full-proposal sugar aa-abf cdr lll&ce-vs2€¦ · 3" boku continuing education & life...

18
1 BOKU Continuing Education & Life Long Learning Project description submitted to BOKU CO 2 carbon offset system Title: Sustainable Landfill Gas Emission Reduction in Addis Ababa Acronym: SUGAR AA Planned project start: Autumn 2015 Duration: 2015 – 2018, three years Coordinating organisation: University of Natural Resources and Life Sciences, Vienna (BOKU) Head of coordinating organisation: Rector Prof. Dr. Martin Gerzabek Postal address: Gregor Mendel Straße 33, 1180 Vienna, Austria (1) Responsible scientific unit at BOKU: Centre for Development Research (CDR) Head: Dr. Michael Hauser Postal address: Peter Jordan Strasse 82, 1190 Vienna Project coordinator: DI Florian A. Peloschek, CDR, [email protected] Partner units at BOKU: (2) Institute for Waste Management (ABFBOKU) Head: Prof. Dr. Marion HuberHumer Postal address: Muthgasse 107/III, 1190 Vienna Contact person: DI Roland Ramusch (né Linzner), [email protected] (3) Lifelong Learning and Continuing Education (LLL & CE) Head: Mag. Christina Paulus Postal address: Augasse 26, 1090 Vienna Contact person: Marion Ramusch, [email protected] (4) DI Waltenegus Wegayehu, external partner in Ethiopia Contact: [email protected] (5) Client: BOKU Carbon offset system, represented by Centre for Global Change and Sustainability (CGSC) Contact person: Dr. Thomas Lindenthal, [email protected]; Mag. Dominik Schmitz, [email protected]

Upload: others

Post on 31-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

1  

BOKU Continuing Education & Life Long Learning

 

Project  description  submitted  to  BOKU  CO2  carbon  offset  system    

Title:  Sustainable  Landfill  Gas  Emission  Reduction  in  Addis  Ababa  

Acronym:  SUGAR  AA  

Planned  project  start:  Autumn  2015  

Duration:  2015  –  2018,  three  years  

 

 

Coordinating  organisation:  University  of  Natural  Resources  and  Life  Sciences,  Vienna  (BOKU)  

Head  of  coordinating  organisation:  Rector  Prof.  Dr.  Martin  Gerzabek  

Postal  address:  Gregor  Mendel  Straße  33,  1180  Vienna,  Austria  

 (1)  Responsible  scientific  unit  at  BOKU:  Centre  for  Development  Research  (CDR)  

Head:  Dr.  Michael  Hauser  

Postal  address:  Peter  Jordan  Strasse  82,  1190  Vienna    

Project  coordinator:  DI  Florian  A.  Peloschek,  CDR,  [email protected]    

Partner  units  at  BOKU:    

(2)  Institute  for  Waste  Management  (ABF-­‐BOKU)  

Head:  Prof.  Dr.  Marion  Huber-­‐Humer  

Postal  address:  Muthgasse  107/III,  1190  Vienna  

Contact  person:  DI  Roland  Ramusch  (né  Linzner),  [email protected]    

(3)  Lifelong  Learning  and  Continuing  Education  (LLL  &  CE)  

Head:  Mag.  Christina  Paulus  

Postal  address:  Augasse  2-­‐6,  1090  Vienna  

Contact  person:  Marion  Ramusch,  [email protected]  

(4)  DI  Waltenegus  Wegayehu,  external  partner  in  Ethiopia  

Contact:  [email protected]  

(5)  Client:  BOKU  Carbon  offset  system,  represented  by  Centre  for  Global  Change  and  Sustainability  (CGSC)  

Contact  person:  Dr.  Thomas  Lindenthal,  [email protected];  Mag.  Dominik  Schmitz,  [email protected]  

 

Page 2: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

2  

BOKU Continuing Education & Life Long Learning

A.  Project  design  and  substantive  quality  1. Objectives    -­‐  project  idea  and  intervention  logic  

Innovative  greenhouse  gas   reduction  can  be  achieved  with  different  approaches.   In   the   following  initiative,   the   focus   is   put   on   prevention   of   methane   emissions   due   to   adequate   collection   and  recycling  of  biogenous  solid  waste  in  Addis  Ababa,  Ethiopia.  To  achieve  a  sustainable  prevention  of  the   emission   of   greenhouse   gases   (GHGs)   due   to   continuation   of   adequate   source   separated  collection  and  composting  of  solid  biogenous  waste  in  AA,  the  project  empowers  vulnerable  target  groups  (waste  collectors,  single  mothers  to  be  employed  at  the  compost  site)  through  trainings,  job  creation   and   via   provision   of   “soft”   measures   (e.g.   creating   a   bank   account,   develop   skills   in  entrepreneurship  and  marketing,   frequent  medical   checks  etc.)   to  become  more   resilient   in   their  activities.   Building  on   results   achieved   in   previous   projects   this   initiative   strengthens   the   existing  partnerships   and   establishes   linkages   between   appropriate   solid   waste   management   and   urban  agriculture  to  enhance  food  security  and  health  in  AA.  Main  objectives  are:  

• Provide  multi-­‐stakeholder  training  and  capacity  development  in  source-­‐separated  collection  of  biogenous   wastes,   compost   production   and   application   in   urban   agriculture   and   small-­‐scale  farming;  

• Scaling-­‐up  of  best  practices  for  composting  to  other  sub-­‐cities  of  AA  and  recording  the  amount  of  compost  produced  on  different  sites  for  compensation  of  CO2  equivalents;  

• Scientific  backstopping  by  BOKU  experts  will  feed  into  research  and  teaching  activities.  

 

2. Rationale  

a. Background  information  

The   composition   of   the   municipal   solid   waste   (MSW)   stream   in   low-­‐income   countries   is  characterised  by  a  high   content  of  biogenous  waste   (up   to  75  %  of  MSW).  On   the  one  hand,   the  biodegradable  fraction  represents  a  resource  when  used  as  animal  feed  or  fertiliser.  On  the  other  hand,   in   the   course  of  ongoing  urbanisation  and   changing   living   conditions,  biogenous  waste  has  lost   its   link   to   the   traditional   reuse   practices   employed   in   rural   agriculture.   Rather,   the  inappropriate   management   of   waste   leads   to   environmental   problems   especially   in   the   fast-­‐growing  cities  of   the  developing  world.  Biogenous  waste   forwarded  directly   to  dumps  or   landfills  that   are   not   the   state   of   the   art  may   pollute  water   bodies   and   is   often   the   underlying   cause   of  hygienic   problems.   Also,   the   anaerobic   conditions   in   dumps   cause   the   generation   of  methane   –  improper   waste   management   still   causes   one   of   the   highest   shares   of   anthropogenic   methane  emissions.  

One   of   the   challenges   of   rapid   urbanisation   is   how   to   make   sufficient   food   available   on   a  sustainable  basis  for  the  increasing  urban  population.  Very  high  population  growth  rates  in  African  cities   are   the   reason   for   widening   the   spatial   gap   between   the   production   and   consumption   of  food.  The  increase  in  urban  food  demand  leads  to  intensive  food  production  systems  in  and  around  cities   (peri-­‐urban   agriculture)   requiring   a   large   amount   of   inputs,   including   plant   nutrients.  Once  the  food  is  consumed  or  processed  in  the  city,  related  market  and  household  waste  contributes  to  urban   pollution   as   large   amounts   of   nutrients   are   simply   wasted   (Drechsel   et   al.,   2001).   The  continuous  nutrient  flow  is  combined  with  problems  at  both  ends  of  the  chain:  nutrient  mining  in  rural  areas  and  pollution  where  nutrients  accumulate  (Drechsel  et  al.,  1999).  

The  possibility  of  converting  urban  wastes  or  a  substantial  portion  of  these  into  organic  fertilisers  is  an   adequate   way   of   closing   the   nutrient   cycle   as   it   occurs   in   nature.   If   the   nutrients   are   not  recirculated,  this   leads  to  a  lack  of  nutrients  and  humus  in  the  affected  soils,  as  well  as  to  related  

Page 3: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

3  

BOKU Continuing Education & Life Long Learning

problems  such  as  soil  degradation  and  erosion  problems.  Composting  of  the  biogenous  fraction  of  waste  and  the  subsequent  application  of  compost  in  urban  agriculture  was  therefore  considered  to  be  a  solution  in  the  course  of  development  cooperation  projects.  However,  several  efforts  made  in  promoting  composting  technology  turned  out  to  be  nonviable  due  to  different  reasons  (Linzner  &  Wassermann,  2006).  

In  Addis  Ababa   (AA),   the   capital   of   Ethiopia,   solid  waste   is   one  of   the   top  priority  problems.   The  waste  management  situation  in  AA  can  be  characterised  by  inadequate  collection  service  coverage,  limited   recycling   activities,   inadequate   landfill   disposal   and   inadequate   or   no   management   of  hazardous   and   healthcare   waste.   A   large   portion   of   waste   is   dumped   illegally   on   the   streets,  riversides,   and   public   areas   and   burnt   in   the   streets   and   backyards   due   to   lacking   knowledge  toward  waste  and  its  value.  The  only  landfill  in  AA  has  reached  its  limit  and  cannot  be  characterised  as   engineered,   sanitary   landfill   but   more   as   a   dumpsite.   All   these   practices   lead   to   the  contamination  of  air,   soil  and  water  bodies,   the  spreading  of  vermin  and,   therefore,  pose  a  huge  risk  for  human  health  and  the  environment.  

Also,   still   limited   information   is   available   on   the   waste   quantity   generated   and   its   impact.   The  estimated   200,000   t   per   year   of   municipal   solid   waste   collected   consists   of   approx.   60   -­‐   80   %  organic  (biodegradable)  material  (Tessema,  2010)  and  can  be  used  as  input  material  into  an  aerobic  degradation  process   (composting).  Converting  urban  biogenous  wastes   into   fertiliser   (compost)   is  an  adequate  way  of  closing  the  nutrient  cycle  in  urban  agglomerations.  When  the  biogenous  waste  is   dumped,   the   nutrients   are  washed   out   -­‐   causing   leachate   contamination   and   additionally,   the  organic   share   of   the  waste   stream   is   responsible   for   producing   greenhouse   gas   emissions   under  anaerobic  landfill  conditions  (mostly  methane  and  nitrous  oxide).  A  more  reasonable  option  would  be   to   close   the   nutrient   loop   by   producing   compost   and   applying   this   fertiliser   in   (peril-­‐urban)  agriculture.   Thus,   a   long-­‐term   compost   application   has   positive   impacts   on   yields   and   soil  properties  by   increasing  humid  substances   in   top-­‐soils  and   increased  structure  and  water-­‐holding  capacity,   thus   preventing   soil   degradation   and   erosion.   Therefore,   composting   of   the   biogenous  fraction  of  waste  and  the  subsequent  application  of  compost  in  agriculture  improves  food  security  of   the   population   in   AA   and   has   beneficial   impacts   on   environment   and   health   (Linzner   and  Wassermann  (2006);  Linzner  (2010)).  

b. Previous  collaboration  

The  Association  of  Ethiopians  Educated  in  Germany  (AEEG)  with  the  cooperation  of  the  Institute  of  Waste  Management  (ABF-­‐BOKU),  the  Centre  for  Development  Research  (CDR)  and  other  partners  have   enabled   a   small-­‐scale   technology   and   knowledge   transfer   by   designing   a   pilot   composting  plant   to   address   organic   waste  management   and   to   establish   a   link   to   urban   agriculture.   These  issues   had   been   thoroughly   discussed   in   a   first   Municipal   Solid   Waste   Management   (MSWM)  workshop  held  in  September  2008,  and  it  was  agreed  to  start  the  project  at  a  small-­‐scale  pilot  level  in   Addis   Ababa.   A   marketing   approach   was   chosen   for   implementation,   where   composting   is  considered  as  a  way  of  producing  a  valuable  product   (fertiliser)   that  can  be  sold.  From  the  waste  management  point  of  view,  this  leads  to  improved  hygiene,  as  uncontrolled  dumping  of  biogenous  waste  is  harmful  to  human  health.  In  addition  biogenous  waste  that  is  composted  in  a  decentralised  way   saves   landfill   volume   (extends   lifespan   of   landfills)   and   leads   to   reduced   waste   collection,  transport  and  disposal  costs  for  the  municipalities  (Rouse  et  al.  (2008)).    

Page 4: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

4  

BOKU Continuing Education & Life Long Learning

The  pilot  open  windrow  composting  site  was  launched  in  December  2009  with  a  financial  support  of  the  German  Development  Service  (DED)  at  a  site  located  in  Kolfe  Keranyo  (KK)  Sub-­‐city  Woreda  081.    

   Figure  1:  SSWMAA  Impressions:  composting  process,  training,  demonstration  fields,  activities  on  the  school  fields,  compost  quality  laboratory  training.  (©  CDR)      From   2010   to   2014   the   project   team   has   worked   successfully   in   the   project   “Sustainable   Solid  Waste  Management   in   Addis   Ababa”   (SSWMAA)   providing   relevant   solutions   by   introducing   and  implementing   source   separated   (biogenous)   waste   collection,   compost   production   and   urban  agricultural   practices.   Within   the   project,   a   number   of   training   courses   were   conducted   for  households,   waste   collectors   and   the   team   at   the   composting   site.   In   addition,   an   international  laboratory-­‐training  course  was  conducted  in  AA  in  order  to  provide  knowledge  on  process  control  and   compost   quality   assurance.   A   demonstration   field   was   installed,   and   various   media  representatives,  schools,  sub-­‐districts  and  other  delegations  visited  the  site.  A  market  assessment  was   conducted   in   order   to   assess   potential   customer   groups   and   their   willingness   to   pay   for  compost  to  be  used  as  fertiliser.    

 

3. Beneficiaries,  participation,  work  schedule  and  project  activities  

 

a. Beneficiaries  

The  project  location  is  in  KK  sub-­‐city,  from  this  sub-­‐city,  Kebele  07  is  selected  as  pilot  area  for  the  project.   The   presence   of   the   already   existing   composting   station   in   this   Kebele,   the   strong  institutional   cooperation   between   the   main   actors   engaged   in   waste   management,   the   AA  Environmental   Protection  Authority   (AA-­‐EPA),  AA   Sanitation  Administration  Agency   (AA-­‐SAA)   and  other  administrative  offices  are  among  the  criteria  for  the  selection.  

Target   groups   are   (1)   inhabitants   from   KK,   in   the   project   start-­‐up   phase   approximately   250  Households  (HH)  and  50  house-­‐to-­‐house  waste  collectors  as  well  as  (2)  pupils  and  teachers  from  a  

                                                                                                               1  Addis  Ababa  is  divided  into  10  sub  cities;  Kolfe  Keranyo  sub  city  is  located  in  the  north  western  part  of  Addis  Ababa.  It  has  a  population  of  428,654  covering  an  area  of  61.25  km2  which  makes  it  the  most  densely  populated  sub  city.  The  sub  city   is   divided   into   10  Woredas   (Kebeles),  which   is   the   smallest   administrative   unit.   The   composting   site   is   situated   in  Woreda  08.  

Page 5: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

5  

BOKU Continuing Education & Life Long Learning

partner  school  in  KK,  Abune  Basileos  School,  and  (3)  stakeholders.  The  stakeholder  group  consist  of  inhabitants  from  KK,  waste  collecters,  school  communities  (pupils,  teachers,  parents),  AA  municipial  authorities,   national   and   international   development   agencies,   universities   and   environmental  education   and   urban   agriculture   activists.   The   proposed   project   will   explore   the   possibility   of  establishing   an   innovation   platform   for   institutionalizing   the   MSWM   approach.   An   innovation  platform  comprises  of   stakeholders  of   farmer  organisations,  NGOs,   local   government   authorities,  municipality   administration,   the   private   sector,   universities   and   research   organisations   and   it   is  operational  and  increases  stakeholders’  commitment  to  supporting  and/or  implement  MSWM.  The  purpose  of   the   innovation  platform   is   to   share   information   and   experiences   among   stakeholders  across  organisations,  cities,  and  disciplines  to  derive  lessons  of  what  works  where.  

 

b. Local  embedding,  participating  BOKU  institutions  

Project  implementation  on  site  is  under  DI  Waltengus  Wegayehu  responsibility.  He  has  graduated  at  the  Fachhoschule  Hamburg  with  a  master  thesis  on  the  Drinking-­‐Water-­‐  Supply-­‐  System  in  Debre  Zeit   and   Mojo,   Ethiopia.   He   has   worked   on   action-­‐oriented   initiatives   targeting   sustainable  development   and   multi-­‐stakeholder   interventions   in   Addis.   Since   he   worked   on   Ethiopian  agricultural  enterprises  focusing  the  export  market  only,  he  dedicated  his  experiences  in  fostering  urban  agriculture  to  increase  the  resilience  of  urban  population  towards  food  security.  He  was  the  on-­‐site  manager  in  the  project  “Sustainable  Solid  Waste  Management  in  Addis  Ababa”  (SSWMAA).  

Improved   development   outcomes   emanates   from   increasing   the   performance   of  multiple   actors  and  the  effectiveness  of  their  interactions.  To  ensure  the  sustainability  of  the  planned  intervention  and   the   used   resources,   cooperation   with   local   acting   already   enshrined   institutions   will   be  established.  A  range  of  expertises  and  capabilities  on  economic  empowerment,  marketing  strategy,  continous   education   etc   is   availbale   in   AA.   Thus,   linkages   to   development   actors  with   realted   to  Austria   such  as  CARE  Ethiopia,  SOS  Kinderdorf,  Menschen   für  Menschen,  Ethiopian  Red  Cross  etc  will  be  established  and  possible  synergies  identified.    

The  Centre   for   Development   Research   (CDR)   is   a  multi-­‐disciplinary   scientific   unit   located   at   the  University  of  Natural  Resources  and  Life  Sciences,  Vienna,  Austria.  It  brings  together  development  scientists,   lectures   and   science   administrators   committed   to   finding   ways   into   a   secure   and  equitable  future  for  everyone.  As  a  scientific  unit  the  Centre  for  Development  Research  is  devoted  to  working  towards  poverty  reduction  and  food  security.  Together  with  research  and  development  partners   in   the  South   the  centre   searches   for   strategies   to   increase  well-­‐being  and   improve   rural  life.   Through   interaction  with   local   partners   the   centre   helps   formulating   development   scenarios  with   leverage.  Sustainable  Solid  Waste  Management   is  an  emerging  expertise   that   the  Centre   for  Development  Research  has  in  its  portfolio.  

The   Institute   of   Waste   Management   (ABF-­‐BOKU)   has   sound   experience   in   waste   management  practices   with   regard   to   low-­‐income   countries   and   has   carried   out   projects   in  West   Africa,   East  Africa,  Russia,  China,   South  America  and  on   the  Balkans.  DI  Roland  Ramusch   (né  Linzner),  who   is  mainly   working   in   this   area   for   ABF-­‐BOKU,   is   also   a  member   of   the   CDR   partner   community.   DI  Erwin  Binner  is  a  senior  scientist  and  expert  in  composting.  A  major  research  objective  of  ABF-­‐BOKU  is  “Sustainable  improvement  of  livelihoods  in  less-­‐industrialised  and  newly  industrialising  countries  by  development  of  adapted  waste  management  measures”.  The  goal  is  to  develop  adapted  waste  management   measures   in   consideration   of   technical,   financial,   cultural,   social,   institutional   and  organisational   aspects.   These   measures   include   technological   (e.g.   decentralised   composting),  organisational   (e.g.   documentation   system   for   hazardous   wastes)   and   capacity   development  measures   (e.g.   curriculum   development,   training   courses).   Decentralised   waste   management  measures   and   the   participatory   inclusion   of   the   local   population   shall   provide   a   sustainable  contribution  to  development  in  Ethiopia.  

Page 6: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

6  

BOKU Continuing Education & Life Long Learning

Through   the  support  of   the  working  area  „Continuing  Education  and  Lifelong  Learning“  at  BOKU  (CE   and   LLL)   an   additional   benefit   has   been   secured.   CE   and   LLL   will   on   first   hand   support   the  project  with  30,000  €  over  the  project  period  and  therefore  BOKU  substantially  contributes  to  this  project.   Second,   CE   and   LLL   provides   expertise   in   development   of   LLL   programmes,   as   well   as  implementation  and  evaluation  of  them.  As  project  partners,  the  BOKU  expertise  will  add  a  value  and  will  be  responsible  to  implement  lifelong  learning  programmes  with  the  project  stakeholders.    

 

4. Work  schedule  and  project  activities  

SUGAR  AA  project  will  start  with  an   inception  workshop  to  develop  a  detailed  and  specified  work  plan,  according  to  the  up  to  date  project  environment  and  conditions  on  site.  The  following  section  provides   a   draft;   therefore  minor   deviation   can   be   expected.   As   the   project   start   is   not   exactly  agreed  on  before  funding  has  been  secured,  the  activities  are  scheduled  for  an  implementation  any  time.    

Draft  time  line:  

1st  year  

• WP  1:  Start-­‐up  workshop  and  partner  meeting   is  conducted,  and  the  detailed  implementation  plan  is  prepared.  (Month  1)  

• WP   2:   Selection   of   households   and   house-­‐to-­‐house   waste   collectors;   providing   working   and  protective  materials   for   these   groups.   Training   is   given   for   these   groups   on   importance   and  impacts  of  MSWM  practices,  waste  sorting,  how  to  make  compost  from  solid  biogenous  wastes  and   other   environmental   related   works.   Trained   persons   act   as   multipliers.   (Month   1   -­‐   6).  Source-­‐separated  waste  collection   is  started   in   the  selected  area,   the  separated  waste  will  be  transported  and  processed  on  the  already  existing  composting  station  that  is  operated  in  KK  or  other   established   site   (schools),   recording   of   waste   and   compost   parameters   (quality   and  quantity)  and  process  monitoring  started.  (Month  1  -­‐  12)  

• WP  3:  The  marketing  strategy  “Compost  for  Ethiopia”  with  the  support  of  BOKU  experiences  in  Austria,  will  be  discussed  and  drafted  along  the  meeting  in  WP  1.  Bazaars,  participation  at  fairs,  open   house   and   shops   for   selling   the   compost   as   best   organic   fertilizer   organized   by  stakeholders,  partners,  private  persons,   government   institutions  are   targeted.  Household  and  communities   in   the   sub   city   and   nearby   the   schools   can   be   reached   by   selling   organic  vegetables  from  the  urban  agriculture  practice.  (Month  1,  3  -­‐  9).  

• WP   4:   Back   stopping   for   the   registration   of   KK   Women   Associaton.   Identify   partners   for  economic   empowerment   programm.   Set   up   joint   coaching   and   assitance   for   business  development.  (Month  1  -­‐  12)  

• WP   5:   Annual   open   house,   chronologically   with   WP1.   Identification   of   potential   partners   in  Ethiopia   and   inaugural   visits.   Contact   between   sub-­‐cities   and   other   cities   of   the   country   are  established  on  the  possible  scaling-­‐up  and  dissemination  of  the  project  output.   Intensification  of  media  contacts.  (Month  1,  6  -­‐  12)    

• WP  6:  The  quality  of  the  compost  produced  is  tested  (periodically  at  local  laboratories  as  well  as  –  less  frequently  -­‐  at  ABF-­‐BOKU),  on  the  composting  site  through  windrow  formation  as  process  optimisation  is  established.  (Month  1  -­‐  6)    

• WP  7:  Identify  partnerships  with  educational  institutions  at  a  local  level  to  provide  attractively  and  relevant  programmes.  Along  with  WP  2,  employees  of  the  composting  site  in  AA,  as  well  as  teachers   of   the   schools  will   be   trained   to   conduct   the   trainings   independently   to   sustainable  anchor   them   at   the   composting   site.   In   the   first   months   with   involvement   already   trained  stakeholders   a   manual   with   support   from   experts   of   BOKU   will   be   developed.   Learning  

Page 7: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

7  

BOKU Continuing Education & Life Long Learning

outcomes,  target  group,  extent  and  content  of  the  course  will  be  jointly  worked  out  with  WP  2  and  WP  4.  (Month  1  -­‐  12)  

2nd  year  

• WP  1:  The  project  progress  of   the   first   year   is   evaluated  by  partners   (Project  monitoring  and  evaluation  meeting).  (Month  1)  

• WP  2:  Additional  training  of  household  is  conducted;  processing  of  the  source-­‐separated  waste  collection  is  continued  at  the  composting  station;  recording  of  the  quantity  and  quality,  process  monitoring  of  certain  parameters  continued.  (Month  1  -­‐  12)  

• WP  3:  Establishing  business  partnerships  for  the  marketing  campaign,  along  with  WP  5  and  the  inaugural  visits  in  other  parts  of  Ethiopia.  (Month  1,  3  -­‐  9)  

• WP   4:   KK  Women   Associaton   fully   operating.   Trainings   and   coaching   availbale   for   economic  empowerment.  Develop  plans  for  home-­‐grown  microfinance  system.  (Month  1  -­‐  12)  

• WP  5:    Open  house,   chronologically  with  WP1.   Identification  of  potential  partners   in  Ethiopia  and  inaugural  visits.  Contact  between  sub-­‐cities  and  other  cities  of  the  country  are  established  on  the  possible  scaling-­‐up  and  dissemination  of  the  project  output.  Foster  relationship  through  joint  activities  with  already  identified  partners.  (Month  1,  6  -­‐  12)  

• WP   6:   The   quality   of   the   compost   produced   is   tested   at   the   AA-­‐EPA   laboratory;   training   of  experts   from   other   (sub)   cities   on   compost   quality   analyses,   sampling   procedures   and  composting   process  monitoring  will   be   conducted   at   AA-­‐EPA   laboratory   and   on   the   compost  station   under   supervision   of   ABF-­‐BOKU;   Compost   analysis   protocol   suitable   to   Ethiopian  conditions  is  reviewed  and  the  manual  is  disseminated.  (Month  1  -­‐  6)  

• WP  7:   The   course  manual   that  was   developed   in   the   previous   year  will   be   tested,   under   the  presence  of  experts   from  BOKU.  The  purpose   is   to  adapt  the  course  on  relevant  adjustments.  Trainees   will   evaluate   via   questionnaires   the   course   and   as   usual   in   LLL   programmes,  monitoring  of  the  implementation  and  evaluation  will  enhance  the  manual.  Importance  will  be  given  to  sustainable  hand  over  the  course  to  stakeholders  and  Ethiopian  partners.   (Month  1   -­‐  12)  

3rd  year  

• WP  1:  The  second  year  project  achievements  are  evaluated  by  partners  (project  monitoring  and  evaluation  meeting).  A  terminal  workshop  is  conducted.  (Month  1  +  12)  

• WP  2:  Composting  of  source-­‐separated  waste  on  the  station  is  continued.  (Month  1  -­‐  12)  

• WP   3:   Establishing   business   partnerships   for   marketing   campaign,   along   with  WP   5   and   the  inaugural  visits  in  other  parts  of  Ethiopia.  (Month  1  -­‐  12)  

• WP   4:   Continuations   of   economic   empowerment.   Home-­‐grown   microfinance   system  established.  (Month  1  -­‐  12)  

• WP  5:  Open  house,  chronologically  with  WP1.  Foster   relationship   through   joint  activities  with  already  identified  partners  and  develop  strategies  for  the  continuation  of  cooperation  after  the  project  end.  Networking  with  stakeholders,  governmental  and  non-­‐governmental  organizations  on  the  possible  establishment  of  compost  quality  association   in  Ethiopia   is  started;   the  whole  output  of  the  three  years  project  is  collected  and  published  as  an  information  booklet.  (Month  7  -­‐  12)  

• WP  6:  In  the  terminal  workshop  the  course  manual,  the  current  and  future  use  by  stakeholders  and  partners  will  be  discussed,  and  appropriate  measures  will  be  made.  (Month  10  -­‐  12)  

Page 8: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

8  

BOKU Continuing Education & Life Long Learning

• WP  7:  In  the  terminal  workshop  the  course  manual,  the  current  and  future  use  by  stakeholders  and  partners  will  be  discussed  and  appropriate  measures  will  be  made.  (Month  10  -­‐  12)  

 

Description  of  the  work  packeges:  

WP   1   (Lead   CDR):   Coordination:   The   project   consortium   has   the   following   structure:   Project  coordination  team:  Project  Coordinator  Florian  Peloschek  -­‐  CDR  BOKU,  Project  Coordinator  Ethiopia  Waltenegus  Wegayehu.  Each   institutional  partner  will  appoint  a  focal  person  who  represents   it   in  the   coordination   team.   These  persons  will   be  Marion  Ramusch   –   CE   and   LLL   ,   Roland  Ramusch   -­‐  ABF-­‐BOKU,  CARE    WP  2  (lead  Waltenegus  Wegayehu):  Provide  multi-­‐stakeholder  training  and  capacity  development  in  the  source-­‐separated  waste  collection,  compost  production  and  application  in  urban  agriculture  and  small-­‐scale  farming.    !  Working  areas  will  be:  Avoidance  of  methane  production  through  composting  and;  small-­‐scale  

compost   site   construction;   compost   production;   monitoring   of   input   and   output;   compost  quality;  compost  application;  urban  agriculture  practice;  TVET  (Technical  Vocational  Education  and  Training)  "  development  of  life  long  learning  programme  (BOKU  know-­‐how)    

WP   3   (lead  Waltenegus  Wegayehu):    Marketing   strategy   and   strategic   partner   for   the  marketing  campaign.  ! Working  areas  will  be:  Development  of  a  marketing  strategy  to  economical  sale  of  high  quality  

compost   in  AA   and   Ethiopia,   (partially   BOKU   knowhow   is   available,   partially  working   on   new  grounds),  packaging  with  a  compost  analysis  result  as  proof  of  high  quality  to  get  a  good  price  per   kg   compost.   Bazaars,   fair,   open  house   and   shops   for   selling   the   compost   as   best   organic  fertilizer,   target   groups:   Household   and   community   of   the   sub   city,   schools,   authorities   and  universities.   Selling   organic   vegetables   from   the   urban   agriculture   practice.   Market   review,  branding,  pricing.  Training  of  retailers,  sales  people  together  with  WP  2.    Establishing  business  partnerships   for   marketing   campaign   (Ethiopian   Horticulture   Association,   Association   of  Women  in  Business  etc…)    

WP  4  (lead  Waltenegus  Wegayehu):  Women  empowerment.  Establishing  of  KK  Women  Association  to  enhance  entrepreneurship  and  develop  small-­‐scale  business  in  cooperation  with  the  other  WP  leaders.  

! Working   areas   will   be:   Back   stopping   registration   of   KK   Women   Associaton.   Economic  empowerment.  Economic  development  coaching.  Home-­‐grown  microfinance  system    

WP  5  (lead  Waltenegus  Wegayehu):  Scaling-­‐up  of  best  practices  for  composting  to  other  sub-­‐cities  of  AA  and  recording  the  amount  of  compost  produced  on  different  sites  for  compensation  of  CO2  equivalents.    ! Working  areas  will  be:  Training  and  networking   for  extension  of  appropriate  waste  collection  

for   a   higher   turnover   on   the   site.   Site   crew   will   be   trainers   of   trainees   to   reach   more  households  allocated  to  KK  composting  site,  up  to  600  by  establishing  KK-­‐Women’s  association  (WP   5).   Additional   composting   sites   as   in   the   Abune   Baslios   School.   More   schools   were  identified   already:   Ayer   Tena   secondary   school   and   Woyra   School.   First   contact   can   be  established  with  scaling  up  workshop”  organised  as  open  house  event.  Annual  information  days  as  an  “Open  house”  will  be  held  at   the  sites  of  project  partners,   for  example,  Abune  Basileos  School.  Activities  will  reach  out  to  other  sub  cities  of  Addis  Abebea  and  in  other  Ethiopian  cities.  

Page 9: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

9  

BOKU Continuing Education & Life Long Learning

Networking   is   an   integral   part   of   this   WP,   therefore   all   activities   are   supported   with   social  events  as  coffee  ceremony  etc.  Lobying  activities,  even  though   it  has  a  bad  public  reputation,  will  be  discussed  during   the  annual  meetings  along  WP  1  and  a  code  of  conduct   for   lobbying  activities   that   regulates   relations   with   stakeholders   in   Austria   and   Ethiopia   and   defines  principles  for  transparent  and  responsible  lobbying.  

 

WP   6   (lead   ABF-­‐BOKU):   Scientific   backstopping   by   BOKU   experts   will   feed   into   research   and  teaching  activities  at  BOKU.  

! Working   areas   will   be:   ABF-­‐BOKU   will   obtain   deep   insights   on   municipal   solid   waste  management   challenges   in   a   low-­‐income   country.   The   scheduled   practical   trainings   (e.g.  compost  quality  analyses)  will  extend  the  existing  database  on  compost  qualities  and  process  monitoring   under   tropical   conditions.   In   addition,   the   project   will   generate   knowledge   on  stakeholder  integration  and  marketing  aspects;  both  important  prerequisites  for  the  economic  viability  of  waste  management  projects  in  low-­‐income  countries.  All  this  will  contribute  to  the  lectures   Global  Waste  Management   II   and   Planning   and   Assessment   of  Waste  Management  Systems.   Process   optimisation   on   site   -­‐   windrow   formation     -­‐   is   a   good   example   for   BOKU  knowhow  to  be  implemented  in  the  specific  case  

 

WP  7  (lead  CE  and  LLL):  CE  and  LLL  provide  expertise  in  development  of  LLL  programmes,  as  well  as  implementation  and  evaluation  of  them.  

! Working  areas  will  be:  Development  and  implementation  of  an  LLL  course  in  urban  agriculture  composting   practice   together   with   the   stakeholders   and   support   the   local   team   in   the  development  of  the  training  centre.  Within  the  planned  measures,  particular  attention  will  be  given  to  women  empowerment,  in  line  with  WP  4.  

 

5. Consideration  of  co-­‐benefits  

The  proposed  project  intends  to  target  multiple  and  positive  co-­‐benefits.  The  separate  collection  of  biogenous   waste,   subsequent   conversion   into   a   locally   available   fertiliser   and   application   in  agriculture  additionally  lead  to  the  following  co-­‐benefits:    

Ownership:  

• Increasing  the  capacity  of  the  implemented  stakeholders  (organisations)  working  on  solid  waste  management  and  environmental  problems;  

• student  involvement  to  carry  out  master  thesis  research.    Participation  and  inclusion:  • Create  linkages  between  appropriate  municipal  solid  waste  management  and  urban  agriculture;  

• develop   a   composting   demonstration   site   and   garden   for   training   and   visits   to   establish   an  entry  point  for  upscaling  and  multiplying  activities.  

Empowerment:  

• Foster   multi-­‐stakeholder   training   in   source-­‐separated   waste   collection,   compost   production  and  compost  application   in  urban  agriculture  and  small-­‐scale   farming   leads   to  empowerment  and  capacity  development;  

• developing   marketing   strategies   for   compost   and   foster   economic   development   of   compost  producers  and  waste  collectors.  

Page 10: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

10  

BOKU Continuing Education & Life Long Learning

• developing   of   a   LLL   programmes,   as  well   as   implementation   and   evaluation   of   it   with   BOKU  expertise  will  add  a  value  for  all  project  stakeholders  

Sustainability:  

• Closing   the   nutrient   loop   by   transforming   biogenous   wastes   into   a   locally   available   fertiliser  instead  of  losing  nutrients  in  dumps  and  the  landfill;  

• positive  impact  on  hygiene  as  well  as  health  and  environmental  impacts  due  to  improper  waste  management  practices;  

• reduction  of  greenhouse-­‐gas  emissions  • disseminating  and  scaling-­‐up  of  best  practices  to  other  sub-­‐cities  of  Addis  Ababa  (AA).  Equity,  equality  and  non-­‐discrimination:  

• Job   creation   in   waste   collection   and   composting   (focus   on   vulnerable   groups   such   as   single  mothers)   creates   income   –   special   courses   shall   provide   extended   services   for   vulnerable  groups,  e.g.  training  in  entrepreneurship  for  composting  team;  

• added  value  by  supporting  vulnerable  groups  with  regular  medical  checks.    

Page 11: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

11  

BOKU Continuing Education & Life Long Learning

B. CO2-­‐eq-­‐Methodology  applied  Methane  emissions   from  waste   related  processes   (e.g.   landfills)  are  considered  as  highly   relevant  regarding  the  total  anthropogenic  methane  emissions.  It  is  predicted,  that  these  emissions  increase  from   18  %   (2005)   to   36  %   in   2030   (Höglund-­‐Isaksson,   2012).   The   applied   methodology   for  calculating   avoided   greenhouse   gas   emissions   is   based   on   the   UNFCCC   methodologies   AM0025  (alternative  waste   treatment   processes)   and   AMS-­‐III.F   (avoidance   of  methane   emissions   through  composting).   Small-­‐scale   composting   projects   bear   difficulties   in   applying   the  measurement   and  monitoring  requirements  set  out  by  UNFCCC.  Therefore,  these  methodologies  have  to  be  adapted  to  reflect  the  situation  in  a  low-­‐income  country  in  the  framework  of  a  small-­‐scale  project.  Amongst  others   this   is   related   to   insecurities   in   the   variations   of   availability   of   input   material,   seasonal  variation  of  the  composition  of  the  delivered  input  material,  varying  conditions  in  the  composting  process  and  in  assumptions  to  be  made  in  the  avoided  landfill  emissions  due  to  composting.  

In  the  following,  suitable  methodologies  for  the  estimation  of  carbon  credits  are  described.  

1. Carbon  offset  

The   approach   used   in   the   following   considerations   is   that   biogenous  waste  when   disposed   of   in  landfills  /  dumps,  generates  greenhouse  gases  (mainly  methane  +  carbon  dioxide)  under  anaerobic  conditions.  If  this  biogenous  waste  is  composted,  then  a  considerable  amount  of  GHGs  is  reduced,  as   composting   is   an   aerobic   process  which  mainly   generates   carbon   dioxide.   Figure   2   shows   the  approach  of  setting  up  a  carbon  offset  project  aiming  at  converting  separately  collected  biogenous  waste  from  different  sources  (household,  schools,  markets  etc.)  into  compost  instead  of  disposing  it  of  in  a  landfill.  

Compared   to   landfilling,   composting   itself   produces   a   lower   amount   of   GHGs,   depending   on   the  operational  management  of  the  composting  plant  (emissions  from  aerobic  biological  process).  It  is  also   possible   to   allocate   credits,   e.g.   the   emissions   avoided   from   landfilling,   emissions   due   to  avoided  mineral  fertiliser  usage  and  credits  from  carbon  storage   in  soils,  the  two  latter  related  to  compost  application.  

The   following   considerations   focus   on   1,000   kg   (1   metric   tonne)   of   biogenous   waste   that   is  separately  collected  and  converted  to  compost  in  a  small-­‐scale  composting  plant.  According  to  IPCC  (2013)  the  following  GWP100  are  used  in  the  calculations  (see  table  1).  As  described  in  table  1,  the  GWP100  for  methane  is  outlined  with  28,  for  nitrous  oxide  the  applied  value  is  265.  

 Table  1:  GWP  and  GTP  with  and  without  climate-­‐carbon  feedbacks  (IPCC,  2013)    

 

Page 12: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

12  

BOKU Continuing Education & Life Long Learning

 

Figure  2:  Methodological  approach  of  biowaste  composting    

2. Avoided  emissions  from  landfilling  biogenous  wastes  

a. Used  methodology:  

Composting  instead  of  landfilling  biogenous  wastes,  permanently  avoids  methane  emissions  caused  by  anaerobic  degradation  in  landfill  sites.  Thus  for  calculating  CO2-­‐compensation  the  gas  generation  potential  of  biogenous  wastes  is  used  instead  of  calculating  the  annual  avoided  methane  emissions  by  use  of  gas  prognosis  models  as  it  is  applied  in  the  UNFCCC  model.  

 

b. Estimation  of  methane  emissions  potential  

Biogenous   wastes   delivered   to   composting   plants   commonly   are   not   analysed.   Therefore,   some  assumptions  about  the  input  composition  have  to  be  done  for  calculations.  Due  to  the  high  share  of  

Page 13: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

13  

BOKU Continuing Education & Life Long Learning

woody   materials   (garden   and   yard   wastes)   these   materials   are   not   used   in   anaerobic   digestion  plants.  Thus,  also  results  of  gas  generation  capacity  analyses  are  not  available.  

Separately  collected  biogenous  wastes   from  kitchens,   restaurants  and  markets  often  are  used  for  anaerobic  digestion.  Because  of  the  missing  woody  materials  the  composition  differs  compared  to  input  material  of  composting  plants.  The  source-­‐separated  collection  in  AA  will  mainly  take  place  at  the  household  level.  Thus  the  composition  of  collected  biogenous  wastes  will  be  similar  to  Austrian  inputs  into  anaerobic  digestion  plants.  

At   ABF-­‐BOKU   several   inputs   of   the   Viennese   digestion   plant   were   analysed   during   a   project.   16  samples  were  analysed  regarding  chemical  composition.  One  of  these  samples,  as  well  as  two  other  biogenous  wastes   (anaerobic  plant  SAB   (Salzburg)  and   flower  waste)  were  analysed  by   long-­‐term  incubation   tests   lasting   150   up   to   240   days.   For   calculating   the   gas   generation   potential   (for   a  several  100  years  period)  a  model,  developed  at  ABF-­‐BOKU  was  used  (Tintner  et  al.,  2011;  Binner  et  al.,  2013),  which  also  allows  the  estimation  of  carbon  degradation.          

 

c. Direct  estimation  of  gas  generation  potential  by  gas  generation  tests  

By  the  three  long-­‐term  incubation  tests  (ASI,  2012)  the  following  data  were  generated:  

• Test  no.  109:  input  digestion  plant  SAB  (Salzburg)  water  content  (WC)  =  65  %,  gas  generation  potential  =  530  Nl/kg  DM  (dry  matter)2  resp.  185  Nl/kg  wet  matter.  1,000  kg  WM  #  185,000  Nl  gas,  degradation  of  carbon  =  67  %  

• test  no.  301:  flower  waste  (Vienna)  WC  =  61  %,  gas  generation  potential  =    >450  Nl/kg  DM  resp.  175  Nl/kg  wet  matter.  1,000  kg  WM  #  175,000  Nl  gas,  degradation  of  Carbon  =  50  %  

• test  no.  243:  input  digestion  plant  Vienna    WC  =  65  %,  gas  generation  potential  =  480  Nl/kg  DM  resp.  170  Nl/kg  wet  matter.  1,000  kg  WM  #  170,000  Nl  gas,  degradation  of  Carbon  =  60  %.  

 

d. Estimation  of  carbon  release  by  carbon  balance  

Additional   to  these  results  of   laboratory  tests  and  modelling,  an  estimation  of  the  gas  generation  potential  by  carbon  balance  was  done.  

 

Therefore,  the  following  material  properties  were  used:  

• Separately  collected  biogenous  wastes  prepared  for  composting  show  water  content  (WC)  of  approx.  45  %.  The  average  of  the  feedstock  mixtures  of  4  Austrian  composting  plants  is  51  %.  It  has  to  be  kept  in  mind,  that  these  feedstock  materials  are  wetted  during  pretreatment.  Thus  45  %  was  used.  

• The  organic  carbon  content  (TOC)  was  estimated  to  35  %  dry  matter  (DM).  The  carbon  content  strongly  depends  on  the  collection  system.  Due  to  the  high  share  of  wastes  from  gardens  and  parks  the  average  of  the  4  Austrian  composting  plants  is  TOC  =  27  %.  Without  yard  wastes  (input  of  digestion  plant  Vienna)  the  average  TOC  =  45  %.  

• The  share  of  TOC  that  is  degradable  under  anaerobic  conditions  is  approx.  60  %.  (The  3  long-­‐term  incubation  tests  and  the  modelling  showed  degradation  rates  of  50,  60  and  67  %  respectively).  

                                                                                                               2  Nl  =  litres  normalized  to  0°C  and  1013  mbar  

Page 14: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

14  

BOKU Continuing Education & Life Long Learning

• Using  these  assumptions,  for  each  1,000  kg  of  biogenous  waste  (on  wet  matter  basis)  a  carbon  amount  of  195  kg  DM  (dry  mass)  is  calculated.  Using  a  60  %  long-­‐term  degradation  rate  of  carbon  under  anaerobic  conditions  for  each  1,000  kg  of  biogenous  waste  115  kg  TOC  are  transferred  into  landfill  gas.  

• Stöchiometric  calculations  for  1  g  of  TOC  result  in  1.868  Nl  landfill  gas  generation.  Composition  of  landfill  gas  is  60  vol.%  CH4  and  40  vol.%  CO2.  

Thus  1,000  kg  biogenous  wastes  release  215,800  Nl  landfill  gas  resp.  129,500  Nl  CH4  and  86,300  Nl  CO2.  

1  l  CH4  is  equivalent  to  0.67  g  CH4  (=  87  kg  CH4  for  1,000  kg  biowaste).  

In  2013,  the  IPCC  estimated  a  GWP-­‐factor  for  methane  of  28  (for  a  100  years  period).    

 

Based   on   results   of   laboratory   tests   (gas   generation)   and   carbon   balancing,   one  metric   tonne   of  biogenous  input  generates  between  170,000  Nl  and  215,800  Nl  of  landfill  gas.  Thus  composting  of  1,000  kg  biogenous  wastes  avoids  up  to  approx.  2,436  kg  CO2-­‐equivalents  of  landfill  gas.  

 

3. Emissions  from  open  windrow  composting  process    

a. Emissions  from  the  biodegradation  process  according  to  Zeiner  

In  her  master  thesis  Zeiner  (2013)  calculated  a  CO2  balance  for  an  open  windrow  composting  plant  (input   5,700   t/year)   in   Peru   by   applying   the   UNFCCC   methodology   AMS   III.F.   version   8.   Due   to  missing  data  for  Peru  she  first  did  a  balance  for  an  existing  Austrian  plant  with  the  same  technique  (input   23,750   t/a).   These   data   were   adapted   to   the   plant   in   Peru.   The   calculation   resulted   in  annually  155.8  t  CO2-­‐equivalents  total  emissions  from  the  plant  (=  27.3  kg  CO2  /  1,000  kg  input).  The  main   share   of   total   emissions   occurred   by   methane   emissions   during   the   composting   process  (nitrous   oxide   was   not   considered   in   the   UNFCCC   model).   In   the   following   the   emissions   are  presented  according  to  the  different  parts  of  the  system:  

• Transport  emissions:   1.15     kg  CO2  eq.  per  1,000  kg  Input  

• Fuel  use:   12.47     kg  CO2  eq.  per  1,000  kg  Input  

• Composting  process:   13.65     kg  CO2  eq.  per  1,000  kg  Input  

• Leachate:   0.07     kg  CO2  eq.  per  1,000  kg  Input  

The   composting   process   itself   (theaerobic   biodegradation   process)   leads   to   emissions   of  13.7  kg  CO2   eq.   per   1,000   kg   input.   Like   the   plant   in   Addis   is   mainly   based   on   human   labour  (including   collection),   no   transport   emissions   or   emissions   due   to   fuel   use   at   the   plant   are  occurring.    

 

b. Emissions  from  the  biodegradation  process  according  to  KliKo  

Linzner   &   Mostbauer   (2005)   calculated   the   emissions   and   credits   of   the   Viennese   biowaste  management   system   where   open   windrow   composting   was   used   (Project:   “Klimarelevanz   der  Kompostierung”   (KliKo)).  The  major  source  of   the  emission  balance   is   the  biodegradation  process  (CH4  and  N2O)  with  approx.  58  %  of   the  overall  emissions.  The  share  of   the  separate  collection  of  biowaste   is   approx.   18  %   of   the   overall   emissions   and   the   total   share   of   the   emissions   resulting  from   the   processing   facility   and   the   composting   plants   is   approx.   17  %   of   the   total   emissions.  Besides  the  separate  collection,  about  7  %  of  the  overall  emissions  result  from  other  transportation  

Page 15: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

15  

BOKU Continuing Education & Life Long Learning

processes.   Like   the   plant   in   Addis   is   mainly   based   on   human   labour   (including   collection),   no  transport  emissions  or  emissions  due  to  fuel  use  at  the  plant  are  occurring.    

The   emissions   due   to   biodegradation   processes   are   described   with   35   kg   CO2   eq.   per   1,000   kg  input.  

 

4. Mineral  fertiliser  substitution  

Compost   application   substitutes  mineral   fertiliser   use   and   therefore   emissions   in   the   production  process  of  mineral  fertiliser.  As  mineral  fertiliser  production  is  very  energy  intensive,  compost  use  as   fertiliser   allows   to   apply   credits   due   to   substitution.   In   this   case,   it   is   necessary   to   have  information   on   the   nutrient   contents   of   the   produced   compost   and   to   compare   these   with   the  same  amount  of  mineral  fertiliser  nutrients  and  the  related  emissions  from  its  production.  

Linzner  &  Mostbauer   (2005)   consider  negative  emissions   (credits)  of  approx.  16.3  kg  CO2  eq.  per  1,000  kg  input.  Zeiner  (2013)  reports  literature  data  on  credits  for  substitution  of  mineral  fertiliser  in  the  range  of  35  –  90  kg  CO2  eq.  per  1,000  kg  input.  

 

5. Carbon  storage  in  soils  

Within  a  project  estimating  influence  of  compost  application  on  soil  properties,  Binner  et  al.,  (2014)  used  an  adapted  RothC-­‐MC-­‐model  to  estimate  carbon  sequestration  for  25  years:  

• using   an   annual   application   rate   of   17   t/ha.a   of   compost   (C/N   =   10)   and     1.8  t   C/ha.a  respectively  (this  amount  is  according  to  nitrogen  limits  of  the  Austrian  Water  Law)  there  is  an  carbon  increase  of  14.5  t/ha  

• using  higher  annual  application  rate  (nitrogen  is  fixed  in  composts!)  of  34  t/ha.a  of  compost  (C/N  =  10)  and    3.7  t  C/ha.a  respectively  (this  amount  is  according  to  nitrogen  limits  of  the  Austrian  Water  Law)  there  is  an  carbon  increase  of  28.7  t/ha  

• thus  per  ton  of  applied  compost  a  carbon  amount  of  34  kg  is  stored  for  the  long  term  

• 1,000  kg  feedstock  material  during  composting  process  is  transformed  into  approx.  333  kg  of   final  compost   (<10  mm),  333  kg  oversized   fraction  >  10  mm  (separated  by  sieving)  and  333  kg  loss  of  degradation  (CO2,  water)    

• each   1,000  kg   of   biogenous   wastes   leads   to   the   storage   of   11  kg   carbon   (=   40   kg   CO2-­‐equivalents  in  soils)  

 

Zeiner  (2013)  estimates  credits  for  carbon  fixation  in  soils  according  to  the  literature  in  the  range  of  approx.  20   -­‐  130  kg  CO2  eq.  per  1,000  kg   input.   Linzner  &  Mostbauer   (2005)  estimate  credits   for  carbon  fixation  due  to  long-­‐term  compost  application  with  47  to  75  kg  CO2  eq.  per  1,000  kg  input.  

 

Page 16: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

16  

BOKU Continuing Education & Life Long Learning

6. Estimating  carbon  credits  based  on  different  scenarios  

a. Estimation  of  carbon  credits  per  tonne  input  for  the  composting  plant  Addis  Ababa  by  ABF-­‐BOKU  

In  the  following,  the  results  of  different  reports  and  studies  are  summarised.  

Emissions   Credits  

Value  (min.)  

kg   CO2   eq.   per  tonne   organic  input  

Value  (max.)  

kg   CO2   eq.   per  tonne   organic  input  

  avoided  methane  emissions  from  landfills  

-­‐1,919    

(=  170,000  Nl  gas)  

-­‐2,436  

(=  215,800  Nl  gas)  

emissions  from  composting  (biological  degradation  process)  

-­‐-­‐-­‐   +  13.7   +  35  

  substitution  of  mineral  fertiliser   -­‐  16.3   -­‐  90  

  carbon  storage  in  soils   -­‐  20   -­‐  130  

total  

(+  net  emission);  (-­‐  net  credit)  -­‐1,942   -­‐2,621  

Table  2:  Summarised  emissions  and  credits  of  open  windrow  composting  in  AA  

 

Table   2   shows   the   overall   balance   of   emissions   and   credits   of   the   open   windrow   composting  process  for  the  small-­‐scale  facility   in  AA.  A  minimum  scenario  leads  to  net  credits  of  1,942  kg  CO2  eq.   per   tonne   biogenous   waste.   A   maximum   scenario   results   in   2,621   kg   CO2   eq.   per   tonne  biogenous  waste  net  credits.  

 

b. Estimation  of  carbon  credits  per  tonne  input  for  a  composting  plant  in  Peru  by  UNFCCC  method:  

In  her  master  thesis  Zeiner  (2013)  calculated  a  CO2  balance  for  an  open  windrow  composting  plant  (input   5,700  t/year)   in   Peru   by   the   UNFCCC   CDM-­‐methodology   AMS   III.F.   version   8   (see   chapter  3.a).    

For   a   project   lifetime  of   10   years,   emission   reductions   of   about   35,900   t   CO2-­‐equivalents   were  estimated  by  the  CDM-­‐  methodology  AMS  III.F.  of  UNFCCC.  Thus  in  average  per  year  630  kg  CO2  eq.  per   1,000   kg   input   can   be   gained.   This   low   amount   mainly   is   due   to   the   used   method.   In   her  conclusions,  Zeiner   (2013)  discussed  the  UNFCCC  method.  The  main  observation  was  the  method  for   calculation   of   the   baseline   scenario.   Although   the   composting   process   avoids   the   whole   gas  generation   potential   immediately,   the   AMS   III   version   8   calculates   annual   avoided   methane  emissions   by   using   landfill   gas   generation  models.   Thus   for   each   of   the   ten   years   of   the   lifetime  period  only   the   share  of   the  methane  emissions   that  would  have  been   set   free  by   landfilling   the  wastes  during  the  observed  year  is  allowed  to  be  gained!  Gas  generation  in  landfills   is  a  very  long  lasting  process.   It  can  be  obtained  that  gas  will  be  generated  during  20-­‐50  years.  Thus  during  ten  years  only  a  small  share  of  the  potential  would  be  generated  (for  the  waste  composted  during  the  

Page 17: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

17  

BOKU Continuing Education & Life Long Learning

first  year  the  generation  of  ten  years,  for  amount  composted  in  year  2  gas  generation  for  9  years  etc).  Therefore  the  calculated  630  kg  CO2  eq.  are  not  considered  as  a  minimum  value  in  Table  2.  

 

c. Estimating  yearly  carbon  credits  for  AA  

Table  3  displays   the  calculation  of   the  annual   calculated  net   carbon  credits  of   the  open  windrow  composting  in  AA.  The  monthly  input  of  biogenous  waste  is  calculated  in  two  scenarios.  Scenario  1  uses  2,000  kg  of  monthly  organic  input,  as  this  quantity  was  achieved  in  2013.  Scenario  2  calculated  with  a  maximum  capacity  of  the  current  plants   in  AA,  where  in  total  8,000  kg  of  biogenous  waste  can  serve  as  input  material.  

 

Monthly  biogenous   input  [kg]  

Scenario  1   Scenario  2  

2,000   8,000  

Net  carbon  credits  

[kg   CO2   eq.   per   tonne  organic  input]  

Net  carbon  credits  

[kg  CO2  eq.  per  year]  

Net  carbon  credits  

[kg  CO2  eq.  per  year]  

MIN:  -­‐1,942   -­‐46,608   -­‐186,432  

MAX:  -­‐2,621   -­‐62,904   -­‐251,616  

Table  3:  Annual  calculated  net  carbon  credits  of  open  windrow  composting  in  AA  

Therefore,  an  annual  overall  net  carbon  credits  ranging  from  -­‐  46,608  to  -­‐  251,616  kg  CO2  eq.  can  be  concluded.  

 

7. Co-­‐funding  

In  the  current  situation,  the  existing  composting  site  in  Kolfe  Keranyo  Sub  city  cannot  be  operated  cost   covering,   neither   if   compost   can   be   sold   at   a   progressive   price   (0.40   EUR   per   kg)   nor   at   a  conservative   price   (0.20   EUR   per   kg).   Depending   on   cost   estimations   (different   running   costs,  compost  quantities  produced,  and  achievable  market  prices),  different  revenues  per  tonne  avoided  CO2-­‐eq   will   be   needed.   The   running   costs   of   the   site   as   well   the   generated   income   depend   on  seasonal  fluctuations,  salaries,  etc.  In  the  last  years,  the  running  costs  (including  salaries,  materials,  electricity,  water)  were  400  to  1,500  EUR  per  month.  So  in  order  to  operate  cost  neutral  by  selling  compost  and  earning  CO2-­‐compensation,  the  project  will  seek  co-­‐funding  of  €  30,000.  -­‐  for  certain  project   activities   as   project   management,   trainings   for   economic   development   and   waste  management,   developing   the   marketing   strategy   etc.   from   BOKU   working   area   „Continuing  Education  and  Lifelong  Learning“.   In   the   long-­‐term,   the  existing   composting   site   in  Kolfe  Keranyo  Sub   City   will   be   operated   cost   covering   due   to   higher   waste   turnover   (and   additional   sites   in  location-­‐specific  modus  operandi,  as  composting  in  the  school  yard.)  

 

8. Budget  

Please  see  separately  submitted  budget  plan.  

Page 18: Full-proposal Sugar AA-ABF CDR LLL&CE-vs2€¦ · 3" BOKU Continuing Education & Life Long Learning problems"suchas"soil"degradationanderosionproblems."Composting"of"the"biogenous"fraction"of

18  

BOKU Continuing Education & Life Long Learning

References  ASI   (2012):  Ö-­‐NORM  S2027/2,  Evaluation  of  waste   from  mechanical-­‐biological   treatment.  Part  2:   Stability  parameters   -­‐  

Gas  generation  by  incubation  test  (GS21),  Austrian  standards  Institute,  Vienna,  1.7.2012  Höglund-­‐Isaksson   L.   (2012):   Global   anthropogenic   methane   emissions   2005–2030:   technical   mitigation   potentials   and  

costs.   Atmos.   Chem.   Phys.,   12,   9079–9096,   2012.   Link:   www.atmos-­‐chem-­‐phys.net/12/9079/2012/;  doi:10.5194/acp-­‐12-­‐9079-­‐2012.  

Binner  E.,  Lechner  P.  and  Huber-­‐Humer  M.  (2013):  Carbon  sink  MBT  landfill  –  Interpretation  of  long  term  incubation  tests  (GS21),   in:   In:   Kühle-­‐Weidemeier  M.   (Hrsg.):  Waste-­‐to-­‐Resources  2013,   5.   Internationale   Symposium  MBT  and  MRF:  Mechanical   biological   treatment   (MBT)   of  MSW  &  material   recovery   facilities   (MRF)  with   sensor   based  sorting  technology,  11.-­‐14.  June  2013,  Hannover,  Germany.  Proceedings;  Cuvillier  Verlag,  Göttingen  

Binner    E.,  Mostbauer    P.,  Kraus  G.,  Lenz  S.,  Böhm  K.,  Ottner  R.,  Huber  Humer  M.  (2014):  Kohlenstoffbindung  im  Boden  durch   Kompost,   Endbericht   ABF-­‐BOKU   Teil   2:   Diskussion   der   Modelle   zur   Kohlenstoffdynamik   in  landwirtschaftlich   genutzten   Böden   nach   Applikation   von   Kompost   und   Modellierung   der   Entwicklung   des  Kohlenstoffgehaltes   über   4   bzw.   25   Jahre.   Forschungsprojekt   in   der   Ökoregion   Kaindorf,   mit   finanzieller  Unterstützung  der  FFG,  Wien  im  März  2014  

Drechsel  P.,  Quansah  C.  and  Penning  de  Vries  F.  (1999):  Stimulation  of  urban  and  peri-­‐urban  agriculture  in  West  Africa  -­‐  Characteristics,   challenges,   and   need   for   action.   In:   O.B.   Smith   (ed.)   -­‐   Urban   agriculture   in   West   Africa.  IDRC/CTA,  Ottawa,  Wageningen,  page  19-­‐40.  

Drechsel  P.,  Cofie  O.,  Vazquez  R.  and  Danso  G.  (2001):  Technology  development  for  municipal  organic  waste  recycling  for  urban  and  peri-­‐urban  agriculture.  Nairobi,  October  2001.  

Intergovernmental  Panel  on  Climate  Change  (IPCC),  2013.  Climate  Change  2013:  The  Physical  Science  Basis.   In:  Stocker,  T.F.,  D.  Qin,  G.-­‐K.  Plattner,  M.  Tignor,  S.K.  Allen,  J.  Boschung,  A.  Naues,  Y.  Xia,  V.  Bex  and  P.M.  Midgley  (Eds.),  Contribution   of  Working   Group   I   to   the   Fifth   Assessment   Report   of   the   Intergovernmental   Panel   on   Climate  Change.  Cambridge  University  Press,  Cambridge,  United  Kingdom  and  New  York,  NY,  USA,  1535  pp.  

Linzner  R.,  Wassermann  G.  (2006):  Factors  Constraining  and  Promoting  the  Implementation  of  Small-­‐Scale  Composting  in  West  African  Countries.  In:  Kraft  E.,  Bidlingmaier  W.,  de  Bertoldi  M.,  Diaz  L.F.  und  Barth  J.  (Hrsg.),  ORBIT  2006.  Biological  Waste  Management.  From  Local  to  Global,  Proceedings,  Part  4  "Policy  and  Strategy,  Climate  Change,  Pollution  and  Developing  Countries";  Verlag  ORBIT  e.V.   (Digital  Proceedings  on  CD  Rom:   ISBN  3-­‐935974-­‐10-­‐8),  ORBIT   2006.   Biological  Waste  Management.   From   Local   to  Global,   13.   -­‐   15.   September   2006,  Weimar,   1201-­‐1210;  ISBN:  3-­‐935974-­‐09-­‐4.  

 Linzner  R.,  Mostbauer  P.  (2005):  Composting  and  its  Impact  on  Climate  Change  With  Regard  to  Process  Engineering  and  

Compost   Application   -­‐   A   Case   Study   in   Vienna.   [SARDINIA   2005   Tenth   International  Waste  Management   and  Landfill  Symposium,  S.Margherita  di  Pula,  Cagliari,  Sardinia/Italy,  3  –  7  October  2005].  In:  Raffaello  Cossu,  Rainer  Stegmann  (Ed.):  SARDINIA  2005  Tenth  International  Waste  Management  and  Landfill  Symposium,  3  –  7  October  2005,   S.  Margharita   di   Pula,   Cagliari,   Sardinia/Italy;   Proceedings   (Abstract;   full   paper   on   CD),   pp.59-­‐60;   CISA  Environmental  Sanitary  Engineering  Centre.  

Linzner   R.   (2010):   Decentralised   composting   of   market   waste   and   use   in   urban   agriculture;   Conakry,   Guinea.   Urban  Agriculture  Magazine,  23  (April  2010),  20-­‐21;  ISSN  1571-­‐6244.  

Rouse   J.,   Rothenberger   S.   and   Zurbrügg   C.   (2008):   Marketing   Compost   -­‐   A   Guide   for   Compost   Producers   in   Low   and  Middle-­‐Income   Countries.   ISBN   978-­‐3-­‐906484-­‐46-­‐4,   Eawag:   Swiss   Federal   Institute   of   Aquatic   Science   and  Technology.  

Schmitz   D.,   Pwaloff   A   (2015):   BOKU   Carbon   Offsetting   System   –   Calls   for   Proposals   2015   Terms   of   Reference.   Link:  http://www.boku.ac.at/wissenschaftliche-­‐initiativen/zentrum-­‐fuer-­‐globalen-­‐wandel-­‐nachhaltigkeit/themen/nachhaltigkeit/co2-­‐kompensation/call-­‐for-­‐proposals.  

Tessema  M.  (2010):  Overview  of  Addis  Ababa  city  solid  waste  management  system.  Addis  Ababa,  Ethiopia:  Addis  Ababa  City  Administration;  2010.  

Tintner  J.,  Kühleitner  M.,  Binner  E.,  Brunner  N.  and  Smidt  E.  (2011):  Modelling  the  final  phase  of   landfill  gas  generation  from  long-­‐term  observations,  Biodegradation  19  (2011),  DOI  10.1007/s10532-­‐011-­‐9519-­‐4,  Springer  

Zeiner   E.   (2010):  Abschätzung  der   Treibhausgasemissionen   für   eine  Kompostanlage   in  Peru   -­‐   Kritische  Betrachtung  der  CDM-­‐Methodologie  AMS  III.F.  der  UNFCCC.  Masterarbeit  at  ABF-­‐BOKU,  Vienna