fuel ignition or self-heating · 2017. 5. 31. · thermal test for spon. comb. using...

58
Fuel Ignition or Self-heating Prof. Ed Lester (PhD work from Claudio Avila and Niroj Mohalik) Advanced Materials Research Group Faculty of Engineering University of Nottingham

Upload: others

Post on 28-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Fuel Ignition or Self-heating

    Prof. Ed Lester (PhD work from Claudio Avila and Niroj Mohalik)

    Advanced Materials Research Group

    Faculty of Engineering

    University of Nottingham

  • ww.coalfire.caf.dlr.de

  • Worry now?

  • Worry now?

  • Worry now?

  • Worry now?

  • Worry now?

  • Previous work

    First attempts

    • Transport and storage losses

    (Porter et al 1910, Parr 1911 & 1925, Beagle 1925)

    • Trying to explain the phenomena

    (Using adiabatic calorimeter, Davis et al 1925)

    Some causes

    • Sorption of oxygen (Carpenter 1966)

    • Sorption of water (Davis 1926)

    • Pyrites oxidation (only for high pyrites concentration)

    (Graham 1923, Parr 1925, Sujanti 1999)

    • Mechano-activation “Crushing increases surface area of coal” (Medek 2001)

    • Bacterial action (Fuchs 1927, Coward 1957) finally refused

    Mechanisms more relevant

    • Influence of moisture (Hodges et al.1964, Bhattacharya 1971)

    • Influence of oxygen (Hull et al 1995)

    • Multi steps reaction mechanism “low and high temperature”

    (Wang et al 2003)

  • Previous work

    Recently works

    • Some methods to predict Spon Comb created, such as: Crossing point temperature (Banerjee 1966, Feng 1973, Chen 1995) Deferential thermal analysis (Marinov 1977, Pis et al 1996)Adiabatic calorimeter (Davis 1925, Elder 1945, Gouws 1991)Self-heating rate test R70 index (Humphreys 1981)

    Useful literature

    • A Study of self-heating of fresh and oxidized coals by DTA.

    Jose Pis and Fernando Rubiera, Incar Spain (Thermochemica acta V 279 (1996))

    • On the prediction of thermal runaway of coal piles using a correlation between heath release and activation energy

    Y. Nugroho, A. Mcintosh and Bernard Gibbs (Combustion Institute, V 28 (2000))

    • Susceptibility to spontaneous combustion of Indian coals and lignites: an organic petrographic autopsy

    B. Misra, B. Singh, India (Int. Journal of Coal Geology, V 25 (1994))

    • Dimensional analysis: a magic art in fire research?

    Philip Thomas, Bath UK (Fire Safety Journal, V 34 (2000))

  • -6.00

    -5.00

    -4.00

    -3.00

    -2.00

    -1.00

    0.00

    0 200 400 600 800 1000

    dW

    /dt

    Temperature

    PKE 2

    Sawdust 2

    OLIVE CAKE 2

    Cereal 2

    Daw Mill 2

  • Thermal test for Spon. Comb. Using Thermogravimetric methods

    15 coals have been used until now :- La Loma (Colombia, bituminous), Indo (Indonesia)- Bulli (Australia, Semi anthracite), Cynheidre (Wales, Anthracite), CWM (Wales, Semi Anthracite)- North Dakota (lignite), Illinois 6 (high volatile bituminous) , Pocahontas 3 (low volatile bituminous) {Argon premiumsamples from EEUU}- Cerrejon, Cerrejon seam 45 and Cerrejon seam 170 (Colombia, bituminous)- Fenosa (Indonesia) and Puertollano (Spain).

    Specific work developed

    Coal Water Volatiles Fix Carbon Ash

    North Dakota 11.6 36.0 43.4 9.0

    Illinois 6 2.7 39.6 41.8 15.9

    Pocahontas 3 0.4 15.2 79.1 5.4

    Cerrejon 3.7 37.7 53.5 5.1

    C. Seam 45 2.6 37.1 57.1 3.2

    C. Seam 170 4.8 39.4 54.3 1.6

    La Loma 3.8 45.1 39.3 11.9

    Indo 2.9 27.4 41.2 28.6

    Fenosa (Indonesia) 10.8 41.7 44.4 3.2

    Puertollano 0.6 22.1 25.8 51.5

    Bulli 0.9 22.3 67.5 9.3

    CWM 0.5 20.5 75.4 3.6

  • Thermal test for Spon. Comb. Using Thermogravimetric methods

    Introduction to Thermogravimetric analysis

    Specific work developed

    - Sample is exposed to a ramp of temperature in a furnace- At the same time a balance measures the weight of the sample continuously

    - Fenosa coal in a ramp of 10 degree per minute.

  • Thermal test for Spon. Comb. Using Thermogravimetric methods

    In temperature

    Specific work developed

    We could repeat the same analysis using the graph related to temperature.

  • Thermal test for Spon. Comb. Using Thermogravimetric methods

    - Coals were exposed to different heating rates in air.- Slopes of the derivative curve were calculated at low temperature (almost linear).- We can use derivative curves in time or temperature having 2 different approaches:

    In time

  • Thermal test for Spon. Comb. Using Thermogravimetric methods

    Specific work developed

    El Cerrejon N. Dakota

    illinois Pocahontas

  • Thermal test for Spon. Comb. Using Thermogravimetric methods

    Specific work developed

    In time

    Fenosa(high volatile)

    La Loma

    Indo Bulli(anthracite)

  • In time

    Thermal test for Spon. Comb. Using Thermogravimetric methods

    Specific work developed

  • In time

    Thermal test for Spon. Comb. Using Thermogravimetric methods

    Specific work developed

    Slope

    Position

    Coef.

    Stand.

    dev.

    0.1227 0.6939 0.9934

    0.1036 0.5766 0.9901

    0.0541 0.3658 0.985

    0.0486 0.2981 0.9908

    0.0416 0.3621 0.9922

    0.0689 0.5036 0.9704

    0.0675 0.4473 0.9861

    0.0292 0.1649 0.9927

    0.0165 0.1556 0.9747

    The slope value is very important

  • North Dakota

  • Kaltim Prima

  • Pocahontas

  • Biomass and Coal together

    Illustrative profile of the temperature in the surface of the sample

    as a function of the furnace temperature (left), and the derivative

    of the sample temperature as function of temperature (right).

  • Indian Coals Study

  • Research Background

    Chasnalla Jitpur Enna Simlabahal Bhalgora

    • Some cases crossing point temperature method produce misleading results.

    • Limited research to explore a comprehensive comparative study

    • No standard GHG measurement methodology from spontaneous heating of coal

    http://www.sciencedirect.com/science/article/pii/S0166516211002011#gr7http://www.sciencedirect.com/science/article/pii/S0166516211002011#gr7

  • Fire Affected Area at Enna OCP, JCF

  • Microscope Mosaic Production

    ../bhp files/bhp training/Zeiss_imaging_system.mp4

  • Manual Analysis Automated Analysis

    Sample Uv HCv ORv VRmo VRmo-m VRio VRio-i

    1 10.0 10.4 79.6 1.05 0.31 0.76 0.23

    2 15.2 10.0 74.8 0.92 0.16 1.01 0.35

    3 4.8 5.2 90.0 0.91 0.04 0.74 0.24

    4 23.0 20.4 53.6 1.04 0.07 0.87 0.2

    5 27.2 6.4 66.4 1.02 0.02 0.91 0.14

    6 17.2 10.4 72.4 1.04 0.02 0.96 0.05

    7 33.6 9.2 57.2 1.02 -0.13 0.84 -0.06

    8 26.8 12.8 60.4 0.95 -0.13 0.71 -0.09

    9 49.6 16.0 34.4 1.03 -0.01 0.68 -0.2

    10 48.0 5.6 46.4 1.08 0.03 1.04 0.04

    11 26.0 10.0 64.0 1.1 0.01 0.8 0.03

  • A non coal self heating event - RDF

  • 0

    20

    40

    60

    80

    100

    120

    0 20 40 60 80 100 120 140

    We

    igh

    t (%

    )

    Time (mins)

    Initial Fuel - Weight Loss at Fixed Temperatures

    [150]

    [250]

    [350]

    [450]

    [550]

    [650]

  • 0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 100 200 300 400 500 600 700 800 900 1000

    dW

    /dt

    Temperature (oC)

    Initial Fuel - Intrinsic Reactivity

  • 0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    0 100 200 300 400 500 600 700 800

    dW

    /dt

    Temperature (oC)

    Initial Fuel Slow Pyrolysis

  • 0

    20

    40

    60

    80

    100

    120

    0 20 40 60 80 100 120 140

    We

    igh

    t (%

    )

    Time (mins)

    Fixed Temperature Oxidation Chute Samples

    [150]

    [250]

    [350]

    [450]

    [550]

    [650]

  • -1

    0

    1

    2

    3

    4

    5

    6

    0 100 200 300 400 500 600 700 800 900 1000

    dW

    /dt

    Temperature (oC)

    Intrinsic Reactivity Chute Sample

  • 0

    0.5

    1

    1.5

    2

    2.5

    3

    0 100 200 300 400 500 600 700 800 900 1000

    dW

    /dt

    Temperature (oC)

    Slow Pyrolysis Chute Sample

  • 0

    20

    40

    60

    80

    100

    120

    0 20 40 60 80 100 120 140

    We

    igh

    t (%

    )

    Time (mins)

    Fixed Temperature Runs Caked Sample

    [150]

    [250]

    [350]

    [450]

    [550]

    [650]

  • 0.00

    1.00

    2.00

    3.00

    4.00

    5.00

    6.00

    0 100 200 300 400 500 600 700 800 900 1000

    dW

    /dt

    Temperature (oC)

    Intrinsic Reactivity Caked Sample

  • 0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    0 100 200 300 400 500 600 700 800 900 1000

    dW

    /dt

    Temperature (oC)

    Slow PyrolysisCaked Sample

  • 0

    2

    4

    6

    8

    10

    12

    14

    0 100 200 300 400 500 600 700 800 900

    dW

    /dt

    Temperature (oC)

    Intrinsic Reactivity of Artificial Samples

    [200]

    [300]

    [400]

    [500]

    [600]

  • 0.00

    1.00

    2.00

    3.00

    4.00

    5.00

    6.00

    0 100 200 300 400 500 600 700 800 900 1000

    dW

    /dt

    Temperature (oC)

    Slow Pyrolysis of Artificial Samples

    [200]

    [300]

    [400]

    [500]

    [600]

  • 0

    1

    2

    3

    4

    5

    6

    0 100 200 300 400 500 600 700 800 900

    dW

    /dt

    Temperature (oC)

    Slow Pyrolysis

    Caked Sample

    [300]

    [400]

    350 Theoretical

  • -1.00

    0.00

    1.00

    2.00

    3.00

    4.00

    5.00

    6.00

    7.00

    8.00

    0 100 200 300 400 500 600 700 800 900 1000

    dW

    /dt

    Temperature (oC)

    Intrinsic Reactivity

    Caked Sample

    [300]

    [400]

  • MALDI ToF Mass Spectrometer

    •Analysis of molecular mass of complex mixtures

    • Laser fired at sample to drive off molecules into a vacuum

  • Coal 1 Medium

    Coal 9

    Coal 3 Low/Medium

    Coal 2 Low

    Coal 7 High

    Coal 8 Low

  • Original Fuel

  • Chute Deposit

  • Pile Sample

  • Simulated 300oC sample

  • Conclusions

    • Some coals are naturally prone to self heating

    • Moisture is a key issue – adsorption and release mechanisms generate heat

    • Some coals/biomass can self-heat as a result of transport, storage or mine architecture

    • Self heating is a complex set of mechanisms –both macro and micro