frames_mf asdfg asdfg

Upload: gabriel-bejan

Post on 07-Aug-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/21/2019 frames_mf asdfg asdfg

    1/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 1 -

    FRAMES

    FORCES METHODEXTERNAL LOADS

    Using the forces method, let solve the following frame subjected to the indicated external loads.

    Numerical data:

    3,8 ; 3 ; 30 / ; 48 ; 64L m H m p kN m F kN M kN m= = = = =

    Solution:

    4I0

    I0

    2I0

    F

    4I0

    p

    L L/3

    3H/4

    H

    1. Establishing the static indeterminacy degree:The degree of static indeterminacy is given by the following relationship:

    3 ( ) 3 1 (0 6) -3n c l r s = + = + =

    The frame is three times statically indeterminate.

    2. Choosing the primary system:The forces methodwas originally developed by J.G. Maxwell and refined by Otto Mohr and Muller-

    Breslau. This method was one of the first available for the analysis of statically indeterminate structures.

    The force method consists of writing equations that satisfy the compatibility and forces displacement

    requirements for the structure and involve redundant forces as the unknowns. The coefficients of these

    unknowns are called flexibility coefficients. Since compatibility forms the basis for this method, it has

    sometimes been referred to as the compatibility methodor the method of consistent deformations.Once the redundant forces have been determined, the structure are determined by satisfying the

    equilibrium requirements for the structure. The fundamental principles involved in applying this method

    are easy to understand and develop.

  • 8/21/2019 frames_mf asdfg asdfg

    2/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 2 -

    First, a primary systemmust be chosen and attached to the hyperstatic frame. The primary system must

    be statically determinate and loaded with the external loads (forces, temperature variation, different

    settlements) and with the internal efforts and/or reactive forces or bending moments which correspond

    and must be compatible to all supplementary removed links, identified as 1, 2 ,...X X . the unknowns to

    be solved.Theoretically, in the forces method an infinite number of primary systems could be attached to the

    original hyperstatic system. Usually, the most suitable or the optimum primary system will be chosen

    considering the numerical analysis the simplest way to draw the bending moment diagrams, the

    minimum number of beams involved in the multiplications, the structure and/or the load symmetry etc.

    For the above frame, some examples of primary systems are shown in Fig. 2.b, 2.c, 2.d, 2.e, and theoptimum one was considered the frame presented in Fig. 2.a

    4I0

    I0

    2I0

    F

    4I0

    p

    3,8 1,27

    2,25

    3

    X 1

    X 2

    X 3

    a)

    3,8 1,27

    2,25

    3

    A

    B C

    D E

    X3

    X2

    X1

    3,8 1,27

    2,25

    3

    A

    B C

    D E

    X3

    X1

    X2

    b) c) Mechanism!Fig. 2

  • 8/21/2019 frames_mf asdfg asdfg

    3/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 3 -

    3,8 1,27

    2,25

    3

    A

    B C

    D E

    X1 X1

    X2

    X2

    X3

    X3

    3,8 1,27

    2,25

    3

    A

    B C

    D E

    X1

    X2

    X2

    X2

    d) e) Critical system!Fig. 2(continued)3. Elastic equilibrium equations

    are obtained writing the compatibility relationships on each removed link, which means a

    null displacement (translation or rotation) on each unknown directioni

    X ,

    and, if expanded, the following equations system results:

    11 1 12 2 13 3 1

    21 1 22 2 23 3 2

    31 1 32 2 33 3 3

    0

    0

    0

    p

    p

    p

    X X X

    X X X

    X X X

    + + + =

    + + + =

    + + + =

    4. Find out the unknowns coefficients and the corresponding free terms4.1.The main and secondary coefficients

    are obtained with the following simplified Mohr-Maxwell relationships (the axial and shear forceeffects are neglected):

    0

    l

    i iM M dxEIii

    0 0

    l l

    i jj iM M M M

    dx dxEI EIij ji

    = = where Mi si Mj are the bending moments diagrams on the primary system which is loaded only

    withi

    X =1, andj

    X =1 respectively, representing the real load,i

    M andj

    M are the bending moments

    diagrams on the primary system loaded only with a virtual unit force 1 , representing the virtual load.

    Of course, by the geometrical point of view, the real bending moments diagrams are identical with the

    virtual bending moments diagrams, consequently only one diagram will be drawn.

    0i

    a

    X =

  • 8/21/2019 frames_mf asdfg asdfg

    4/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 4 -

    - Primary system loaded with 1X = 1, and with 1 , respectively ( 1 1M M ):

    3,8 1,27

    2,25

    3

    A

    B C

    D E

    5,25

    3

    M1X =11

    1

    M1

    0; 1 3 3 ; 0; 3 ;

    1 5,25 5,25 ; 5,25 ; 5,25 .

    AB CB BD

    A B B B

    BD DE

    D D E

    M M kNm M M kNm

    M kNm M kNm M kNm

    = = = = =

    = = = =

    ( )

    2 21 111

    0 00

    0 0

    1 1 2 2, 253 3 3 2 3 2 5, 25 3 5, 25 5, 25 3

    2 2 3 6

    1 78,67 5,25 5.07 5.25

    4

    l

    b

    M Mdx

    EI E I E I

    E I EI

    = = + + + + +

    + =

    - Primary system loaded with 2X = 1, and with 1 , respectively ( 2 2M M ):

    3,8 1,27

    2,25

    3

    A

    B C

    D

    E

    5,07

    M2

    X =121

    M2

  • 8/21/2019 frames_mf asdfg asdfg

    5/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 5 -

    0A B C DM M M M= = = =

    5,07E

    M kNm=

    2 222

    0 00

    1 1 2 10,865,07 5,07 5,07

    4 2 3

    l

    b

    M Mdx

    EI E I EI = = =

    - Primary system loaded with 3X = 1, and with 1 , respectively ( 3 3M M ):

    3,8 1,27

    2,25

    3

    A

    B C

    D

    E

    3,8

    3,8

    1,27

    M3

    X =13

    1

    M3

    0

    AM = ;

    0; 1 3,8 3,8 ; 0; 3,8 ; 3,8 ;CB AB BC BDC B B B DM M kNm M M kNm M kNm= = = = = =

    3,8 ; 1,27DED E

    M kNm M kNm= =

    ( )

    3 333

    0 00

    2 2

    0 0

    1 1 2 13,8 3,8 3,8 3,8 2, 25 3,8

    4 2 3

    5,07 41,8

    2 3,8 2 1, 27 3,8 1, 27 1,27 3,86 4

    l

    b

    M Mdx

    EI E I E I

    E I EI

    = = + +

    + + =

    The secondary coefficients are:

    1 2 1 212 21

    0 00 0

    1 5,07 5,07 16,875,25

    4 2

    l l

    b b

    M M M Mdx dx

    EI EI E I EI

    = = = = =

    1 313 31

    0 0 00

    1 (3 5,25) 2, 25 1 1 1 43,693,8 3,8 5.07 5.25 1.27 5.07 5.25

    2 4 2 2

    l

    b

    M Mdx

    EI EI E I EI

    + = = = + =

    2 3 3 2

    23 320 0

    0 0

    5,07 1,35(2 5, 07 1, 27 5, 07 3,8)

    6 4

    l l

    b b

    M M M Mdx dx

    EI EI E I EI

    = = = = =

  • 8/21/2019 frames_mf asdfg asdfg

    6/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 6 -

    The sum of the unknowns coefficients is:

    , 1

    78, 67 10,86 41,8 2 (43, 69 16,87 1,35) 182, 27sn

    I

    SS ij

    i j

    =

    = = + + + =

    4.2. The free terms are obtained applying also the simplified Mohr-Maxwell equation:

    0

    l

    p i

    ip

    b

    M Mdx

    EI

    where

    pM is the bending moment diagram on the primary system produced by the external loads (and,

    of course, it represents the real load).

    1

    1

    00

    0 0

    2,25(2 216, 6 3 2 108, 6 5, 25 216, 6 5, 25 108, 6 3)

    6

    5,07 263, 24( 2 108, 6 5, 25 2 469, 36 5, 25 108, 6 5, 25 469, 36 5, 25)

    6 4

    l

    p

    p

    b

    M Mdx

    EI E I

    E I EI

    = = + + + +

    + + + =

    ( )220 0

    0

    5,07 889,092 469, 36 5, 07 108, 6 5, 07

    6 4

    l

    p

    p

    b

    M Mdx

    EI E I EI = = + =

    3

    3

    0 00

    0 0

    1 1 3 1 (216,6 108,6) 2.253,8 216,6 3,8 3,8

    4 3 4 2

    5,07 1606( 2 108, 6 3,8 2 469,36 1, 27 108, 6 1, 27 469, 36 3,8)

    6 4

    l

    p

    p

    b

    M Mdx

    EI E I E I

    E I EI

    + = = +

    + + + =

    48 kN

    30 kN/m

    3,8 1,27

    2,25

    3

    A

    B C

    D

    E

    3,8 1,27

    2,25

    3

    216,6

    108,6

    469,36

    Mp

  • 8/21/2019 frames_mf asdfg asdfg

    7/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 7 -

    The sum of all free terms is:

    1

    263, 24 889, 09 1606 2758.33sn

    I

    Sp ip

    i=

    = = =

    5. Checking the unknown coefficients and the free termsThe coefficients are correctly solved if the following condition is checked:

    2

    1 10

    s s

    ln n

    I II sSS ij SS

    i j b

    Mdx

    EI

    = =

    = = =

    3,8 1,27

    2,25

    3

    Ms

    3

    3,8

    9,05

    1,09

    6,8

    X =13

    X =12

    X =11

    ( )( )

    2

    0 00

    2 2

    0

    2 2

    0 0

    1 1 2 1 1 23 3 3 3,8 3,8 3,8

    2 2 3 4 2 3

    2,252 6,8 2 9,05 6,8 9,05 6,8 9,05

    6

    5,07 182,272 9,05 2 1,09 9,05 1,09 9,05 1,09

    6 4

    l

    II sSS

    b

    Mdx

    EI E I E I

    E I

    E I EI

    = = + +

    + + + + +

    + + =

    I II

    SS SS =

    Condition checked, the unknown coefficients are correctly solved.

    The free terms are correctly solved if the following condition is checked:

    10

    s

    ln

    p sI IISp ip Sp

    i b

    M M dxEI=

    = = =

  • 8/21/2019 frames_mf asdfg asdfg

    8/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 8 -

    ( )

    ( )

    00

    0

    0 0

    1 1 3216,6 3,8 3,8

    4 3 4

    2,252 216,6 6,8 2 108, 6 9,05 108, 6 6,8 216, 6 9,056

    5,07 2758.332 108, 6 9, 05 2 469, 36 1, 09 463, 36 9, 05 108, 6 1, 09

    6 4

    l

    p sII

    sp

    b

    M Mdx

    EI E I

    E I

    E I EI

    = =

    + + + +

    + + + =

    I II

    Sp Sp =

    Condition checked, the free terms are correctly solved.

    6.

    Let solve the system of equations to find out the unknownsXi

    11 1 12 2 13 3 1

    21 1 22 2 23 3 2

    31 1 32 2 33 3 3

    0

    0

    0

    p

    p

    p

    X X X

    X X X

    X X X

    + + + =

    + + + =

    + + + =

    1 2 3

    0 0 0 0

    1 2 3

    0 0 0 0

    1 2 3

    0 0 0 0

    78,67 16,87 43,69 263,240

    16,87 10,86 1,35 889,09 0

    43,39 1,35 41,8 16060

    X X XEI EI EI EI

    X X XEI EI EI EI

    X X XEI EI EI EI

    + =

    + =

    + =

    or

    1 2 3

    1 2 3

    1 2 3

    78,67 16,87 43,69 263, 24

    16,87 10,86 1,35 889,09

    43,39 1,35 41,8 1606

    X X X

    X X X

    X X X

    + =

    + =

    + =

    having the following solution:

    1

    2

    3

    6.293

    77.99

    47.472

    X kN

    X kN

    X kN

    =

    =

    =

  • 8/21/2019 frames_mf asdfg asdfg

    9/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 9 -

    7. Drawing the final internal efforts diagrams:

    3.8 1.27

    2.25

    3.0

    48 kN

    30 kN/m

    6.29 kN

    47.47 kN

    77.99 kN

    -

    N

    -

    77.99 kN

    11.46 kN

    41.71 kN

    -

    +

    -

    6.29 kN

    41.71 kN

    Q

    47.47 kN

    66.53 kN+

    -

    11.46 kN

    +

  • 8/21/2019 frames_mf asdfg asdfg

    10/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 10 -

    M

    39.37 kNm

    19.34 kNm

    54.48 kNm

    18.87 kNm

    35.61 kNm37.55 kNm

    1.58 m

    8. Checking the diagrams8.1 Static equilibrium checks:

    - Joint equilibrium of the node B:

    41.71 48 6.29 0

    77.99 11, 46 66.53 0

    54.48 18.87 35.61 0

    X

    Y

    node

    F

    F

    M

    = + =

    = =

    = + + =

  • 8/21/2019 frames_mf asdfg asdfg

    11/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 11 -

    The final bending moment diagram Mf could be checked applying the virtual work method on the

    following floor mechanism or on any other local or global mechanism:

    M

    39.37 kNm

    54.48 kNm

    18.87 kNm

    48 kN

    1= 2 25

    2= 3

    ( )1 2( ) (39,37 54, 48) 48 18,87 39,37 54,48 48 18,87 0

    2, 25 3VW

    = + + = + + =

    The bending moment diagram is checked.

    8.2 Elastic checkings of the final bending moment diagram Mf:

    The final bending moment diagram Mf is correctly drawn if the following condition is

    checked:

    0

    0i

    l

    f i

    X

    b

    M M

    dxEI

    = =

    which means that the displacement on any unknown direction must be null.

    ( )

    ( )

    1

    1

    0

    0 0

    5,072 39.37 5.25 2 19.34 5.25 39.37 5.25 19.34 5.25

    6 4

    2.25 1 1 22 39.37 5.25 2 3 54.48 39.37 3 54.48 5.25 18.87 3 3 0

    4 2 3

    l

    f

    X

    b

    M Mdx

    EI E I

    E I E I

    = = + +

    + + =

  • 8/21/2019 frames_mf asdfg asdfg

    12/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 12 -

    SUPPORT SETTLEMENTS

    Applying the forces method, let draw the internal efforts diagrams caused by indicated

    support settlements.

    Numerical data:

    03,8 ; 3 ; 30 / ; 48 ; 1 ; 1, 4L m H m p kN m F kN v cm = = = = = =

    3,8m 1,27m

    2,25m

    3m

    A

    B

    C

    D E

    v

    1. The same primary system as before will be used:4I0

    I0

    2I0

    4I0

    3,8 m 1,27 m

    2,25 m

    3 m

    X 1

    X 2

    X 3

  • 8/21/2019 frames_mf asdfg asdfg

    13/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 13 -

    2. The elastic equilibrium system of equations is:11 1 12 2 13 3 1

    21 1 22 2 23 3 2

    31 1 32 2 33 3 3

    c

    c

    c

    X X X L

    X X X L

    X X X L

    + + =

    + + =

    + + =

    The main and the secondary coefficients are the same, and they were calculated and checked in

    the above application.

    3. The free terms are calculated by the following virtual work relationships:( )

    1i

    kic i k L R=

    where:

    1 is the virtual unit load (concentrated force/bending moment or a couple of concentratedforces/bending moments, respectively) applied on the direction of the unknownX

    i;

    i - the corresponding support settlement on the direction of the unknownXi;

    ( )i

    kR the reactive forces in the kexternal link caused by the virtual unit load1.

    The primary system is consecutively loaded with a virtual unit force1 on eachXidirection, and

    the reactive forces in the external links of the primary system will be calculated.

    3,8 1,27

    2,25

    3

    A

    B C

    D E

    Rx1,1

    Rx1,2

    1

    1,1 1 5,25 5,25xR = =

    1,1 1 1xR = =

    1

    1,41 0 1 0 5,25 0,128

    180c

    L

    = + =

  • 8/21/2019 frames_mf asdfg asdfg

    14/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 14 -

    2,1 1 5,07 5,07xR = = 3,1 1 1, 27 1, 27xR = =

    2,1 1 1xR = = 3,1 1xR =

    2

    1,41 0 1 0 5,07 0,124

    180c

    L

    = + + = 31,4

    1 0,01 1 0 1,27 0,021180

    cL

    = + + =

    The sum of all free terms is:

    1

    0,128 0,124 0, 021 0, 017sn

    I

    sc ic

    i

    L L=

    = = + + =

    4. Checking the free termsThe free terms are correctly solved if the following condition is checked:

    ( )

    ( 1 ) ( )s

    IIksc i k

    L R= +

    The primary system is loaded with all unit forces applied on the correspondingXidirections, and the

    reactive forces are calculated.

    3,8 1,27

    2,25

    3

    A

    B C

    D E

    Rx2,1

    Rx2,2

    1

    3,8 1,27

    2,25

    3

    A

    B C

    D E

    Rx3,2

    Rx3,1

    1

  • 8/21/2019 frames_mf asdfg asdfg

    15/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 15 -

    3,8 1,27

    2,25

    3

    A

    B C

    D E

    Rs3

    Rs2

    Rs1

    1

    1

    1

    1 1sR =

    2 2sR =

    3 1 1,27 1 5,25 1 5,07 1,09sR = + =

    Consequently,

    1,4 3,14151 0,01 1 0 2 0 1,09 0,017

    180

    II

    scL

    = + + + =

    Condition checked, the free terms are correctly solved.

    5. Solving the system of elastic equilibrium equations ( )7 4 3 20 2,1 10 72 10 151,2 10E I kNm = = 11 1 12 2 13 3 1

    21 1 22 2 23 3 2

    31 1 32 2 33 3 3

    c

    c

    c

    X X X L

    X X X LX X X L

    + + =

    + + = + + =

    31 2 3

    31 2 3

    31 2 3

    78,67 16,87 43,69 19,3536 10

    16,87 10,86 1,35 18,7488 10

    43,39 1,35 41,8 3,1752 10

    X X X

    X X X

    X X X

    + =

    + =

    + =

    having the solution

    { }

    391.395

    2302258.775

    X

    =

  • 8/21/2019 frames_mf asdfg asdfg

    16/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 16 -

    6. Drawing the final internal efforts diagrams:The primary system is loaded with allthe unknown reactive and/or internal efforts, considering

    the resulted sign, and the diagrams will be drawn as for a statically determinate system.

    3,8 1,27

    2,25

    3

    A

    B C

    D E

    258,775

    2302

    391,395

    3,8 1,27

    2,25

    3

    A

    BC

    D E

    2302

    2043,225

    391,395

    N Diagrama finala eforturilor axiale

  • 8/21/2019 frames_mf asdfg asdfg

    17/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 17 -

    Q Diagrama finala forelor tietoare

    3,8 1,27

    2,25

    3

    A

    B C

    D E

    983,345

    1071,478

    1174,185190,84

    9287,672

    1071,478

    M

    M Diagrama finala momentelor ncovoietoare

  • 8/21/2019 frames_mf asdfg asdfg

    18/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 18 -

    Checkingthe final bending moment diagramMfapplying the virtual work method for the following

    floor mechanism:

    M

    1071.48 kNm

    190.84 kNm

    1174.18 kNm

    1= 2 25

    2= 3

    1 2( ) ( 1071.48 190.84) 1174.18 ( 1071.48 190.84) 1174.18 0

    2.25 3LMV

    = + + = + + =

    The bending moment diagram is checked.

  • 8/21/2019 frames_mf asdfg asdfg

    19/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 19 -

    TEMPERATURE VARIATION

    Let solve the following frame to the indicated non-uniform temperature variation

    applying the forces method

    Numerical data:3

    5 5 2 40

    40 603,8 ; 3 ; 10 ; 2,1 10 / ;

    12tL m H m E daN cm I cm

    = = = = =

    3,8 1,27

    2,25

    3

    A

    BC

    D

    E

    100

    100

    100 20

    0

    80

    Considering for the beam with the reference moment of inertia a rectangular cross-section3

    4

    0

    40 60

    12I cm

    =

    and adopting the hypothesis that the width of all structural elements is the same (b = constant), it

    results:

    - for the beams with the moment of inertia of 02I

    0 0

    0

    3 3

    2

    22 7512 12

    I I

    I

    b h b hh cm

    = =

    - for the beams with the moment of inertia 04I

    0 0

    0

    3 3

    4

    44 9512 12

    I I

    I

    b h b hh cm

    = =

    where 30 0nI Ih h n= .

    1. Primary system and solving the unknown coefficients

    The primary system which will be used is the same, consequently the main and secondary

    coefficients are the same as before, and are already solved.

  • 8/21/2019 frames_mf asdfg asdfg

    20/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 20 -

    3,8 1,27

    2,25

    3

    A

    BC

    D

    E

    100

    100

    100 20

    0

    80

    X1

    X2

    X3

    2. The compatibility equation system is:

    11 1 12 2 13 3 1

    21 1 22 2 23 3 2

    31 1 32 2 33 3 3

    0

    0

    0

    t

    t

    t

    X X X

    X X X

    X X X

    + + + =

    + + + = + + + =

    3. The free terms will be calculated with the following relationship

    i i

    oo

    it t ax t N M

    tt

    h

    =

    where:

    t is the linear variation coefficient -

    5 1

    10t oC

    (quite the same for the concrete and steel);

    o

    axt is the average temperature in the longitudinal axis of the beam:2

    o oo i eax

    t tt

    += ;

    ot is the temperature difference between the extreme fibers of the cross-sectional area (usually

    the temperature difference between the internal side of the beam and external one,

    respectively): o o oi et t t = ;

    h is the height of the beam cross-section;

    ,i iN M

    are the corresponding axial effort and bending moment diagrams area, respectively,

    of the beams.

    The bending moment diagrams were already drawn before, in the first solved application, and

    now, only the axial effort diagrams will be drawn, consecutively loading the primary system with

    virtual unit forces1on eachXidirection.

  • 8/21/2019 frames_mf asdfg asdfg

    21/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 21 -

    A

    BC

    D E

    X =11

    N1

    1

    A

    BC

    D E

    X =12

    N2

    1

    A

    BC

    D E

    X =12N3

    1

    The average temperatures in the longitudinal axis of the beams are:

    2

    o oo o o oi e

    ax i e

    t tt t t t

    += =

    BARA ti te Dt tax

    AB 20 10 10 15

    BC 20 10 10 15

    BD 10 10 0 10

    DE 10 8 2 9

    The tensioned fibers due the temperature variationis drawn in the figure below with a dashed

    line:

  • 8/21/2019 frames_mf asdfg asdfg

    22/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 22 -

    A

    BC

    D E

    100100

    100 20

    0

    80

    X1

    X2

    X3

    The primary system and tensioned fibers

    due to the temperature variation

    The free terms values are:

    1 1 1 111 , , , , ,

    5 10 1 2

    10 9 5,07 3 3 0 0 5,07 5,25 156,410,75 2 0,95

    oo o o

    o BCAB BD DEt t ax DE t N M AB M BD M BC M DE

    AB BD BC DE

    tt t tt

    h h h h

    = + + + =

    = + + + =

    5

    10

    ( )

    ( )

    2 2 2 22,2 , 2, , , , , ,

    5 2 1 10 15 3 10 2,25 0 0 0 5,07 50,95 2

    oo o oo o BCAB BD DE

    t tax BDt ax AB N AB N BD M AB M BD M BC M DE BD DEAB BC

    tt t tt t

    h h h h

    = + =

    = + + + + 57 40,84 10,0

    =

    ( )

    3 3 3 33 , 3, , , , ,

    5 510 1 2 1 1 10 10 2,25 0 0 3,8 3,8 3,8 3,8 1,27 1,27 39,086 100,95 2 0,95 2 2

    oo o o

    o BCAB BD DE

    t t ax BD t N BD M AB M BD M BC M DE

    AB BD BC DE

    tt t tt

    h h h h

    = + =

    = + + + + + =

    5 5( 156,41 40,84 39,086) 10 158,164 10Ist it = = + =

    4. Checking the free terms:

    The free terms are correctly solved if the following condition is checked:o

    II o

    st it t ax t Ns Ms

    tt h

    = =

  • 8/21/2019 frames_mf asdfg asdfg

    23/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    - 23 -

    A

    BC

    D E

    Ns

    1

    2

    1

    Mss

    3

    3,8

    9,05

    1,09

    6,8

    ( )5

    5

    10 1 10 110 15 3 10 4,5 9 5,07 3 3 3,8 3,8

    0,75 2 0,95 2

    2 1 14,25 9,05 1,09 0,545 158,14 10

    0,95 2 2

    II

    st

    I

    st

    = + + +

    + + = =

    The free terms are correctly calculated.

    5. Solving the equation system ( )7 4 3 20 2,1 10 72 10 151,2 10E I kNm = =

    1 2 3

    1 2 3

    1 2 3

    78,67 16,87 43,69 236,5

    16,87 10,86 1,35 61,75

    43,69 1,35 41,8 59,1

    X X X

    X X X

    X X X

    + =

    + = + =

    with the following solution:

    { }

    35.177

    55.809

    36.379

    X

    =

  • 8/21/2019 frames_mf asdfg asdfg

    24/24

    Gh. Asachi Technical University of Iai Structural Statics Hyperstatic Structures

    Department of Structural Mechanics Cezar Aanici, Dr. Eng.

    6. Drawing the final internal efforts diagrams (on the original statically indeterminate system):

    3,8 1,27

    2,25

    3

    A

    BC

    D

    E

    100

    100

    100 20

    0

    80

    36,379

    55,809

    35,177

    105,53

    138,24

    52,07

    46,44

    M

    32,71

    55,809kN

    19,43kN

    35,177kN

    N

    Q

    35,177kN

    19,43kN

    36,379kN