friday, april 10 - stockton universitychemical shift: a proportional horizontal axisa proportional...

21
Friday, April 10 Reminders: Take home due today Spectroscopy assignment due next Friday Readings: •Chang & Thoman: Chapter 18 •Solid state reading (posted on Blackboard) Today: Finish up NMR Shifting focus: back to the solid state atomic arrangement in solids why do solids form: energetics Last Time: - Vibronic spectroscoy - NMR Spectroscopy

Upload: others

Post on 20-Jan-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH

Friday, April 10

Reminders: • Take home due today • Spectroscopy assignment due next Friday

Readings: • Chang & Thoman: Chapter 18 • Solid state reading (posted on Blackboard)

Today: •  Finish up NMR •  Shifting focus: back to the solid

state •  atomic arrangement in solids •  why do solids form: energetics

Last Time: -  Vibronic spectroscoy

-  NMR Spectroscopy

Page 2: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH
Page 3: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH

“Shielding” Influences Proton Frequency

NMR spectrum of CH3OH:Magnetic field induces circulation of e- cloud

CO

H

HH

Ccirculation of e cloud.Bo

H H

H Circulation generates an opposing magnetic field.

So magnetic field andSo, magnetic field and frequency are lower than one might expect.

200 001200 002 200 000

HO Electron-withdrawing

oxygen means• Smaller e- cloud on H

L i200.001MHz

200.002MHz

200.000MHz

• Less opposing magnetic field

• Higher frequency

“Shielding” Influences Proton Frequency

HHBo

Electron cloud“shields” 1H nucleus.

“downfield”: frequency “upfield”:downfield :Lower magnetic field strength would be required to achieve the same frequency.

frequency upfield :Higher magnetic field strength would be

required to counteract shielding electrons and achieve the same frequency.

Page 4: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH

“Shielding” Influences Proton Frequency

NMR spectrum of CH3OH:Magnetic field induces circulation of e- cloud

CO

H

HH

Ccirculation of e cloud.Bo

H H

H Circulation generates an opposing magnetic field.

So magnetic field andSo, magnetic field and frequency are lower than one might expect.

200 001200 002 200 000

HO Electron-withdrawing

oxygen means• Smaller e- cloud on H

L i200.001MHz

200.002MHz

200.000MHz

• Less opposing magnetic field

• Higher frequency

“Shielding” Influences Proton Frequency

HHBo

Electron cloud“shields” 1H nucleus.

“downfield”: frequency “upfield”:downfield :Lower magnetic field strength would be required to achieve the same frequency.

frequency upfield :Higher magnetic field strength would be

required to counteract shielding electrons and achieve the same frequency.

Page 5: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH

Chemical Shift:A Proportional Horizontal AxisA Proportional Horizontal Axis

Problem: Differences in frequency depend on spectrometer field strength, vary from instrument to instrument.

Solution: Define an absolute scale independent of spectrometer f ll d “ h i l hift”frequency, called “chemical shift”.

Frequency defined asG = 0 ppm

frequency

SiH3C

CH3

C

H

H

pp

200.001200.002 200.000 MHz

10002000 0 Hz (diff.) 3

CH3H

H

tetramethylsilane (TMS)

( )

510 0 ppm

Chemical Shift:A Proportional Horizontal AxisA Proportional Horizontal Axis

1H NMR 300 MHzG = 3.4 ppm

1H NMR, 300 MHz,1H decoupled

G = 4.8 ppm

CH3OH protons have these chemical shifts (ppm values), regardless of instrument they are measured on.

Page 6: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH
Page 7: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH
Page 8: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH

Chemical Equivalence

Nuclei are chemically equivalent if they experience identical chemical environments. Equivalent nuclei have the same chemical shift (and appear as one resonance).

A good way to tell: Looking at two nuclei, would replacing g y g gone of them with another atom—say, F—yield the same molecule as replacing the other? (Or its enantiomer?) If so, the two nuclei are equivalent., q

O

H

CH3H3C

H3C CH3equivalent H

inequivalent3 2 1 0 ppm

So, two resonances expected in NMR spectrum.

Chemical Shift: Equivalence

Less obvious:

i i l t

HH

O

HH O

equivalent(enantiotopic)

inequivalent(diastereotopic)

NH2

O

HONH

O

HO CF3

Ph OCH3

Replacing each H with an X yields two enantiomers that

Replacing each H with an X yields two diastereomersyields two enantiomers that

can’t be distinguished by NMR.

yields two diastereomers that can be distinguished by NMR.

Page 9: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH

The Typical Pulsed NMR Experiment

excite

pulse delayB pulse delayB1

(should be >> T1)

collect FID

RF receiver

collect FID

Excitation pulse strength usually expressed in degrees:

M090° M0

<<90°

An NMR Spectrometer “Listens” to Frequency of Nuclear PrecessionFrequency of Nuclear Precession

Bo

Mxy

time

F i

M (radiofrequencydetector coil)

Fourier Transform

bulkmagnetization

|Mxy

|

frequency

Page 10: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH
Page 11: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH

The Typical Pulsed NMR Experiment

excite

pulse delayB pulse delayB1

(should be >> T1)

collect FID

RF receiver

collect FID

Excitation pulse strength usually expressed in degrees:

M090° M0

<<90°

An NMR Spectrometer “Listens” to Frequency of Nuclear PrecessionFrequency of Nuclear Precession

Bo

Mxy

time

F i

M (radiofrequencydetector coil)

Fourier Transform

bulkmagnetization

|Mxy

|

frequency

Page 12: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH
Page 13: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH

An NMR Spectrum

xy| No surprise: NMR spectrum of

CH3OH shows the presence of

|Mx 3 p

1H nuclei at Larmor frequency.

frequency: 200MHz

201MHz

199MHz

but what if we look closer??

Not all 1H nuclei wobble at the exact same frequency;

Differences in frequency reflect differences in magnetic environment.

200.001MHz

200.002MHz

200.000MHz

environment.

Multiple Nuclei and the Fourier Transform

time domain frequency domainFourier

transform

H1 H2

(say 200 0005 MHz)Hz

(say, 200.0005 MHz)

H1 H2

Hz(say, 200.0004 MHz)

Hz

H1 H2

Hz

Page 14: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH
Page 15: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH
Page 16: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH
Page 17: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH

Why is structure so important?

Crystalline metal Amorphous metal

Link

Page 18: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH

Pairs

Page 19: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH

1-D Array

Page 20: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH

2D

Page 21: Friday, April 10 - Stockton UniversityChemical Shift: A Proportional Horizontal AxisA Proportional Horizontal Axis 1HNMR 300MHz G= 3.4 ppm H NMR, 300 MHz, 1H decoupled G= 4.8 ppm CH

3-D Structure