full technical report: snow effects on water...

34
Full Technical Report: Snow effects on water availability Copernicus Climate Change Service Full Technical Report: Snow effects on water availability Author name: María José PérezPalazón, Jose Ignacio Migallón and María José Polo (coordinator) Author organization: University of Córdoba (Spain)

Upload: vuongmien

Post on 26-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Full  Technical  Report:  Snow  effects  on  water  availability    

Copernicus Climate Change Service

Full Technical Report:

Snow effects on water availability

Author  name:  María  José  Pérez-­‐Palazón,  Jose  Ignacio  Migallón  and  María  José  Polo  (coordinator)  

Author  organization:  University  of  Córdoba  (Spain)  

Full  Technical  Report:  Snow  effects  on  water  availability    

Copernicus Climate Change Service

Full  Technical  Report:  Snow  effects  on  water  availability    

Copernicus Climate Change Service

Summary  

The  Guadalfeo  River  Basin   (GRB)   is  a  mountainous   coastal  watershed   in   southern  Spain,  highly   influenced   by   the   snow   regime,   and   vulnerable   to   future   climate   variability.   The  GRB   hydrology   shifts   from   a   snow-­‐dominated   regime   in   the   North   to   a   warm   coastal  regime   in   the  South,   in  a  40-­‐km  distance.  The  climate  variability  adds  complexity   to   this  heterogeneous   area.   The   uncertainty   of   snow   occurrence   and   persistence   for   the   next  decades   poses   a   challenge   for   the   current   and   future   water   resource   uses   in   the   area.  Adaptation   plans   will   benefit   from   the   predictability   of   water   resource   availability   and  regime.   The  development   of   easy-­‐to-­‐use   climate   indicators   and  derived  decision-­‐making  variables  is  key  to  assess  and  face  the  economic  impact  of  the  potential  changes.  

The  results  assess  the  prevision  of  water  allocation  success  on  an  annual  and  decadal  basis  in   the  new  planning  hydrological   cycle,   and   they  have  provided   a   deeper   insight   on   the  seasonal  future  potential  regime.  Moreover,  they  are  a  basis  to  test  the  operational  rules  of   the   reservoir   and   the   priority   of   use   criteria.   Regarding   the   hydropower   generation,  besides  the  evaluation  of  the  potential  future  efficiency  and  provisions  under  the  expected  shift   of   the   snow   regime,   further   assessment  on   the  minimum  environmental   flows  and  their   impact   on   the   activity   is   being   done.   Additional   concern   about   the   need   of   an  adequate   inflow   measurement   has   been   achieved   and   some   actions   to   improve   the  gauging  system  are  under  work  at  present.  

The   C3S SIS for Water   indicators   provide   an   open   framework   to   obtain   assessment   of   the   seasonality   expected   shifts   in   the   river   flow   regime,   and   in   the   long   term.   Using   these   indicators   has   made   it   possible   to   quantify   in   a   complex   region   the   extent   to   which   the   likely   impacts   of   climate   on   snow   will   affect   the   current   water   allocation  scenario,  and  to   identify  the  most  vulnerable  water  uses   in  the  area.  This  helps  to  foresee  and  anticipate  close  in  time  conflicts  of  water  users,  and  it  will  be  key  in  the  adaptation  assessment  under  course  at  the  moment.  

Full  Technical  Report:  Snow  effects  on  water  availability    

Copernicus Climate Change Service

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability    

Contents  Introduction  ............................................................................................................................................  1  

Step  1:  Extracting  Climate  Change  Impact  Indicators  .........................................................................  2  

Description:  .........................................................................................................................................  2  

Results:  ............................................................................................................................................  2  

Step  2:  Snow  evolution  and  river  flow  simulations  .............................................................................  5  

Description:  .....................................................................................................................................  5  

Results:  ............................................................................................................................................  5  

Step  3:  Downscaling  to  a  high  spatial  resolution  ................................................................................  8  

Description:  .....................................................................................................................................  8  

Results:  ............................................................................................................................................  8  

Step  4:  Assessment  of  changes.  ........................................................................................................  15  

Description:  ...................................................................................................................................  15  

Results:  ..........................................................................................................................................  16  

Step  5  Integrated  river  basin  management  .......................................................................................  19  

Description:  ...................................................................................................................................  19  

Results:  ..........................................................................................................................................  19  

Step  6:  Climate  change  adaptation  strategies.  ..................................................................................  22  

Description:  ...................................................................................................................................  22  

Results:  ..........................................................................................................................................  22  

Conclusion  of  Full  Technical  Report  ......................................................................................................  25  

References  .............................................................................................................................................  27  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability    

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     1  

Introduction  

The  Guadalfeo  River  Basin  (Figure  1)   is  a  1345  km2   Mediterranean   mountainous   coastal  watershed  in  the  Sierra  Nevada  National  Park;  the   highly   variable   precipitation   and   snow  regime   in   Sierra   Nevada   determines   water  availability   at   the   seasonal   and   annual   scales,  and   two   connected   reservoirs   control   both  floods  and  water  scarcity   in  the  area.  Tourism  and   high   valued   tropical   crops   in   the   coast  

(Tropical  Coast)  compete  for  water  during  the  warm  season.  At  the  same  time,  rural  tourism  and   marginal   agriculture   are   the   economic  basis   in   the   northern   mountain   area   (Alpujarras),   where   cultural   and   historical   irrigation   survives  thanks  to  snowmelt   flows.  Hydropower  generation  system  at  the  heads  also  depends  on  snowmelt  during  the  cold/spring  seasons,  but  environmental  flows  must  be  observed.    

As  public  water  manager,  client  1  needs  precise  information  on  short/long  term  water  availability  for  reservoir  operation  and  hydrological  planning.  This  includes  restrictions  to  water  allocation  for  client  2   (both   urban   and   crop   uses)   and   limitations   to   hydropower   for   client   3,   who   also   benefits   from  sound  forecasting  of  snowmelt.  The  future  climatic  context  poses  a  risk  for  the  current  supply  system  and  water   resource  availability  on  a   long   term  basis;   the  need   for  operating/decision  making   tools  was  identified  during  the  current  hydrological  plans  development  and  all  the  participation  meetings  and  conclusions.  The  Figure  2  shows  the  workflow  followed  in  this  report  and  its  description.  

Figure  2.Workflow  description  

ExtracNng  Climate  Change  

Impact  Indicators  

Downscaling  to  a  high  spaNial  resoluNon  Snow  evoluNon  

and  river  flow  simultaNons  

Assessment  of  changes  in  

water  resource  availability  

Integrated  river  basin  

management  

Climate  change  adaptaNon  strategies  

Figure  1.  Digital  Elevation  Model  of  Guadalfeo  river  basin  inthe  context  of  the  Mediterranean  coast  in  South  Spain.

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     2  

Step  1:  Extracting  Climate  Change  Impact  Indicators  

Description:  The  CIIs   listed   in   the   table   1  were   extracted  and   evaluated   for   both   the   reference   and   the  2000p2015   period;   their   monthly   and   annual   regimes   and   trends   were   compared   to   the   available   local   data   at   the   study   area.   At   a   first   attempt,   ECVs   of   precipitation   and   temperature   from   the  C3S SIS for Water  Demonstrator  were  downscaled  and  compiled  as  inputs  to  the  hydrological  model  WiMMed  (GDFH,  2011)1,   operational   at   the   study   site,   to  obtain   river   flow  and  evapotranspiration  at   selected  control  points.  However,  the  results  obtained  from  this,  together  with  the  later  inclusion  in  C3S SIS for Water  of  river  flow  and  ETp related  indicators,  led  to  a  change  of  approach.  River  flow  was  targeted  as   the   main   CII   in   this   study   case,   and   local   time   series   of   river   flow   were   used   to   perform   the   following  downscaling  step.  The  catchments  and  the  associated  CIIs  used  are:  

• Granadino,  subid  9752756  (coordenates  36.96,-­‐3.27):  River  flow,  Snow  water  equivalent• Órgiva,  subid  9752600  (coordinates  36.92,-­‐3.42):  Snow  water  equivalent• Ízbor,  subid  9752792  (coordinates  36.96,-­‐3.58):  Snow  water  equivalent• Motril-­‐Salobrena,  subid  9752880  (coordinates  36.81,-­‐3.55):  Wetness  1  and  2

Table  1.  CIIs  evaluated  in  this  case  study.  

Climate  Impact  Indicators  CIIs   Indicator   Spatial  Resolution   Temporary  Resolution  Precipitation   Precipitation   0.5  degree  grid  

Catchment  Daily  

Temperature   Temperature   0.5  degree  grid  Catchment  

Daily  

Water  Quantity   River  flow   0.5  degree  grid  5Km  grid  Catchment  

Daily  

Snow  water  equivalent   0.5  degree  grid  Catchment  

Seasonality  

Wetness  1   5Km  grid  Catchment  

10  days  Seasonality  

Wetness  2   5Km  grid  Catchment  

10  days  Seasonality  

1  All  the  publications  supporting  the  specific  modules  and  algorithms  in  WiMMed    can  be  found  in  this  webpage  reference;  some  selected  works  have  been  also  included  in  the  final  reference  list  (see  page  24).    

Results:  After  evaluating  the  indicators  shown  in  Table  1,  it  was  concluded  that  the  catchment  scale  was  the  best   to   reproduce   the   local   data.   On   the   one   hand,   the   0.5   degree   grid   scale   reflected   greater  dispersion  of  the  data.  The  data  on  the  5-­‐Km  grid  scale  did  not  offer  significant  improvements  with  respect   to   catchment   scale,   and   involved   a   higher   computational   cost   in   terms   of   simulations.  The  daily  scale  was  chosen  when  this  was  available,  for  comparison  with  local  data.    In  this  way,  they  can  be  added  to  the  time  scale  that  best  suits   the  needs  of   the  clients.   In  the  case  of  wetness  and  aridity,  the  use  of  10-­‐day  scale  was  chosen.  In  the  case  of  SWE,  seasonality  scale  was  used.    

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     3  

At   a   first   attempt,   ECVs   of   precipitation   and   temperature   from   the   Demonstrator   were   evaluated.   Figure   3   shows   the   high   shift   between   observed   and   derived   values   for   two   different  weather   stations.  CII   spatial   scale   cannot   represent   correctly   the   high   variability   characteristic   of   Mediterranean   climate.   As   expected,   this   shift   is   more   exacerbated   in   the   case   of  high-­‐altitude  weather  stations  (Figure  3.a)  

Figure  3.  Daily  observed  for  different  weather  stations  and  subp basin  precipitation.  (a)    Trevelez  Station.  Altitude:  1476  m.a.s.l.;  (b)  Orgiva  Station.  Altitude:  450  m.a.s.l.  

The  flow  data  were  evaluated  due  to  the  low  fit  obtained  by  the  precipitation.  The  ECVs  of  daily  river  flow  were  tested  against  the  observed  daily   inflow  at  catchment  point  during  a  15-­‐yr  period  within  the  reference  period,  and  aggregated  to  a  monthly  scale  to  compensate  deviations;  then  the  whole  river  flow  monthly  series  for  the  reference  period  was  tested  against  flow  simulated  by  WiMMed,  the  hydrological  model  validated  on  this  region  and  available  for  the  work.  As  expected,  values  generally   underestimate   the   low   flows,   and   overestimates   the   high   flows(Figure   4).   However,  C3S SIS for Water  is  really  capable  to  identify  the  relevant  time  evolution  of  the  flow.      

Figure  4.  Monthly  river  inflow  in  catchment  point  from  the  local  time  series  by  validated  simulations  with  WiMMed  (blue)  and  the  ECVs  of  river  flow  at  the  associated  catchment  (red)  during  the  reference  period.    

Finally,  it  was  concluded  that  the  use  of  C3S SIS for Water  river  flow  was  more  appropriate  for  this  case  study.  Additionally,  other  CIIs  were  finally  selected  for  further  assessment  to  the  clients.  Table  2  listed  the  CIIs  used  in  this  case  study.    

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     4  

Table  2.  CIIs  used  in  this  case  study.  

Climate  Impact  Indicators  CIIs   Indicator   Spatial  Resolution   Temporary  Resolution  Precipitation   Precipitation   Catchment   Daily  Temperature   Temperature   Catchment   Daily  Water  Quantity   River  flow   Catchment   Daily  

Snow  water  equivalent   Catchment   Seasonality  Wetness  1   Catchment   10  days  Wetness  2   Catchment   10  days  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     5  

Step  2:  Snow  evolution  and  river  flow  simulations  

Description:  The  hydrological  model  WiMMed  for  the  contributing  area  to  the  Rules  reservoir,  the  main  storage  system  in  the  Guadalfeo  watershed,  has  been  used  to  obtain  local  reference  data  of  the  river  flow  at  three  selected  control  points,  for  both  the  reference  and  2000-­‐2015  periods:  

1. Daily  inflow  to  the  reservoir  at  the  Guadalfeo  River  (yellow  triangle  in  Figure  5)2. Daily   river   flow  at   the  Poqueira  River   in   the  hydropower  stations   (end  point  of  yellow  sub-­‐

watershed  in  Figure  5)3. Daily   river   flow   at   the   Trevelez   River,   from  which   a   by-­‐pass   system   from   the   snow-­‐region

directly  provides  water  supply  to  the  coastal  area  downstream  the  reservoir  (Figure  5).

The  model   runs   on   a   distributed   30x30m   cell   size   and   circulates   runoff   and   river   flow   to   selected  points  in  the  fluvial  network.  It  includes  a  snow  module  based  on  an  energy  and  water  balance  with  high   time   resolution.   This   model   is   validated   from   gauged   flow   data,   and   local   snow   depth  measurements  and   remote   sensing  data  of   snow  cover   fraction.  Daily  values  of   river   flow  at  every  control  point  were  aggregated  to  monthly  and  annual  scales  and  used  as   local  hydrological  data   in  the   downscaling   step.   Daily   average   snow   water   equivalent   values   in   selected   sub-­‐areas   in   the  contributing  area  to  the  Rules  reservoir  were  simulated  with  the  validated  snow  model.  Moreover,  observed  daily  values  of  potential  evapotranspiration  were  obtained  from  weather  stations.  

Figure  5.  The  Guadalfeo  river  basin  (gray)  in  the  gridded  resolution  of the  demonstrator,  with  the  influence  domain  of  each   subcase   study   a)   hydropower   generation   (Poqueira   watershed,   yellow   area   upstream   the   hydropower   central   stations),  b)  water  resource  planning  managers  /(dark  grey  area  upstream  Rules  dam,  identified  as  a  yellow  triangle),  and  c)  urban  water  supply  to  the  coast  area,  and  water  use  by  tropical  crops  (from  both  the  Rules  Reservoir-­‐yellow  triangle  and  a  channel-­‐blue  square  from  the  Trevélez  subbasin-­‐blue  area);  green  dot,  the  evapotranspiration  station.  

Results:  The  previously  selected  variables  were  simulated  by  the  local  WiMMed  model.  The  results  obtained  were  aggregated  on  an  annual  scale  in  order  to  obtain  a  view  of  the  observed  trend  in  the  reference  period.  Figure  6  shows  the  evolution  of  the  annual  average  daily  flow  for  the  control  points.  Similar  trends  can  be  found  in  the  three  points  for  the  simulations  with  observed  data.  In  addition,  the  high  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     6  

variability   of   the   different   processes   involved   in   the   hydrological   response   in   this   area   can   be  observed.  

Figure  6.  Annual  mean  daily  flow  evolution  in  the  selected  points  of  Guadalfeo  area  (1961-­‐2000:  (a)  Rules  dam  (yellow  triangle  in  Figure  5);  (b)  Poqueira  River  in  the  hydropower  stations  (end  point  of  yellow  sub-­‐watershed  in  Figure  5);  (c)  Trevelez  River  (end  point  of  blue  sub-­‐watershed  in  Figure  5).  

Figure  7  shows  the  evolution  of  the  annual  mean  daily  value  of  the  snow  water  equivalent  averaged  over   the   study   area   for   the   reference   period,   whose   mean   value   is   38.7mm.   Moreover,   the  decreasing  trend  obtained  and  the  great  variability  throughout  the  period  analyzed  is  shown.  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     7  

Figure  7.  Evolution  of  annual  average  daily  water  equivalent  during  the  reference  period  in  the  study  area.  

The   feasibility   of   producing   transfer   functions   that   relate   the CIIs   and   the   local   data   was   assessed   at   this   point.   Figure   8   shows   the   comparison   between   the   flow   data   obtained   by   the  hydrological   local   model   and   those   downloaded   from   the C3S SIS for Water   (example   of   SMHI_RCA4_ECp EARTH  model)   platform   at   different   time   scales.     As   expected,   the   adjustment   is  better  on  a  larger  scale   analyzed.   Series   do   not   represent   correctly   extreme   occurrence   values,   as   expected   from  the  scale  conflicts,  and  are  not  able  to  capture  the  variability  of  hydrological  processes  in   the   area.   However,   C3S SIS for Water data   are   really   capable   to   identify   the   relevant   time   evolution   of   the   flow   and  this  was  considered  the  best  indicator  for  producing  transfer  functions.    

Figure  8.  Comparison  of  (a)  daily,  (b)  monthly,  (c)  annual  inflow  to  the  Rules  reservoir  during  the  reference  period  (1970l 2000)  from  river  flow  (catchment)  facilitated  in  Demonstrator  (SMHI_RCA4_ECl EARTH)  and  river  flow  locally  obtained  from  observations  and  hydrological  modeling.  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     8  

Step  3:  Downscaling  to  a  high  spatial  resolution  

Description:  3.1.  CII  River  flow  

The   ECVs   of   daily   river   flow   were   tested   against   the   observed   daily   inflow   at   the   Rules   reservoir  control   point   during   the   reference   period,   and   aggregated   to   a   monthly   scale   to   perform   the  downscaling.    

At   the  control  point   in   the  Poqueira  River,   the   testing  of  daily   river   flow  resulted   in   the  selection  of  the   same     model   for   the   analysis.   In   this   case,   the   daily   scale   was   conserved   to   meet   the   client’s   needs.   Finally,   the   same   model   was   used   to   obtain   daily   river   flow   values   at   the  Trevelez  River  control  point  (from  which  water  is  transferred  to  the  southern  area  of  the  Guadalfeo  River  Basin).  In  both   cases,   values   are   higher   since   they   are   obtained   for   a   larger   contributing   area;   however,   a  relatively  good  agreement  could  be  observed  from  the  data  despite  the  scale  issue.  

Following   this,   a   bias   correction   and   downscaling   process   was   performed   by   means   of   specific   transfer   functions   from   the   evaluation   of   values   against   the   available   local   data   at   the   time   scales   previously   selected.   These   transfer   functions   were   used   to   downscale   both   values   during   the  reference  period  and  projections.  

3.2.  CII  Snow  water  equivalent  and  CII  Wetness  

Additional   analysis   was   performed   on   CII   Snow   water   equivalent   values   (mean   monthly   values  for   the   reference   period).   SWE   has   been   bias   corrected   and   downscaled   in   the   region  with   snow   influence   in   the   watershed   from   the   monthly   mean   SWE   daily   values   simulated   with   WiMMed  and  validated  against   local  observations.  Additionally,  CII  wetness1  and  wetness  2  have  been  now  analyzed   for   the   Tropical   Coast   Area   (data   from   catchmentp subid   9752544).   Since   they   are   defined   as   precipitation   minus   evapotranspiration,   the   values   of   mean   monthly   potential  ET  and  real  ET  were  estimated  from  them,  respectively,  bias  corrected  and  tested  against  the  available  local  observations  (see  weather  station  in  Figure  5)  during  the  2004p 2010  periods.  

Results:  

3.1.  CII  River  flow  

The  most  suitable  estimation  from  the  Demonstrator  was  performed  by  the  SMHI_RCAH_ECp EARTH  model  (Figure  9),  which  was  selected  for  this  study  site.  As  expected,  values  generally  underestimate  the  low  flow  values,  and  overestimate  the  high  flow  regime;  this  may  be  mostly  due  to  the  combined  scale   effects   associated   to   grid   size   in   the   hydrological   modelling   and   specifically   to   the   snow   simulation.   The   snow   water   equivalent   is   significantly   underestimated   in   CIIs,   which  results   in  recession   periods   shorter   than   the   observed   ones,   and   peak   flow   values   higher   than   the   snowpinfluenced   local   values.   However,   C3S SIS for Water   is   really   capable   to   identify   the   relevant   time   evolution  of  the  monthly  flow.  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     9  

Figure   9.   Comparison   of   mean   monthly   river   flow   values   for   each   month   of   the   year   during   the  reference   period   (1970p 2000)  upstream  Rules  dam,  facilitate  in  C3S SIS for Water  for  available  models  (a.  CSC  REMO2009  MPIp ESMp LR;  b.  IPSLp IPSL.CM5Ap MR;   c.   KNMI   RACMO22E   ECp EARTH;   d.   SMHI   RCA4   ECp   EARTH;   e.   SMHI   RCA4   HandGEM2p ES;   f.   Ensemble)   and   simulated  with  WiMMed.

a) Water  resource  planning  for  the  Béznar-­‐Rules  system

After   testing   of   different   approaches,   a   transfer   function   was   obtained   for   the   monthly   inflow   for   each  month  of   the   year  during   the   reference  period.   Figure  10   shows   these   functions  derived   from  monthly  and  local  values.  

Figure  10.  Monthly  transfer  functions  between  monthly  inflow  to  the  Rules  reservoir  during  the  reference  period  (1970p2000)   from   river   flow   (catchment)   facilitated   in Demonstrator   (SMHI_RCA4_ECp EARTH)   and   river   flow   locally  obtained  from  observations  and  hydrological  modelling.  Each  graph  corresponds  to  a  month  of  the  year.

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     10  

From  each  monthly  transfer  functions,  the  corresponding  monthly  river  flow  values  for  each  future  scenario  have  been  obtained  as  a  basis  for  the  extraction  of  user-­‐specific  CIIs.  Figure  11  shows  these  results  for  the  whole  1970-­‐2100  period  aggregated  on  an  annual  basis.  

Figure   11.   Annual   inflow   to   the   Rules   reservoir   from   observed   values   (1970p 2015)   and   aggregated   values   from   the   downscaled   monthly   values   from   river   flow   (catchment)   facilitated   in Demonstrator   (SMHI_RCA4_ECp EARTH)  corresponding   to   the   future   projections   during   the   period   2000-­‐2100   for   the   three   future   scenarios   included   in   the   Demonstrator  and  the  future  projections  from  de  local  hydrological  model  obtained  by  anomalies  factors.  

b) Water  resource  planning  for  hydropower  generation

In  this  case,  the  daily  values  were  downscaled  after  testing  different  methods,  and  the  best  approach  was   to   obtain   transfer   functions   portioning   the   variable   domain.   Transfer   functions  were   obtained   for   three   intervals   in   the   whole   domain   of   the   daily   values   (separated   by   the   25   and   75  percentiles   of   the   distribution),   as   Figure   12   shows   (right).   Despite   a   single   transfer   function   could   have   been   obtained   the   adopted   division   allowed   a   better   performance   of   the   procedure.   Figure   12   (left)   shows   the   finally   resulting   transfer   function   from   the   union   of   the   three   domain  intervals.  

Figure   12.   Right:   Transfer   functions   between   daily   inflow   to   the   hydropower   stations   during   the   reference   period   (1970p 2000)   from   the   downscaled values   from   the   river   flow   (catchment)   daily   series   facilitated   by   the   Demonstrator   (SMHI_RCA4_ECp EARTH,)   and     the   daily   river   flow   locally   obtained   from   observations   and   hydrological   modelling.   Each   graph   corresponds   to   the   intervals   0p 25,   25p 75,   and   higher   than   75   percentiles   of   the  downscaled  variable  distribution.  Left:  Transfer  function  representation  for  the  whole  domain  distribution.

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     11  

From   these   results,   the   corresponding   daily   river   flow   values   for   each   future   scenario   have   been  obtained   as   a   basis   for   the   extraction   of   user-­‐specific   CIIs.     Figure   13   shows   these   results   for   the  whole  1970-­‐2100  periods  aggregated  on  an  annual  basis.  

Figure   13.   Annual   mean   river   inflow   to   the   hydropower   station   from   local   hydrological   values   (1970p 2015)   and  aggregated   values   from   the   downscaled   daily   values   from   river   flow   (catchment)   facilitated   in Demonstrator  (SMHI_RCA4_ECp EARTH)   corresponding   to   the   future   projections   during   the   period   2000p 2100   for   the   three   future  scenarios  included  in  the  Demonstrator  and  the  future  projections  from  de  local  hydrological  model  obtained  by  anomalies  factors.  

c) Water  supply  for  the  coastal  area

Again,   the   same   time   scale   as   in   hydropower’s   case   is   used   to   obtained   transfer   functions.   These  functions   were   obtained   for   three   different   intervals   in   the   whole   domain   of   the   daily   values.   Figure   14   shows   the   finally   resulting   transfer   function   from   the   union   of   three   domain  intervals.    

Figure  14.  Right:  Transfer  functions  between  daily   inflow  to  the  Trevelez's  basin  during  the  reference  period  (1970p 2000)  from  the  downscaled values  from  the  river  flow  (catchment)  daily  series  facilitated  by  the  Demonstrator  (SMHI_RCA4_ECpEARTH,)   and     the   daily   river   flow   locally   obtained   from   observations   and   hydrological   modelling.   Each   graph  corresponds   to   the   intervals  0p 25,  25p 75,  and  higher   than  75  percentiles  of   the  downscaled  variable  distribution.  Left:  Transfer  function  representation  for  the  whole  domain  distribution  

 Figure   15   shows   the   aggregate   annual   flow   obtained   through   the   function   and   calculated   for   all  available  scenarios.  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     12  

Figure   15.   Annual   mean   river   inflow   to   the   Trevelez   catchment   from   local   hydrological   values   (1970p 2015)   and  aggregated   values   from   the   downscaled   daily   values   from   river   flow   (catchment)   facilitated   in   Demonstrator  (SMHI_RCA4_ECp EARTH)   corresponding   to   the   future   projections   during   the   period   2000p 2100   for   the   three   future  scenarios  included  in  the  Demonstrator  and  the  future  projections  from  de  local  hydrological  model  obtained  by  anomalies  factors.  

3.2  CII  Snow  water  equivalent  and  CII  Wetness  

Figure   16   shows   the   performance   of   the   different   models   included   in C3S SIS for Water   for   the  corrected  CII  values,  and  the  transfer  functions  obtained  for  the  three  cases  that  include  the  whole  set  of  future  scenarios.  

Figure   16.   Comparison   of   mean   monthly   Snow   Water   Equivalent   (SWE)   values   for   each   month   of   the   year   during   the   reference   period   (1970p 2000)   from   the   corrected   SWE   values   from   the   SWE   (catchment)   CII   facilitated   in   the  Demonstrator   for   different   models,   and   from   the   validated   simulations   by   the   WiMMed   model   averaged   over   the   contributing   area   upstream.   Transfer   functions   are   included   for   every   model   providing   the   three   future   scenarios  included  in  the  Demonstrator.  

Figure  17  shows  the  performance  of  each  model  for  ET  estimation.  As  can  be  seen,  a  very  good  agreement  is  found  between  C3S SIS for Water  and  observed  values  for  every  model.  Again,  the  "CSCp

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     13  

REMO2009-­‐MPI-­‐ESM-­‐LR"  model   shows   the   best   performance,   as   for   the   SWE   analysis   (Figure   16).  Finally,  Figure  18  shows  the  transfer  functions  applied  for  the  mean  monthly  values,  for  wet  and  dry  season  months  separately,  for  both  CIIs  analyzed.    

Figure  17.  Comparison  of  the  mean  monthly  Evapotranspiration  (Potential:  blue;  Real:  green)  values  (mm)  for  each  month  of   the   year   during   the   available   local   observation   period   (2004p 2010)   from   wetness   1   and   wetness   2   (catchment)   CIIs   facilitated  in  the  Demonstrator  for  different  models,  and  the  monthly  potential  evapotranspiration  from  weather  station  data  (mm).  

Figure  18.  Transfer  functions  between:  (right)  mean  monthly  Snow  Water  Equivalent  (SWE)  values  for  each  month  of  the  year  during  the  reference  period  (1970p 2000)  from  the  downscaled  SWE  values  from  the  SWE  (catchment)  CII  facilitated  in   the Demonstrator   for   the   selected  model,   and   from   the   validated   simulations   by   the  WiMMed  model   averaged  over   the  contributing  area  upstream;  (left)  mean  monthly  Potential  Evapotranspiration  values  for  each  month  of  the  year  during  the   period   available   of   meteorological   observed   data   (2004p 2010)   from   wetness   1   (catchment)   CII   facilitated   in  the   Demonstrator  for  the  selected  model,  and  from  the  meteorological  observed  data.  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     14  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     15  

Step  4:  Assessment  of  changes.  

Description:  The   estimation   of   these   change   rates   by   means   of   the   comparison   of   the   reference   period   and   its   posterior  extension  to  the  future  scenarios  is  key  to  assess  the  further  adaptation  strategies.  After  a  first  analysis  of  the  projections  from  2000  to  2015,  an  additional  correction  was  performed  by  means  of   the   anomalies   obtained   from  CIIs   for   the   future   projections   and   reference   period,   and   the   local  values  obtained  for  the  reference  period  by  both  WiMMed  simulation  and  observations.  

This  final  correction  based  on  anomalies  was  performed  on  the  downscaled  data  sets  to  derive  the  final  projections  used  in  this  case  study,  under  the  hypothesis  that  the  relative  change  obtained  from  the anomalies   (i.e.   the   difference   between   future   and   reference   value,   divided   into   the   reference   value)   is   applicable   to   the   observed   local   data.   The   anomalies   between  downscaled  projections   and   downscaled   values   for   the   reference   period   were   obtained   to   define   a   factor   of  change   for   each   variable   under   use   and   their   associated   time   scales.   These   factors   of   change  were  applied   then   to   the   local   data   during   the   reference   period   to   obtain   the   final   data   sets   of   future  projections  in  the  case  study.  

In  this  way,  the  flows  simulated  by  the  local  model  using  the  reference  period  are  projected  into  the  future.  The  projections  were  obtained  by  this  2p step  process  from  first,  the  model  (through  transfer   functions)   and   second,   the   local   model   (through   factor   of   change).   These   flow   projections   were  the  basis  to  derive  the  local  indicators  that  should  assess  the  clients’  decisionp making  process.  

From   the   interaction   with   the   clients   during   the   case   study,   specific   local   indicators   have   been   derived   from   successive   checking   and   feedback,   and   their   projections   obtained   for   the   corrected    projections  for  the  three  future  climate  scenarios  in  this  study  

a) Water  resource  planning  for  the  Béznar-­‐Rules  system

Water  planning  decision-­‐makers  selected  the  monthly  scale  for  their  interests,  since  water  resource  are   pre-­‐allocated   on   this   basis   following   the   approved   water   rights   to   each   user.   From   their   experience,  their  average  monthly  water  supply  from  the  Rules  reservoir  for  the  combination  of  both  irrigation  and  urban  supply  varies  between  8.5  and  12.0  hm3  during  the  last  ten  years.  Following  this,  for   each   future   decade,   the downscaled   and   corrected   monthly   values   were   presented   for   each  scenario   and   three   local   indicators   were   chosen   (WiMMed   projections   in   Fig.   19):   1)   Number   of  months   per   year   with   monthly   inflow   to   the   Rules   reservoir   non-­‐exceeding   8.5   hm3,   and   2)   those   exceeding  12  hm3;  3)  annual  inflow  to  the  Rules  reservoir  

b) Water  resource  planning  for  hydropower  generation

Similarly,  for  hydropower  generation,  a  daily  scale  was  selected  by  the  client.  Three  reference  values  of   inflow   to   the   station   were   provided   and   five   local   indicators   have   been   proposed   from   the   corrected  downscaled  values  (WiMMed  projections  in  the  graphs  in  Fig.  20p 21):  1)  Number  of  days  per   year   nonp exceeding   a   low   threshold   of   daily   inflow   to   the   hydropower   station,   2)   those  exceeding  a  high  threshold  and  3)  those  with  intermediate  daily  inflow  to  the  hydropower  station;  4)  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     16  

start  (day  of  the  year)  and  5)  end  (day  of  the  year)  of  the  period  with  exceeding  and  non-­‐exceeding  values  of  daily  inflow  to  the  hydropower  station  

c) Water  supply  for  the  coastal  area

Again,  a  daily  scale  was  selected  by  the  client.  The   low  threshold  provided  by  the  client  for  the  by-­‐pass  water  supply   that   they  receive  was  used  to  obtain:  1)  Number  of  days  per  year  with  daily  by-­‐pass  flow  non-­‐exceeding  27  L/s.  

Results:  

a) Water  resource  planning  for  the  Béznar-­‐Rules  system

Figure  19   shows  both   local   indicators   for   the   reference  period   (observations)   and   future   scenarios  (projections).   As   expected,   projections   are   more   restrictive   than   the   reference   period.   For   both  periods,  a  negative  trend  can  be  observed   in  the  case  of  number  of  months  per  year  with  monthly  inflow  exceeding  12  hm3.  However,  the  trend  is  more  monotonous  for  the  other  indicator  analyzed.  

Figure  19.  Number  of  months  per  year  non-­‐exceeding  8.5  hm3  of  monthly  inflow  to  the  Rules  reservoir  (up)  and  exceeding  12   hm3   of  monthly   inflow   to   the   Rules   reservoir   (down)   during   both   the   reference   period   (local   observations)   and   the  future  2000-­‐2100  period  (results  derived  from  the  local  model  projections  of  monthly  inflow  to  the  Rules  reservoir  during  the  2000-­‐2100  for  each  future  scenario).  

b) Water  resource  planning  for  hydropower  generation

Figure  20  and  Figure  21  show  both  local  indicators  for  the  reference  period  (observations)  and  future  scenarios   (projections).  The  associated   trends  are  not   significant  on  a  10%  of   confidence   level,  but  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     17  

they   show   the   high   variability   the   client   will   very   likely   face   for   the   facilities’   operation   and   the  potential   decrease   of   production   days   under   the   4.6   and   8.5   scenarios.   The   results   also   helped   to  increase  awareness  of  the  impact  of  mitigation  policies,  since  the  projection  for  the  2.6  arise  better  expectations  of  operation  in  the  future.  

Figure   20.   Number   of   days   per   year   non-­‐exceeding   a   low   threshold   of   daily   inflow   to   the   hydropower   station   (down),  exceeding   a   high   threshold   of   daily   inflow   (up),   and   comprised   between   both   values   (intermediate),   during   both   the  reference  period  (local  observations)  and  the  future  2000-­‐2100  period  (results  derived  from  the  local  model  projections  of  daily  inflow  to  the  hydropower  station  during  the  2000-­‐2100  for  each  future  scenario).  

Figure  21.  Start  and  end  of  the  period  with  exceeding  and  nonl exceeding  daily  inflow  values  to  the  hydropower  station  

during  the  decade  2020l 2030  for  the  WiMMed  projected  RCP4.5  from  the  results  in    Figure  20.  

c) Water  supply  for  the  coastal  area

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     18  

Figure  22   shows  both   local   indicators   for   the   reference  period   (observations)   and   future   scenarios  (projections).   This   indicator   has   been   obtained   from   the   excess   flow   taking   into   account   the  mandatory  ecological  flow  in  the  area.  

Figure  22.  Number  of  days  per  year  non-­‐exceeding  a  low  threshold  of  daily  inflow  to  the  water  supply  for  the  coastal  area,  during   both   the   reference   period   (local   observations)   and   the   future   2000-­‐2100   period   (results   derived   from   the  downscaled  projections  of  daily  inflow  to  the  hydropower  station  during  the  2000-­‐2100  for  each  future  scenario).  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     19  

Step  5  Integrated  river  basin  management  

Description:  Once   the   projected   flows   for   the   different   control   points   had  been  obtained,   the   objective   of   this  step  was  to  analyze  the  impacts  on  the  projected  changes  on  the  current  water  demands  in  the  case  study   area.   For   this,   based   on   the   current   River   Basin   Management   Plan,   the   different   supply  thresholds  have  been  established  at  the  control  point  of  the  Rules  dam  (Table  3),  which  is  the  water  storage   and   supply   system   in   this   basin.   From   these   values,   the   projected   values   of   inflow   to   the  reservoir  for  the  different  scenarios  analyzed  were  tested  against  the  annual  current  demands.  

Table  3.  Description  of  the  water  needs  (data  from  the  current  River  Basin  Management  Plan)  

Water  needs   Quantity  Environmental  flow   30%  annual  flow  Urban  supply   12.82  hm3/year  Irrigation   167.8  hm3/year  Other  uses     1.5  hm3/year  

Results:  The   results   show  a  clear  decrease   in   the  presence  of   snow  for  all   scenarios  and  sub-­‐periods   in   the  future   projected   period,   when   compared   to   the   average   values   during   the   reference   period.  However,   the  decrease   in   the  available   surface  water   is  not   that  clear   (Fig.  5).  This  points  out   to  a  major   impact   on   snow  occurrence   and  persistence,  which   affects   the   seasonal   regime  of   the   river  inflow  to  the  reservoir  and  thus  the  operational  rules  and  storage  capabilities  during  the  wet  season.      

Figure   23   shows   the   water   allocation   results   for   the   three   scenarios   analyzed,   which   have   been  derived   from   the   results   of   this   case   study   and   the   current   water   demands   included   in   the  Hydrological  Plan  of  the  area.    The  results  show  how  both  environmental  flows  and  urban  supply  are  not  compromised  by  the  impacts  on  river  flow;  however,   irrigation  water  would  not  be  guaranteed  during  different  years,  whose  occurrence  and  persistence  depends  on  the  analysed  scenario,  and  this  demand  is  the  most  likely  affected  in  the  future  scenarios.  However,  an  analysis  by  decades  (  

Figure  25)   shows   for  most  of   the   cases  how   the  number  of   years  with  deficit   is   coincident   among  scenarios.  

The   individual  analysis  of   scenarios   shows   the   influence  of   the   snow  regime  on   the   time  evolution  and  comparison  among   them.  During   the   first  decades,   the  warming   impacts  on   snow  provide   the  basin  with  increased  river  flows  and,  thus,  the  hardest  scenario  is  not  associated  to  higher  deficits  in  water  volumes  in  this  early  period.  However,  during  the  last  decades  this  first  impact  on  snow  seems  to   be   less   significant   and   the   scenarios   tend   to   be   hierarchized   by   the   severity   of   the   warming  scenario.  

The   most   unfavorable   case   appears   for   scenario   RCP.2.6   with   an   annual   deficit   of   135.40   hm3.  However,  this  scenario  is  not  the  one  that  presents  the  greatest  number  of  years  with  a  deficit,  but  it  is  the  RCP.8.5  scenario  that  shows  a  more  severe  character  (Figure  24)  .The  results  highlight  the  need  for  adaptation  plans  to  cope  with  the  expected  conflicts  between  irrigation  users  and  environmental  flow  needs.  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     20  

Figure  23.  Evolution  of   the  annual   inflow   to   the  Rules   reservoir   for  a   selected   future   climate   scenario   (RCP4.5)  during   the  2000p 2100   period,   from   the   corrected downscaled   river   inflow   from   the   river   flow   CII   in   the   Demonstrator,   together  with  the  current  water  allocation  in  the  basin  (data  from  the  current  River  Basin  Management  Plan).  

Figure  24.  Water  deficit  at  the  end  of  each  decade  during  the  2000-­‐2100  period  to  the  Béznar-­‐Rules  system,  calculating  the  decade  final  balance  as  the  sum  of  annual  deficits  (Total  demand  -­‐  Annual  flow).  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     21  

Figure  25.  Number  of  years  with  water  deficit  (a)  and  maximum  number  of  consecutive  years  with  water  deficit  (b)  during  the  2000-­‐2100  period  to  the  Béznar-­‐Rules  system.  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     22  

Step  6:  Climate  change  adaptation  strategies.  

Description:  The  Andalusian  Mediterranean  Water  District   is   the   responsible  water   authority   in   the   study  area.  From  the  River  Basin  Management  Plan,  the  information  shows  that  more  than  a  90%  of  the  water  resources   come   from   surface   waters,   with   a   seasonal   regime   highly   influenced   by   the   snow  dynamics,  and  a  high  impact  of  the  snow  changes  in  the  expected  changes  in  the  river  flow  regime  and  water  resource  availability.  To  assess  further  the  impact  of  the  seasonal  evolution  of  the  snow,  different   study   periods   have   been   analyzed   for   the   three   future   scenarios.   In   addition,   a   series   of  meetings  have  been  held  with  the  clients,  to  discuss  the  results  obtained  in  this  case  study  and  with  the  aim  of  identifying  the  key  issues  to  assess  new  adaptation  strategies.  

Results:  Figure  26   shows   the  projected   scenarios  of   the   change  of   the  mean  monthly   value  of   snow  water  equivalent   in   the   contributing   area   upstream   the   Rules   reservoir,   the   main   system   in   the   basin,  averaged  over   three  different   intervals   in   the   future.   It   can  be  observed   that   there   is   little   change  during  the  dry  months  of  the  year,  since  Sierra  Nevada  is  currently  a  seasonal  snow  system  with  no  perennial  snowpacks.  During  the  rest  of  the  year,  all  scenarios  project  decreasing  trends  in  the  snow  water  equivalent,  being   the  months  of   January   to  April   the  most  affected  by  change.  On  the  other  hand,   the  RCP  8.5   scenario   is   the  one   that  presents   a  more   significant   change  with   respect   to   the  reference   period.   The   spring   months   (April   and   May)   also   experiment   a   decrease   in   snow   water  equivalent.   In   the  Mediterranean  areas,  where   the   summers  are  very  hot  and   long,   the  melting  of  snow  is  very  important  in  these  spring  months.  

Figure  26.  Evolution  of  mean  monthly  Snow  Water  Equivalent  (SWE)  values  for  each  month  of  the  year  during  the  reference  period   (1970p 2000)   and  different   periods   (2020,2050,2080)   from   the   corrected   SWE     (catchment)   CII   facilitated   in   the  Demonstrator  for  the  selected  model.  

From   the   previous   results   and   following   the   successive   meetings   with   the   different   clients,   some  conclusions  were  reached  regarding  adaptation  strategies  in  this  area.    As  a  general  conclusion,  the  assessment  of  the  projected  indicators  tailored  from  each  client’s  needs  in  this  case  study  points  out  to  the  deficit  of  water  in  the  basin  both  on  an  annual  and  decadal  scales,  which  highlights  the  need  for   a)   the   reservoir   system,   and   b)   the   optimization   of   the   operational   rules   in   the   reservoirs   to  minimize  the  risks  associated  to  current  demands  not  being  met  in  the  future.  The  analysis  stresses  the  likely  conflicts  between  irrigation  water  and  the  current  requirements  for  environmental  flows  in  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     23  

the  future  decades;  the  goals  of  environmental  flows  are  under  discussion  in  a  changing  framework,  and   the   finally   targeted  objectives  must  be   revisited  under   the   light  of   a  highly   variable   river   flow  regime.  New  water   demands   for   irrigation  must   be   analysed  with   caution   by   the  Water   Authority  since  an  increase  in  the  irrigated  are  in  the  basin  will  very  likely  lead  to  demands  not  being  satisfied  in  many  years,  with  the  associated  economic  loss.  On  the  other  hand,  urban  consumption  is  not  likely  to  be  affected  provided  that  this  use  is  kept  as  first  priority.  

In   this   context,   the   results   have   enhanced   the   awareness   of   potential   impacts   and   needs   for  adaptation   action,   as   described   in   the   previous   paragrahs.   However,   some   actions   have   been  undertaken   in   the   short   term.  The  Water  Authority   is   interested  on  a   analysis   of   their   operational  rules  in  the  Rules-­‐Béznar  reservoir  system  to  minimize  the  risk  of  deficit  situations  on  an  annual  and  pluriannual  basis,   and   initial   collaboration  has   started  on   this   issue.   The  hydropower   company  has  decided   to   promote   a   monitoring   system   for   low   flows   that,   on   one   hand,   let   them   control   and  certify   their  accomplishment  of   the  environmental   flow  criteria  and,  on   the  other,  help   to  a  better  assessment   of   the   low   flow   regime   in   the   snow-­‐dominated   rivers   in   the   basin   that   contributes   to  meet  the  environmental  requirements;  this  action  is  currently  under  development.    

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     24  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     25  

Conclusion  of  Full  Technical  Report  

The  goal  of   this  case  study  was  to  obtain   local  climate   impact   indicators   to  assess  water  resource   availability   in   this   snow-­‐influenced  Mediterranean  basin  under   different   future  climate  scenarios,  and  test  their  suitability  to  identify  adaptation  strategies  for  previously  identified  users  that  represent  the  major  water-­‐related  issues  in  this  area.  The  workflow   development   during   the   project   let   us   check   out   on   each   step   the  major  strengths  and  weaknesses  of  the  partial  results  and  include  corrections,  when  needed,  and  fully  achieve  the  objectives.  The  project  has  provided  insight  on  three  major  issues:  i)  the  capability  of  data  (and  their  scales)   from   global  models   to   address   adaptation   issues   in  mountainous  Mediterranean  basins;   ii)   the   capability   of   the   interaction   client-­‐provider   to   enhance   the   quality   of   the  climate  indicators;  iii)  the  key  issues  to  be  faced  by  the  current  water  users  in  a  context  of  global  warming.  The  main  outcomes  associated  to  these  major  issues  can  be  summarized  as:  i) Despite   the   scale   issues   posed   by   the   local   topography,   river   flow   (daily   data over  

catchment)   succeeded   in   providing   an   adequate   representation   of   the hydrological  response  of  this  basin.  Downscaling  through  local  transfer  function  (from local   data)   plus   an   anomaly   (futurel reference   period)   correction   was   necessary,   and the  availability  of  a  hydrological  model  locally  validated  was  key  in  this  process.

ii) The   interaction   with   the   clients   identified   the   significant   time   scales   and   type   ofinformation  critical  in  their  operational  protocols,  but  also  helped  providers  to  betterunderstand  their  restrictions  and  motivations,  in  order  to  define  useful  indicators.  Thereliability  of  the  information  was  the  most  helpful  element  to  attain  confidence  on  themethods.

iii) The  assessment  of  projected  indicators  stresses  the  likely  conflicts  between  irrigationwater  and  the  requirements  for  environmental  flows  in  the  future  decades.  On-­‐goingactions  focus  on  the   improvement  of  the  monitoring  network  oriented  to   low  flows,and   the   analysis   of   the   environmental   flow   characterization   for   a   betterrepresentation  of  processes.   Future  actions  are  proposed   in   terms  of  optimizing   theoperational   rules  of   the  reservoir  system   in   the  area,  and  developing  an  operationalsystem  for  the  start  and  closure  of  the  generation  season  in  the  hydropower  facilities.

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     26  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     27  

References  

GDFH  (Research  Group  on  Fluvial  Dynamics  and  Hydrology).  WiMMed  model  software,  scientific  fundamentals  and  users’  guide.  2011.  Available  at  http://www.uco.es/dfh/index.php?option=com_content&view=article&id=52%3Ased-­‐tempor-­‐egestas&catid=36%3Adestacados&Itemid=64&lang=en  ,  last  accessed  on  October  31,  2017.  

Plan  Hidrológico  de  las  Cuencas  Mediterráneas  2015-­‐2020.  Consejería  de  Medio  Ambiente  y  Ordenación  del  Territorio.  Junta  de  Andalucía.  2015.  Available  at    http://www.juntadeandalucia.es/medioambiente/site/portalweb/  ,  last  accessed  on  October  31,  2017.  

Additional  information  on  WiMMed  model  (see  Note  1  in  page  2)  can  be  found  in  the  following  publications:  

J.  Herrero,  M.J.  Polo,  A.  Moñino,  M.A.  Losada.  2009.  An  energy  balance  snowmelt  model  in  a  Mediterranean  site.  J.  Hydrol.,  371:98-­‐107.  

A.  Millares,  M.J.  Polo,  M.A.  Losada.  2009.  The  hydrological  response  of  baseflow  in  fractured  mountain  areas.  Hydrol.  Earth  Sys.  Sci.,  13(7):  1261-­‐1271.  

C.  Aguilar,   J.  Herrero,  M.J.  Polo.  2010.  Topographic  effects  on  solar   radiation  distribution   in  mountainous  watershed  and  their  influence  on  reference  evapotranspiration  estimates  at  watershed  scale.  Hydrol.  Earth  System  Sci.,  14:  2479-­‐2494.  

J.  Herrero,  M.J.  Polo,  M.A.  Losada.  2011.  Snow  evolution  in  Sierra  Nevada  (Spain)  from  an  energy  balance  model  validated  with  Landsat  TM  data.  Remote  Sensing  for  Agriculture,  Ecosystems,  and  Hydrology.  Vol  8174.  DOI:  10.117/12.898270  

M.J.  Polo,  A.  Díaz,  M.P.  González-­‐Dugo.  2011.  Interception  modeling  with  vegetation  time  series  derived  from  Landsat  TM  data.  Remote  Sensing  for  Agriculture,  Ecosystems,  and  Hydrology.  Vol  8174.  DOI:  10.117/12.898144  

C.  Aguilar,  M.J.  Polo.  2011.  Generating  reference  evapotranspiration  surfaces  from  the  Hargreaves  equation  at  watershed  scale.  Hydrol.  Earth  System  Sci.,  15:  2495-­‐2508.  

M.  Egüen,  C.  Aguilar,   J.  Herrero,  A.  Millares,  M.J.  Polo.  2012.  On  the   influence  of  cell   size   in  physically-­‐based  distributed  hydrological  modelling  to  assess  extreme  values  in  water  resource  planning.  Nat.  Hazard  Earth  Syst.  Sci.,  12:  1573-­‐1582  

J.   Herrero,   M.J.   Polo.   2012.   Parameterization   of   atmospheric   longwave   emissivity   in   a   mountainous   site   for   all   sky  conditions.  Hydrol.  Earth  Syst.  Sci.,  16:  3139-­‐3147.  

A.  Millares,   Z.  Gulliver,  M.J.   Polo.   2012.   Scale   effects  on   the  estimation  of   erosion   thresholds   through  a  distributed  and  physically-­‐based  hydrological  model.  Geomorphology,  153-­‐154:  115-­‐126.  

R.  Pimentel,  J.  Herrero,  Y.  Zeng,  Z.  Su,  M.J.  Polo.  2015.  Study  of  snow  dynamics  at  subgrid  scale  in  semiarid  environments  combining  terrestrial  photography  and  data  assimilation  techniques.  Journal  of  Hydrometeorology,  16  (2):  563-­‐578.  

J.  Herrero,  M.J.  Polo.  2016.  Evaposublimation  from  the  snow  in  the  Mediterranean  mountains  of  Sierra  Nevada  (Spain).  The  Cryosphere,  10(6):  2981-­‐2998.  

R.   Pimentel,   J.   Herrero,   M.J.   Polo.   2017.   Subgrid   parameterization   of   snow   distribution   at   a   Mediterranean   site   using  terrestrial  photography.  Hydrol.  Earth  System  Sci.,  21:805-­‐820.  

Copernicus  Climate  Change  Service  

Full  Technical  Report:  Snow  effects  on  water  availability     28  

This  work  was  developed  under  the  contract  C3S_411_Lot1_SMHI

Contractor:  The  Swedish  Meteorological  and  Hydrological  Institute  (SMHI),  Sweden  

Sub-­‐contractor:  University  of  Córdoba  (UCO),  Spain