fraud system based on big data and machine learning
Post on 16-Apr-2017
409 views
Embed Size (px)
TRANSCRIPT
1
.
1
...
2
2
3 3
2013
4
4
5
5
6
6
ATM,POS,INTERNET,BRANCH
,
...
/
7
7
8 8
9 9 9
10 10 10
11 11 11
12
2014 Deloitte The Netherlands
( 1
13
. . .
: . .
14
( 2
POS
ATM
10%20%
70%
12 10 10% 20% 65% 5%
1%4%
95%
107 12 60% 0% 5% 35%
21 100
.
( 2
15
....
( 2
16
: . . .
: (Concept Drift) . .
Concept Drift
POS
ATM
10%20%
70%
12 50 10% 20% 65% 5% -
1%39%
60%
2 500 0% 50% 40% 10% -
( 3
17
.
.
( 3
18
,OC-SVM, SVDD: : Neural Network, SVM, Decision tree,
.
(3
19
: .
: . (. ) .
( 4
20
30
2
37
22 5
1 2
3 4
1 2 30
1 3 5
2 3 22
2 4 2
3 4 37
( 4
21
: ( )
.
. - --.....
. ( edge) ( node)
.
https://fa.wikipedia.org/w/index.php?title=%D8%B3%D8%A7%D8%AE%D8%AA%D8%A7%D8%B1_%D8%A7%D8%AC%D8%AA%D9%85%D8%A7%D8%B9%DB%8C&action=edit&redlink=1
( 4
22
1 10 30
2 10 5
3 10 22
4 10 2
5 10 37
( 4
23
( 4
24
Strongly Connected Component :
Label Propagation :
25
!
So what's the problem?
26
: ) ) ) )
27
!
28
29 29 29
(Big Data)
30
31
32
33
- Ad-hoc querying and reporting - Data mining techniques - Structured data, typical sources - Small to mid-size datasets
- Optimizations and predictive analytics - Complex statistical analysis - All types of data, and many sources - Very large datasets - More of a real-time
33
34
35
36
37
Logistic regression in Hadoop and Spark
38 Big Data Storymap
39
J.P.Morgan . (2014) .2014 AFP Payments Fraud and Control Survey , Report of Survey Results
www.ismgcorp.com 94 .
The Forrester Wave: Enterprise Fraud Management, Forrester, 2013
2015 IBM Corporation Fraud Detection & Management System A real time actionable counter fraud decision management system Antonio
DellOlio Senior IT Architect Barbara Camandone Client IT Manager
Montazer, G. A., & ArabYarmohammadi, S. (2015). Detection of phishing attacks in Iranian e-banking using a fuzzyrough hybrid system. Applied Soft Computing, 35, 482-492. doi:10.1016/j.asoc.2015.05.059 Alcaraz, C., Cazorla, L., & Fernandez, G. (2014). Context-Awareness Using Anomaly-Based Detectors for Smart Grid Domains. In Risks and Security of Internet and Systems (pp. 17-34). Springer International Publishing. doi: 10.1007/978-3-319-17127-2_2 Pfitzmann, B., Powers, C., & Waidner, M. (2007). IBMs Unified Governance Framework (UGF) Initiative. IBM Research Division. Research Report RZ, 3699(99709), 10. Kaisler, S. H., Espinosa, J. A., Armour, F., & Money, W. H. (2014, January). Advanced Analytics--Issues and Challenges in a Global Environment. In System Sciences (HICSS), 2014 47th Hawaii International Conference on (pp. 729-738). IEEE. Katal, A., Wazid, M., & Goudar, R. H. (2013, August). Big data: Issues, challenges, tools and Good practices. In Contemporary Computing (IC3), 2013 Sixth International Conference on (pp. 404-409). IEEE. Mohanty, S., Jagadeesh, M., & Srivatsa, H. (2013). Big Data Imperatives: Enterprise Big DataWarehouse,BIImplementations and Analytics. Apress. Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 15. Doi:10.1145/1541880.1541882 Kovach.S, Ruggiero. W.V. (2011). Online Banking Fraud Detection Based on Local and Global Behavior. The Fifth International Conference on Digital Society 29-43). ACM. Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large clusters. Communications of the ACM, 51(1), 107-113.
http://www.ismgcorp.com/http://dx.doi.org/10.1016/j.asoc.2015.05.059http://dx.doi.org/10.1016/j.asoc.2015.05.059http://dx.doi.org/10.1016/j.asoc.2015.05.059http://dx.doi.org/10.1016/j.asoc.2015.05.059http://dx.doi.org/10.1145/1541880.1541882http://dx.doi.org/10.1145/1541880.1541882http://dx.doi.org/10.1145/1541880.1541882