments of u∗( ) and v( ) differ by t]

⊗ is not commutative or associative (unlike ∗)

Cauchy-Schwartz Inequality ⇒ Bound on |w(t)|

• For all values of t: |w(t)|2 ≤ EuEv

• u(t− t0) is an exact multiple of v(t) ⇔ |w(t0)|2 = EuEv

Page 102: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Correlation

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 13 / 13

Cross-correlation:w(t) = u(t)⊗ v(t) ⇔ w(t) =

∫∞−∞ u∗(τ − t)v(τ )dτ

[In the integral, the arguments of u∗( ) and v( ) differ by t]

⊗ is not commutative or associative (unlike ∗)

Cauchy-Schwartz Inequality ⇒ Bound on |w(t)|

• For all values of t: |w(t)|2 ≤ EuEv

• u(t− t0) is an exact multiple of v(t) ⇔ |w(t0)|2 = EuEv

Normalized cross-correlation: w(t)√EuEv

has a maximum absolute value of 1

Page 103: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Correlation

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 13 / 13

Cross-correlation:w(t) = u(t)⊗ v(t) ⇔ w(t) =

∫∞−∞ u∗(τ − t)v(τ )dτ

[In the integral, the arguments of u∗( ) and v( ) differ by t]

⊗ is not commutative or associative (unlike ∗)

Cauchy-Schwartz Inequality ⇒ Bound on |w(t)|

• For all values of t: |w(t)|2 ≤ EuEv

• u(t− t0) is an exact multiple of v(t) ⇔ |w(t0)|2 = EuEv

Normalized cross-correlation: w(t)√EuEv

has a maximum absolute value of 1

• Cross-correlation is used to find the time shift, t0, at which twosignals match and also how well they match.

Page 104: Fourier Series and Transforms Revision LectureThe Basic Idea Fourier Series and Transforms Revision Lecture •The Basic Idea •Real v Complex •Series v Transform •Fourier Analysis

Correlation

Fourier Series andTransformsRevision Lecture

• The Basic Idea

• Real v Complex

• Series v Transform

• Fourier Analysis

• Power Conservation

• Gibbs Phenomenon

• Coefficient Decay Rate

• Periodic Extension

• Dirac Delta Function

• Fourier Transform

• Convolution

• Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 13 / 13

Cross-correlation:w(t) = u(t)⊗ v(t) ⇔ w(t) =

∫∞−∞ u∗(τ − t)v(τ )dτ

[In the integral, the arguments of u∗( ) and v( ) differ by t]

⊗ is not commutative or associative (unlike ∗)

Cauchy-Schwartz Inequality ⇒ Bound on |w(t)|

• For all values of t: |w(t)|2 ≤ EuEv

• u(t− t0) is an exact multiple of v(t) ⇔ |w(t0)|2 = EuEv

Normalized cross-correlation: w(t)√EuEv

has a maximum absolute value of 1

• Cross-correlation is used to find the time shift, t0, at which twosignals match and also how well they match.

• Auto-correlation is the cross-correlation of a signal with itself: used tofind the period of a signal (i.e. the time shift where it matches itself).