fractal geometry

27
Fractal geometry

Upload: luke-owen

Post on 30-Dec-2015

54 views

Category:

Documents


6 download

DESCRIPTION

Fractal geometry. Lewis Richardson, Seacoast line length. East seacoast. 11 x 1km. 10 km. East seacoast. Seacoast line length k.n(k) lim k→0 k.n(k) = D. Weat seacoast. West seacoast. lim k→0 k.n(k) =∞. Self-similarity. Koch snowflake. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Fractal geometry

Fractal geometry

Page 2: Fractal geometry

Lewis Richardson, Seacoast line length

Page 3: Fractal geometry

East seacoast

10 km

11 x 1km

Page 4: Fractal geometry

East seacoast

• Seacoast line length k.n(k)

• lim k→0 k.n(k) = D

Page 5: Fractal geometry

Weat seacoast

Page 6: Fractal geometry

West seacoast

• lim k→0 k.n(k) =∞

Page 7: Fractal geometry

Self-similarity

Page 9: Fractal geometry

Length of Koch snowflake

3 4/3 * 3 = 4 4/3*4/3*3 = 5,33 (4/3)3*3=7,11

(4/3)n*3 →∞

Page 10: Fractal geometry

Sierpinski carpet

Page 11: Fractal geometry

Area of Sierpinski carpetHole area

1/9

8/9 * 1/9

(8/9)2 * 1/9

(8/9)n * 1/9

Suma 1/9 * ∑(8/9)i = 1

Area of the carpet = 1 – hole area = 0

Page 12: Fractal geometry

Menger sponge

Page 13: Fractal geometry

Natural fractals

Page 14: Fractal geometry

Natural self-similarity

Page 15: Fractal geometry

Mathematical definition

• Fractal is a shape with Hausdorf dimension different of geometrical dimension

Page 16: Fractal geometry

Non-fractal shapes

• Refining the gauge s-times

• The number of segments increase sD –times

• D is geometrical dimension

Page 17: Fractal geometry

Dimension of Koch snowflake

• Koch curve– 3 x refining => 4 x length– s = 3 => N = 4– D = logN/logs = log4/log3 = 1.261895

Page 18: Fractal geometry

Other Hausdorf dimensions

• Sierpinski carpet 1,58

• Menger sponge 2,72

• Pean curve 2

• Sea coastline

1,02 – 1,25

Page 19: Fractal geometry

Polynomical fractals

• Polynomical recursive formula– Kn+1 = f(kn)

• The sequence depending on the origin k0

– Coverges– Diverges– Oscillates

Page 20: Fractal geometry

Mandelbrot set

Page 21: Fractal geometry

Mandelbrot set

• Part of complex plane

• z0 = 0, zn+1 = zn2 + c

• If for given c the sequence– Converges c is in Mandelbrot set– Diverges c is not in Mandelbrot set– Oscillates c is in Mandelbrot set

Page 22: Fractal geometry

ExamplesC Z0 Z1 Z2 Z3 Z4

0 + 0i 0,0 0,0 0,0 0,0 0,0 Conv

In M.S.

1+0i 0,0 1,0 2,0 5,0 26,0 Div.

Not in M.S.

-1+0i 0,0 -1,0 0,0 -1,0 0,0 Osc.

In M.S.

-2+0i 0,0 -2,0 -2,0 -2,0 -2,0 Conv.

In M.S.-2,0000000001+0i

0,0 … … Div.

Not in M.S.

Page 23: Fractal geometry

Mandelbrot set

Page 24: Fractal geometry
Page 25: Fractal geometry
Page 26: Fractal geometry
Page 27: Fractal geometry