frithjof karsch - 筑波大学 計算科学研究

34
1 F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020 Supercomputing the phase diagram of strongly interacting matter Frithjof Karsch Summit @ ORNL ~200 PetaFlops Relativistic Heavy Ion Collider @ BNL

Upload: others

Post on 18-Dec-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Frithjof Karsch - 筑波大学 計算科学研究

1F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Supercomputing the phase diagram of strongly interacting matter

Frithjof Karsch

Summit @ ORNL~200 PetaFlops

Relativistic Heavy Ion Collider @ BNL

Page 2: Frithjof Karsch - 筑波大学 計算科学研究

2F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Frithjof Karsch

Relativistic Heavy Ion Collider @ BNL

OUTLINE

– the physics case: strongly interacting matter at high temperature and density

Supercomputing the phase diagram of strongly interacting matter

Page 3: Frithjof Karsch - 筑波大学 計算科学研究

3F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Frithjof Karsch

OUTLINE

– the physics case: strongly interacting matter at high temperature and density

– the computational needs: High Performance Computing; the need of Exascale Performance

JUWELS Booster @ FZ Jülich, Germany, 2020 ~ 70 Petaflops

Supercomputing the phase diagram of strongly interacting matter

Page 4: Frithjof Karsch - 筑波大学 計算科学研究

4F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Frithjof Karsch

OUTLINE

– the physics case: strongly interacting matter at high temperature and density

– the computational needs: High Performance Computing; the need of Exascale Performance

– some physics results: the structure of strong interaction matter; its phase diagram & equation of state

Supercomputing the phase diagram of strongly interacting matter

Page 5: Frithjof Karsch - 筑波大学 計算科学研究

5F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

diameter: 1 million km = m

temperature: 10 million degree =

the Quark-Gluon Plasmathe Quark-Gluon Plasma

temperature:

diameter: 10 fermi = m

the sunthe sun

the atomic nucleusthe atomic nucleus

Page 6: Frithjof Karsch - 筑波大学 計算科学研究

6F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

The strong forceThe electromagnetic forceelectronphoton

Quantumelectrodynamics(QED)

quarkgluon

Quantumchromodynamics(QCD)

electric charge color

quarks

gluons

electron

photon

0.01

Temperature (°C)

water

steam

ice

water vapor

100

218

1

0.006

374

P vap

(atm

)

© mccord 2013

normal freezing point

normal boiling point

triple point

critical point

Phase Diagram for Water

confinement

deconfinement

Page 7: Frithjof Karsch - 筑波大学 計算科学研究

7F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

The strong forceThe electromagnetic forceelectronphoton

Quantumelectrodynamics(QED)

quarkgluon

Quantumchromodynamics(QCD)

electric charge color

quarks

gluons

electron

photon

0.01

Temperature (°C)

water

steam

ice

water vapor

100

218

1

0.006

374

P vap

(atm

)

© mccord 2013

normal freezing point

normal boiling point

triple point

critical point

Phase Diagram for Water

confinement

key properties:

chiral symmetry breakingchiral symmetry breaking – light Goldstone particle → pionpion

confinementconfinement – colorless bound states → hadronshadrons

asymptotic freedomasymptotic freedom – weakly interacting at short distances → quark-gluon plasmaquark-gluon plasma

Page 8: Frithjof Karsch - 筑波大学 計算科学研究

8F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

confinement

deconfinement

– stick together, find a comfortable distance– controlled by the ''confinement potential''

– freely floating in the crowed– do not care what color your neighbor has

screening, color is neutralized on theaverage over a (short) distance

The confinement – deconfinement transitionThe confinement – deconfinement transition

This transition happens abruptly: (almost a) PHASE TRANSITION

hadrons

quarks&gluons

Page 9: Frithjof Karsch - 筑波大学 計算科学研究

9F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Page 10: Frithjof Karsch - 筑波大学 計算科学研究

10F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

1/100.000 seconds after the big bang quarks and gluonsrecombine to hadrons

the temperature at this time wasabout 100.000 times that of the interior of the sun

the confinement of quarks and gluons happened ''suddenly'', i.e.“almost in a phase” transition

The “phase” transition from The “phase” transition from the quark - gluon plasma to the quark - gluon plasma to ordinary (hadronic) matterordinary (hadronic) matter

''freeze-out'' of hadrons''freeze-out'' of hadrons (protons, neutrons,..)(protons, neutrons,..)

Page 11: Frithjof Karsch - 筑波大学 計算科学研究

11F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Simulating strongly interacting matter on aSimulating strongly interacting matter on adiscrete space-time grid discrete space-time grid (lattice QCD)(lattice QCD)

partition function:

Mike Creutz, 1979

Monte Carlo simulationMonte Carlo simulation 19791979

T: temperature V: volume chemical potential

Kenneth G. Wilson 1974

Page 12: Frithjof Karsch - 筑波大学 計算科学研究

12F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

the lattice:

lattice spacing:

partition function:grid points

d.o.f.

THETHE fermion determinant:source of all problems

Simulating strongly interacting matter on aSimulating strongly interacting matter on adiscrete space-time grid discrete space-time grid (lattice QCD)(lattice QCD)

Page 13: Frithjof Karsch - 筑波大学 計算科学研究

13F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

partition function again:

Dealing with the Dealing with the fermion determinantfermion determinant

fermions(anti-commuting)

bosons(commuting)

– need

– solve

''fermion matrix''''fermion matrix''

“importance sampling”

Page 14: Frithjof Karsch - 筑波大学 計算科学研究

14F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

2nd order

A. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov,J.J.,M. Verbaarschot, Phys. Rev. D58 (1998) 096007

M. Stephanov, Phys. Rev. D73 (2006) 094508

Random Matrix Model

QCD

NJL

QCD

M. Buballa, S. Carignano, Phys. Lett. B791 (2019) 361

Exploring the phase diagramExploring the phase diagram --- two major challenges----- two major challenges--

I) the chiral phase transitionthe chiral phase transition

– need to approach vanishing quark masses

→ computational cost for matrix inversion diverges for

II) the critical point at high densitythe critical point at high density

– numerical calculations at non-zero baryon density→ standard numerical algorithms fail (sign-problem); use Taylor expansion techniques

ALICE, RHICALICE, RHIC

Page 15: Frithjof Karsch - 筑波大学 計算科学研究

15F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Computational cost of a QCD calculation is dominated by the cost to invertthe fermion matrix M, using e.g. the CG-algorithm

A. Ukawa (2001) ''Berlin wall''

“..both a 108 increase in computing power and spectacular algorithmicadvances are needed before a usefulinteraction with experiments startstaking place..'' (K. Wilson, 1989)

need Exaflop computers

quark mass

nature

pion

Page 16: Frithjof Karsch - 筑波大学 計算科学研究

16F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

A. Ukawa (2001) ''Berlin wall''

nature:

Computational cost of a QCD calculation is dominated by the cost to invertthe fermion matrix, using e.g. the CG-algorithm

K. Jansen

improvement with time

quark mass

pion

today we passed the wall: calculations can be done at

Page 17: Frithjof Karsch - 筑波大学 計算科学研究

17F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

condition number controls #iterationsneeded for CG to converge:

= (max. eigenvalue) / (min. eigenvalue)

improvement of the CG solver

try to reduce condition number

– preconditioning, solve – multigrid– multi-boson algorithms – deflation– ….

need to solve: use, e.g. the Conjugate Gradient algorithm

https://en.wikipedia.org/wiki/Conjugate_gradient_method

preconditioned CG

repeat

end repeat

Page 18: Frithjof Karsch - 筑波大学 計算科学研究

18F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

need to solve: use, e.g. the Conjugate Gradient algorithm

https://en.wikipedia.org/wiki/Conjugate_gradient_method

preconditioned CG

repeat

end repeat

deflation

multiple right-hand sides

O(100) O(100) speed-upspeed-up

Page 19: Frithjof Karsch - 筑波大学 計算科学研究

19F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Taylor expansion of the QCDQCD pressure:

cumulants of net-charge fluctuations and correlations:

Critical behavior and higher order cumulantsCritical behavior and higher order cumulants – – Taylor expansionTaylor expansion – –

cumulants at vanishing cumulants at vanishing chemical potentialchemical potentialprovide information on provide information on the equation of statethe equation of stateat small non-zero at small non-zero chemical potentialchemical potential

chiral order parameter and its susceptibility:

divergence signals phase transitiondivergence signals phase transition

Page 20: Frithjof Karsch - 筑波大学 計算科学研究

20F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Taylor expansion of the QCDQCD pressure:

Critical behavior and higher order cumulantsCritical behavior and higher order cumulants – – Taylor expansion and universalityTaylor expansion and universality – –

– some 2nd and 4th order cumulants in (2+1)-flavor QCD

Page 21: Frithjof Karsch - 筑波大学 計算科学研究

21F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Calculation of cumulants of conserved charge fluctuations

state-of-the-art calculations on GPUs each data point requires

lattice sizes:

matrix inversions

matrix size:

~100 non-zero entries per column

20 PFlops=20x1015 Flops18688 GPUs18688 GPUs

~ 2 million GPU-hours = 230 GPU-years = 6 days on Titan= 6 days on Titan

Page 22: Frithjof Karsch - 筑波大学 計算科学研究

22F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

The Chiral The Chiral PHASE TRANSITION PHASE TRANSITION in in (2+1)-flavor QCD(2+1)-flavor QCD

fixed, physical

“magnetic”susceptibility

“mixed” susceptibility

Page 23: Frithjof Karsch - 筑波大学 計算科学研究

23F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Chiral Chiral PHASE TRANSITIONPHASE TRANSITION temperature temperature

H.-T. Ding et al [HotQCD],arXiv:1903.04801

A. Bazavov et al [HotQCD],arXiv:1812.08235

chiral limit extrapolation

Page 24: Frithjof Karsch - 筑波大学 計算科学研究

24F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Pseudo-critical (Pseudo-critical (crossovercrossover) temperature) temperature

Taylor expansion of chiral susceptibility:

Page 25: Frithjof Karsch - 筑波大学 計算科学研究

25F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Pseudo-critical (Pseudo-critical (crossovercrossover) temperature) temperature

A. Bazavov et al [HotQCD],arXiv:1812.08235

A. Andronic et al.,Nature 561 (2018)321

S. Borsanyi et al.,arXiv:2002.02821

hadrons freeze-outhadrons freeze-outon the pseudo-criticalon the pseudo-criticalline of the QCD line of the QCD phase transitionphase transition

Page 26: Frithjof Karsch - 筑波大学 計算科学研究

26F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Explore the structure of matterstructure of matter close to the QCD transition temperature using fluctuations of conserved chargesfluctuations of conserved charges

baryon number, strangeness, electric charge

High T: ideal gas

ideal quark (fermi) gas, m=0ideal quark (fermi) gas, m=0

Low T: HRG

hadron resonance gashadron resonance gas

integer chargesinteger chargesfractional chargesfractional charges

baryon number: B= +/- 1/3 baryon number: B= +/-1

electric charge: Q= +/- 1/3, +/- 2/3 electric charge: Q= 0 =+/- 1, +/- 2

strangeness: S= +/- 1 strangeness: S= 0, +/- 1, +/- 2, +/- 3

Page 27: Frithjof Karsch - 筑波大学 計算科学研究

27F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Ratio of baryon number – strangeness correlation and net strangeness fluctuations

state-of-the-art calculations on GPUs

lattice sizes:

change from correlated quark flavors correlated quark flavors inside hadrons inside hadrons

to almost uncorrelated quark flavors in uncorrelated quark flavors in the quark gluon plasmathe quark gluon plasma

Page 28: Frithjof Karsch - 筑波大学 計算科学研究

28F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Equation of state of (2+1)-flavor QCD:Equation of state of (2+1)-flavor QCD:

constrained by external (boundary)conditions, e.g.

– vanishing strangeness – fixed electric charge to baryon number ratio

Taylor expansion in the chemical potentials

n-th order coefficients require n inversions of the fermion matrix,e.g.

Page 29: Frithjof Karsch - 筑波大学 計算科学研究

29F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Equation of state of (2+1)-flavor QCD:Equation of state of (2+1)-flavor QCD:

kurtosis*variance

variance of net-baryon number distribution

Page 30: Frithjof Karsch - 筑波大学 計算科学研究

30F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Crossover transition parametersCrossover transition parameters

A. Bazavov et al. (HotQCD) , Phys. Rev. D90 (2014) 094503

compare with:

PDG: Particle Data Group hadron spectrum

Page 31: Frithjof Karsch - 筑波大学 計算科学研究

31F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

Crossover transition parametersCrossover transition parameters

A. Bazavov et al. (HotQCD) , Phys. Rev. D90 (2014) 094503

compare with:

PDG: Particle Data Group hadron spectrum

overlapping hadrons = QGP ??

dense packing of spheres (DPS)

Page 32: Frithjof Karsch - 筑波大学 計算科学研究

32F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

2nd order

crossover

chiral phase transitionchiral phase transitiontemperaturetemperature

pseudo-critical pseudo-critical temperature temperature

the critical point islikely to be located at

pseudo-critical temperaturepseudo-critical temperaturedrops by 15% when drops by 15% when approaching the chiral limitapproaching the chiral limit

ALICE, RHICALICE, RHIC

''critical'' energy density''critical'' energy density

transition occurs at roughly constant pion number densitytransition occurs at roughly constant pion number density

Phase diagram of strongly interacting matterPhase diagram of strongly interacting matter

Page 33: Frithjof Karsch - 筑波大学 計算科学研究

33F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

We start getting a completepicture of the QCD phasediagram at (not so) small values of the baryon chemical potential;

The existence and location of the QCDThe existence and location of the QCDcritical point remains to be puzzlingcritical point remains to be puzzling

ConclusionConclusion

Page 34: Frithjof Karsch - 筑波大学 計算科学研究

34F. Karsch, CCS International Symposium, Tsukuba 2020 F. Karsch, CCS International Symposium, Tsukuba 2020

all data shown are based on work done by the all data shown are based on work done by the HotQCD Collaboration HotQCD Collaboration

A. Bazavov, D. Bollweg, H.-T. Ding, P. Enns, J. Goswami, P. Hegde,

O. Kaczmarek, F. Karsch, N. Karthik, E. Laermann, A. Lahiri, R. Larsen,

S.-T. Li, Swagato Mukherjee, H. OhnoH. Ohno, P. Petreczky, H. Sandmeyer,

C. Schmidt, S. Sharma, P. Steinbrecher.......