františek kardoš institute of mathematics p. j. Šafárik...

33
Symmetry of Fulleroids František Kardoš Institute of Mathematics P. J. Šafárik University, Košice [email protected] Symmetry of Fulleroids – p.1/18

Upload: hoangthien

Post on 03-Feb-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Symmetry of Fulleroids

František Kardoš

Institute of MathematicsP. J. Šafárik University, Košice

[email protected]

Symmetry of Fulleroids – p.1/18

Page 2: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Fullerenes and Fullerene Graphs

Fullerene is a 3-regular (orcubic) carbon molecule, whereatoms are arranged inpentagons and hexagons.

Symmetry of Fulleroids – p.2/18

Page 3: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Fullerenes and Fullerene Graphs

Fullerene is a 3-regular (orcubic) carbon molecule, whereatoms are arranged inpentagons and hexagons.

Fullerene graph is a planar,3-regular and 3-connectedgraph, twelve of whose facesare pentagons and anyremaining faces are hexagons.

Symmetry of Fulleroids – p.2/18

Page 4: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Fulleroids

Fulleroid is a cubic convexpolyhedron with faces of size 5or greater.

Symmetry of Fulleroids – p.3/18

Page 5: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Fulleroids

Fulleroid is a cubic convexpolyhedron with faces of size 5or greater.

only pentagons and hexagons⇒ fullerenes

Symmetry of Fulleroids – p.3/18

Page 6: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Fulleroids

Fulleroid is a cubic convexpolyhedron with faces of size 5or greater.

only pentagons and hexagons⇒ fullerenes

only pentagons and n-gons⇒ (5, n)-fulleroids

Symmetry of Fulleroids – p.3/18

Page 7: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Symmetry of convex polyhedra

rotations, reflections, point inversion. . .

Symmetry of Fulleroids – p.4/18

Page 8: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Symmetry of convex polyhedra

rotations, reflections, point inversion. . .symmetry group of a convex polyhedron

Symmetry of Fulleroids – p.4/18

Page 9: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Symmetry of convex polyhedra

rotations, reflections, point inversion. . .symmetry group of a convex polyhedron

Possible symmetry groups:

icosahedral: Ih, I

octahedral: Oh, O

tetrahedral: Th, Td, T

cylindrical: Dnh, Dnd, Dn (n ≥ 2)skewed: S2n, Cnh (n ≥ 2)pyramidal: Cnv, Cn (n ≥ 2)low symmetry: Cs, Ci, C1

Symmetry of Fulleroids – p.4/18

Page 10: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Symmetry of fullerenes

Fowler and al. (1993): Possible symmetry: only 28out of 36 groupsBabi c, Klein and Sah (1993): All fullerenes with up to70 vertices classified according to the symmetry groupFowler and Manolopoulos (1995): Symmetry of allfullerenes with up to 100 vertices; the smallestΓ-fullerene for each symmetry group Γ; the smallestΓ-fullerene without adjacent pentagons for eachsymmetry group ΓGraver (2001): Catalogue of all fullerenes with ten ormore symmetries

Symmetry of Fulleroids – p.5/18

Page 11: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Icosahedral fulleroids

Dress and Brinkmann (1996): The smallest Ih(5, 7)and I (5, 7)-fulleroids are uniqueDelgado Friedrichs and Deza (2000):Ih(5, n)-fulleroids for n = 8, 9, 10, 12, 14 and 15Jendrol’ and Trenkler (2001): I (5, n)-fulleroids for alln ≥ 8

K.:I(5, n)-fulleroids for all n ≥ 7

Symmetry of Fulleroids – p.6/18

Page 12: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Octahedral fulleroids

Jendrol’ and K. (to appear): Let n ≥ 7. ThenOh(5, n)-fulleroids exist if and only if(i) n ≡ 0 (mod 60) or(ii) n ≡ 0 (mod 4) and n 6≡ 0 (mod 5).K.: Analogous claim for the group O.

Symmetry of Fulleroids – p.7/18

Page 13: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Tetrahedral fulleroids

K. (to appear): Let n ≥ 6.Then Td(5, n)-fulleroids exist ifand only if n 6≡ 5 (mod 10).T (5, n)- and Th(5, n)-fulleroidsexist for all n ≥ 6.

Symmetry of Fulleroids – p.8/18

Page 14: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Other symmetry types I.

The groups Γ, for which Γ(5, n)-fulleroids exist for alln ≥ 6: D5d, D3d, D2h, D5, D3, D2, S6, C3v, C2v, C2h, C3,C2, Cs, Ci, C1.

Symmetry of Fulleroids – p.9/18

Page 15: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Other symmetry types I.

The groups Γ, for which Γ(5, n)-fulleroids exist for alln ≥ 6: D5d, D3d, D2h, D5, D3, D2, S6, C3v, C2v, C2h, C3,C2, Cs, Ci, C1.The groups Γ, for which Γ(5, n)-fulleroids exist for alln ≥ 7, but not for n = 6: S10, C5v, C5.

Symmetry of Fulleroids – p.9/18

Page 16: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Other symmetry types I.

The groups Γ, for which Γ(5, n)-fulleroids exist for alln ≥ 6: D5d, D3d, D2h, D5, D3, D2, S6, C3v, C2v, C2h, C3,C2, Cs, Ci, C1.The groups Γ, for which Γ(5, n)-fulleroids exist for alln ≥ 7, but not for n = 6: S10, C5v, C5.The groups Γ, for which Γ(5, n)-fulleroids exist if andonly if n 6≡ 5 (mod 10): D2d, S4 (and Td).

Symmetry of Fulleroids – p.9/18

Page 17: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Other symmetry types I.

The groups Γ, for which Γ(5, n)-fulleroids exist for alln ≥ 6: D5d, D3d, D2h, D5, D3, D2, S6, C3v, C2v, C2h, C3,C2, Cs, Ci, C1.The groups Γ, for which Γ(5, n)-fulleroids exist for alln ≥ 7, but not for n = 6: S10, C5v, C5.The groups Γ, for which Γ(5, n)-fulleroids exist if andonly if n 6≡ 5 (mod 10): D2d, S4 (and Td).The groups Γ, for which Γ(5, n)-fulleroids exist if andonly if n 6≡ 5, 10 (mod 15): D3h, C3h.

Symmetry of Fulleroids – p.9/18

Page 18: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Other symmetry types I.

The groups Γ, for which Γ(5, n)-fulleroids exist for alln ≥ 6: D5d, D3d, D2h, D5, D3, D2, S6, C3v, C2v, C2h, C3,C2, Cs, Ci, C1.The groups Γ, for which Γ(5, n)-fulleroids exist for alln ≥ 7, but not for n = 6: S10, C5v, C5.The groups Γ, for which Γ(5, n)-fulleroids exist if andonly if n 6≡ 5 (mod 10): D2d, S4 (and Td).The groups Γ, for which Γ(5, n)-fulleroids exist if andonly if n 6≡ 5, 10 (mod 15): D3h, C3h.D5h(5, n)-fulleroids exist if and only if n 6≡ 5, 10, 15, 20(mod 25).

Symmetry of Fulleroids – p.9/18

Page 19: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Other symmetry types I.

The groups Γ, for which Γ(5, n)-fulleroids exist for alln ≥ 6: D5d, D3d, D2h, D5, D3, D2, S6, C3v, C2v, C2h, C3,C2, Cs, Ci, C1.The groups Γ, for which Γ(5, n)-fulleroids exist for alln ≥ 7, but not for n = 6: S10, C5v, C5.The groups Γ, for which Γ(5, n)-fulleroids exist if andonly if n 6≡ 5 (mod 10): D2d, S4 (and Td).The groups Γ, for which Γ(5, n)-fulleroids exist if andonly if n 6≡ 5, 10 (mod 15): D3h, C3h.D5h(5, n)-fulleroids exist if and only if n 6≡ 5, 10, 15, 20(mod 25).C5h(5, n)-fulleroids exist if and only if n 6≡ 5, 10, 15, 20(mod 25) and n 6= 6.

Symmetry of Fulleroids – p.9/18

Page 20: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Other symmetry types II.

The groups Γ, for which Γ(5, n)-fulleroids exist if andonly if n is a multiple of a number m (m = 4 or m ≥ 6):Dmd, Dm, S2m, Cmv, Cm.

Symmetry of Fulleroids – p.10/18

Page 21: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Other symmetry types II.

The groups Γ, for which Γ(5, n)-fulleroids exist if andonly if n is a multiple of a number m (m = 4 or m ≥ 6):Dmd, Dm, S2m, Cmv, Cm.The groups Γ, for which there is one more case ofnonexistence in addition – if m is divisible by 5, thenΓ(5, n)-fulleroids exist if and only if n is a multiple of 5m:Dmh, Cmh.

Symmetry of Fulleroids – p.10/18

Page 22: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Other symmetry types II.

The groups Γ, for which Γ(5, n)-fulleroids exist if andonly if n is a multiple of a number m (m = 4 or m ≥ 6):Dmd, Dm, S2m, Cmv, Cm.The groups Γ, for which there is one more case ofnonexistence in addition – if m is divisible by 5, thenΓ(5, n)-fulleroids exist if and only if n is a multiple of 5m:Dmh, Cmh.

One more exception: There are no fullerenes with S12,C6v, C6h, nor C6 symmetry.

Symmetry of Fulleroids – p.10/18

Page 23: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Proving nonexistence

All the cases of nonexistence are either the fullerenescase, or the case of fulleroids with multi-pentagonalfaces.

Symmetry of Fulleroids – p.11/18

Page 24: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Proving nonexistence

All the cases of nonexistence are either the fullerenescase, or the case of fulleroids with multi-pentagonalfaces.

K.: Let P be a cubic convex polyhedron such that allfaces are multi-pentagons, i.e. the size of each face isa multiple of five. Then there exists anorientation-preserving homomorphism Ψ : P → D,where D denotes a regular dodecahedron.

Symmetry of Fulleroids – p.11/18

Page 25: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Proving nonexistence

K.: Let P be a cubic convex polyhedron such that all itsfaces are multi-pentagons and let Ψ : P → D be anorientation-preserving homomorphism. If ϕ ∈ Γ(P ) is asymmetry of P , then Ψ ◦ ϕ : P → D is also anorientation-preserving homomorphism, moreover, thesymmetry ϕ of P uniquely determines a symmetryΨ(ϕ) of D once Ψ is fixed.

Symmetry of Fulleroids – p.12/18

Page 26: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Proving nonexistence

K.: Let P be a cubic convex polyhedron such that all itsfaces are multi-pentagons and let Ψ : P → D be anorientation-preserving homomorphism. If ϕ ∈ Γ(P ) is asymmetry of P , then Ψ ◦ ϕ : P → D is also anorientation-preserving homomorphism, moreover, thesymmetry ϕ of P uniquely determines a symmetryΨ(ϕ) of D once Ψ is fixed.

K.: Let P be a cubic convex polyhedron such that all itsfaces are multi-pentagons. Then there exists ahomomorphism Ψ : Γ(P ) → Ih, where Γ(P ) is thesymmetry group of P and Ih denotes the symmetrygroup of a regular dodecahedron D.

Symmetry of Fulleroids – p.12/18

Page 27: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Proving nonexistence

Let P be a cubic convex polyhedron such that thesizes of all its faces are odd multiples of five. Then thesymmetry group Γ(P ) does not contain the group S4

as a subgroup. Therefore, there is no cubic convexpolyhedron such that the sizes of all its faces are oddmultiples of five with the symmetry group S4, D2d, orTd.

Symmetry of Fulleroids – p.13/18

Page 28: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Proving nonexistence

Let P be a cubic convex polyhedron such that all itsfaces are multi-pentagons and none of the face sizesis divisible by three. Then the symmetry group Γ(P )does not contain the group C3h as a subgroup.Therefore, there is no cubic convex polyhedron P suchthat all its faces are multi-pentagons, none of the facesizes is divisible by three, and the symmetry group ofP is C3h or D3h.

Symmetry of Fulleroids – p.14/18

Page 29: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Proving nonexistence

Let P be a cubic convex polyhedron such that all itsfaces are multi-pentagons and none of the face sizesis divisible by 25. Then the symmetry group Γ(P ) doesnot contain the group C5h as a subgroup. Therefore,there is no cubic convex polyhedron P such that all itsfaces are multi-pentagons, none of the face sizes isdivisible by 25, and the symmetry group of P is C5h orD5h.

Symmetry of Fulleroids – p.15/18

Page 30: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Examples

construction of a graph of a D2h(5, 9)-fulleroid:

−→

Symmetry of Fulleroids – p.16/18

Page 31: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Examples

construction of a graph of a D2h(5, 9)-fulleroid:

−→

generating infinite series of examples:n

n

−→

n+ k

n+ k

Symmetry of Fulleroids – p.16/18

Page 32: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Examples

construction of a graph of a D2h(5, 9)-fulleroid:

−→

changing the symmetry group:

D2 C2h C2v C2 Ci Cs C1

Symmetry of Fulleroids – p.17/18

Page 33: František Kardoš Institute of Mathematics P. J. Šafárik ...studentski.net/get/ulj_fmf_ma2_dm2_sem_simetrija_fuleroidov_01.pdf · Symmetry of Fulleroids František Kardoš Institute

Thank you for your attention!

Symmetry of Fulleroids – p.18/18