frame 17 gb design report

73
MUMBAI MONORAIL PROJECT Definitive Design Review Design Calculations of Frame 17 MM001-D-DR-VSP-LTSE-311050 Rev A1 10-April-2013 Contract No.: T/MONORAIL/WJWC/2008 Project Title: MUMBAI MONORAIL Document Title: Design Calculations for Guideway Beams of Frame 17 (Definitive Design Review) Revision History A1 01-04-13 Initial Submission MARK DATE DESCRIPTION SYSTEMS CIVIL APPROVED BY (LTSE) Project Director Atul Jain Joint Project Director CheeChiak Yang SCOMI ENGINEERING BERHAD LARSEN & TOUBRO LIMITED Checked By (Civil) Zafrin Zakaria Checked By (QA/QC Manager) Name Checked By (QA/QC Manager) Checked By (Project Manager) Name Prepared By Vivek Pagnis Checked By DATE: 10.04.2013 DATE CONTRACTOR’S DOCUMENT No.: DOCUMENT No.: MM001-D-DR-VSP-LTSE-311050 REVISION A1

Upload: ameya-pagnis

Post on 08-Apr-2016

50 views

Category:

Documents


4 download

DESCRIPTION

frame

TRANSCRIPT

Page 1: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Contract No.: T/MONORAIL/WJWC/2008 Project Title: MUMBAI MONORAIL

Document Title:

Design Calculations for Guideway Beams of Frame 17

(Definitive Design Review)

Revision History

A1 01-04-13 Initial Submission

MARK DATE DESCRIPTION SYSTEMS CIVIL

APPROVED BY (LTSE) Project Director Atul Jain Joint Project Director CheeChiak Yang

SCOMI ENGINEERING BERHAD LARSEN & TOUBRO LIMITED

Checked By (Civil) Zafrin Zakaria

Checked By (QA/QC Manager) Name

Checked By (QA/QC Manager)

Checked By (Project Manager) Name

Prepared By Vivek Pagnis Checked By

DATE: 10.04.2013 DATE

CONTRACTOR’S DOCUMENT No.:

DOCUMENT No.: MM001-D-DR-VSP-LTSE-311050

REVISION

A1

Page 2: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

PRELIMINARY NOTE

This document is the exclusive property of LTSE. It is confidential and may not be used, reproduced or communicated either in whole or in part, in any form or manner without the prior written agreement of LTSE. This document shall not be distributed to third parties except under the terms of the contract. REVISION STATUS

A1 10-04-13 Initial Submission AMS VVP ZZ

Rev. Date Revision Note Designed by Checked by Approval by

Page 3: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

Fig. 3.1 : 3D rendered model in MIDAS software

1.0 SUMMARY

This report contains the detailed superstructure guide-way beam design of Frame No. 17 with a curvedalignment in plan and 27+22+26m span configuration. The results are shown below:

(i) Guideway Beams : • Beam size : section consist of 800(width) x 2200(Depth) box section at mid-span & endblock • Concrete strength : 60 MPa

2.0 DESIGN CRITERIA

Refer to Definitive Design Review – Design Criteria for Guideway Structural Design(MM002-D-DR-VSP-LTSE-303001)References: - IRS Concrete Bridge Code 1997 - BS 5400 PART 4

3.0 COMPUTER MODEL

The finite element model of the structure is shown in Figure 3.1. The frame has 27+22+26m spanconfiguration. The linear static, dynamic and time-dependent analyses are carried out using the MIDAS software. Thestructure has been modeled by means of BEAM element with six degree of freedom per node. Elastic springsare included in the model to simulate the soil-structure interaction in both longitudinal and transverse direction.

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 1 of 71

Page 4: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

Fig. 3.2 : Sign convention of internal forces in the element's local coordinate system

Guideway 60 60 48 36000Piers 45 45 36 32500RC Portals 45 45 36 32500Pilecaps 35 35 28 29500Piles 35 35 28 29500

3.1 Section Properties

(A) Concrete The specified minimum 28-day compressive strengths of concrete used for the various structural members are as follows:

Structural Element

Concrete Grade Fcu (Mpa) Fc' (Mpa) Ec (Mpa)

B) Post-tensioning tendons: The following mechanical properties of prestressing tendon are adopted in the design.

Nominal diameter = 15.24 mm

Nominal tensile strength = 1860 MPa (GUTS)

Nominal strand area = 140 mm2

Specified characteristic breaking load = 260KN

Stress at anchorage (jacking) = 75% of GUTS

Class of relaxation = Normal

Modulus of elasticity, E = 195000 MPa

Friction coefficients, k = .17

Wobble coefficient, μ = .002 Draw-In at anchorage = 6 mm

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 2 of 71

Page 5: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

3.2 Construction Sequence

The following construction sequence has been assumed in the time-dependent construction stage analysis: 1. Stressing Span Tendon(Duration = 60 days) Time lapsed from concreting of first beam to launching of last beam. *Age of pre-cast beam at stressing = 3 days *Age of all pier elements at time of loading = 28 days

2. Casting Intermediate Stitching(Duration = 14 days) Time lapsed from concreting of to achieving sufficient strength before stressing continuity tendon. *Age of stitching concrete at stressing = 10 days

3. Stressing Middle Continuity Tendon(Duration =2 days) Time lapsed from threading strands to stressing last middle strand.

4. Stressing Top Continuity Tendon(Duration =1 day) Time lapsed from threading strands to stressing last top strand.

5. Casting End Stitching Concrete(Duration =7 days) Time lapsed from concreting to curing of concrete . *Age of stitching concrete at stressing = 3 days

6. 1 Month after Completion

Minimum time lapse required before SDL and LL can be applied.

7. 1 Year after Completion

8. 20 Years after Completion

To cater for total losses of pre-stressing force due to time-dependent effects.

The results of construction stage analysis are combined with the effect of loads on the completed structuredue to superimposed dead load, wind load, live load, seismic effectsand temperature effects.

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 3 of 71

Page 6: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

GUIDEWAY BEAMS

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 4 of 71

Page 7: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

Fig 4.1 End Section and Mid Box Section

Table 4.1 Summary of Post tensioned tendon details

T1 & T2T3 & T4

Table 4.2 Summary of reinforcement bars

GB 269,271

GB 270

GB 269,271

GB 270

4.0 Summary

This section documents the detailed design of the Prestressed Guideway Beams. Generally, the guidewaybeam consists of rectangular solid end blocks at both ends (2.2m height), and towards the mid span (2.2mheight) that is made of hollow box sections. There are three types of beams; Beam Type GB276 and GB278at ends and GB277 at intermediate span. Fig. 4.1 shows the dimensions and locations of post-tensionedtendons. Table 4.1 summarizes the details for post-tensioned tendons and Table 4.2 shows the summary ofmain bars and torsion/shear links. Further details are contained in the construction drawings.

Tendon Marking Type

No of strands per tendon

Jacking Force per tendon (KN)

Span Tendon 10 1953Continuity Tendon 12 2343

SectionBeam Type Top Bars Bottom Bars Side Bars

9T16 9T16 2T16 @ 200 c/c each face

2L-T16@100c/c outerrings+ 2L-T12@200c/cinner links

Torsion/ Shear Links

Mid Section

9T16 9T16 2T16 @ 200 c/c each face

2L-T16@100c/c outerrings+ 2L-T12@200c/cinner links

Solid Section

18T16 18T16 2T16 @ 200 c/c each face

4Legged T16 @100c/c 18T16 2T16 @ 200 c/c

each face

4Legged T16 @100c/c

4T25 + 4T25

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 5 of 71

Page 8: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

a) Transfer stage

b) Service stage

Allowable Stress

All Compressive Stress

Lesser of0.5 x 48 = 24 Mpa0.4 x 60 = 24 Mpa

Tensile stress 1.0 Mpa

The design calculations of the precast post-tensioned guideway beams comprise of thefollowing: (i) Pre-stressing design at SLS (ii) Check Bending Capacity of Beam at ULS (iii) Design for Shear force and Torsional Moment at ULS (iv) Design of Beam End Block.

The mechanical properties of prestressing tendon adopted in the design are as shown below. Nominal diameter = 15.24 mm (0.6”) Nominal tensile strength = 1860 MPa (GUTS) Nominal strand area = 140 mm2 Specified characteristic breaking load = 260 kN Stress at anchorage (jacking) = 75% of GUTS (1395 MPa) Class of relaxation = very low relaxation (relaxation at 1000h =2.50 % of GUTS) Modulus of elasticity, E = 195000 MPa Friction coefficients, k = 0.17 Wobble coefficient, μ = 0.002 rad/m Draw-In at anchorage = 6 mm

The stress limitations of prestressed concrete under serviceability loads are shown below.

Load Combination Type of stress

Load Combination Type of stress Allowable Stress

All Compressive Stress 0.4 x 60 = 24 MpaS1 Tensile stress 0.0 Mpa

S2a, S2b, S3a, S3b & S4 Tensile stress 0.36 x 60 = 2.79 Mpa

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 6 of 71

Page 9: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

4.1 SLS COMBINED AXIAL AND BENDING STRESSES CHECK

The prestressed guideway beams are designed to have a maximum tension of 1MPa at transfer, zero tensionat service (due to service load Combination 1) and 0.36(fcu)0.5 tension due to service load Combinations 2 to 4at top and bottom extreme fibres. The following tables summarize the maximum stresses of the beam (top andbottom fiber), followed by the envelope of combined stress diagrams along the beam. Maximum and minimumstresses and corresponding results along the beams are summarized. Negative indicates compressive stressand vice versa. All stresses are reported in N/mm2.

Case 1: Max Top Fiber Stress + corresponding resultsCase 2: Min Top Fiber Stress + corresponding resultsCase 3: Max Bottom Fiber Stress + corresponding resultsCase 4: Min Bottom Fiber Stress + corresponding results

Note:Bend (+z) = Bending stress due to moment about local y-axis in +z directionBend (-z) = Bending stress due to moment about local y-axis in -z direction

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 7 of 71

Page 10: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

AT TRANSFER STAGE

Envelope Stresses Diagrams for Track 1

Top Fiber

Span 1

Span 2

Span 3

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 8 of 71

Page 11: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

Bottom Fiber

Span 1

Span 2

Span 3

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 9 of 71

Page 12: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

Envelope Stresses Diagrams for Track 2Top Fiber

Span 1

Span2

Span 3

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 10 of 71

Page 13: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

Bottom FiberSpan 1

Span 2

Span 3

Conclusion

RemarkOKOKOKOK

Stresses Allowable (Mpa) Actual (Mpa)

Top FiberCompressive stress -24 -1.856

Tensile stress 1 1.03Bottom Fiber

Compressive stress -24 -4.892Tensile stress 1 0

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 11 of 71

Page 14: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 12 of 71

Page 15: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

AT SERVICE STAGE

Stresses due to service load combinations 1 (zero tension design) for both track 1 & track 2

Envelope Stresses Diagrams for Track 1 as shown as follows:Top Fiber SPAN 1

SPAN2

SPAN 3

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 13 of 71

Page 16: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

Bottom Fiber

SPAN1

SPAN2

SPAN 3

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 14 of 71

Page 17: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

Envelope Stresses Diagrams for Track 2 as shown as follows:Top Fiber

SPAN 1

SPAN 2

SPAN 3

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 15 of 71

Page 18: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

Bottom Fiber SPAN 1

SPAN 2

SPAN 3

Conclusion

RemarkOKOKOKOK

Stresses Allowable (Mpa) Actual (Mpa)

Top FiberCompressive stress -24 -13.48

Tensile stress 0 0Compressive stress -24 -12.58

Tensile stress 0 0Bottom Fiber

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 16 of 71

Page 19: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

Stresses due to service load combinations 2 to 4 for both track 1 & track 2

Envelope Stresses Diagrams for Track 1 as shown as follows:Top FiberSPAN 1

SPAN2

SPAN 3

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 17 of 71

Page 20: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 18 of 71

Page 21: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

Bottom Fiber

SPAN1

SPAN2

SPAN 3

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 19 of 71

Page 22: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

Envelope Stresses Diagrams for Track 2 as shown as follows:Top Fiber

SPAN 1

SPAN 2

SPAN 3

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 20 of 71

Page 23: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

Bottom Fiber SPAN 1

SPAN 2

SPAN 3

ConclusionRemarkOKOKOKOK

Stresses Allowable (Mpa) Actual (Mpa)

Top FiberCompressive stress -24 -13.92

Tensile stress-24 -13.77

Tensile stress 2.78 0

0.7982.78Bottom Fiber

Compressive stress

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 21 of 71

Page 24: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

4.2 ULTIMATE LIMIT STATE DESIGN OF HOLLOW SECTIONS

4.2.1 ULTIMATE LIMIT STATE DESIGN OF MID HOLLOW SECTION

SPAN 1

Table 4.2: Ultimate Load Combinations 1 - 5 (U1-U5) for span1

Elem Load Axial (kN)Moment-y

(kN·m)Moment-z

(kN·m)51 U4(max) 410.35 3363.71 215.0688 U3b(min) 447.42 2490.73 138.5795 U4(min) 211.43 4932.76 124.3584 U4(max) 230.7 7177.02 246.2485 U3b(min) 169.2 5914.15 493.8192 U3b(max) 97.31 6225.24 529.8

The ultimate limit state analysis is carried out by the AdSEC software for bending capacity check, whereas

combined shear and torsion design is done by using a spreadsheet. The figure below shows the arrangement

of bars in the box section at the mid span after the completion of the structure.

4.2.1.1 SUMMARY OF BEAM FORCES

The summary of the maximum element forces due to various ultimate load combinations is tabulated below. The 6 cases summarized below areCase 1 – Max & Min Axial Force + corresponding resultsCase 2 - Max & Min My + corresponding resultsCase 3 - Max & Min Mz + corresponding resultsNegative sign in axial force indicates compression and vice versa.

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 22 of 71

Page 25: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Specification

General Specification

Code of Practice BS5400

Country India

Bending Axes Biaxial

Section 1 Details

Definition

Name Mid-section

Type Concrete

Material C60

Perimeter

Section Area 1.407E+6mm2

Reinforcement Area 23710.mm2

Reinforcement 1.685%

Section Nodes

Node Y Z

[mm] [mm]

1 375.0 1100.

2 400.0 1075.

3 400.0 -1075.

4 375.0 -1100.

5 -375.0 -1100.

6 -400.0 -1075.

7 -400.0 1075.

8 -375.0 1100.

9 110.0 850.0

10 110.0 -750.0

11 -110.0 -750.0

12 -110.0 850.0

Page 23 of 71

Page 26: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Bars

Bar Y Z Diameter Material Type Pre-stress Pre-stress Appl. loads

Force Strain include/exclude

pre-stress

[mm] [mm] [mm] [kN]

1 -326.0 -1026. 16.00 Fe 500 Steel

2 -217.3 -1026. 16.00 Fe 500 Steel

3 -108.7 -1026. 16.00 Fe 500 Steel

4 0.0 -1026. 16.00 Fe 500 Steel

5 108.7 -1026. 16.00 Fe 500 Steel

6 217.3 -1026. 16.00 Fe 500 Steel

7 326.0 -1026. 16.00 Fe 500 Steel

8 -326.0 1026. 16.00 Fe 500 Steel

9 -217.3 1026. 16.00 Fe 500 Steel

10 -108.7 1026. 16.00 Fe 500 Steel

11 0.0 1026. 16.00 Fe 500 Steel

12 108.7 1026. 16.00 Fe 500 Steel

13 217.3 1026. 16.00 Fe 500 Steel

14 326.0 1026. 16.00 Fe 500 Steel

15 -326.0 -1010. 16.00 Fe 500 Steel

16 326.0 -1010. 16.00 Fe 500 Steel

17 -326.0 -804.0 16.00 Fe 500 Steel

18 326.0 -804.0 16.00 Fe 500 Steel

19 -326.0 872.0 16.00 Fe 500 Steel

20 326.0 872.0 16.00 Fe 500 Steel

21 -326.0 1010. 16.00 Fe 500 Steel

22 326.0 1010. 16.00 Fe 500 Steel

23 -225.0 0.0 42.22 Strands Steel -1860. exclude

24 -225.0 -925.0 42.22 Strands Steel -1530. exclude

25 -324.0 -899.0 20.00 Fe 500 Steel

26 -324.0 -699.0 20.00 Fe 500 Steel

27 -324.0 -499.0 20.00 Fe 500 Steel

28 -324.0 -299.0 20.00 Fe 500 Steel

29 -324.0 -99.00 20.00 Fe 500 Steel

30 -324.0 101.0 20.00 Fe 500 Steel

31 -324.0 301.0 20.00 Fe 500 Steel

32 -324.0 501.0 20.00 Fe 500 Steel

33 -324.0 701.0 20.00 Fe 500 Steel

34 326.0 -899.0 20.00 Fe 500 Steel

35 326.0 -699.0 20.00 Fe 500 Steel

36 326.0 -499.0 20.00 Fe 500 Steel

37 326.0 -299.0 20.00 Fe 500 Steel

38 326.0 -99.00 20.00 Fe 500 Steel

39 326.0 101.0 20.00 Fe 500 Steel

40 326.0 301.0 20.00 Fe 500 Steel

41 326.0 501.0 20.00 Fe 500 Steel

42 326.0 701.0 20.00 Fe 500 Steel

43 -148.0 -691.0 16.00 Fe 500 Steel

44 -148.0 -491.0 16.00 Fe 500 Steel

45 -148.0 -291.0 16.00 Fe 500 Steel

46 -148.0 -91.00 16.00 Fe 500 Steel

47 -148.0 109.0 16.00 Fe 500 Steel

48 -148.0 309.0 16.00 Fe 500 Steel

49 -148.0 509.0 16.00 Fe 500 Steel

50 -148.0 709.0 16.00 Fe 500 Steel

51 326.0 -788.0 16.00 Fe 500 Steel

52 148.0 -788.0 16.00 Fe 500 Steel

53 -326.0 -788.0 16.00 Fe 500 Steel

54 -148.0 -788.0 16.00 Fe 500 Steel

55 0.0 -788.0 16.00 Fe 500 Steel

56 326.0 888.0 16.00 Fe 500 Steel

57 148.0 888.0 16.00 Fe 500 Steel

58 -326.0 888.0 16.00 Fe 500 Steel

59 -148.0 888.0 16.00 Fe 500 Steel

60 0.0 888.0 16.00 Fe 500 Steel

Page 24 of 71

Page 27: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

61 148.0 -691.0 16.00 Fe 500 Steel

62 148.0 -491.0 16.00 Fe 500 Steel

63 148.0 -291.0 16.00 Fe 500 Steel

64 148.0 -91.00 16.00 Fe 500 Steel

65 148.0 109.0 16.00 Fe 500 Steel

66 148.0 309.0 16.00 Fe 500 Steel

67 148.0 509.0 16.00 Fe 500 Steel

68 148.0 709.0 16.00 Fe 500 Steel

69 225.0 0.0 42.22 Strands Steel -1860. exclude

70 225.0 -925.0 42.22 Strands Steel -1530. exclude

71 225.0 250.0 42.22 Strands Steel -1860. exclude

72 -225.0 250.0 42.22 Strands Steel -1860. exclude

Elastic Properties

Properties of the untransformed section, ignoring reinforcement.

Geometric Centroid y 0.0mm

z -12.51mm

Area 1.407E+6mm2

Second Moments of Area Iyy 632.2E+9mm4

Izz 92.26E+9mm4

Iyz 33.06E-6mm4

Principal Second Moments of Area Iuu 632.2E+9mm4

Izz 92.26E+9mm4

Angle 0.0°

Shear Area Factor ky 0.0

kz 0.0

Torsion Constant 0.0mm4

Section Modulus Zy 568.2E+6mm3

Zz 230.6E+6mm3

Plastic Modulus Zpy 825.1E+6mm3

Zpz 332.2E+6mm3

Radius of Gyration Ry 670.4mm

Rz 256.1mm

Properties of the untransformed section, ignoring reinforcement.

Geometric Centroid y 0.01648mm

z -6.685mm

EA 55.91E+6kN

EI EIyy 23.64E+6kNm2

EIzz 5.135E+6kNm2

EIyz -85.09kNm2

Principal EI EIuu 23.64E+6kNm2

EIzz 5.135E+6kNm2

Angle -263.5E-6°

Maximum compressive force Nu -17270.kN

Strain at Nmax 0.0[-]

Moment at ref. pt. for Nmax Myy 0.1622kNm

Mzz 407.4E-6kNm

Page 25 of 71

Page 28: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Note: Nmax is the maximum compressive force which can be carried by the section.

This is calculated by applying a constant strain across the entire section, using

ultimate material properties.

Section Material Properties

Type Concrete

Name C60

Weight Normal Weight

Density 2.300t/m3 Cube Strength fcu 60000.kPa

Tensile Strength fct 3718.kPa

Elastic Modulus (short E 37.00E+6kPa

term)

Poisson's Ratio 0.2000

Coeff. Thermal Expansion 12.00E-6/°C

Partial Safety Factor mc,ULS 1.500

mc,SLS 1.000

Maximum Strain 0.003500[-]

ULS Compression Curve Recto-parabolic

ULS Tension Curve No-tension

SLS Compression Curve Linear

SLS Tension Curve No-tension

Aggregate Size 20.00mm

Reinforcement Properties

Name Fe 500

fy 500000.kPa

Modulus 200.0E+6kPa

Partial Safety Factor ms,ULS 1.150

ms,SLS 1.000

Maximum Strain 0.05000[-]

Stress/Strain Curve Fig 2

Name Strands

fy 1.857E+6kPa

Modulus 200.0E+6kPa

Partial Safety Factor ms,ULS 1.150

ms,SLS 1.000

Maximum Strain 0.05000[-]

Stress/Strain Curve Fig 2

Loading

Reference Point

All loading acts through the Reference Point.

All strain planes are defined relative to the Reference Point.

Definition Geometric

Centroid

Reference Point Coordinates y 0.0mm

z -12.51mm

Page 26 of 71

Page 29: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Applied loads

Load Case N Myy Mzz

[kN] [kNm] [kNm]

Load Case 1 410.3 3364. 215.1

Load Case 2 447.4 2491. 138.6

Load Case 3 211.4 4933. 124.3

Load Case 4 230.7 7177. 246.2

Load Case 5 169.2 5914. 493.8

Load Case 6 97.31 6225. 529.8

Section 1 Details

1.69% reinforcement in section 1 (Mid-section). Check this against code requirements.

ULS Cases Analysed

Name Loading Pre-stress

Factor

Strength Analysis - Loads

Case N Myy Mzz M

[kN] [kNm] [kNm] [kNm] [°]

1 410.3 3364. 215.1 3371. -3.658

2 447.4 2491. 138.6 2495. -3.184

3 211.4 4933. 124.3 4934. -1.444

4 230.7 7177. 246.2 7181. -1.965

5 169.2 5914. 493.8 5935. -4.773

6 97.31 6225. 529.8 6248. -4.864

Strength Analysis - Summary

Governing conditions are defined as:

A - reinforcing steel tension strain limit

B - concrete compression strain limit

Effective centroid is reported relative to the reference point.

Case Eff. Eff. N M Mu M/Mu Governing Neutral Neutral

Centroid Centroid Condition Axis Axis

(y) (z) Angle Depth

[kN] [kNm] [kNm] [°] [mm]

Maxima 4 -0.8899 7282. 230.7 7181. 16250. 0.4419 B: Node 1

Minima 2 -0.4688 3749. 447.4 2495. 15960. 0.1563 B: Node 1

From above it is observed that the Max. M/Mu ratio = 0.442 which is less than unity. Hence section is safe.

Page 27 of 71

Page 30: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

4.2.2 ULTIMATE LIMIT STATE DESIGN OF MID HOLLOW SECTIONSPAN 2The ultimate limit state analysis is carried out by the AdSEC software for bending capacity check, whereas

combined shear and torsion design is done by using a spreadsheet. The figure below shows the

arrangement of bars in the box section at the mid span after the completion of the structure.4.2.2.1 SUMMARY OF BEAM FORCESThe summary of the maximum element forces due to various ultimate load combinations is tabulated below. The 6 cases summarized below areC 1 M & Mi A i l F + di lt

LTSEDefinitive Design Review 

Design Calculation for Frame 17

MM002‐D‐DR‐EPW‐LTSE‐311050 Rev. A1 

Table 4.3: Ultimate Load Combinations 1 - 5 (U1-U5) for span2

Elem Load Axial (kN)Moment-y

(kN·m)Moment-z

(kN·m)26 U4(min) 322.47 5222.48 726.0527 U4(max) 484 61 713 76 355 32

Case 1 – Max & Min Axial Force + corresponding resultsCase 2 - Max & Min My + corresponding resultsCase 3 - Max & Min Mz + corresponding resultsNegative sign in axial force indicates compression and vice versa.

27 U4(max) 484.61 713.76 355.3226 U4(min) 215.35 6264.1 693.3129 U4(max) 270.58 1948.86 29.7834 U3b(min) 270.65 3857.16 840.2834 U3b(max) 142.96 1550.93 997.87

LTSEDefinitive Design Review 

Design Calculation for Frame 17

MM002‐D‐DR‐EPW‐LTSE‐311050 Rev. A1 

Page 28 of 71

Page 31: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Specification

General Specification

Code of Practice BS5400

Country India

Bending Axes Biaxial

Section 1 Details

Definition

Name Mid-section

Type Concrete

Material C60

Perimeter

Section Area 1.407E+6mm2

Reinforcement Area 23710.mm2

Reinforcement 1.685%

Section Nodes

Node Y Z

[mm] [mm]

1 375.0 1100.

2 400.0 1075.

3 400.0 -1075.

4 375.0 -1100.

5 -375.0 -1100.

6 -400.0 -1075.

7 -400.0 1075.

8 -375.0 1100.

9 110.0 850.0

10 110.0 -750.0

11 -110.0 -750.0

12 -110.0 850.0

Page 29 of 71

Page 32: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Bars

Bar Y Z Diameter Material Type Pre-stress Pre-stress Appl. loads

Force Strain include/exclude

pre-stress

[mm] [mm] [mm] [kN]

1 -326.0 -1026. 16.00 Fe 500 Steel

2 -217.3 -1026. 16.00 Fe 500 Steel

3 -108.7 -1026. 16.00 Fe 500 Steel

4 0.0 -1026. 16.00 Fe 500 Steel

5 108.7 -1026. 16.00 Fe 500 Steel

6 217.3 -1026. 16.00 Fe 500 Steel

7 326.0 -1026. 16.00 Fe 500 Steel

8 -326.0 1026. 16.00 Fe 500 Steel

9 -217.3 1026. 16.00 Fe 500 Steel

10 -108.7 1026. 16.00 Fe 500 Steel

11 0.0 1026. 16.00 Fe 500 Steel

12 108.7 1026. 16.00 Fe 500 Steel

13 217.3 1026. 16.00 Fe 500 Steel

14 326.0 1026. 16.00 Fe 500 Steel

15 -326.0 -1010. 16.00 Fe 500 Steel

16 326.0 -1010. 16.00 Fe 500 Steel

17 -326.0 -804.0 16.00 Fe 500 Steel

18 326.0 -804.0 16.00 Fe 500 Steel

19 -326.0 872.0 16.00 Fe 500 Steel

20 326.0 872.0 16.00 Fe 500 Steel

21 -326.0 1010. 16.00 Fe 500 Steel

22 326.0 1010. 16.00 Fe 500 Steel

23 -225.0 -200.0 42.22 Strands Steel -1860. exclude

24 -225.0 -925.0 42.22 Strands Steel -1530. exclude

25 -324.0 -899.0 20.00 Fe 500 Steel

26 -324.0 -699.0 20.00 Fe 500 Steel

27 -324.0 -499.0 20.00 Fe 500 Steel

28 -324.0 -299.0 20.00 Fe 500 Steel

29 -324.0 -99.00 20.00 Fe 500 Steel

30 -324.0 101.0 20.00 Fe 500 Steel

31 -324.0 301.0 20.00 Fe 500 Steel

32 -324.0 501.0 20.00 Fe 500 Steel

33 -324.0 701.0 20.00 Fe 500 Steel

34 326.0 -899.0 20.00 Fe 500 Steel

35 326.0 -699.0 20.00 Fe 500 Steel

36 326.0 -499.0 20.00 Fe 500 Steel

37 326.0 -299.0 20.00 Fe 500 Steel

38 326.0 -99.00 20.00 Fe 500 Steel

39 326.0 101.0 20.00 Fe 500 Steel

40 326.0 301.0 20.00 Fe 500 Steel

41 326.0 501.0 20.00 Fe 500 Steel

42 326.0 701.0 20.00 Fe 500 Steel

43 -148.0 -691.0 16.00 Fe 500 Steel

44 -148.0 -491.0 16.00 Fe 500 Steel

45 -148.0 -291.0 16.00 Fe 500 Steel

46 -148.0 -91.00 16.00 Fe 500 Steel

47 -148.0 109.0 16.00 Fe 500 Steel

48 -148.0 309.0 16.00 Fe 500 Steel

49 -148.0 509.0 16.00 Fe 500 Steel

50 -148.0 709.0 16.00 Fe 500 Steel

51 326.0 -788.0 16.00 Fe 500 Steel

52 148.0 -788.0 16.00 Fe 500 Steel

53 -326.0 -788.0 16.00 Fe 500 Steel

54 -148.0 -788.0 16.00 Fe 500 Steel

55 0.0 -788.0 16.00 Fe 500 Steel

56 326.0 888.0 16.00 Fe 500 Steel

57 148.0 888.0 16.00 Fe 500 Steel

58 -326.0 888.0 16.00 Fe 500 Steel

59 -148.0 888.0 16.00 Fe 500 Steel

60 0.0 888.0 16.00 Fe 500 Steel

Page 30 of 71

Page 33: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

61 148.0 -691.0 16.00 Fe 500 Steel

62 148.0 -491.0 16.00 Fe 500 Steel

63 148.0 -291.0 16.00 Fe 500 Steel

64 148.0 -91.00 16.00 Fe 500 Steel

65 148.0 109.0 16.00 Fe 500 Steel

66 148.0 309.0 16.00 Fe 500 Steel

67 148.0 509.0 16.00 Fe 500 Steel

68 148.0 709.0 16.00 Fe 500 Steel

69 225.0 -200.0 42.22 Strands Steel -1860. exclude

70 225.0 -925.0 42.22 Strands Steel -1530. exclude

71 225.0 250.0 42.22 Strands Steel -1860. exclude

72 -225.0 250.0 42.22 Strands Steel -1860. exclude

Elastic Properties

Properties of the untransformed section, ignoring reinforcement.

Geometric Centroid y 0.0mm

z -12.51mm

Area 1.407E+6mm2

Second Moments of Area Iyy 632.2E+9mm4

Izz 92.26E+9mm4

Iyz 33.06E-6mm4

Principal Second Moments of Area Iuu 632.2E+9mm4

Izz 92.26E+9mm4

Angle 0.0°

Shear Area Factor ky 0.0

kz 0.0

Torsion Constant 0.0mm4

Section Modulus Zy 568.2E+6mm3

Zz 230.6E+6mm3

Plastic Modulus Zpy 825.1E+6mm3

Zpz 332.2E+6mm3

Radius of Gyration Ry 670.4mm

Rz 256.1mm

Properties of the untransformed section, ignoring reinforcement.

Geometric Centroid y 0.01648mm

z -8.317mm

EA 55.91E+6kN

EI EIyy 23.64E+6kNm2

EIzz 5.152E+6kNm2

EIyz -83.55kNm2

Principal EI EIuu 23.64E+6kNm2

EIzz 5.152E+6kNm2

Angle -259.0E-6°

Maximum compressive force Nu -16360.kN

Strain at Nmax 0.0[-]

Moment at ref. pt. for Nmax Myy -0.03001kNm

Mzz -784.9E-6kNm

Page 31 of 71

Page 34: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Note: Nmax is the maximum compressive force which can be carried by the section.

This is calculated by applying a constant strain across the entire section, using

ultimate material properties.

Section Material Properties

Type Concrete

Name C60

Weight Normal Weight

Density 2.300t/m3 Cube Strength fcu 60000.kPa

Tensile Strength fct 3718.kPa

Elastic Modulus (short E 37.00E+6kPa

term)

Poisson's Ratio 0.2000

Coeff. Thermal Expansion 12.00E-6/°C

Partial Safety Factor mc,ULS 1.500

mc,SLS 1.000

Maximum Strain 0.003500[-]

ULS Compression Curve Recto-parabolic

ULS Tension Curve No-tension

SLS Compression Curve Linear

SLS Tension Curve No-tension

Aggregate Size 20.00mm

Reinforcement Properties

Name Fe 500

fy 500000.kPa

Modulus 200.0E+6kPa

Partial Safety Factor ms,ULS 1.150

ms,SLS 1.000

Maximum Strain 0.05000[-]

Stress/Strain Curve Fig 2

Name Strands

fy 1.857E+6kPa

Modulus 200.0E+6kPa

Partial Safety Factor ms,ULS 1.150

ms,SLS 1.000

Maximum Strain 0.05000[-]

Stress/Strain Curve Fig 2

Loading

Reference Point

All loading acts through the Reference Point.

All strain planes are defined relative to the Reference Point.

Definition Geometric

Centroid

Reference Point Coordinates y 0.0mm

z -12.51mm

Page 32 of 71

Page 35: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Applied loads

Load Case N Myy Mzz

[kN] [kNm] [kNm]

Load Case 1 322.5 5222. 726.0

Load Case 2 484.6 713.8 355.3

Load Case 3 215.3 6264. 693.3

Load Case 4 270.6 1949. 29.78

Load Case 5 270.6 3857. 840.3

Load Case 6 143.0 1551. 997.9

Section 1 Details

1.69% reinforcement in section 1 (Mid-section). Check this against code requirements.

ULS Cases Analysed

Name Loading Pre-stress

Factor

Strength Analysis - Loads

Case N Myy Mzz M

[kN] [kNm] [kNm] [kNm] [°]

1 322.5 5222. 726.0 5273. -7.915

2 484.6 713.8 355.3 797.3 -26.46

3 215.3 6264. 693.3 6302. -6.316

4 270.6 1949. 29.78 1949. -0.8755

5 270.6 3857. 840.3 3948. -12.29

6 143.0 1551. 997.9 1844. -32.76

Strength Analysis - Summary

Governing conditions are defined as:

A - reinforcing steel tension strain limit

B - concrete compression strain limit

Effective centroid is reported relative to the reference point.

Case Eff. Eff. N M Mu M/Mu Governing Neutral Neutral

Centroid Centroid Condition Axis Axis

(y) (z) Angle Depth

[kN] [kNm] [kNm] [°] [mm]

Maxima 3 -0.9519 11230. 215.3 6302. 15670. 0.4023 B: Node 2

Minima 2 -0.4344 4982. 484.6 797.3 10120. 0.07880 B: Node 2 From above it is observed that the Max. M/Mu ratio = 0.402 which is less than unity. Hence section is safe.

Page 33 of 71

Page 36: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

4.2.3 ULTIMATE LIMIT STATE DESIGN OF MID HOLLOW SECTIONSPAN 3The ultimate limit state analysis is carried out by the AdSEC software for bending capacity check, whereas

combined shear and torsion design is done by using a spreadsheet. The figure below shows the

arrangement of bars in the box section at the mid span after the completion of the structure.

4.2.3.1 SUMMARY OF BEAM FORCESThe summary of the maximum element forces due to various ultimate load combinations is tabulated below

LTSEDefinitive Design Review 

Design Calculation for Frame 17

MM002‐D‐DR‐EPW‐LTSE‐311050 Rev. A1 

Table 4.4: Ultimate Load Combinations 1 - 5 (U1-U5) for span3

El L d A i l (kN)Moment-y

(kN )Moment-z

(kN )

The summary of the maximum element forces due to various ultimate load combinations is tabulated below. The 6 cases summarized below areCase 1 – Max & Min Axial Force + corresponding resultsCase 2 - Max & Min My + corresponding resultsCase 3 - Max & Min Mz + corresponding resultsNegative sign in axial force indicates compression and vice versa.

Elem Load Axial (kN) (kN·m) (kN·m)42 U3b(min) 310.39 1029.97 106.2543 U4(max) 397.83 703.1 595.635 U4(min) 83.11 5693.12 600.6340 U4(max) 35.43 5697.52 188.735 U3b(min) 37.81 19.89 617.7743 U3b(max) 270.66 1156.38 832.45

LTSEDefinitive Design Review 

Design Calculation for Frame 17

MM002‐D‐DR‐EPW‐LTSE‐311050 Rev. A1 

Page 34 of 71

Page 37: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Specification

General Specification

Code of Practice BS5400

Country India

Bending Axes Biaxial

Section 1 Details

Definition

Name Mid-section

Type Concrete

Material C60

Perimeter

Section Area 1.407E+6mm2

Reinforcement Area 23710.mm2

Reinforcement 1.685%

Section Nodes

Node Y Z

[mm] [mm]

1 375.0 1100.

2 400.0 1075.

3 400.0 -1075.

4 375.0 -1100.

5 -375.0 -1100.

6 -400.0 -1075.

7 -400.0 1075.

8 -375.0 1100.

9 110.0 850.0

10 110.0 -750.0

11 -110.0 -750.0

12 -110.0 850.0

Page 35 of 71

Page 38: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Bars

Bar Y Z Diameter Material Type Pre-stress Pre-stress Appl. loads

Force Strain include/exclude

pre-stress

[mm] [mm] [mm] [kN]

1 -326.0 -1026. 16.00 Fe 500 Steel

2 -217.3 -1026. 16.00 Fe 500 Steel

3 -108.7 -1026. 16.00 Fe 500 Steel

4 0.0 -1026. 16.00 Fe 500 Steel

5 108.7 -1026. 16.00 Fe 500 Steel

6 217.3 -1026. 16.00 Fe 500 Steel

7 326.0 -1026. 16.00 Fe 500 Steel

8 -326.0 1026. 16.00 Fe 500 Steel

9 -217.3 1026. 16.00 Fe 500 Steel

10 -108.7 1026. 16.00 Fe 500 Steel

11 0.0 1026. 16.00 Fe 500 Steel

12 108.7 1026. 16.00 Fe 500 Steel

13 217.3 1026. 16.00 Fe 500 Steel

14 326.0 1026. 16.00 Fe 500 Steel

15 -326.0 -1010. 16.00 Fe 500 Steel

16 326.0 -1010. 16.00 Fe 500 Steel

17 -326.0 -804.0 16.00 Fe 500 Steel

18 326.0 -804.0 16.00 Fe 500 Steel

19 -326.0 872.0 16.00 Fe 500 Steel

20 326.0 872.0 16.00 Fe 500 Steel

21 -326.0 1010. 16.00 Fe 500 Steel

22 326.0 1010. 16.00 Fe 500 Steel

23 -225.0 -200.0 42.22 Strands Steel -1860. exclude

24 -225.0 -925.0 42.22 Strands Steel -1530. exclude

25 -324.0 -899.0 20.00 Fe 500 Steel

26 -324.0 -699.0 20.00 Fe 500 Steel

27 -324.0 -499.0 20.00 Fe 500 Steel

28 -324.0 -299.0 20.00 Fe 500 Steel

29 -324.0 -99.00 20.00 Fe 500 Steel

30 -324.0 101.0 20.00 Fe 500 Steel

31 -324.0 301.0 20.00 Fe 500 Steel

32 -324.0 501.0 20.00 Fe 500 Steel

33 -324.0 701.0 20.00 Fe 500 Steel

34 326.0 -899.0 20.00 Fe 500 Steel

35 326.0 -699.0 20.00 Fe 500 Steel

36 326.0 -499.0 20.00 Fe 500 Steel

37 326.0 -299.0 20.00 Fe 500 Steel

38 326.0 -99.00 20.00 Fe 500 Steel

39 326.0 101.0 20.00 Fe 500 Steel

40 326.0 301.0 20.00 Fe 500 Steel

41 326.0 501.0 20.00 Fe 500 Steel

42 326.0 701.0 20.00 Fe 500 Steel

43 -148.0 -691.0 16.00 Fe 500 Steel

44 -148.0 -491.0 16.00 Fe 500 Steel

45 -148.0 -291.0 16.00 Fe 500 Steel

46 -148.0 -91.00 16.00 Fe 500 Steel

47 -148.0 109.0 16.00 Fe 500 Steel

48 -148.0 309.0 16.00 Fe 500 Steel

49 -148.0 509.0 16.00 Fe 500 Steel

50 -148.0 709.0 16.00 Fe 500 Steel

51 326.0 -788.0 16.00 Fe 500 Steel

52 148.0 -788.0 16.00 Fe 500 Steel

53 -326.0 -788.0 16.00 Fe 500 Steel

54 -148.0 -788.0 16.00 Fe 500 Steel

55 0.0 -788.0 16.00 Fe 500 Steel

56 326.0 888.0 16.00 Fe 500 Steel

57 148.0 888.0 16.00 Fe 500 Steel

58 -326.0 888.0 16.00 Fe 500 Steel

59 -148.0 888.0 16.00 Fe 500 Steel

60 0.0 888.0 16.00 Fe 500 Steel

Page 36 of 71

Page 39: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

61 148.0 -691.0 16.00 Fe 500 Steel

62 148.0 -491.0 16.00 Fe 500 Steel

63 148.0 -291.0 16.00 Fe 500 Steel

64 148.0 -91.00 16.00 Fe 500 Steel

65 148.0 109.0 16.00 Fe 500 Steel

66 148.0 309.0 16.00 Fe 500 Steel

67 148.0 509.0 16.00 Fe 500 Steel

68 148.0 709.0 16.00 Fe 500 Steel

69 225.0 -200.0 42.22 Strands Steel -1860. exclude

70 225.0 -925.0 42.22 Strands Steel -1530. exclude

71 225.0 250.0 42.22 Strands Steel -1860. exclude

72 -225.0 250.0 42.22 Strands Steel -1860. exclude

Elastic Properties

Properties of the untransformed section, ignoring reinforcement.

Geometric Centroid y 0.0mm

z -12.51mm

Area 1.407E+6mm2

Second Moments of Area Iyy 632.2E+9mm4

Izz 92.26E+9mm4

Iyz 33.06E-6mm4

Principal Second Moments of Area Iuu 632.2E+9mm4

Izz 92.26E+9mm4

Angle 0.0°

Shear Area Factor ky 0.0

kz 0.0

Torsion Constant 0.0mm4

Section Modulus Zy 568.2E+6mm3

Zz 230.6E+6mm3

Plastic Modulus Zpy 825.1E+6mm3

Zpz 332.2E+6mm3

Radius of Gyration Ry 670.4mm

Rz 256.1mm

Properties of the untransformed section, ignoring reinforcement.

Geometric Centroid y 0.01648mm

z -8.317mm

EA 55.91E+6kN

EI EIyy 23.64E+6kNm2

EIzz 5.152E+6kNm2

EIyz -83.55kNm2

Principal EI EIuu 23.64E+6kNm2

EIzz 5.152E+6kNm2

Angle -259.0E-6°

Maximum compressive force Nu -16360.kN

Strain at Nmax 0.0[-]

Moment at ref. pt. for Nmax Myy 0.03479kNm

Mzz 59.75E-6kNm

Page 37 of 71

Page 40: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Note: Nmax is the maximum compressive force which can be carried by the section.

This is calculated by applying a constant strain across the entire section, using

ultimate material properties.

Section Material Properties

Type Concrete

Name C60

Weight Normal Weight

Density 2.300t/m3 Cube Strength fcu 60000.kPa

Tensile Strength fct 3718.kPa

Elastic Modulus (short E 37.00E+6kPa

term)

Poisson's Ratio 0.2000

Coeff. Thermal Expansion 12.00E-6/°C

Partial Safety Factor mc,ULS 1.500

mc,SLS 1.000

Maximum Strain 0.003500[-]

ULS Compression Curve Recto-parabolic

ULS Tension Curve No-tension

SLS Compression Curve Linear

SLS Tension Curve No-tension

Aggregate Size 20.00mm

Reinforcement Properties

Name Fe 500

fy 500000.kPa

Modulus 200.0E+6kPa

Partial Safety Factor ms,ULS 1.150

ms,SLS 1.000

Maximum Strain 0.05000[-]

Stress/Strain Curve Fig 2

Name Strands

fy 1.857E+6kPa

Modulus 200.0E+6kPa

Partial Safety Factor ms,ULS 1.150

ms,SLS 1.000

Maximum Strain 0.05000[-]

Stress/Strain Curve Fig 2

Loading

Reference Point

All loading acts through the Reference Point.

All strain planes are defined relative to the Reference Point.

Definition Geometric

Centroid

Reference Point Coordinates y 0.0mm

z -12.51mm

Page 38 of 71

Page 41: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Applied loads

Load Case N Myy Mzz

[kN] [kNm] [kNm]

Load Case 1 310.4 1030. 106.2

Load Case 2 397.8 703.1 595.6

Load Case 3 83.11 5693. 600.6

Load Case 4 35.43 5698. 188.7

Load Case 5 37.81 19.89 617.8

Load Case 6 270.7 1156. 832.4

Section 1 Details

1.69% reinforcement in section 1 (Mid-section). Check this against code requirements.

ULS Cases Analysed

Name Loading Pre-stress

Factor

Strength Analysis - Loads

Case N Myy Mzz M

[kN] [kNm] [kNm] [kNm] [°]

1 310.4 1030. 106.2 1035. -5.890

2 397.8 703.1 595.6 921.5 -40.27

3 83.11 5693. 600.6 5725. -6.022

4 35.43 5698. 188.7 5701. -1.897

5 37.81 19.89 617.8 618.1 -88.16

6 270.7 1156. 832.4 1425. -35.75

Strength Analysis - Summary

Governing conditions are defined as:

A - reinforcing steel tension strain limit

B - concrete compression strain limit

Effective centroid is reported relative to the reference point.

Case Eff. Eff. N M Mu M/Mu Governing Neutral Neutral

Centroid Centroid Condition Axis Axis

(y) (z) Angle Depth

[kN] [kNm] [kNm] [°] [mm]

Maxima 3 -2.437 29150. 83.11 5725. 15760. 0.3632 B: Node 2

Minima 1 -0.6666 7786. 310.4 1035. 15840. 0.06537 B: Node 2 From above it is observed that the Max. M/Mu ratio = 0.3632 which is less than unity. Hence section is safe.

Page 39 of 71

Page 42: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

4.3 ULTIMATE LIMIT STATE DESIGN OF SOLID SECTIONS

4.3.1 ULTIMATE LIMIT STATE DESIGN OF SOLID SECTIONAt Pier 1The ultimate limit state analysis is carried out by the AdSEC software for bending capacity check, whereas

combined shear and torsion design is done by using a spreadsheet. The figure below shows the

arrangement of bars in the box section at the mid span after the completion of the structure.

LTSEDefinitive Design Review 

Design Calculation for Frame 17

MM002‐D‐DR‐EPW‐LTSE‐311050 Rev. A1 

4.3.1.1 SUMMARY OF BEAM FORCESThe summary of the maximum element forces due to various ultimate load combinations is tabulated below. The 6 cases summarized below areCase 1 – Max & Min Axial Force + corresponding resultsCase 2 - Max & Min My + corresponding resultsCase 3 - Max & Min Mz + corresponding resultsNegative sign in axial force indicates compression and vice versa.

Table 4.5: Ultimate Load Combinations 1 - 5 (U1-U5)

Elem Load Axial (kN)Moment-y

(kN·m)Moment-z

(kN·m)57 U3b(min) 466.14 -5816.81 371.8454 U4(max) 428.47 2251.52 399.0561 U4(min) 220.69 -8517.12 316.661 U4(min) 220.69 8517.12 316.654 U4(max) 298.11 4147.75 72.2157 U3b(min) 319.4 -5779.38 582.5461 U3b(max) 312.71 -6508.94 610.9

LTSEDefinitive Design Review 

Design Calculation for Frame 17

MM002‐D‐DR‐EPW‐LTSE‐311050 Rev. A1 

Page 40 of 71

Page 43: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Specification

General Specification

Code of Practice BS5400

Country United Kingdom

Bending Axes Biaxial

Section 1 Details

Definition

Name 1C4end

Type Concrete

Material C60

Perimeter

Section Area 1.759E+6mm2

Reinforcement Area 23980.mm2

Reinforcement 1.364%

Section Nodes

Node Y Z

[mm] [mm]

1 375.0 1100.

2 400.0 1075.

3 400.0 -1075.

4 375.0 -1100.

5 -375.0 -1100.

6 -400.0 -1075.

7 -400.0 1075.

8 -375.0 1100.

Page 41 of 71

Page 44: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Bars

Bar Y Z Diameter Material Type Pre-stress Pre-stress Appl. loads

Force Strain include/exclude

pre-stress

[mm] [mm] [mm] [kN]

1 -326.0 -1026. 25.00 Fe 500 Steel

2 -108.7 -1026. 25.00 Fe 500 Steel

3 108.7 -1026. 25.00 Fe 500 Steel

4 326.0 -1026. 25.00 Fe 500 Steel

5 -326.0 1026. 16.00 Fe 500 Steel

6 -244.5 1026. 16.00 Fe 500 Steel

7 -163.0 1026. 16.00 Fe 500 Steel

8 -81.50 1026. 16.00 Fe 500 Steel

9 0.0 1026. 16.00 Fe 500 Steel

10 81.50 1026. 16.00 Fe 500 Steel

11 163.0 1026. 16.00 Fe 500 Steel

12 244.5 1026. 16.00 Fe 500 Steel

13 326.0 1026. 16.00 Fe 500 Steel

14 -326.0 1010. 16.00 Fe 500 Steel

15 -244.5 1010. 16.00 Fe 500 Steel

16 -163.0 1010. 16.00 Fe 500 Steel

17 -81.50 1010. 16.00 Fe 500 Steel

18 0.0 1010. 16.00 Fe 500 Steel

19 81.50 1010. 16.00 Fe 500 Steel

20 163.0 1010. 16.00 Fe 500 Steel

21 244.5 1010. 16.00 Fe 500 Steel

22 326.0 1010. 16.00 Fe 500 Steel

23 -326.0 -907.0 16.00 Fe 500 Steel

24 -326.0 -891.0 16.00 Fe 500 Steel

25 -326.0 -707.2 16.00 Fe 500 Steel

26 -326.0 -691.2 16.00 Fe 500 Steel

27 -326.0 -507.4 16.00 Fe 500 Steel

28 -326.0 -491.4 16.00 Fe 500 Steel

29 -326.0 -307.7 16.00 Fe 500 Steel

30 -326.0 -291.7 16.00 Fe 500 Steel

31 -326.0 -107.9 16.00 Fe 500 Steel

32 -326.0 -91.89 16.00 Fe 500 Steel

33 -326.0 91.89 16.00 Fe 500 Steel

34 -326.0 107.9 16.00 Fe 500 Steel

35 -326.0 291.7 16.00 Fe 500 Steel

36 -326.0 307.7 16.00 Fe 500 Steel

37 -326.0 491.4 16.00 Fe 500 Steel

38 -326.0 507.4 16.00 Fe 500 Steel

39 -326.0 691.2 16.00 Fe 500 Steel

40 -326.0 707.2 16.00 Fe 500 Steel

41 -326.0 891.0 16.00 Fe 500 Steel

42 -326.0 907.0 16.00 Fe 500 Steel

43 326.0 -907.0 16.00 Fe 500 Steel

44 326.0 -891.0 16.00 Fe 500 Steel

45 326.0 -707.2 16.00 Fe 500 Steel

46 326.0 -691.2 16.00 Fe 500 Steel

47 326.0 -507.4 16.00 Fe 500 Steel

48 326.0 -491.4 16.00 Fe 500 Steel

49 326.0 -307.7 16.00 Fe 500 Steel

50 326.0 -291.7 16.00 Fe 500 Steel

51 326.0 -107.9 16.00 Fe 500 Steel

52 326.0 -91.89 16.00 Fe 500 Steel

53 326.0 91.89 16.00 Fe 500 Steel

54 326.0 107.9 16.00 Fe 500 Steel

55 326.0 291.7 16.00 Fe 500 Steel

56 326.0 307.7 16.00 Fe 500 Steel

57 326.0 491.4 16.00 Fe 500 Steel

58 326.0 507.4 16.00 Fe 500 Steel

59 326.0 691.2 16.00 Fe 500 Steel

60 326.0 707.2 16.00 Fe 500 Steel

Page 42 of 71

Page 45: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

61 326.0 891.0 16.00 Fe 500 Steel

62 326.0 907.0 16.00 Fe 500 Steel

63 -165.0 -500.0 42.22 Strands Steel -1530. exclude

64 165.0 -500.0 42.22 Strands Steel -1530. exclude

65 -225.0 125.0 42.20 Strands Steel -1860. exclude

66 225.0 125.0 42.20 Strands Steel -1860. exclude

67 -225.0 650.0 42.20 Strands Steel -1860. exclude

68 225.0 650.0 42.20 Strands Steel -1860. exclude

69 -326.0 -969.0 25.00 Fe 500 Steel

70 -108.7 -969.0 25.00 Fe 500 Steel

71 108.7 -969.0 25.00 Fe 500 Steel

72 326.0 -969.0 25.00 Fe 500 Steel

Elastic Properties

Properties of the untransformed section, ignoring reinforcement.

Geometric Centroid y 0.0mm

z 0.0mm

Area 1.759E+6mm2

Second Moments of Area Iyy 708.4E+9mm4

Izz 93.67E+9mm4

Iyz 37.64E-6mm4

Principal Second Moments of Area Iuu 708.4E+9mm4

Izz 93.67E+9mm4

Angle 0.0°

Shear Area Factor ky 0.0

kz 0.0

Torsion Constant 0.0mm4

Section Modulus Zy 644.0E+6mm3

Zz 234.2E+6mm3

Plastic Modulus Zpy 966.6E+6mm3

Zpz 351.5E+6mm3

Radius of Gyration Ry 634.6mm

Rz 230.8mm

Properties of the untransformed section, ignoring reinforcement.

Geometric Centroid y -189.2E-9mm

z 1.264mm

EA 68.98E+6kN

EI EIyy 26.47E+6kNm2

EIzz 5.460E+6kNm2

EIyz 136.8E-6kNm2

Principal EI EIuu 26.47E+6kNm2

EIzz 5.460E+6kNm2

Angle 373.0E-12°

Maximum compressive force Nu 44510.kN

Strain at Nmax 0.0[-]

Moment at ref. pt. for Nmax Myy -0.04209kNm

Mzz -0.04327kNm

Page 43 of 71

Page 46: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Note: Nmax is the maximum compressive force which can be carried by the section.

This is calculated by applying a constant strain across the entire section, using

ultimate material properties.

Section Material Properties

Type Concrete

Name C60

Weight Normal Weight

Density 2.300t/m3 Cube Strength fcu 60000.kPa

Tensile Strength fct 3718.kPa

Elastic Modulus (short E 37.00E+6kPa

term)

Poisson's Ratio 0.2000

Coeff. Thermal Expansion 12.00E-6/°C

Partial Safety Factor mc,ULS 1.500

mc,SLS 1.000

Maximum Strain 0.003500[-]

ULS Compression Curve Recto-parabolic

ULS Tension Curve No-tension

SLS Compression Curve Linear

SLS Tension Curve No-tension

Aggregate Size 20.00mm

Reinforcement Properties

Name Fe 500

fy 500000.kPa

Modulus 200.0E+6kPa

Partial Safety Factor ms,ULS 1.150

ms,SLS 1.000

Maximum Strain 0.05000[-]

Stress/Strain Curve Fig 2

Name Strands

fy 1.857E+6kPa

Modulus 200.0E+6kPa

Partial Safety Factor ms,ULS 1.150

ms,SLS 1.000

Maximum Strain 0.05000[-]

Stress/Strain Curve Fig 2

Loading

Reference Point

All loading acts through the Reference Point.

All strain planes are defined relative to the Reference Point.

Definition Geometric

Centroid

Reference Point Coordinates y 0.0mm

z 0.0mm

Page 44 of 71

Page 47: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Applied loads

Load Case N Myy Mzz

[kN] [kNm] [kNm]

Load Case 1 466.1 -5817. 371.8

Load Case 2 428.5 2252. 399.0

Load Case 3 220.7 -8517. 316.6

Load Case 4 298.1 4148. 72.21

Load Case 5 319.4 -5779. 582.5

Load Case 6 312.7 -6509. 610.9

Section 1 Details

1.36% reinforcement in section 1 (1C4end). Check this against code requirements.

ULS Cases Analysed

Name Loading Pre-stress

Factor

Strength Analysis - Loads

Case N Myy Mzz M

[kN] [kNm] [kNm] [kNm] [°]

1 466.1 -5817. 371.8 5829. -176.3

2 428.5 2252. 399.0 2287. -10.05

3 220.7 -8517. 316.6 8523. -177.9

4 298.1 4148. 72.21 4148. -0.9974

5 319.4 -5779. 582.5 5809. -174.2

6 312.7 -6509. 610.9 6538. -174.6

Strength Analysis - Summary

Governing conditions are defined as:

A - reinforcing steel tension strain limit

B - concrete compression strain limit

Effective centroid is reported relative to the reference point.

Case Eff. Eff. N M Mu M/Mu Governing Neutral Neutral

Centroid Centroid Condition Axis Axis

(y) (z) Angle Depth

[kN] [kNm] [kNm] [°] [mm]

Maxima 3 1.129E-6 -6250. 220.7 8523. 16470. 0.5176 B: Node 4

Minima 2 593.7E-9 -3220. 428.5 2287. 12230. 0.1870 B: Node 2

From above it is observed that the Max. M/Mu ratio = 0.5176 which is less than unity. Hence section is safe.

Page 45 of 71

Page 48: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

At Pier 2The ultimate limit state analysis is carried out by the AdSEC software for bending capacity check, whereas

combined shear and torsion design is done by using a spreadsheet. The figure below shows the

arrangement of bars in the box section at the mid span after the completion of the structure.

LTSEDefinitive Design Review 

Design Calculation for Frame 17

MM002‐D‐DR‐EPW‐LTSE‐311050 Rev. A1 

4.3.2.1 SUMMARY OF BEAM FORCESThe summary of the maximum element forces due to various ultimate load combinations is tabulated below. The 6 cases summarized below areCase 1 – Max & Min Axial Force + corresponding resultsCase 2 - Max & Min My + corresponding resultsCase 3 - Max & Min Mz + corresponding resultsNegative sign in axial force indicates compression and vice versa.

Table 4.6: Ultimate Load Combinations 1 - 5 (U1-U5)

Elem Load Axial (kN)Moment-y

(kN·m)Moment-z

(kN·m)65 U4(min) 335.08 -7561.83 1071.4464 U4(max) 504.41 -1568.26 470.8465 U4(min) 228.05 -9045.02 1000.3560 U4(max) 329.31 146.61 123.9965 U3b(max) 7 83 2485 19 1197 9765 U3b(max) 7.83 -2485.19 1197.9768 U3b(max) 105.36 -2523.84 1350.99

LTSEDefinitive Design Review 

Design Calculation for Frame 17

MM002‐D‐DR‐EPW‐LTSE‐311050 Rev. A1 

Page 46 of 71

Page 49: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Specification

General Specification

Code of Practice BS5400

Country United Kingdom

Bending Axes Biaxial

Section 1 Details

Definition

Name 1C4end

Type Concrete

Material C60

Perimeter

Section Area 1.759E+6mm2

Reinforcement Area 23680.mm2

Reinforcement 1.346%

Section Nodes

Node Y Z

[mm] [mm]

1 375.0 1100.

2 400.0 1075.

3 400.0 -1075.

4 375.0 -1100.

5 -375.0 -1100.

6 -400.0 -1075.

7 -400.0 1075.

8 -375.0 1100.

Page 47 of 71

Page 50: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Bars

Bar Y Z Diameter Material Type Pre-stress Pre-stress Appl. loads

Force Strain include/exclude

pre-stress

[mm] [mm] [mm] [kN]

1 -326.0 -1026. 16.00 Fe 500 Steel

2 -244.5 -1026. 16.00 Fe 500 Steel

3 -163.0 -1026. 16.00 Fe 500 Steel

4 -81.50 -1026. 16.00 Fe 500 Steel

5 0.0 -1026. 16.00 Fe 500 Steel

6 81.50 -1026. 16.00 Fe 500 Steel

7 163.0 -1026. 16.00 Fe 500 Steel

8 244.5 -1026. 16.00 Fe 500 Steel

9 326.0 -1026. 16.00 Fe 500 Steel

10 -326.0 1026. 16.00 Fe 500 Steel

11 -244.5 1026. 16.00 Fe 500 Steel

12 -163.0 1026. 16.00 Fe 500 Steel

13 -81.50 1026. 16.00 Fe 500 Steel

14 0.0 1026. 16.00 Fe 500 Steel

15 81.50 1026. 16.00 Fe 500 Steel

16 163.0 1026. 16.00 Fe 500 Steel

17 244.5 1026. 16.00 Fe 500 Steel

18 326.0 1026. 16.00 Fe 500 Steel

19 -326.0 1010. 16.00 Fe 500 Steel

20 -244.5 1010. 16.00 Fe 500 Steel

21 -163.0 1010. 16.00 Fe 500 Steel

22 -81.50 1010. 16.00 Fe 500 Steel

23 0.0 1010. 16.00 Fe 500 Steel

24 81.50 1010. 16.00 Fe 500 Steel

25 163.0 1010. 16.00 Fe 500 Steel

26 244.5 1010. 16.00 Fe 500 Steel

27 326.0 1010. 16.00 Fe 500 Steel

28 -326.0 -907.0 16.00 Fe 500 Steel

29 -326.0 -891.0 16.00 Fe 500 Steel

30 -326.0 -707.2 16.00 Fe 500 Steel

31 -326.0 -691.2 16.00 Fe 500 Steel

32 -326.0 -507.4 16.00 Fe 500 Steel

33 -326.0 -491.4 16.00 Fe 500 Steel

34 -326.0 -307.7 16.00 Fe 500 Steel

35 -326.0 -291.7 16.00 Fe 500 Steel

36 -326.0 -107.9 16.00 Fe 500 Steel

37 -326.0 -91.89 16.00 Fe 500 Steel

38 -326.0 91.89 16.00 Fe 500 Steel

39 -326.0 107.9 16.00 Fe 500 Steel

40 -326.0 291.7 16.00 Fe 500 Steel

41 -326.0 307.7 16.00 Fe 500 Steel

42 -326.0 491.4 16.00 Fe 500 Steel

43 -326.0 507.4 16.00 Fe 500 Steel

44 -326.0 691.2 16.00 Fe 500 Steel

45 -326.0 707.2 16.00 Fe 500 Steel

46 -326.0 891.0 16.00 Fe 500 Steel

47 -326.0 907.0 16.00 Fe 500 Steel

48 326.0 -907.0 16.00 Fe 500 Steel

49 326.0 -891.0 16.00 Fe 500 Steel

50 326.0 -707.2 16.00 Fe 500 Steel

51 326.0 -691.2 16.00 Fe 500 Steel

52 326.0 -507.4 16.00 Fe 500 Steel

53 326.0 -491.4 16.00 Fe 500 Steel

54 326.0 -307.7 16.00 Fe 500 Steel

55 326.0 -291.7 16.00 Fe 500 Steel

56 326.0 -107.9 16.00 Fe 500 Steel

57 326.0 -91.89 16.00 Fe 500 Steel

58 326.0 91.89 16.00 Fe 500 Steel

59 326.0 107.9 16.00 Fe 500 Steel

60 326.0 291.7 16.00 Fe 500 Steel

Page 48 of 71

Page 51: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

61 326.0 307.7 16.00 Fe 500 Steel

62 326.0 491.4 16.00 Fe 500 Steel

63 326.0 507.4 16.00 Fe 500 Steel

64 326.0 691.2 16.00 Fe 500 Steel

65 326.0 707.2 16.00 Fe 500 Steel

66 326.0 891.0 16.00 Fe 500 Steel

67 326.0 907.0 16.00 Fe 500 Steel

68 -165.0 -500.0 42.22 Strands Steel -1530. exclude

69 165.0 -500.0 42.22 Strands Steel -1530. exclude

70 -225.0 250.0 42.20 Strands Steel -1860. exclude

71 225.0 250.0 42.20 Strands Steel -1860. exclude

72 -225.0 650.0 42.20 Strands Steel -1860. exclude

73 225.0 650.0 42.20 Strands Steel -1860. exclude

74 -326.0 -969.0 16.00 Fe 500 Steel

75 -244.5 -969.0 16.00 Fe 500 Steel

76 -163.0 -969.0 16.00 Fe 500 Steel

77 -81.50 -969.0 16.00 Fe 500 Steel

78 0.0 -969.0 16.00 Fe 500 Steel

79 81.50 -969.0 16.00 Fe 500 Steel

80 163.0 -969.0 16.00 Fe 500 Steel

81 244.5 -969.0 16.00 Fe 500 Steel

82 326.0 -969.0 16.00 Fe 500 Steel

Elastic Properties

Properties of the untransformed section, ignoring reinforcement.

Geometric Centroid y 0.0mm

z 0.0mm

Area 1.759E+6mm2

Second Moments of Area Iyy 708.4E+9mm4

Izz 93.67E+9mm4

Iyz 37.64E-6mm4

Principal Second Moments of Area Iuu 708.4E+9mm4

Izz 93.67E+9mm4

Angle 0.0°

Shear Area Factor ky 0.0

kz 0.0

Torsion Constant 0.0mm4

Section Modulus Zy 644.0E+6mm3

Zz 234.2E+6mm3

Plastic Modulus Zpy 966.6E+6mm3

Zpz 351.5E+6mm3

Radius of Gyration Ry 634.6mm

Rz 230.8mm

Properties of the untransformed section, ignoring reinforcement.

Geometric Centroid y -175.9E-9mm

z 2.818mm

EA 68.93E+6kN

EI EIyy 26.46E+6kNm2

EIzz 5.431E+6kNm2

EIyz -0.001529kNm2

Page 49 of 71

Page 52: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Principal EI EIuu 26.46E+6kNm2

EIzz 5.431E+6kNm2

Angle -4.167E-9°

Maximum compressive force Nu 44210.kN

Strain at Nmax 0.0[-]

Moment at ref. pt. for Nmax Myy 0.08260kNm

Mzz 0.09794kNm

Note: Nmax is the maximum compressive force which can be carried by the section.

This is calculated by applying a constant strain across the entire section, using

ultimate material properties.

Section Material Properties

Type Concrete

Name C60

Weight Normal Weight

Density 2.300t/m3 Cube Strength fcu 60000.kPa

Tensile Strength fct 3718.kPa

Elastic Modulus (short E 37.00E+6kPa

term)

Poisson's Ratio 0.2000

Coeff. Thermal Expansion 12.00E-6/°C

Partial Safety Factor mc,ULS 1.500

mc,SLS 1.000

Maximum Strain 0.003500[-]

ULS Compression Curve Recto-parabolic

ULS Tension Curve No-tension

SLS Compression Curve Linear

SLS Tension Curve No-tension

Aggregate Size 20.00mm

Reinforcement Properties

Name Fe 500

fy 500000.kPa

Modulus 200.0E+6kPa

Partial Safety Factor ms,ULS 1.150

ms,SLS 1.000

Maximum Strain 0.05000[-]

Stress/Strain Curve Fig 2

Name Strands

fy 1.857E+6kPa

Modulus 200.0E+6kPa

Partial Safety Factor ms,ULS 1.150

ms,SLS 1.000

Maximum Strain 0.05000[-]

Stress/Strain Curve Fig 2

Page 50 of 71

Page 53: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Loading

Applied loads

Load Case N Myy Mzz

[kN] [kNm] [kNm]

Load Case 1 335.1 -7562. 1071.

Load Case 2 504.4 -1568. 470.8

Load Case 3 228.0 -9045. 1000.

Load Case 4 329.3 146.6 124.0

Load Case 5 7.830 -2485. 1198.

Load Case 6 105.4 -2524. 1351.

Section 1 Details

1.35% reinforcement in section 1 (1C4end). Check this against code requirements.

ULS Cases Analysed

Name Loading Pre-stress

Factor

Strength Analysis - Loads

Case N Myy Mzz M

[kN] [kNm] [kNm] [kNm] [°]

1 335.1 -7562. 1071. 7637. -171.9

2 504.4 -1568. 470.8 1637. -163.3

3 228.0 -9045. 1000. 9100. -173.7

4 329.3 146.6 124.0 192.0 -40.22

5 7.830 -2485. 1198. 2759. -154.3

6 105.4 -2524. 1351. 2863. -151.8

Strength Analysis - Summary

Governing conditions are defined as:

A - reinforcing steel tension strain limit

B - concrete compression strain limit

Effective centroid is reported relative to the reference point.

Case Eff. Eff. N M Mu M/Mu Governing Neutral Neutral

Centroid Centroid Condition Axis Axis

(y) (z) Angle Depth

[kN] [kNm] [kNm] [°] [mm]

Maxima 3 -1.519E-6 -8034. 228.0 9100. 15740. 0.5780 B: Node 3

Minima 4 -1.062E-6 -5564. 329.3 192.0 6917. 0.02776 B: Node 2 From above it is observed that the Max. M/Mu ratio = 0.578 which is less than unity. Hence section is safe.

Page 51 of 71

Page 54: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

At Pier 3The ultimate limit state analysis is carried out by the AdSEC software for bending capacity check, whereas

combined shear and torsion design is done by using a spreadsheet. The figure below shows the

arrangement of bars in the box section at the mid span after the completion of the structure.

4.3.2.1 SUMMARY OF BEAM FORCESThe summary of the maximum element forces due to various ultimate load combinations is tabulated below. The 6 cases summarized below are

LTSEDefinitive Design Review 

Design Calculation for Frame 17

MM002‐D‐DR‐EPW‐LTSE‐311050 Rev. A1 

Table 4.6: Ultimate Load Combinations 1 - 5 (U1-U5)

Elem Load Axial (kN)Moment-y

(kN·m)Moment-z

(kN·m)71 U3b( i ) 330 6 1023 3 229 79

Case 1 – Max & Min Axial Force + corresponding resultsCase 2 - Max & Min My + corresponding resultsCase 3 - Max & Min Mz + corresponding resultsNegative sign in axial force indicates compression and vice versa.

71 U3b(min) 330.6 -1023.3 229.7970 U4(max) 419.91 -2239.07 713.167 U4(min) 104.75 -9219.54 831.871 U4(max) 35.26 2871.36 174.2967 U3b(min) 50.46 -1420.91 941.6667 U3b(max) 60.32 -8310.88 1202.5

LTSEDefinitive Design Review 

Design Calculation for Frame 17

MM002‐D‐DR‐EPW‐LTSE‐311050 Rev. A1 

Page 52 of 71

Page 55: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Specification

General Specification

Code of Practice BS5400

Country United Kingdom

Bending Axes Biaxial

Section 1 Details

Definition

Name 1C4end

Type Concrete

Material C60

Perimeter

Section Area 1.759E+6mm2

Reinforcement Area 23680.mm2

Reinforcement 1.346%

Section Nodes

Node Y Z

[mm] [mm]

1 375.0 1100.

2 400.0 1075.

3 400.0 -1075.

4 375.0 -1100.

5 -375.0 -1100.

6 -400.0 -1075.

7 -400.0 1075.

8 -375.0 1100.

Bars

Page 53 of 71

Page 56: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Bar Y Z Diameter Material Type Pre-stress Pre-stress Appl. loads

Force Strain include/exclude

pre-stress

[mm] [mm] [mm] [kN]

1 -326.0 -1026. 16.00 Fe 500 Steel

2 -244.5 -1026. 16.00 Fe 500 Steel

3 -163.0 -1026. 16.00 Fe 500 Steel

4 -81.50 -1026. 16.00 Fe 500 Steel

5 0.0 -1026. 16.00 Fe 500 Steel

6 81.50 -1026. 16.00 Fe 500 Steel

7 163.0 -1026. 16.00 Fe 500 Steel

8 244.5 -1026. 16.00 Fe 500 Steel

9 326.0 -1026. 16.00 Fe 500 Steel

10 -326.0 1026. 16.00 Fe 500 Steel

11 -244.5 1026. 16.00 Fe 500 Steel

12 -163.0 1026. 16.00 Fe 500 Steel

13 -81.50 1026. 16.00 Fe 500 Steel

14 0.0 1026. 16.00 Fe 500 Steel

15 81.50 1026. 16.00 Fe 500 Steel

16 163.0 1026. 16.00 Fe 500 Steel

17 244.5 1026. 16.00 Fe 500 Steel

18 326.0 1026. 16.00 Fe 500 Steel

19 -326.0 1010. 16.00 Fe 500 Steel

20 -244.5 1010. 16.00 Fe 500 Steel

21 -163.0 1010. 16.00 Fe 500 Steel

22 -81.50 1010. 16.00 Fe 500 Steel

23 0.0 1010. 16.00 Fe 500 Steel

24 81.50 1010. 16.00 Fe 500 Steel

25 163.0 1010. 16.00 Fe 500 Steel

26 244.5 1010. 16.00 Fe 500 Steel

27 326.0 1010. 16.00 Fe 500 Steel

28 -326.0 -907.0 16.00 Fe 500 Steel

29 -326.0 -891.0 16.00 Fe 500 Steel

30 -326.0 -707.2 16.00 Fe 500 Steel

31 -326.0 -691.2 16.00 Fe 500 Steel

32 -326.0 -507.4 16.00 Fe 500 Steel

33 -326.0 -491.4 16.00 Fe 500 Steel

34 -326.0 -307.7 16.00 Fe 500 Steel

35 -326.0 -291.7 16.00 Fe 500 Steel

36 -326.0 -107.9 16.00 Fe 500 Steel

37 -326.0 -91.89 16.00 Fe 500 Steel

38 -326.0 91.89 16.00 Fe 500 Steel

39 -326.0 107.9 16.00 Fe 500 Steel

40 -326.0 291.7 16.00 Fe 500 Steel

41 -326.0 307.7 16.00 Fe 500 Steel

42 -326.0 491.4 16.00 Fe 500 Steel

43 -326.0 507.4 16.00 Fe 500 Steel

44 -326.0 691.2 16.00 Fe 500 Steel

45 -326.0 707.2 16.00 Fe 500 Steel

46 -326.0 891.0 16.00 Fe 500 Steel

47 -326.0 907.0 16.00 Fe 500 Steel

48 326.0 -907.0 16.00 Fe 500 Steel

49 326.0 -891.0 16.00 Fe 500 Steel

50 326.0 -707.2 16.00 Fe 500 Steel

51 326.0 -691.2 16.00 Fe 500 Steel

52 326.0 -507.4 16.00 Fe 500 Steel

53 326.0 -491.4 16.00 Fe 500 Steel

54 326.0 -307.7 16.00 Fe 500 Steel

55 326.0 -291.7 16.00 Fe 500 Steel

56 326.0 -107.9 16.00 Fe 500 Steel

57 326.0 -91.89 16.00 Fe 500 Steel

58 326.0 91.89 16.00 Fe 500 Steel

59 326.0 107.9 16.00 Fe 500 Steel

60 326.0 291.7 16.00 Fe 500 Steel

61 326.0 307.7 16.00 Fe 500 Steel

62 326.0 491.4 16.00 Fe 500 Steel

Page 54 of 71

Page 57: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

63 326.0 507.4 16.00 Fe 500 Steel

64 326.0 691.2 16.00 Fe 500 Steel

65 326.0 707.2 16.00 Fe 500 Steel

66 326.0 891.0 16.00 Fe 500 Steel

67 326.0 907.0 16.00 Fe 500 Steel

68 -165.0 -500.0 42.22 Strands Steel -1530. exclude

69 165.0 -500.0 42.22 Strands Steel -1530. exclude

70 -225.0 550.0 42.20 Strands Steel -1860. exclude

71 225.0 550.0 42.20 Strands Steel -1860. exclude

72 -225.0 850.0 42.20 Strands Steel -1860. exclude

73 225.0 850.0 42.20 Strands Steel -1860. exclude

74 -326.0 -969.0 16.00 Fe 500 Steel

75 -244.5 -969.0 16.00 Fe 500 Steel

76 -163.0 -969.0 16.00 Fe 500 Steel

77 -81.50 -969.0 16.00 Fe 500 Steel

78 0.0 -969.0 16.00 Fe 500 Steel

79 81.50 -969.0 16.00 Fe 500 Steel

80 163.0 -969.0 16.00 Fe 500 Steel

81 244.5 -969.0 16.00 Fe 500 Steel

82 326.0 -969.0 16.00 Fe 500 Steel

Elastic Properties

Properties of the untransformed section, ignoring reinforcement.

Geometric Centroid y 0.0mm

z 0.0mm

Area 1.759E+6mm2

Second Moments of Area Iyy 708.4E+9mm4

Izz 93.67E+9mm4

Iyz 37.64E-6mm4

Principal Second Moments of Area Iuu 708.4E+9mm4

Izz 93.67E+9mm4

Angle 0.0°

Shear Area Factor ky 0.0

kz 0.0

Torsion Constant 0.0mm4

Section Modulus Zy 644.0E+6mm3

Zz 234.2E+6mm3

Plastic Modulus Zpy 966.6E+6mm3

Zpz 351.5E+6mm3

Radius of Gyration Ry 634.6mm

Rz 230.8mm

Properties of the untransformed section, ignoring reinforcement.

Geometric Centroid y -175.9E-9mm

z 6.125mm

EA 68.93E+6kN

EI EIyy 26.46E+6kNm2

EIzz 5.675E+6kNm2

EIyz -0.003643kNm2

Principal EI EIuu 26.46E+6kNm2

Page 55 of 71

Page 58: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

EIzz 5.675E+6kNm2

Angle -10.04E-9°

Maximum compressive force Nu 43310.kN

Strain at Nmax 0.0[-]

Moment at ref. pt. for Nmax Myy 0.02029kNm

Mzz -0.01669kNm

Note: Nmax is the maximum compressive force which can be carried by the section.

This is calculated by applying a constant strain across the entire section, using

ultimate material properties.

Section Material Properties

Type Concrete

Name C60

Weight Normal Weight

Density 2.300t/m3 Cube Strength fcu 60000.kPa

Tensile Strength fct 3718.kPa

Elastic Modulus (short E 37.00E+6kPa

term)

Poisson's Ratio 0.2000

Coeff. Thermal Expansion 12.00E-6/°C

Partial Safety Factor mc,ULS 1.500

mc,SLS 1.000

Maximum Strain 0.003500[-]

ULS Compression Curve Recto-parabolic

ULS Tension Curve No-tension

SLS Compression Curve Linear

SLS Tension Curve No-tension

Aggregate Size 20.00mm

Reinforcement Properties

Name Fe 500

fy 500000.kPa

Modulus 200.0E+6kPa

Partial Safety Factor ms,ULS 1.150

ms,SLS 1.000

Maximum Strain 0.05000[-]

Stress/Strain Curve Fig 2

Name Strands

fy 1.857E+6kPa

Modulus 200.0E+6kPa

Partial Safety Factor ms,ULS 1.150

ms,SLS 1.000

Maximum Strain 0.05000[-]

Stress/Strain Curve Fig 2

Page 56 of 71

Page 59: Frame 17 GB Design Report

MUMBAI MONORAIL PROJECT

Definitive Design Review – Design Calculations of Frame 17

MM001-D-DR-VSP-LTSE-311050 Rev A1

10-April-2013

Loading

Applied loads

Load Case N Myy Mzz

[kN] [kNm] [kNm]

Load Case 1 330.6 -1023. 229.8

Load Case 2 419.9 -2239. 713.1

Load Case 3 104.7 -9220. 831.8

Load Case 4 35.26 2871. 174.3

Load Case 5 50.46 -1421. 941.7

Load Case 6 60.32 -8311. 1202.

Section 1 Details

1.35% reinforcement in section 1 (1C4end). Check this against code requirements.

ULS Cases Analysed

Name Loading Pre-stress

Factor

Strength Analysis - Loads

Case N Myy Mzz M

[kN] [kNm] [kNm] [kNm] [°]

1 330.6 -1023. 229.8 1049. -167.3

2 419.9 -2239. 713.1 2350. -162.3

3 104.7 -9220. 831.8 9257. -174.8

4 35.26 2871. 174.3 2877. -3.474

5 50.46 -1421. 941.7 1705. -146.5

6 60.32 -8311. 1202. 8397. -171.8

Strength Analysis - Summary

Governing conditions are defined as:

A - reinforcing steel tension strain limit

B - concrete compression strain limit

Effective centroid is reported relative to the reference point.

Case Eff. Eff. N M Mu M/Mu Governing Neutral Neutral

Centroid Centroid Condition Axis Axis

(y) (z) Angle Depth

[kN] [kNm] [kNm] [°] [mm]

Maxima 3 -3.266E-6 -35120. 104.7 9257. 18200. 0.5085 B: Node 3

Minima 1 -1.058E-6 -11130. 330.6 1049. 15080. 0.06953 B: Node 3 From above it is observed that the Max. M/Mu ratio = 0.5085 which is less than unity. Hence section is safe.

Page 57 of 71

Page 60: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

4.4 Check for Shear at Hollow section (As per IRC concrete bridge code)

Location Elem Load Part Component Axial (kN)Shear-y (kN)

Shear-z (kN)

Torsion (kN·m)

Moment-y (kN·m)

Moment-z (kN·m)

1st span 88 U4(max) J[23] Shear-z 129.78 -63.55 1638.82 234.42 -4270.29 47.9695 U3b(max) J[24] Torsion -234.66 -115.42 1013.07 419.09 -2966.69 255.9483 U4(max) J[72] Moment-y 230.73 16.45 -110.72 113.33 7177.02 -246.22

2nd span 26 U4(max) J[27] Shear-z -208.75 -128.5 1181.73 576.27 -4871.91 722.9534 U3b(min) J[28] Torsion -268.4 142.45 1067.51 -854.75 -3838.51 -839.9326 U4(min) J[27] Moment-y -215.35 -125.62 1165.87 441.82 -6264.1 693.31

3rd span 35 U4(min) I[29] Shear-z 83.01 104.35 -1547.42 -789.06 -5603.39 593.6843 U3b(min) I[30] Torsion 142.71 143.12 -1302.33 -1102.55 -2280.86 828.2240 U4(max) I[55] Moment-y 35.43 20.87 -208.44 -116.89 5697.52 -188.7

The Guideway beam hollow section is checked for shear capacity at a location of max. shear & corresponding moment &torsion and then at a location of max. torsion & corresponding shear & moment. The locations are based on sorted resultsobtained from MIDAS analysis, as tabulated below:

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 58 of 71

Page 61: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

Element No.(refer above table & MIDAS model) 88 83

Node end J[23] J[72]fck = MPa 60 60fy = MPa 415 415Duct diameter= m 0.085 0.085B m 0.8 0.8D m 2.2 2.2Depth of hollow box inside beam m 1.6 1.6Width of hollow box inside beam m 0.22 0.22Eff. Depth of beam d (m) 2.20 2.20Eff. Width of beam b(m) 0.4667 0.4667dist of T1, T2 from top(m) 1.7 1.7dist of T3, T4(m) 0.9 0.9dist of T5,T6(m) 0.5 0.5Area of T1,T2(mm2) 1400 1400Area of T3,T4(mm2) 1680 1680Area of T5,T6(mm2) 1680 1260Factored PS T1,T2(KN) 1538 1538Factored PS T3,T4(KN) 1935 1935Factored PS T5,T6(KN) 1910 1910Area of beam in section A (m2) 0.280 0.280Dist. of c.g of beam from comp. fibre y (m) 1.1 1.1Moment of inertia of beam I(m4) 0.63 0.63Ecc. of tendon T1,T2 e1(T1,T2) (m) -0.5710 -0.5710 (-ve indicates below c.g of beam)Ecc. of tendon T3,T4 e2(T3,T4) (m) 0.2064 0.2064 (+ve indicates above c.g of beam)Ecc. of tendon T5,T6 e3(T5,T6) (m) 0.5728 0.5728 (+ve indicates above c.g of beam)Prestress on beam P/A (Mpa) 38.5 38.5

Pe1*y/I (Mpa) -3.0 -3.0Pe2*y/II (Mpa) 1.4 1.4Pe3*y/II (Mpa) 3.8 3.8fp-comp (Mpa) 40.6 40.6

fp-tension(Mpa) 36.3 36.3CG of Tendons (m) 1.2 1.2

Cracking Moment of beam Mcr(KN-m) 22611.6 22611.6ft(Mpa) 1.9 1.9

Vco(KN) 5954.55 5954.55From above tables, M at Max V (kNm) 4270.00 5852.00

Max V (kN) 1639.00 563.00Shear at Max Mn(kN) 1471.00 111.00

Max M (kNm) 4545.00 7177.00Governing Shear (Max V) 1639.00 563.00

Shear stress (Mpa) 1.6 0.5Vcr 1 (KN) 8840.7 2330.8Vcr 2 (KN) 7479.7 505.1

Min Vcr (IRC 16.4.4.3) (KN) 795.3 795.3V limiting (KN) 5954.5 795.3

Dia of stirrups 16 16Number of stirrups 2 2Dia of links 12 12Number of links 2 2Area of links provided Asv 628.3 628.3Dia of Longi bars 16 16Cover (mm) 50 50Eff.depth of beam dt 2126 2126Spacing of stirrups reqd. Sv req(mm) 450 450

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 59 of 71

Page 62: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

4.4.1 Check for Max. Torsion at Hollow section

Element 43

Max Torsion (KN-m) 1102.60 kNmCorresponding shear (kN) 1302.30 kNB (mm) 800 mmD (mm) 2200 mmThickness of web (mm) 290 mmThickness of top flange (mm) 250 mmThickness of bottom flange (mm) 250 mmAo (mm2) 994500 mm2

Torsional stress v (Mpa) 1.9 N/mm2

V min (Mpa) 0.42 N/mm2

Ast required Reqd.

V+Vt (Mpa) 2.7 N/mm2

Max allowable stress (Mpa) 5.80 N/mm2

Status OK

dia of stirrups (mm) 16.0 mmspacing of stirrups (mm) 100.0 mmNumber of outer legs 2 no.Ast (mm2) 201.06 mm2

T/(2*Ao*.87*fyv) 1.54Ast/Sv 2.01Status OK

Dia of longi bars 16.0 mmNumber of bars in bundle 2 no.AsL 402.12 mm2

(Ast/Sv)*(fyv/fyL) 1.27Minimum spacing req.(mm) 315.5 mmSpacing provided(mm) 200.0 mmStatus OK

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 60 of 71

Page 63: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

4.5 Check for Shear at Solid section (As per IRC concrete bridge code)

Location Elem Load Part Component Axial (kN)Shear-y (kN)

Shear-z (kN)

Torsion (kN·m)

Moment-y (kN·m)

Moment-z (kN·m)

1st span 61 U4(max) J[18] Shear-z -214.78 -88.93 1840.59 157.81 -8437.13 331.9957 U3b(max) J[17] Torsion 17.89 -133.1 1347.27 417.45 -5386.02 462.9461 U4(min) J[18] Moment-y -220.69 -87.89 1722.21 132.84 -8517.12 316.6

2nd span 65 U4(max) J[13] Shear-z -222.21 -150.63 1503.23 382.71 -7640.89 1032.6368 U3b(min) J[14] Axial -295.85 155.33 1184.66 -1012.87 -6270.28 -1163.0665 U4(min) J[13] Moment-y -228.05 -148.11 1436.11 197.64 -9045.0 1000.35

3rd span 67 U4(min) I[15] Shear-z 108.44 112.55 -1797.62 -571.81 -9011.4 805.4570 U4(min) I[16] Torsion 94.9 123.37 -1362.57 -1071.78 -4073.85 943.4767 U4(min) I[15] Moment-y 104.75 114.88 -1683.88 -584.86 -9219.54 831.8

The Guideway beam hollow section is checked for shear capacity at a location of max. shear & corresponding moment & torsion andthen at a location of max. torsion & corresponding shear & moment. The locations are based on sorted results obtained from MIDASanalysis, as tabulated below:

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 61 of 71

Page 64: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

Element No.(refer above table & MIDAS model) 61 67

Node end J[18] I[15]fck = MPa 60 60fy = MPa 415 415Duct diameter= m 0.085 0.085B m 0.8 0.8D m 2.2 2.2Depth of hollow box inside beam m 0 0Width of hollow box inside beam m 0 0Eff. Depth of beam d (m) 2.20 2.20Eff. Width of beam b(m) 0.6867 0.6867dist of T1, T2 from top(m) 1.6 1.6dist of T3, T4(m) 0.8 0.6dist of T5,T6(m) 0.4 0.3Area of T1,T2(mm2) 1400 1400Area of T3,T4(mm2) 1680 1680Area of T5,T6(mm2) 1680 1260Factored PS T1,T2(KN) 1519 1491Factored PS T3,T4(KN) 1920 1832Factored PS T5,T6(KN) 1884 1848Area of beam in section A (m2) 1.511 1.511Dist. of c.g of beam from comp. fibre y (m) 1.1 1.1Moment of inertia of beam I(m4) 0.71 0.71Ecc. of tendon T1,T2 e1(T1,T2) (m) -0.5000 -0.5000 (-ve indicates below c.g of beam)Ecc. of tendon T3,T4 e2(T3,T4) (m) 0.2506 0.5472 (+ve indicates above c.g of beam)Ecc. of tendon T5,T6 e3(T5,T6) (m) 0.6511 0.8478 (+ve indicates above c.g of beam)Prestress on beam P/A (Mpa) 7.0 6.8

Pe1*y/I (Mpa) -2.4 -2.3Pe2*y/II (Mpa) 1.5 3.1Pe3*y/II (Mpa) 3.8 4.9fp-comp (Mpa) 10.0 12.5

fp-tension(Mpa) 4.1 1.2CG of Tendons (m) 1.3 1.4

Cracking Moment of beam Mcr(KN-m) 4500.69 2620.06ft(Mpa) 1.9 1.9

Vco(KN) 4118.46 4071.66From above tables, M at Max V (kNm) 8437.00 9011.00

Max V (kN) 1841.00 1798.00Shear at Max Mn(kN) 1722.00 1684.00

Max M (kNm) 8517.00 9220.00Governing Shear (Max V) 1841.00 1798.00

Shear stress (Mpa) 1.2 1.2Vcr 1 (KN) 1232.2 797.7Vcr 2 (KN) 1160.1 753.4

Min Vcr (IRC 16.4.4.3) (KN) 1170.2 1170.2V limiting (KN) 1170.2 1170.2

Dia of stirrups 16 16Number of stirrups 2 2Dia of links 16 16Number of links 2 2Area of links provided Asv 804.2 804.2Dia of Longi bars 16 16Cover (mm) 50 50Eff.depth of beam dt 2126 2126Spacing of stirrups reqd. Sv req(mm) 450 450

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 62 of 71

Page 65: Frame 17 GB Design Report

MUMBAI MONORAIL

______________________________________________________________________________

4.5.1 Check for Max. Torsion at Hollow section

Element 70

Max Torsion (KN-m) 1072.000 kNmCorresponding shear (kN) 1363.000 kNB (mm) 800 mmD (mm) 2200 mmThickness of web (mm) 290 mmThickness of top flange (mm) 250 mmThickness of bottom flange (mm) 250 mmAo (mm2) 994500.0 mm2

Torsional stress v (Mpa) 1.9 N/mm2

V min (Mpa) 0.42 N/mm2

Ast required Reqd.

V+Vt (Mpa) 2.6 N/mm2

Max allowable stress (Mpa) 5.80 N/mm2

Status OK

dia of stirrups (mm) 16.0 mmspacing of stirrups (mm) 100.0 mmNumber of outer legs 2 no.Ast (mm2) 201.06 mm2

T/(2*Ao*.87*fyv) 1.49Ast/Sv 2.0Status OK

Dia of longi bars 16.0 mmNumber of bars in bundle 2 no.AsL 402.12 mm2

(Ast/Sv)*(fyv/fyL) 1.24Minimum spacing req.(mm) 324.6 mmSpacing provided(mm) 200.0 mmStatus OK

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1

Page 63 of 71

Page 66: Frame 17 GB Design Report

MUMBAI MONORAIL

_____________________________________________________________________________________

4.6 END BLOCK DESIGN

4.6.1 GEOMETRY AND PRESTRESS LOADS

The cross-sectional geometry at the expansion joint end of the PC Guideway beam is as

shown in the following figure. The six tendons are stressed to the following forces and the

anchorages are 265mm square

Anchorage Data

X(mm) Y(mm) X Dim (mm)Y Dim

(mm)

Nos of

strands

Jacking

Force per

Strand

Jacking

Force of

Anchor

1 -165 550 275 275 10 195 1950

2 -165 550 275 275 10 195 1950

3 -165 975 275 275 12 195 2340

4 -165 975 275 275 12 195 2340

5 -165 1600 275 275 12 195 2340

6 -165 1600 275 275 12 195 2340

4.6.2 PRIMARY REINFORCEMENT

Provide reinforcement around each anchorage to resist the bursting forces. The magnitude of

these forces depends on the size of the anchorage and dimensions of the theoretical prism

surrounding the anchorage as tabulated below

Vertically Laterally Vertically Laterally Vertically Laterally Vertically Laterally

1 425 330 0.65 0.83 0.126 0.11 1227 1073

2 425 330 0.65 0.83 0.126 0.11 1227 1073

3 675 330 0.41 0.83 0.198 0.11 2314 1287

4 675 330 0.41 0.83 0.198 0.11 2314 1287

5 675 330 0.41 0.83 0.198 0.11 2314 1287

6 675 330 0.41 0.83 0.198 0.11 2314 1287

Maximum reinforcement = 2314 mm2

Provide 12 dia helical upto 330 mm from face

nos of rounds = 8

Anchor

Location Anchor Size Jacking Force(KN)

CablePrism Dimensions Ypo / Yo Fbst / Pk Area of Steel required

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1 Page 64 of 71

Page 67: Frame 17 GB Design Report

MUMBAI MONORAIL

_____________________________________________________________________________________

4.6.3 SECONDARY OR EQUILIBRIUM REINFORCEMENT

As well as providing primary reinforcement in the immediate vicinity of the anchorages, it is

necessary to consider the overall equilibrium of the anchor block and to determine any outof-

balance forces and moments that may be set up by the anchorages acting individually or

together. Check for the following stressing sequence.

Case

1 1

2 1 2

3 1 2 3

4 1 2 3 4

5 1 2 3 4 5

6 1 2 3 4 5 6

Transverse Out-Of-balance Moments In Vertical Plane

Transverse out-of-balance moments in vertical plane are as tabulated below

Due to

distribution

Due to

anchorages

Net Vertical

Moment

(KNm)

Due to

distributio

n

Due to

anchorages

Net

Vertical

Moment

(KNm)

0 0 0.00 0.00 0.00 0.00 0.00

110 13.14 0.00 13.14 26.28 0.00 26.28

220 51.48 0.00 51.48 102.96 0.00 102.96

330 113.42 0.00 113.42 226.85 0.00 226.85

440 197.36 -2.68 194.68 394.71 -5.36 389.35

550 301.67 -67.03 234.64 603.35 -134.06 469.29

660 424.77 -217.18 207.59 849.54 -434.36 415.17

770 565.03 -429.00 136.03 1130.06 -858.00 272.06

880 720.86 -643.50 77.36 1441.71 -1287.00 154.71

990 890.64 -858.00 32.64 1781.28 -1716.00 65.28

1100 1072.77 -1072.50 0.27 2145.54 -2145.00 0.54

1210 1265.64 -1287.00 -21.36 2531.28 -2574.00 -42.72

1320 1467.64 -1501.50 -33.86 2935.29 -3003.00 -67.71

1430 1677.17 -1716.00 -38.83 3354.35 -3432.00 -77.65

1540 1892.63 -1930.50 -37.87 3785.25 -3861.00 -75.75

1650 2112.39 -2145.00 -32.61 4224.78 -4290.00 -65.22

1760 2334.86 -2359.50 -24.64 4669.72 -4719.00 -49.28

1870 2558.43 -2574.00 -15.57 5116.85 -5148.00 -31.15

1980 2781.48 -2788.50 -7.02 5562.97 -5577.00 -14.03

2090 3002.43 -3003.00 -0.57 6004.85 -6006.00 -1.15

2200 3219.65 -3217.50 2.15 6439.29 -6435.00 4.29

MAX 234.64 MAX 469.29

MIN -38.83 MIN -77.65

Dimension

from

Bottom

Case-1 Case-2

Stressed cables/ Tendons

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1 Page 65 of 71

Page 68: Frame 17 GB Design Report

MUMBAI MONORAIL

_____________________________________________________________________________________

Due to

distribution

Due to

anchorages

Net Vertical

Moment

(KNm)

Due to

distributio

n

Due to

anchorages

Net

Vertical

Moment

(KNm)

0 0.00 0.00 0.00 0.00 0.00 0.00

110 21.69 0.00 21.69 43.39 0.00 43.39

220 85.41 0.00 85.41 170.83 0.00 170.83

330 189.11 0.00 189.11 378.22 0.00 378.22

440 330.74 -2.68 328.06 661.48 -5.36 656.12

550 508.26 -67.03 441.23 1016.52 -134.06 882.46

660 719.62 -217.18 502.44 1439.25 -434.36 1004.88

770 962.78 -429.00 533.78 1925.57 -858.00 1067.57

880 1235.69 -651.18 584.51 2471.39 -1302.37 1169.02

990 1536.31 -956.94 579.37 3072.63 -1913.89 1158.74

1100 1862.59 -1365.66 496.93 3725.18 -2731.33 993.85

1210 2212.49 -1836.90 375.59 4424.97 -3673.80 751.17

1320 2583.95 -2308.80 275.15 5167.90 -4617.60 550.30

1430 2974.94 -2780.70 194.24 5949.88 -5561.40 388.48

1540 3383.41 -3252.60 130.81 6766.81 -6505.20 261.61

1650 3807.31 -3724.50 82.81 7614.62 -7449.00 165.62

1760 4244.60 -4196.40 48.20 8489.20 -8392.80 96.40

1870 4693.23 -4668.30 24.93 9386.46 -9336.60 49.86

1980 5151.16 -5140.20 10.96 10302.32 -10280.40 21.92

2090 5616.34 -5612.10 4.24 11232.68 -11224.20 8.48

2200 6086.73 -6084.00 2.73 12173.46 -12168.00 5.46

MAX 584.51 MAX 1169.02

MIN 0.00 MIN 0.00

Dimension

from

Bottom

Case-4 Case-5

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1 Page 66 of 71

Page 69: Frame 17 GB Design Report

MUMBAI MONORAIL

_____________________________________________________________________________________

Due to

distribution

Due to

anchorages

Net Vertical

Moment

(KNm)

Due to

distributio

n

Due to

anchorages

Net

Vertical

Moment

(KNm)

0 0.00 0.00 0.00 0.00 0.00 0.00

110 19.65 0.00 19.65 39.29 0.00 39.29

220 78.39 0.00 78.39 156.78 0.00 156.78

330 175.94 0.00 175.94 351.88 0.00 351.88

440 312.00 -2.68 309.32 624.01 -5.36 618.64

550 486.29 -67.03 419.26 972.57 -134.06 838.51

660 698.50 -217.18 481.32 1397.00 -434.36 962.64

770 948.35 -429.00 519.35 1896.70 -858.00 1038.70

880 1235.54 -651.18 584.36 2471.09 -1302.37 1168.72

990 1559.79 -956.94 602.85 3119.58 -1913.89 1205.69

1100 1920.80 -1365.66 555.13 3841.60 -2731.33 1110.27

1210 2318.27 -1836.90 481.37 4636.55 -3673.80 962.75

1320 2751.92 -2308.80 443.12 5503.85 -4617.60 886.25

1430 3221.46 -2780.70 440.76 6442.92 -5561.40 881.52

1540 3726.58 -3278.15 448.43 7453.17 -6556.31 896.86

1650 4267.01 -3874.07 392.93 8534.02 -7748.15 785.87

1760 4842.44 -4570.80 271.64 9684.88 -9141.60 543.28

1870 5452.59 -5300.10 152.49 10905.17 -10600.20 304.97

1980 6097.15 -6029.40 67.75 12194.31 -12058.80 135.51

2090 6775.85 -6758.70 17.15 13551.71 -13517.40 34.31

2200 7488.39 -7488.00 0.39 14976.78 -14976.00 0.78

MAX 602.85 MAX 1205.69

MIN 0.00 MIN 0.00

Dimension

from

Bottom

Case-5 Case-6

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1 Page 67 of 71

Page 70: Frame 17 GB Design Report

MUMBAI MONORAIL

_____________________________________________________________________________________

Maximum moment = 1205.69 KNm

lever arm = 1.1 m

Fy = 240 Mpa

Area of steel required = 4567.02285 mm2

Provide

2 nos 2 T 16 @ 100 mm c/c for 1.1 m from

face

Area provided = 8846.72 mm2 OK

-200.00

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

0 500 1000 1500 2000 2500

Net Transverese Moment in Vertical Plane

Case1

Case2

Case3

Case4

Series5

Case5

Case6

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1 Page 68 of 71

Page 71: Frame 17 GB Design Report

MUMBAI MONORAIL

_____________________________________________________________________________________

Transverse Out-Of-balance Moments In Horizontal Plane

Transverse out-of-balance moments in vertical plane are as tabulated below

Due to

distribution

Due to

anchorages

Net Vertical

Moment

(KNm)

Due to

distributio

n

Due to

anchorages

Net

Vertical

Moment

(KNm)

0 0 0.00 0.00 0.00 0.00 0.00

110 11.19 0.00 11.19 22.38 0.00 22.38

220 43.88 0.00 43.88 87.75 0.00 87.75

330 96.75 0.00 96.75 193.50 0.00 193.50

440 168.49 0.00 168.49 336.99 0.00 336.99

550 257.79 -22.54 235.26 515.59 -45.08 470.51

660 363.33 -122.71 240.63 726.66 -245.41 481.25

770 483.80 -298.35 185.45 967.59 -596.70 370.89

880 617.87 -491.40 126.47 1235.74 -982.80 252.94

990 764.24 -684.45 79.79 1528.49 -1368.90 159.59

1100 921.59 -877.50 44.09 1843.19 -1755.00 88.19

1210 1088.61 -1070.55 18.06 2177.22 -2141.10 36.12

1320 1263.98 -1263.60 0.38 2527.96 -2527.20 0.76

1430 1446.38 -1456.65 -10.27 2892.77 -2913.30 -20.53

1540 1634.51 -1649.70 -15.19 3269.01 -3299.40 -30.39

1650 1827.04 -1842.75 -15.71 3654.07 -3685.50 -31.43

1760 2022.66 -2035.80 -13.14 4045.32 -4071.60 -26.28

1870 2220.06 -2228.85 -8.79 4440.11 -4457.70 -17.59

1980 2417.91 -2421.90 -3.99 4835.83 -4843.80 -7.97

2090 2614.92 -2614.95 -0.03 5229.84 -5229.90 -0.06

2200 2809.76 -2808.00 1.76 5619.51 -5616.00 3.51

MAX 240.63 MAX 481.25

MIN -15.71 MIN -31.43

Dimension

from

Bottom

Case-1 Case-2

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1 Page 69 of 71

Page 72: Frame 17 GB Design Report

MUMBAI MONORAIL

_____________________________________________________________________________________

Due to

distribution

Due to

anchorages

Net Vertical

Moment

(KNm)

Due to

distributio

n

Due to

anchorages

Net

Vertical

Moment

(KNm)

0 0.00 0.00 0.00 0.00 0.00 0.00

110 15.50 0.00 15.50 31.01 0.00 31.01

220 61.43 0.00 61.43 122.85 0.00 122.85

330 136.89 0.00 136.89 273.79 0.00 273.79

440 241.03 0.00 241.03 482.06 0.00 482.06

550 372.96 -22.54 350.42 745.91 -45.08 700.84

660 531.80 -122.71 409.09 1063.59 -245.41 818.18

770 716.68 -298.35 418.33 1433.35 -596.70 836.65

880 926.71 -491.40 435.31 1853.43 -982.80 870.63

990 1161.04 -684.45 476.59 2322.08 -1368.90 953.18

1100 1418.77 -877.75 541.02 2837.54 -1755.50 1082.05

1210 1699.03 -1131.51 567.53 3398.07 -2263.01 1135.06

1320 2000.95 -1492.11 508.84 4001.91 -2984.22 1017.69

1430 2323.65 -1936.35 387.30 4647.30 -3872.70 774.60

1540 2666.25 -2386.80 279.45 5332.49 -4773.60 558.89

1650 3027.87 -2837.25 190.62 6055.74 -5674.50 381.24

1760 3407.64 -3287.70 119.94 6815.28 -6575.40 239.88

1870 3804.68 -3738.15 66.53 7609.36 -7476.30 133.06

1980 4218.12 -4188.60 29.52 8436.24 -8377.20 59.04

2090 4647.07 -4639.05 8.02 9294.15 -9278.10 16.05

2200 5090.67 -5089.50 1.17 10181.34 -10179.00 2.34

MAX 567.53 MAX 1135.06

MIN 0.00 MIN 0.00

Due to

distribution

Due to

anchorages

Net Vertical

Moment

(KNm)

Due to

distributio

n

Due to

anchorages

Net

Vertical

Moment

(KNm)

0 0.00 0.00 0.00 0.00 0.00 0.00

110 10.49 0.00 10.49 20.97 0.00 20.97

220 42.94 0.00 42.94 85.87 0.00 85.87

330 98.84 0.00 98.84 197.69 0.00 197.69

440 179.70 0.00 179.70 359.39 0.00 359.39

550 286.98 -22.54 264.45 573.97 -45.08 528.89

660 422.20 -122.71 299.49 844.40 -245.41 598.99

770 586.83 -298.35 288.48 1173.66 -596.70 576.96

880 782.37 -491.40 290.97 1564.74 -982.80 581.94

990 1010.30 -684.45 325.85 2020.61 -1368.90 651.71

1100 1272.13 -877.75 394.38 2544.25 -1755.50 788.76

1210 1569.33 -1131.51 437.82 3138.65 -2263.01 875.64

1320 1903.39 -1492.11 411.29 3806.79 -2984.22 822.57

1430 2275.82 -1936.35 339.47 4551.64 -3872.70 678.94

1540 2688.09 -2386.80 301.29 5376.19 -4773.60 602.59

1650 3141.71 -2837.50 304.21 6283.42 -5675.00 608.42

1760 3638.15 -3348.66 289.49 7276.30 -6697.31 578.99

1870 4178.91 -3966.66 212.25 8357.82 -7933.32 424.50

1980 4765.48 -4668.30 97.18 9530.96 -9336.60 194.36

2090 5399.35 -5376.15 23.20 10798.70 -10752.30 46.40

2200 6082.01 -6084.00 -1.99 12164.02 -12168.00 -3.98

MAX 437.82 MAX 875.64

MIN -1.99 MIN -3.98

Dimension

from

Bottom

Case-5 Case-6

Dimension

from

Bottom

Case-4 Case-5

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1 Page 70 of 71

Page 73: Frame 17 GB Design Report

MUMBAI MONORAIL

_____________________________________________________________________________________

Maximum moment = 1135.06 KNm

lever arm = 1.1 m

Fy = 200 Mpa

Area of steel required = 5159.35239 mm2

Provide

2 nos 2 T 16 @ 100 mm c/c for 1.1 m from face

Area provided = 8846.72491 mm2 OK

LTSEDefinitive Design Review

Design Calculation for Frame 17

MM002-D-DR-EPW-LTSE-311050 Rev. A1 Page 71 of 71