fumcpanel - multivariable control...

73
Multivariable Control Multivariable Control Systems Systems Systems Systems Ali Karimpour Assistant Professor Ferdowsi University of Mashhad Ferdowsi University of Mashhad

Upload: others

Post on 30-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Multivariable Control Multivariable Control SystemsSystemsSystemsSystems

    Ali KarimpourpAssistant Professor

    Ferdowsi University of MashhadFerdowsi University of Mashhad

  • Chapter 5Chapter 5Controllability, Observability and Realization

    Topics to be covered include:

    • Controllability and Observability of Linear Dynamical Equations

    • Output Controllability and Functional Controllability• Output Controllability and Functional Controllability

    • Canonical Decomposition of Dynamical Equation

    • Realization of Proper Rational Transfer Function Matrices

    • Irreducible RealizationsIrreducible realization of proper rational transfer functions

    Irreducible Realization of Proper Rational Transfer Function Vectors

    Ali Karimpour June 2012

    2Irreducible Realization of Proper Rational Matrices

  • Chapter 5

    Controllability, Observability and Realization

    • Controllability and Observability of Linear Dynamical EquationsControllability and Observability of Linear Dynamical Equations

    • Output Controllability and Functional Controllability

    • Canonical Decomposition of Dynamical Equation

    • Realization of Proper Rational Transfer Function Matrices

    • Irreducible RealizationsIrreducible realization of proper rational transfer functions

    Irreducible Realization of Proper Rational Transfer Function Vectors

    Irreducible Realization of Proper Rational Matrices

    Ali Karimpour June 2012

    3

  • Chapter 5

    Controllability and Observability of Linear Dynamical Equations

    Definition 5-1

    D fi iti 5 2Definition 5-2

    Ali Karimpour June 2012

    4

  • Chapter 5

    Controllability and Observability of Linear Dynamical Equations

    Theorem 5-1

    Ali Karimpour June 2012

    5

  • Chapter 5

    Controllability and Observability of Linear Dynamical Equations

    [ ]nn bAbAAbAbbbS 11 −−= [ ]mmm bAbAAbAbbbS 111 ............=

    Ali Karimpour June 2012

    6

  • Chapter 5

    Controllability and Observability of Linear Dynamical Equations

    Theorem 5-2

    Ali Karimpour June 2012

    7

  • Chapter 5

    Controllability, Observability and Realization

    • Controllability and Observability of Linear Dynamical EquationsControllability and Observability of Linear Dynamical Equations

    • Output Controllability and Functional Controllability

    • Canonical Decomposition of Dynamical Equation

    • Realization of Proper Rational Transfer Function Matrices

    • Irreducible RealizationsIrreducible realization of proper rational transfer functions

    Irreducible Realization of Proper Rational Transfer Function Vectors

    Irreducible Realization of Proper Rational Matrices

    Ali Karimpour June 2012

    8

  • Chapter 5

    Output Controllability

    Definition 5-3 Output Controllability

    Ali Karimpour June 2012

    9

  • Chapter 5

    Functional Controllability

    Definition 5-4 Functional controllability.

    An m-input l-output system G(s) is functionally controllable if thenormal rank of G(s), denoted r, is equal to the number of outputs; that is, if G(s) has full row rank. A plant is functionally uncontrollable if r < l.if G(s) has full row rank. A plant is functionally uncontrollable if r l.

    Remark 1: The minimal requirement for functional controllability is

    that we have at least many inputs as outputs i e m ≥ lthat we have at least many inputs as outputs, i.e. m ≥ l

    Remark 2: A plant is functionally uncontrollable if and only if

    ωωσ ∀= 0))(( jG ωωσ ∀= ,0))(( jGlRemark 3: For SISO plants just G(s)=0 is functionally uncontrollable.

    Ali Karimpour June 2012

    10

    Remark 4: A MIMO plant is functionally uncontrollable if the gain is identically zero in some output direction at all frequencies.

  • Chapter 5

    Functional Controllability

    ⎤⎡ 21

    Consider following transfer function:

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡++=

    11

    11

    32

    11

    )( sssG It is Functionally controllable

    ⎦⎣ ++ 11 ss

    Its state space representation is:

    )(2123

    )(00410030

    )( tutxtx⎥⎥⎥⎤

    ⎢⎢⎢⎡

    +⎥⎥⎥⎤

    ⎢⎢⎢⎡

    −−

    =&

    0010

    )(

    1111

    )(

    21001000

    )( tutxtx

    ⎤⎡

    ⎥⎥

    ⎦⎢⎢

    +

    ⎥⎥

    ⎦⎢⎢

    ⎣ −−

    It is not state controllable

    Ali Karimpour June 2012

    11)(

    10000010

    )( txty ⎥⎦

    ⎤⎢⎣

    ⎡=

  • Chapter 5

    Functional Controllability

    10000 ⎤⎡⎤⎡

    Consider following state space form:

    It is state controllable and output controllable

    )(000110

    )(010001000

    )( tutxtx⎥⎥⎥

    ⎢⎢⎢

    ⎡+

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡=&

    p

    )(100010

    )(

    0000

    txty ⎥⎦

    ⎤⎢⎣

    ⎡=

    ⎥⎦⎢⎣⎥⎦⎢⎣

    Its transfer function is:

    ⎤⎡ 11It is not functionally controllable.

    ⎥⎥⎥

    ⎢⎢⎢

    =

    32

    2

    11

    11

    )( sssG

    Ali Karimpour June 2012

    12

    ⎦⎣ 32 ss

  • Chapter 5

    Functional Controllability

    � An Example: dc-dc boost converter

    6

    2 51

    2498 3.049 10ˆ 609 3 207 10 ˆ

    sx s s

    ⎡ ⎤⎢ ⎥⎡ ⎤ ⎢ ⎥

    + ×+ + × 1x1

    15 82

    2 5

    609 3.207 10 ˆ ,ˆ 2.5 10 1.217 10

    609 3.207 10

    s sx s

    s s

    ω⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦

    ⎢ ⎥⎣ ⎦

    + + ×− × + ×

    + + ×

    12x

    functionally uncontrollable

    6

    :

    2498 3 049 10 12 5 s + 7 44 0

    or new system design

    s + ×⎡ ⎤

    functionally uncontrollable

    2 51

    2

    2498 3.049 10ˆ 609 3.207 1

    12.5 s + 7

    ˆ

    40

    4 0sx s s sx⎡ ⎤

    =

    + ×+ + ×

    ⎢ ⎥⎣ ⎦

    2 51

    5 8 5

    2 5 2 5

    ˆ609 3.207 10ˆ2.5 10 1.217 10 10

    609 3 207 10 66.2

    09 3 207 15

    0in

    svs

    s s s s

    ω⎡ ⎤⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥

    + + ×− × + × ×

    + + × + + ×⎣ ⎦

    ⎢ ⎥⎣ ⎦

    Ali Karimpour June 2012

    1313

    609 3.207 10 609 3.207 10s s s s+ + × + + ×⎣ ⎦

    functionally controllable

  • Chapter 5

    Functional Controllability

    BAsICsG 1)()( −−= is functionally uncontrollable ifAn m-input l-output system

    lBrank

  • Chapter 5

    Functional Controllability

    Example 5-1

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    ++= 421

    21

    1

    )( sssG⎥⎦

    ⎢⎣ ++ 2

    42

    2ss

    Thi i il i l 2 f G( ) i i l 1This is easily seen since column 2 of G(s) is two times column 1.

    The uncontrollable output directions at low and high frequencies are, i lrespectively,

    ⎥⎤

    ⎢⎡

    ∞⎥⎤

    ⎢⎡ 21)(

    11)0( yy

    Ali Karimpour June 2012

    15

    ⎥⎦

    ⎢⎣−

    =∞⎥⎦

    ⎢⎣−

    =15

    )(,12

    )0( 00 yy

  • Chapter 5

    Controllability, Observability and Realization

    • Controllability and Observability of Linear Dynamical EquationsControllability and Observability of Linear Dynamical Equations

    • Output Controllability and Functional Controllability

    • Canonical Decomposition of Dynamical Equation

    • Realization of Proper Rational Transfer Function Matrices

    • Irreducible RealizationsIrreducible realization of proper rational transfer functions

    Irreducible Realization of Proper Rational Transfer Function Vectors

    Irreducible Realization of Proper Rational Matrices

    Ali Karimpour June 2012

    16

  • Chapter 5

    Canonical Decomposition of a Linear Time-invariant Dynamical Equation

    ECBuAxx

    ++=& uBxAPBuxPAPx +=+= −1&Pxx =EuCxy += uExCEuxCPy +=+= −1

    Theorem 5-3 The controllability and observability of a linear time-invariantd i l i i i d i l f idynamical equation are invariant under any equivalence transformation.

    Proof: Let we first consider controllability

    [ ] [ ][ ] PSBABAABBP

    PBPPAPBPPAPBPAPPBBABABABSn

    nn

    ==

    ==−

    −−−−−

    12

    1112112 ..........[ ] PSBABAABBP == .....

    Similarly we can consider observability

    Ali Karimpour June 2012

    17

  • Chapter 5

    Canonical Decomposition of a Linear Time-invariant Dynamical Equation

    ECBuAxx +=&Theorem 5-4

    Consider the n-dimensional linear time –invariant dynamical equation EuCxy +=

    y q

    If the controllability matrix of the dynamical equation has rank n1 (where n1

  • Chapter 5

    Canonical Decomposition of a Linear Time-invariant Dynamical Equation

    Theorem 5-4 (Continue)

    1Furthermore P=[q1 q2 … qn1 … qn]-1 where q1, q2, …, qn1 be any n1 linearly

    independent column of S (controllability matrix) and the last n-n1 column of P

    are entirely arbitrary so long as the matrix [q1 q2 … qn1 … qn] is nonsingular.

    Proof: See “Linear system theory and design” Chi-Tsong Chen

    ldimensiona+=+=

    nEuCxyBuAxx&

    ldimensiona≤+=

    +=

    EuxCyuBxAx

    cc

    cccc&Pxx =

    ldimensiona−n ldimensiona1 −≤ nn

    G(s)

    Ali Karimpour June 2012

    19Hence, we derive the reduced order controllable equation.

  • Chapter 5

    Canonical Decomposition of a Linear Time-invariant Dynamical Equation

    ECBuAxx +=&Theorem 5-5

    Consider the n-dimensional linear time –invariant dynamical equation EuCxy +=

    y q

    If the observability matrix of the dynamical equation has rank n2 (where n2

  • Chapter 5

    Canonical Decomposition of a Linear Time-invariant Dynamical Equation

    Theorem 5-5 (Continue)

    Furthermore the first n row of P are any n linearly independent rows of VFurthermore the first n2 row of P are any n2 linearly independent rows of V

    (observability matrix) and the last and the last n-n2 row of P is entirely arbitrary

    so long as the matrix P is nonsingularso long as the matrix P is nonsingular.

    Proof: See “Linear system theory and design” Chi-Tsong Chen

    ldimensiona−+=+=

    nEuCxyBuAxx& Pxx =

    +=

    +=

    EuxCyuBxAx

    oo

    oooo&

    ldimensiona−n

    G(s)

    ldimensiona2 −≤ nn

    Ali Karimpour June 2012

    21Hence, we derive the reduced order observable equation.

  • Chapter 5

    Canonical Decomposition of a Linear Time-invariant Dynamical Equation

    ECBuAxx

    ++=&Theorem 5-6 (Canonical decomposition theorem)

    Consider the n-dimensional linear time –invariant dynamical equation EuCxy +=Consider the n-dimensional linear time invariant dynamical equation There exists an equivalence transformation

    Pxx = Pxxwhich transform the dynamical equation to

    [ ] Ex

    CCBBx

    AAAAAx ocococococ

    ⎥⎤

    ⎢⎡

    ⎥⎤

    ⎢⎡

    ⎥⎤

    ⎢⎡⎥⎤

    ⎢⎡

    ⎥⎤

    ⎢⎡

    001312

    &

    &

    d th d d di i l b ti

    [ ] EuxxCCyuB

    xx

    AAA

    xx

    c

    coccoco

    c

    co

    c

    co

    c

    co +⎥⎥⎥

    ⎦⎢⎢⎢

    =⎥⎥⎥

    ⎦⎢⎢⎢

    +⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    =⎥⎥⎥

    ⎦⎢⎢⎢

    0000

    0 23&

    and the reduced dimensional sub-equation

    EuxCyuBxAx cocococo

    +=

    +=&

    Ali Karimpour June 2012

    22is observable and controllable and has the same transfer function matrix

    as the first system.

    EuxCy coco +

  • Chapter 5

    Canonical Decomposition of a Linear Time-invariant Dynamical Equation

    Definition 5-5

    A linear time-invariant dynamical equation is said to be reducible if and only if thereA linear time invariant dynamical equation is said to be reducible if and only if there

    exist a linear time-invariant dynamical equation of lesser dimension that has the same

    transfer function matrix. Otherwise, the equation is irreducible.q

    Theorem 5-7

    A linear time invariant dynamical equation is irreducible if and only if it is controllable

    and observable.

    Theorem 5-8

    Ali Karimpour June 2012

    23

  • Chapter 5

    Controllability, Observability and Realization

    • Controllability and Observability of Linear Dynamical EquationsControllability and Observability of Linear Dynamical Equations

    • Output Controllability and Functional Controllability

    • Canonical Decomposition of Dynamical Equation

    • Realization of Proper Rational Transfer Function Matrices

    • Irreducible RealizationsIrreducible realization of proper rational transfer functions

    Irreducible Realization of Proper Rational Transfer Function Vectors

    Irreducible Realization of Proper Rational Matrices

    Ali Karimpour June 2012

    24

  • Chapter 5

    Realization of Proper Rational Transfer Function Matrices

    Dynamical equation (state-space) description This transformation

    The input-output description (transfer function matrix)

    EuCxyBuAxx

    +=+=& is unique

    EBAsICsG +−= −1)()(

    ( )

    The input-output description (transfer function matrix) Realization

    BA&

    Dynamical equation (state-space) description

    This transformationEBAsICsG +−= −1)()(

    EuCxyBuAxx

    +=+=This transformation

    is not unique

    1 Is it possible at all to obtain the state-space description from the transfer function1. Is it possible at all to obtain the state-space description from the transfer function matrix of a system?

    2. If yes, how do we obtain the state space description from the transfer function matrix?

    Ali Karimpour June 2012

    25

    y , p p

  • Chapter 5

    Realization of Proper Rational Transfer Function Matrices

    Theorem 5-9

    A transfer function matrix G(s) is realizable by a finite dimensional

    linear time invariant dynamical equation if and only if G(s) is a propery q y ( ) p p

    rational matrix.

    Proof: See “Linear system theory and design” Chi-Tsong Chen

    Ali Karimpour June 2012

    26

  • Chapter 5

    Irreducible realizationsDefinition 5-6

    Theorem 5-10

    Ali Karimpour June 2012

    27

  • Chapter 5

    Irreducible realizations

    Before considering the general case

    (irreducible realization of proper rational matrices)

    we start the following parts:

    1. Irreducible realization of Proper Rational Transfer Functions

    2 I d ibl R li ti f P R ti l T f F ti V t2. Irreducible Realization of Proper Rational Transfer Function Vectors

    3. Irreducible Realization of Proper Rational Matrices

    Ali Karimpour June 2012

    28

  • Chapter 5

    Irreducible realization of proper rational transfer functions

    0,ˆ......ˆˆ

    ˆ......ˆˆ)( 01

    10

    110 ≠

    ++++++

    = −−

    ααααβββ

    nnn

    nn

    ssss

    sg0

    01

    1

    22

    11

    ˆ

    ˆ

    ............

    )(αβ

    ααβββ

    +++++++

    = −−−

    nnn

    nn

    ssss

    sg

    )()()(ˆ)(ˆˆ

    )(ˆ)(ˆˆ

    )(......

    ......)(0

    0

    0

    01

    1

    22

    11 seususgsusysusu

    sssssy

    nnn

    nnn

    +=+=+++++++

    = −−−

    αβ

    αβ

    ααβββ

    ......10 +++ ααα nss 01 ...... ααα +++ nss

    )()(ˆ)(ˆ

    susysg =

    00n

    )(ˆ sg

    )(su

    )()(ˆ)(ˆ

    susysg =

    ucxybuAxx0ˆ +=+=&

    )()( sysg =buAxx +=

    β̂

    &

    Ali Karimpour June 2012

    29

    )()(

    susg =

    eucxuyy +=+=0

    0

    ˆˆ

    αβ

  • Chapter 5

    Irreducible realization of proper rational transfer functions

    nnn

    nnn

    ssss

    susysg

    ααβββ

    ++++++

    == −−−

    ............

    )()(ˆ)(ˆ 1

    1

    22

    11

    0

    01

    1

    22

    11

    ˆ

    ˆ

    ............

    )(αβ

    ααβββ

    +++++++

    = −−−

    nnn

    nn

    ssss

    sgn)( 1

    There are different forms of realization

    01 ...... ααα +++ nss

    Ob bl i l f li ti

    There are different forms of realization

    • Observable canonical form realization

    • Controllable canonical form realization• Controllable canonical form realization

    • Realization from the Hankel matrix

    Ali Karimpour June 2012

    30

    • Realization from the Hankel matrix

  • Chapter 5

    Observable canonical form realization of proper rational transfer functions

    nnn

    nn sssg βββ +++= −−− ......)(ˆ 1

    22

    110

    1

    22

    11

    ˆ

    ˆ......)(

    ββββ+

    ++++++

    = −−−

    nnn

    nn sssg

    nnn ss αα +++ ......11

    uuuyyy nnn

    nnn βββαα +++=+++ −−− ............ )2(2

    )1(1

    )1(1

    )( )))

    )()( )

    01

    1 ...... ααα +++ nnn ss

    )()( tytxn)=

    )()()()()()()( 11)1(

    11)1(

    1 tutxtxtutytytx nnn βαβα −+=−+=−))

    )()()()()()(.................................

    )2()2()1( tttttt nnn −−− +++ ββ )))

    )()()()()()()()()( 22)1(

    122)1(

    1)1(

    1)2(

    2 tutxtxtutytutytytx nnn βαβαβα −+=−+−+= −−)))

    )()()()()()( )1()1()1()1()()1( nnn ββ )))

    )()()(

    )()(...)()()()(

    11)1(

    2

    11)2(

    1)2(

    1)1(

    1

    tutxtx

    tutytutytytx

    nnn

    nnnnn

    −−

    −−

    −+=

    −++−+=

    βα

    βαβα

    Ali Karimpour June 2012

    31)()()()()()(...)()()()( )1(1

    )1(1

    )1(1

    )1(1

    )()1(1

    tutxtutytutytutytytx

    nnnnn

    nnnnn

    βαβαβαβα

    +−=+−=−++−+= −−

    −−

    )

    )))

  • Chapter 5

    )()( tytx = )Observable canonical form realization of proper rational transfer functions

    )()()()()()()()()(

    )()()()()()()(

    )()(

    22)1(

    122)1(

    1)1(

    1)2(

    2

    11)1(

    11)1(

    1

    tutxtxtutytutytytx

    tutxtxtutytytx

    tytx

    nnn

    nnn

    n

    −−

    −+=−+−+=

    −+=−+=

    βαβαβα

    βαβα)))

    ))

    )()()(

    )()(...)()()()(.................................

    )1(11

    )2(1

    )2(1

    )1(1

    tutxtx

    tutytutytytx nnnnn

    −−−−−

    +=

    −++−+=

    βα

    βαβα )))

    )()()( 112 tutxtx nnn −− −+= βα

    )()()()()()(...)()()()( )1(1

    )1(1

    )1(1

    )1(1

    )()1(1

    tutxtutytutytutytytx

    nnnnn

    nnnnn

    βαβαβαβα

    +−=+−=−++−+= −−

    −−

    )

    )))

    ⎥⎥⎤

    ⎢⎢⎡

    ⎥⎥⎤

    ⎢⎢⎡

    ⎥⎥⎤

    ⎢⎢⎡

    ⎥⎥⎤

    ⎢⎢⎡

    −−

    ⎥⎥⎤

    ⎢⎢⎡

    −− n

    n

    n

    n

    xx

    xx

    xx

    0...010...00

    2

    1

    12

    1

    12

    1

    ββ

    αα

    &

    &

    )()()()(y nnnnn ββ

    [ ]

    ⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢

    =

    ⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢

    +

    ⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢

    ⎣⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢

    −=

    ⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢

    −− n

    n

    n

    n

    xyuxx.

    10...00ˆ..

    100.......

    0...10.

    3

    2

    2

    1

    3

    2

    2

    1

    3

    2

    β

    βα

    &

    &

    Ali Karimpour June 2012

    32

    ⎥⎦⎢⎣⎥⎦⎢⎣⎥⎦⎢⎣⎥⎦⎢⎣ −⎥⎦⎢⎣ nnn xxx 1...00 11 βα

  • Chapter 5

    Observable canonical form realization of proper rational transfer functions

    nnn

    nnn

    sssssg

    ααβββ

    ++++++

    = −−−

    ............)(ˆ 1

    1

    22

    11

    ⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡

    [ ]⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    =⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    +⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    ⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    −−−

    =⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    n

    n

    n

    n

    n

    n

    xxx

    yuxxx

    xxx

    10...00ˆ0...100...010...00

    3

    2

    1

    2

    1

    3

    2

    1

    2

    1

    3

    2

    1

    βββ

    ααα

    &

    &

    &

    21 β̂βββ −− nn

    [ ]

    ⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ −⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ n

    n

    n

    n

    n x

    y

    xx...

    1...00........

    3

    1

    23

    1

    23

    β

    β

    α&

    0

    01

    1

    22

    11

    ˆ............)(

    αβ

    ααβββ

    +++++++

    = −−−

    nnn

    nnn

    sssssg

    xxx 000 βα ⎤⎡⎤⎡⎤⎡⎤⎡ −⎤⎡ &

    [ ] uxxx

    yuxxx

    xxx

    n

    n

    n

    n

    n

    n

    0

    03

    2

    1

    2

    1

    3

    2

    1

    2

    1

    3

    2

    1

    ˆˆ

    10...00ˆ0...100...010...00

    αββ

    ββ

    ααα

    +⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    =⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    +⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    ⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    −−−

    =⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    &

    &

    Ali Karimpour June 2012

    33xxx nnn

    0

    11

    ...1...00

    ........α

    βα ⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ −⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ &

  • Chapter 5

    Observable canonical form realization of proper rational transfer functions

    02

    21

    1ˆ......)( ββββ ++++=

    −−n

    nn sssg nnn sssg βββ +++=−− ......)(ˆ

    22

    11

    01

    1 ˆ......)(

    ααα+

    +++= −

    nnn ss

    sgn

    nn sssg

    αα +++= − ......

    )( 11

    xxx nn 111 0...00 βα⎥⎤

    ⎢⎡

    ⎥⎤

    ⎢⎡

    ⎥⎤

    ⎢⎡⎥⎤

    ⎢⎡ −

    ⎥⎤

    ⎢⎡ &

    [ ] uxx

    yuxx

    xx

    n

    n

    n

    n

    0

    03

    2

    2

    1

    3

    2

    2

    1

    3

    2

    ˆˆ

    .10...00ˆ

    .........0...100...01

    .αββ

    βαα

    +

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    =

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    +

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    −−

    =

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    &

    &

    xxx nnn 11

    ...1...00

    ........βα ⎥

    ⎥⎦⎢

    ⎢⎣⎥

    ⎥⎦⎢

    ⎢⎣⎥

    ⎥⎦⎢

    ⎢⎣⎥⎥⎦⎢

    ⎢⎣ −⎥

    ⎥⎦⎢

    ⎢⎣ &

    Th d i d d i l ti i b bl E i 1 Wh ?

    The derived dynamical equation controllable as well if numerator and

    The derived dynamical equation is observable. Exersise 1: Why?

    Ali Karimpour June 2012

    34

    denominator of g(s) are coprime. Exersise 2: Why?

  • Chapter 5

    Controllable canonical form realization of proper rational transfer functions

    nnn sssNsg

    βββ +++==

    −− ......)()( 12

    21

    1)01

    22

    11

    ˆ

    ˆ......)(

    ββββ+

    +++= −

    −−

    nnn

    nn sssg

    Let us introduce a new variable)()()()()()(

    svsNsysusvsD

    ==

    )

    nnn sssD

    gαα +++ − ......)(

    )( 110

    11 ...... ααα +++ n

    nn ss

    )()()( svsNsy =

    We may define the state variable as: ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    =⎥⎥⎥⎤

    ⎢⎢⎢⎡

    =)(

    )()()(

    )(

    )1(2

    1

    tvtv

    txtx

    txWe may define the state variable as:

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    =

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    =

    − )(....

    )(....)(

    )1( tvtx

    tx

    nn

    nn xxxxxx === −13221 ,.....,, &&&Clearly

    )()()()()( )1()1()( tvtvtvtutvx nn ααα −−−−== −&

    Ali Karimpour June 2012

    35)(...)()()(

    )(...)()()()(

    1211

    11

    txtxtxtutvtvtvtutvx

    nnn

    nnn

    αααααα

    −−−−===

  • Chapter 5

    Controllable canonical form realization of proper rational transfer functions

    02

    21

    1 ......)(ββββ)

    +++ −− nnn ss n

    nn sssN βββ +++ −− ......)()(2

    21

    1)

    0

    01

    1

    21

    ............

    )(αβ

    ααβββ

    )++++

    = −n

    nnn

    sssg

    nnn

    n

    sssDsNsg

    ααβββ

    +++== − ......)(

    )()( 11

    21)

    nn xxxxxx === −13221 ,.....,, &&&

    )(...)()()()(...)()()()(

    1211

    )1(1

    )1(1

    )(

    txtxtxtutvtvtvtutvx

    nnn

    nnn

    nn

    αααααα

    −−−−=−−−−==

    −−&

    [ ] ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    xx

    xx

    xx

    00

    0...1000...010

    2

    1

    2

    1

    2

    1

    ββββ&

    &

    [ ]

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    =

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    +

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    ⎣⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    ⎣ −−−−

    =

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    −−

    −− n

    nnn

    nnnnn x

    xyu

    x

    x

    x

    x.

    ...

    1.0

    ....

    1...000.......

    .31213

    121

    3 ββββ

    αααα&

    &

    Ali Karimpour June 2012

    36

  • Chapter 5

    Controllable canonical form realization of proper rational transfer functions

    nnn

    nnn

    ssss

    sDsNsg

    ααβββ

    ++++++

    == −−−

    ............

    )()()( 1

    1

    22

    11)

    ⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡

    [ ]⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    =⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    +⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    ⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    =⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    −− nnn xxx

    yuxxx

    xxx

    ...000

    .......0...1000...010

    3

    2

    1

    1213

    2

    1

    3

    2

    1

    ββββ&&

    &

    ⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ −−−−⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ −− nnnnnn xxx.

    1..

    ...1...000.

    121 αααα&

    0

    01

    1

    22

    11

    ˆˆ

    ............)(

    αβ

    ααβββ

    +++++++

    = −−−

    nnn

    nnn

    sssssg

    xxx 00010 ⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡ &

    [ ] uxxx

    yuxxx

    xxx

    nnn0

    03

    2

    1

    1213

    2

    1

    3

    2

    1

    ˆˆ

    ...000

    1000.......0...1000...010

    αβββββ +

    ⎥⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎢⎡

    =

    ⎥⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎢⎡

    +

    ⎥⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎢⎡

    ⎥⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎢⎡

    =

    ⎥⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎢⎡

    −−&

    &

    Ali Karimpour June 2012

    37xxx nnnnnn

    0

    121

    .1..

    ...1...000.αααα ⎥

    ⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ −−−−⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ −−&

  • Chapter 5

    Controllable canonical form realization of proper rational transfer functions

    0

    01

    1

    22

    11

    ˆˆ

    ............)(

    αβ

    ααβββ

    +++++++

    = −−−

    nnn

    nnn

    sssssg nn

    nnn

    ssss

    sDsNsg

    ααβββ

    ++++++

    == −−−

    ............

    )()()( 1

    1

    22

    11)

    01 ...... ααα +++ nss nsss αα +++ ......)( 1

    xx

    xx

    xx 111

    00

    01000...010

    ⎥⎥⎤

    ⎢⎢⎡

    ⎥⎥⎤

    ⎢⎢⎡

    ⎥⎥⎤

    ⎢⎢⎡

    ⎥⎥⎤

    ⎢⎢⎡

    ⎥⎥⎤

    ⎢⎢⎡&

    &

    [ ] uxx

    yuxx

    xx

    nnn0

    03

    2

    1213

    2

    3

    2

    ˆˆ

    ....

    1.00

    .1...000.......0...100

    .αβββββ +

    ⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢

    =

    ⎥⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢⎢

    +

    ⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢

    ⎣⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢

    =

    ⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢

    −−

    &

    &

    Th d i d d i l ti i t ll bl E i 3 Wh ?

    xxx nnnnnn 121 1... αααα ⎥⎦⎢⎣⎥⎦⎢⎣⎥⎦⎢⎣⎥⎦⎢⎣ −−−−⎥⎦⎢⎣ −−

    The derived dynamical equation observable as well if numerator and

    The derived dynamical equation is controllable . Exersise 3: Why?

    Ali Karimpour June 2012

    38

    denominator of g(s) are coprime. Exersise 4: Why?

  • Chapter 5

    Controllable and observable canonical form realization of proper rational transfer functions

    Example 5-2 Derive controllable and observable canonical realization for following system.

    3248182 23 +++ sss

    2202663248182)(223

    ++++++ ssssssg

    61163248182)( 23 +++

    +++=

    sssssssg

    261166116

    )( 2323 ++++=

    +++=

    sssssssg

    Observable canonical form realization is:

    20600 ⎤⎡⎤⎡⎤⎡⎤⎡ &Controllable canonical form realization is:

    0010 ⎤⎡⎤⎡⎤⎡⎤⎡ &u

    xxx

    xxx

    62620

    6101101600

    3

    2

    1

    3

    2

    1

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡+

    ⎥⎥⎥

    ⎢⎢⎢

    ⎥⎥⎥

    ⎢⎢⎢

    −−−

    =⎥⎥⎥

    ⎢⎢⎢

    &

    &

    &

    uxxx

    xxx

    100

    6116100010

    3

    2

    1

    3

    2

    1

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡+

    ⎥⎥⎥

    ⎢⎢⎢

    ⎥⎥⎥

    ⎢⎢⎢

    −−−=

    ⎥⎥⎥

    ⎢⎢⎢

    &

    &

    [ ] uxxx

    y 2100 21

    +⎥⎥⎥

    ⎢⎢⎢

    ⎡= [ ] u

    xxx

    y 262620 21

    +⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    Ali Karimpour June 2012

    39

    x3 ⎥⎦⎢⎣ x3 ⎥⎦⎢⎣It is not controllable. It is not observable.Why? Why?

  • Chapter 5

    Irreducible realization of proper rational transfer functions

    Example 5-3 Derive irreducible realization for following transfer function.

    3248182 23 +++ sss

    2202663248182)(223

    ++++++ ssssssg

    61163248182)( 23 +++

    +++=

    sssssssg

    2206 ++= s261166116

    )( 2323 ++++=

    +++=

    sssssssg

    Observable canonical form realization is: Controllable canonical form realization is:

    2652+

    ++=

    ss

    uxx

    xx

    620

    5160

    2

    1

    2

    1

    ⎤⎡

    ⎥⎦

    ⎤⎢⎣

    ⎡+⎥

    ⎤⎢⎣

    ⎡⎥⎦

    ⎤⎢⎣

    ⎡−−

    =⎥⎦

    ⎤⎢⎣

    ⎡&

    &u

    xx

    xx

    10

    5610

    2

    1

    2

    1

    ⎤⎡

    ⎥⎦

    ⎤⎢⎣

    ⎡+⎥

    ⎤⎢⎣

    ⎡⎥⎦

    ⎤⎢⎣

    ⎡−−

    =⎥⎦

    ⎤⎢⎣

    ⎡&

    &

    [ ] uxx

    y 2102

    1 +⎥⎦

    ⎤⎢⎣

    ⎡= [ ] u

    xx

    y 26202

    1 +⎥⎦

    ⎤⎢⎣

    ⎡=

    Ali Karimpour June 2012

    40

    It is controllable too. It is observable too.Why? Why?

  • Chapter 5

    Irreducible realization of proper rational transfer functions

    Realization from the Hankel matrix

    nn βββ −1

    nnn

    nnn

    sssssg

    ααβββ

    ++++++

    = − ............)( 1

    1

    110 ......)3()2()1()0()( 321 ++++= −−− shshshhsg

    The coefficients h(i) will be called Markov parameters.

    ⎥⎥⎤

    ⎢⎢⎡

    + )1(...)4()3()2()(...)3()2()1(

    ββ

    hhhhhhhh

    ⎥⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢⎢

    +=

    .......

    .......)2(...)5()4()3(

    ),(β

    βαhhhh

    H

    ⎥⎥⎦⎢

    ⎢⎣ −+++ )1(...)2()1()(

    .......βαααα hhhh

    Ali Karimpour June 2012

    41

  • Chapter 5

    Irreducible realization of proper rational transfer functions

    Realization from the Hankel matrix

    Theorem 5-11 Consider the proper transfer function g(s) as

    nnn

    nnnn

    sssss

    sgαα

    ββββ+++

    ++++= −

    −−

    ............

    )( 11

    22

    110

    ( ) ( ) ....,3,2,1,everyfor),(),( =++= lklmkmHmmH ρρ

    then g(s) has degree m if and only if

    Ali Karimpour June 2012

    42

  • Chapter 5

    Irreducible realization of proper rational transfer functions Realization from the Hankel matrixRealization from the Hankel matrix

    buAxx +=&Now consider the dynamical equation

    ebAsIcsebAsIcsg +−=+−= −−−− 1111 )()()(eucxy +=

    g )()()(

    .....3221 ++++= −−− bscAcAbscbse......,3,2,1)( 1 == − ibcAih i)(

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    + )1(.....)2()(.....)2()1(

    nhhnhhh

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    −+

    =+

    )12(.....)1()(................

    ),1(

    nhnhnh

    nnH

    ⎥⎥⎦⎢

    ⎢⎣ ++ )2(.....)2()1( nhnhnh

    Let the first σ rows be linearly independent and the (σ+1) th row of H(n+1,n) be linearly dependent on its previous rows. So

    Ali Karimpour June 2012

    43

    y p p

    0),1(]0.....01.....[ 21 =+ nnHaaa σ

  • Chapter 5

    Irreducible realization of proper rational transfer functions Realization from the Hankel matrixRealization from the Hankel matrix

    0),1(]0.....01.....[ 21 =+ nnHaaa σWe claim that the σ-dimensional dynamical equationWe claim that the σ dimensional dynamical equation

    hhh

    )3()2()1(

    0000000.....10000.....010

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    uh

    xx..

    )3(

    ..........

    ..........00.....000

    .

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    +

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    =& (I)

    [ ] uhxyh

    haaaaa

    )0(00.....001)(

    )1(.....

    10.....000

    1321

    +=

    ⎥⎥⎥

    ⎦⎢⎢⎢

    −⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ −−−−− − σσ

    σσ

    is a controllable and observable (irreducible realization).

    [ ]

    Exercise 5: Show that (I) is a controllable and observable (irreducible realization) of

    Ali Karimpour June 2012

    44

    Exercise 5: Show that (I) is a controllable and observable (irreducible realization) of

    eucxybuAxx

    +=+=&

  • Chapter 5

    Irreducible realization of proper rational transfer functions

    Example 5-4 Derive irreducible realization for following transfer function.3248182)(

    23 +++ ssssg6116

    )( 23 +++=

    ssssg

    .....2303410141062)( 654321 ++−−+−+= −−−−−− sssssssg

    ⎤⎡

    ⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    −−−−

    =341014101410

    14106

    )3,4(H

    ⎥⎦

    ⎢⎣ −− 2303410

    We can show that the rank of H(4,3) is 2. So [ ] 0)3,4(0156 =H

    Hence an irreducible realization of g(s) is610⎥⎤

    ⎢⎡

    +⎥⎤

    ⎢⎡

    &

    Ali Karimpour June 2012

    45[ ] uxy

    uxx

    2011056

    +=

    ⎥⎦

    ⎢⎣−

    +⎥⎦

    ⎢⎣ −−

    =

  • Chapter 5

    Realization of Proper Rational Transfer Function Vectors

    ⎤⎡ )(

    Consider the rational function vector

    ⎤⎡⎤⎡ )()

    ⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    = .)()(

    )(2

    1

    sgsg

    sG⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    +⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    = .)()(

    .)(2

    1

    2

    1

    sgsg

    ee

    sG

    )

    )

    ⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ )(.sgq ⎥

    ⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ )(..sge qq

    )

    ⎥⎥⎤

    ⎢⎢⎡

    ++++++

    ⎥⎥⎤

    ⎢⎢⎡

    −−

    −−

    nnn

    nnn

    ssss

    ee

    ββββββ

    ....

    ....

    1 22

    221

    21

    12

    121

    11

    2

    1

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    ++++

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    = −

    n

    nnn ss

    sGαα

    .

    ......

    1

    .

    .)(

    21

    11

    Ali Karimpour June 2012

    46

    ⎥⎦

    ⎢⎣ +++

    ⎥⎦⎢⎣−−

    qnn

    qn

    qq sse βββ ....2

    21

    1

  • Chapter 5

    Realization of Proper Rational Transfer Function Vectors

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    ++++++

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    −−

    −−

    nnn

    nnn

    ssss

    ee

    ββββββ

    ....

    ....

    1 22

    221

    21

    12

    121

    11

    2

    1

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    ⎣ +++

    ++++

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    =

    −−

    qnn

    qn

    q

    nnn

    q ss

    ss

    e

    sG

    βββ

    αα

    ......

    .....1

    .

    .)(

    22

    11

    11

    ee

    yy

    nnn

    nnn

    ⎥⎥⎤

    ⎢⎢⎡

    ⎥⎥⎤

    ⎢⎢⎡

    ⎥⎥⎤

    ⎢⎢⎡

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    −−

    −−

    ...

    ...00

    0...1000...010

    2

    1

    21)2(2)1(22

    11)2(1)1(11

    2

    1

    ββββββββ

    u

    e

    x

    y

    yuxx

    nnn

    ⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢

    +

    ⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢

    =

    ⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢

    ⎣⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    +

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    =..

    .................

    .

    .

    0..

    1...000.............. 2

    1)2()1(

    21)2(2)1(222

    ββββ

    ββββ&

    ey qqnqnqqnqnnn

    ⎦⎣⎦⎣⎦⎣⎥⎥⎦⎢

    ⎢⎣⎥

    ⎥⎦⎢

    ⎢⎣ −−−−

    −−−−

    ...1... 1)2()1(121

    ββββαααα

    This is a controllable form realization of G(s).

    Ali Karimpour June 2012

    47We see that the transfer function from

    u to yi is equal to nnn

    inn

    in

    ii ss

    sse

    ααβββ

    ++++++

    + −−−

    .........

    11

    22

    11

  • Chapter 5

    Realization of Proper Rational Transfer Function Vectors

    Example 5-5 Derive a realization for following transfer function vector.

    ⎤⎡ + 3s

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    ++

    ++=

    34

    )2)(1(3

    )(

    ss

    sss

    sG

    ⎥⎦

    ⎤⎢⎣

    +++

    ++++⎥

    ⎤⎢⎣

    ⎡=

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    ++

    +++

    =)2)(1(

    )3()3)(2)(1(

    110

    34

    )2)(1(3

    )(2

    sss

    ssssss

    s

    sG

    ⎥⎦

    ⎤⎢⎣

    ++++

    ++++⎥

    ⎤⎢⎣

    ⎡=

    ⎥⎦⎢⎣ +

    2396

    61161

    10

    3

    2

    2

    23 ssss

    sss

    s

    H i i l di i l li i f G( ) i i bHence a minimal dimensional realization of G(s) is given by

    ⎥⎤

    ⎢⎡

    +⎥⎤

    ⎢⎡⎥

    ⎤⎢⎡

    +⎥⎤

    ⎢⎡

    016900

    100010

    &

    Ali Karimpour June 2012

    48

    uxyuxx ⎥⎦

    ⎢⎣

    +⎥⎦

    ⎢⎣

    =⎥⎥⎥

    ⎦⎢⎢⎢

    +⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ −−−=

    113210

    6116100

  • Chapter 5

    Realization of Proper Rational Matrices

    There are many approaches to find irreducible realizations for proper i l irational matrices.

    1. One approach is to first find a reducible realization and then applypp pp ythe reduction procedure to reduce it to an irreducible one.

    Method I, Method II, Method III, Method IV and Method V

    2. In the second approach irreducible realization will yield directly.pp y y

    Ali Karimpour June 2012

    49

  • Chapter 5

    Realization of Proper Rational Matrices

    Method I: Given a proper rational matrix G(s), if we first find

    an irreducible realization for every element gij(s) of G(s) as jijjiijij

    jijijijij

    uexcy

    ubxAx

    +=

    +=&

    an irreducible realization for every element gij(s) of G(s) as jijjiijijy

    ⎥⎤

    ⎢⎡⎥⎥⎤

    ⎢⎢⎡

    ⎥⎥⎤

    ⎢⎢⎡

    ⎥⎥⎤

    ⎢⎢⎡

    ⎥⎥⎤

    ⎢⎢⎡

    112

    11

    12

    11

    12

    11

    12

    11

    00

    000000

    ubb

    xx

    AA

    xx&

    &

    ⎤⎡

    ⎥⎦

    ⎤⎢⎣

    ⎥⎥⎥

    ⎦⎢⎢⎢

    +

    ⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    =

    ⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣2

    1

    22

    21

    12

    22

    21

    12

    22

    21

    12

    22

    21

    12

    00

    000000 u

    bb

    xx

    AA

    xx&

    &

    yyy +

    12111 yyy +=

    ⎥⎦

    ⎤⎢⎣

    ⎡⎥⎦

    ⎤⎢⎣

    ⎡+

    ⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    ⎥⎦

    ⎤⎢⎣

    ⎡=⎥

    ⎤⎢⎣

    2

    1

    2221

    1211

    21

    12

    11

    2221

    1211

    2

    1

    0000

    uu

    eeee

    xxx

    cccc

    yy

    22222 yyy +=

    ⎥⎦

    ⎢⎣ 22x

    Clearly this equation is generally not controllable and not observable.

    Ali Karimpour June 2012

    50

    To reduce this realization to irreducible one requires the application of the reductionprocedure twice (theorems 5-4 and 5-5).

  • Chapter 5

    Realization of Proper Rational Matrices

    ⎥⎤

    ⎢⎡⎥⎥⎤

    ⎢⎢⎡

    +⎥⎥⎥⎤

    ⎢⎢⎢⎡

    ⎥⎥⎤

    ⎢⎢⎡

    =⎥⎥⎥⎤

    ⎢⎢⎢⎡

    112

    11

    12

    11

    12

    11

    12

    11

    00

    000000

    ubb

    xx

    AA

    xx&

    &

    ⎤⎡

    ⎥⎦

    ⎢⎣⎥⎥⎥

    ⎦⎢⎢⎢

    +

    ⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    =

    ⎥⎥⎥

    ⎦⎢⎢⎢

    11

    2

    22

    21

    22

    21

    22

    21

    22

    21

    00

    000000

    x

    ub

    bxx

    AA

    xx&

    &

    ⎥⎦

    ⎤⎢⎣

    ⎡⎥⎦

    ⎤⎢⎣

    ⎡+

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    ⎥⎦

    ⎤⎢⎣

    ⎡=⎥

    ⎤⎢⎣

    2

    1

    2221

    1211

    21

    12

    11

    2221

    1211

    2

    1

    0000

    uu

    eeee

    xxx

    cccc

    yy

    ⎥⎦

    ⎢⎣ 22x

    00000)(

    0011

    1

    111

    bbAsI

    ⎤⎡⎥⎤

    ⎢⎡⎥⎤

    ⎢⎡ −⎤⎡

    Proof:

    00

    0

    )(0000)(0000)(0

    0000

    2221

    1211

    22

    21

    12

    122

    121

    112

    2221

    1211

    eeee

    bb

    b

    AsIAsI

    AsIcc

    cc⎥⎦

    ⎤⎢⎣

    ⎡+

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    ⎣⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢

    ⎣ −−

    −⎥⎦

    ⎤⎢⎣

    Ali Karimpour June 2012

    51)(

    )()()()(

    )()()()(

    2221

    1211

    22221

    222221211

    2121

    12121

    121211111

    1111 sGsgsgsgsg

    ebAsIcebAsIcebAsIcebAsIc

    =⎥⎦

    ⎤⎢⎣

    ⎡=⎥

    ⎤⎢⎣

    +−+−+−+−

    =−−

    −−

  • Chapter 5

    Realization of Proper Rational Matrices

    Method II: Given a proper rational matrix G(s), if we find the controllable canonical-form realization for the ith column, Gi(s), of G(s) say,

    iiiii ubxAx +=&

    iiiii

    iiiii

    uexCy +=

    uu

    bb

    xx

    AA

    xx

    0...00...0

    0....00....0

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1

    ⎥⎥⎤

    ⎢⎢⎡

    ⎥⎥⎤

    ⎢⎢⎡

    ⎥⎥⎤

    ⎢⎢⎡

    ⎥⎥⎤

    ⎢⎢⎡

    ⎥⎥⎤

    ⎢⎢⎡&

    &

    This realization is always

    [ ] [ ]ueeexCCCyubxAx ppppp

    ....00

    ............00

    ...........22222

    +=⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    ⎣⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    +

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    ⎣⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    =

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    ⎣ &

    This realization is alwayscontrollable. It is however generally not observable.

    [ ] [ ]ueeexCCCy pp ........ 2121 +=Proof:

    [ ] [ ]....0...00...0

    0...)(00...0)(

    .... 212

    11

    2

    11

    21 eeeb

    bAsI

    AsI

    CCC +⎥⎥⎥⎤

    ⎢⎢⎢⎡

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    −−

    [ ] [ ]

    )()()()(...)()(

    ....

    ...00......

    )(...00......

    ....

    11211

    21

    1

    21

    sgsgsg

    eee

    bAsI

    CCC

    p

    p

    pp

    p

    ⎥⎤

    ⎢⎡

    +

    ⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ −−

    Ali Karimpour June 2012

    52

    [ ] )()(...)()(

    ......)(...)()(

    )(.....)(

    21

    22221111

    111 sG

    sgsgsg

    sgsgsgebAsICebAsIC

    qpqq

    ppppp =

    ⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢

    =+−+−= −−

  • Chapter 5

    Realization of Proper Rational Matrices

    Method III: Let a proper rational matrix G(s), where consider )()()( ∞+= GsGsG)

    mmm)( 21the monic least common denominator of G(s) as mmmm ssss αααψ ++++= −− ...)( 2211

    Then we can write G(s) as [ ] )(...)(

    1)( 221

    1 ∞++++=−− GRsRsR

    ssG m

    mm

    ψ )(sψ

    Then the following dynamic equation is a realization of G(s).

    I 0000 ⎤⎡⎤⎡

    uxI

    I

    xp

    p

    pppp

    pppp

    ..00

    .......0...000...00

    ⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    +⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    =&

    [ ] uGxRRRRyIIIII

    I

    p

    p

    ppmpmpm

    pppp

    )(

    0......000

    121

    ∞+=

    ⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ −−−− −− αααα

    Ali Karimpour June 2012

    53

    [ ] uGxRRRRy mmm )(... 121 ∞+= −−Exercise 6: Show that the above dynamical equation is a controllable realization of G(s)

  • Chapter 5

    Realization of Proper Rational Matrices

    Method IV: Gilbert diagonal representation.

    S di ti t l i lSuppose distinct real eigenvalues.

    Reminders

    qisBpisCBCG kkkkkkk ××= ρρ

    { }IIdiA λλ{ }r

    IIdiagA r ρρ λλ ,...,11=

    [ ] ⎥⎤

    ⎢⎡B1

    Ali Karimpour June 2012

    54

    [ ]rCCC ...1=⎥⎥⎥

    ⎦⎢⎢⎢

    =

    rBB M

  • Chapter 5

    Realization of Proper Rational Matrices

    Gilbert diagonal representation.

    ⎥⎤

    ⎢⎡ 121

    ⎥⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢⎢

    ⎣ ++++

    +

    ++

    +++

    =

    0)3)(2)(1(

    )3(21

    14

    12

    10411

    )(

    sss

    ssssG

    [ ]02101

    ⎥⎥⎤

    ⎢⎢⎡

    [ ]01010

    ⎥⎥⎤

    ⎢⎢⎡

    [ ]32100⎥⎤

    ⎢⎡

    [ ]10011

    ⎥⎥⎤

    ⎢⎢⎡

    ⎥⎦

    ⎢⎣ ++++ )3)(2)(1(1 ssss

    ⎥⎤

    ⎢⎡

    ⎥⎤

    ⎢⎡

    ⎥⎤

    ⎢⎡

    ⎥⎤

    ⎢⎡

    100100

    1000000

    1010000

    1000021

    1)(G

    [ ]02110⎥⎥⎦⎢

    ⎢⎣

    [ ]0102

    1⎥⎥⎦⎢

    ⎢⎣−

    [ ]32100⎥⎥⎥

    ⎦⎢⎢⎢

    [ ]10001⎥⎥⎦⎢

    ⎢⎣

    ⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣+

    +⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣+

    +⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ −+

    +⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣+

    =000100

    4000000

    3020010

    2021000

    1)(

    sssssG

    ⎥⎤

    ⎢⎡

    ⎥⎤

    ⎢⎡− 0210001 ⎤⎡⎤⎡− 021001

    uxx

    ⎤⎡

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    +

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    ⎣ −−

    −=

    100321010

    400003000020

    & uxx

    ⎥⎤

    ⎢⎡

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡+

    ⎥⎥⎥

    ⎢⎢⎢

    −−=

    101

    100010021

    400020001

    &

    ⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒nrealizatio minimal

    Ali Karimpour June 2012

    55xy⎥⎥⎥

    ⎢⎢⎢

    −=

    002110101001 xy

    ⎥⎥⎥

    ⎢⎢⎢

    −=

    021110

  • Chapter 5

    Realization of Proper Rational Matrices

    Gilbert diagonal representation.

    ( ) ⎤⎡ + 421 s( )( )( )

    ( )( ) ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    +++−

    +++

    +=

    21

    211

    4142

    11

    )(

    sss

    sss

    ssG

    ⎥⎤

    ⎢⎡⎥⎤

    ⎢⎡ 0121 [ ]110⎥

    ⎤⎢⎡ [ ]110⎥

    ⎤⎢⎡

    ⎥⎦

    ⎤⎢⎣

    ⎡+⎥

    ⎤⎢⎣

    ⎡+⎥

    ⎤⎢⎣

    ⎡=

    001001211)(sG

    ⎥⎦

    ⎢⎣⎥⎦

    ⎢⎣− 1001

    [ ]111⎥⎦⎢⎣

    [ ]110⎥⎦⎢⎣

    ⎥⎦

    ⎢⎣+

    ⎥⎦

    ⎢⎣+

    ⎥⎦

    ⎢⎣−+ 004112011

    )(sss

    ⎥⎤

    ⎢⎡

    ⎥⎤

    ⎢⎡− 010001

    ⎤⎡⎤⎡uxx

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    +

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    ⎣ −−

    −=

    111110

    400002000010

    & uxx

    ⎤⎡

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡+

    ⎥⎥⎥

    ⎢⎢⎢

    −−

    −=

    021

    111001

    200010001

    &

    ⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒nrealizatio minimal

    Ali Karimpour June 2012

    56xy ⎥⎦

    ⎤⎢⎣

    ⎡−

    =01010021 xy ⎥

    ⎤⎢⎣

    ⎡−

    =101021

  • Chapter 5

    Realization of Proper Rational Matrices

    Gilbert diagonal representation.

    ⎥⎤

    ⎢⎡

    ⎥⎤

    ⎢⎡− 0000012

    ( ) ( ) ( ) ⎥⎤

    ⎢⎡ 1111

    kd

    uxx

    ⎤⎡

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    +

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    ⎣ −−

    −=

    321000000

    200012000120

    & ( ) ( ) ( )

    ( ) ( )

    ⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    ⎥⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢⎢

    +++

    ++++

    ⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    000000000

    1100

    21

    21

    210

    2222

    )(32

    432

    sss

    ssss

    iflhebkgda

    sG

    xmifclhebkgda

    y⎥⎥⎥

    ⎢⎢⎢

    ⎡=

    ( ) ⎥⎦⎢⎣

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    ⎣ +

    ++⎥⎦⎢⎣ 321

    21000

    2200 2

    s

    ssmifc

    ⎤⎡⎤⎡⎤⎡⎤⎡ kgda

    ( )[ ]

    ( )[ ]

    ( )[ ] [ ]321

    21321

    21321

    21321

    21)( 234

    ⎥⎥⎥

    ⎢⎢⎢

    ++

    ⎥⎥⎥

    ⎢⎢⎢

    ++

    ⎥⎥⎥

    ⎢⎢⎢

    ++

    ⎥⎥⎥

    ⎢⎢⎢

    +=

    mlk

    sihg

    sfed

    scba

    ssG

    Ali Karimpour June 2012

    57

  • Chapter 5

    Realization of Proper Rational Matrices

    Method IV: Gilbert diagonal representation.

    R titi l i lRepetitive real eigenvalues.

    r1 Jordan block of order 3r1 Jordan block of order 3

    r2 - r1 Jordan block of order 2

    r3 – r2 Jordan block of order 1

    Ali Karimpour June 2012

    58

  • Chapter 5

    Realization of Proper Rational Matrices

    Gilbert diagonal representation. Repetitive real eigenvalues.

    2 Jordan block of order 2

    0 J d bl k f d 10 Jordan block of order 1

    Ali Karimpour June 2012

    59

  • Chapter 5

    Realization of Proper Rational Matrices

    Gilbert diagonal representation. Repetitive real eigenvalues.

    Ali Karimpour June 2012

    60

  • Chapter 5

    Realization of Proper Rational Matrices

    Gilbert diagonal representation. Repetitive real eigenvalues.

    :),4(B)1(:,C

    :),4(B

    :),4(B)2(:,C )5(:,C

    Ali Karimpour June 2012

    61

    ),(

    :),7(B

  • Chapter 5

    Realization of Proper Rational Matrices

    Gilbert diagonal representation. Repetitive real eigenvalues.

    ⎤⎡⎤⎡ 211100:),4(B)3(:,C )5(:,C

    ⎥⎥⎥

    ⎢⎢⎢

    −−−−

    ⎥⎥⎥

    ⎢⎢⎢

    −=

    101101211

    351000100

    3M :),7(B

    :),9(B)8(:,C ),()8(:,C

    :)4(B)4(:,C )7(:,C

    ⎥⎥⎥

    ⎢⎢⎢

    −−−−

    ⎥⎥⎥

    ⎢⎢⎢

    −=

    101101211

    010000100

    4M

    :),4(B)(

    :),7(B

    )(

    )9(B)9(C

    Ali Karimpour June 2012

    62

    :),9(B)9(:,C

  • Chapter 5

    Realization of Proper Rational Matrices

    Gilbert diagonal representation. Repetitive real eigenvalues.

    Ali Karimpour June 2012

    63

  • Chapter 5

    Realization of Proper Rational Matrices

    Method V: It is possible to obtain observable realization of a proper G(s). Let

    )2()1()0()( 21 HHHG ...........)2()1()0()( 21 +++= −− sHsHHsG

    Consider the monic least common denominator of G(s) as

    mmmm ssss αααψ ++++= −− ...)( 22

    11

    Then after deriving H(i) one can simply show

    Exercise 7: Proof equation (I)

    )(1)(...)2()1()( 21 IiiHimHimHimH m ≥−−−+−−+−=+ ααα

    )()( 32211 BCACABCBEBAICEG

    Let {A, B, C and E} be a realization of G(s) then we have

    Ali Karimpour June 2012

    64

    ...........)()( 32211 ++++=−+= −−−− BsCACABsCBsEBAsICEsG

  • Chapter 5

    Realization of Proper Rational Matrices

    Then {A, B, C and D} be a realization of G(s) if and only if

    210)1()0( iBCAiHdHE i ,....2,1,0)1()0( ==+= iBCAiHandHE i

    Now we claim that the following dynamical equation is a realization of G(s).

    HI )1(000 ⎤⎡⎤⎡

    uHH

    xI

    I

    xqqqq

    qqqq

    ..)2()1(

    .......0...000...00

    ⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    +⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    =&

    [ ] uHxIymH

    mHIIII

    I

    q

    qqmqmqm

    qqqq

    )0(0...00

    )()1(

    ...

    ...000

    121

    +=

    ⎥⎥⎥

    ⎦⎢⎢⎢

    −⎥⎥⎥

    ⎦⎢⎢⎢

    ⎣ −−−− −− αααα

    [ ]y q )(We can readily verify that

    ⎥⎤

    ⎢⎡

    ++

    ⎥⎤

    ⎢⎡

    ⎥⎤

    ⎢⎡

    )2()1(

    )4()3(

    )3()2(

    iHiH

    HH

    HH

    )1(iHBCAi

    Ali Karimpour June 2012

    65⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    ⎣ +

    +=

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    ⎣ +

    =

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    ⎣ +

    =

    )(...

    )2(,...,

    )2(...

    )4(,

    )1(...

    )3( 2

    imH

    iHBA

    mH

    HBA

    mH

    HAB i )1( += iHBCA

    i

    )0(HE =

  • Chapter 5

    Realization of Proper Rational Matrices

    Now we shall discuss in the following a method which will yield directly irreducible

    realizations. This method is based on the Hankel matrices.

    ...........)2()1()0()( 21 +++= −− sHsHHsGLet G(s) be pq ×

    Consider the monic least common denominator of G(s) as

    mmmm ssss αααψ ++++= −− ...)( 22

    11Define

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    qqqq

    qqqq

    II

    0...000...00

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    −−

    − pmppp

    pmppp

    IIII

    I

    1

    000...00...00

    αα

    ⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    ⎣ −−−−

    =

    −− qqmqmqm

    qqqq

    IIIII

    M

    121 ......000

    .......

    αααα⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    ⎣ −

    −= −

    pppp

    pmppp

    II

    IIN

    1

    2

    ...00.........

    .0.....0

    α

    α

    Ali Karimpour June 2012

    66

  • Chapter 5

    Realization of Proper Rational Matrices

    mmmm ssss αααψ ++++= −− ...)( 22

    11

    ⎥⎤

    ⎢⎡ qqqq I 0...00

    ⎥⎤

    ⎢⎡ − pmppp I0...00 α

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    =

    qqqq

    qqqq

    I

    IM

    ...000.......

    0...00

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    −−

    = −−

    pmppp

    pmppp

    pppp

    IIII

    N 21

    ..........0.....0

    0...0αα

    ⎥⎥⎦⎢

    ⎢⎣ −−−− −− qqmqmqm

    qqqq

    IIII 121 ... αααα⎥⎥⎦⎢

    ⎢⎣ − pppp II 1...00 α

    We also define the two following Hankel matrices

    ⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    +=

    ...)1()3()2(

    )()2()1(mHHH

    mHHH

    T

    ⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    ++

    =...

    )2()4()3()1()3()2(

    ~ mHHHmHHH

    T

    ⎥⎦

    ⎢⎣ −+ )12()1()( mHmHmH

    ⎥⎦

    ⎢⎣ ++ )2()2()1( mHmHmH

    It can be readily verified that

    Ali Karimpour June 2012

    67TNMTT ==~ ,.....2,1,0== iTNTM ii

  • Chapter 5

    Realization of Proper Rational Matrices

    It can be readily verified that

    TNMTT ==~ ,.....2,1,0== iTNTM iiTNMTT == ,.....2,1,0iTNTM

    [ ]0II =lkI , )( kllk >×Let be as the form

    [ ]0, klk II =Note that the left-upper-corner of M iT = TN i is H(i+1) so:

    TT ....,2,1,0)1( ,,,, ===+ iITNITIMIiHT

    pmpi

    qmqT

    pmpi

    qmq

    It can be readily verified that

    Ali Karimpour June 2012

    68But we want Irreducible Realization of Proper Rational Matrices

  • Chapter 5

    Irreducible Realization of Proper Rational Matrices

    Ali Karimpour June 2012

    69

  • Chapter 5

    Irreducible Realization of Proper Rational Matrices

    Example 5-6 Derive an irreducible realization for the following proper rational function.

    ⎤⎡ −−− 1232 2 ss

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    +−−

    +++=

    153

    154

    1)1(

    232

    )(2

    ss

    ss

    ssss

    sG

    ⎦⎣ ++ 11 ss

    2)1()( += sssψLeast common denominator of G(s), is

    06050403021102 ⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡.....

    2106

    2105

    .2104

    2103

    2102

    2111

    3402

    )( 654321 −−−−−− ⎥⎦

    ⎤⎢⎣

    ⎡−−

    +⎥⎦

    ⎤⎢⎣

    ⎡−

    +⎥⎦

    ⎤⎢⎣

    ⎡−−

    +⎥⎦

    ⎤⎢⎣

    ⎡−

    +⎥⎦

    ⎤⎢⎣

    ⎡−−

    +⎥⎦

    ⎤⎢⎣

    ⎡−

    +⎥⎦

    ⎤⎢⎣

    ⎡−

    −= sssssssG

    ⎤⎡ 030211 Non-zero singular values of T

    ⎥⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎢⎡

    −−−−−

    −−−−

    =⎥⎥⎥⎤

    ⎢⎢⎢⎡

    =212121040302212121

    030211

    )4()3()2()3()2()1(

    HHHHHH

    T

    gare 10.23, 5.79, 0.90 and 0.23.

    So, r = 4.

    Ali Karimpour June 2012

    70⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢

    ⎣ −−−−

    ⎥⎦⎢⎣

    212121050403212121

    )5()4()3( HHH,

  • Chapter 5

    Irreducible Realization of Proper Rational Matrices

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    0 10260 09780 10570 54960.5306-0.6022- 0.58720.10490.6574- 0.4905 0.0196-0.4003-

    0 82640 10540 20780 51270.0071-0.0581-0.5238-0.2357-0.1621-0.8902-0.25450.3413-

    ⎥⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢⎢

    −=

    ⎥⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢⎢

    ⎣ −−−

    =

    0.18880.38750.5432 0.13820.4522 0.2949-0.23110.6989- 0.1888-3875.00.5432-0.1382-

    0.10260.0978-0.1057-0.5496

    0071.00581.00.5238-0.2357-5392.04316.00.26270.6738-

    0071.00581.0052380.23570.8264-0.1054-0.2078-0.5127

    rr UY

    ⎥⎦⎢⎣⎥⎦⎢⎣

    ⎥⎥⎤

    ⎢⎢⎡

    0.0034- 0.0551- 1.2598- 0.7539- 0.0770- 0.8443- 0.6121 1.0915-

    ⎥⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢⎢

    ==

    0.2560- 0.4093 0.6317 2.1553- 0.0034 0.0551 1.2598 0.7539

    0.3923- 0.1000- 0.4999- 1.6398 ˆ 2/1r SYY

    ⎥⎥⎥⎤

    ⎢⎢⎢⎡

    ==

    ⎥⎥⎦⎢

    ⎢⎣

    1.3066 0.5557 1.3066- 0.2543- 1.4124 0.0471- 0.4421 2.2356- 0.4421- 1.7579 0.3355 1.2803-

    ˆ

    0.0034- 0.0551- 1.2598- 0.7539-

    2/1 HUSU

    Ali Karimpour June 2012

    71⎥⎥

    ⎦⎢⎢

    ⎣ 0.0896 0.2147 0.0896- 0.0487 0.2519- 0.3121- 0.3675 0.2797- 0.3675- 0.0927- 0.5711- 0.4652 r

    USU

  • Chapter 5

    Irreducible Realization of Proper Rational Matrices

    ⎤⎡ 0 07370 21070 07370 16030 07370 1067

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    == −

    0.0149- 1.1356- 0.0149 1.7406- 0.0149- 0.3415- 0.0613- 0.4551 0.0613 0.1112- 0.0613- 0.9386- 0.2178- 0.1092 0.2178 0.0864- 0.2178- 0.1058 0.0737- 0.2107- 0.0737 0.1603 0.0737- 0.1067-

    ˆ 2/1† HrYSY

    ⎦⎣

    ⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    == −0.2161 0.1031- 0.0440- 0.1718 1.1176- 0.6349- 0.2441 0.0328 1.3847- 0.5171 0.0081- 0.1251-

    ˆ 2/1† SUU

    ⎥⎥⎥⎥⎥

    ⎦⎢⎢⎢⎢⎢

    ⎣ 0.3976 0.4086 0.2259 0.0432 0.9525 0.3109- 0.0961 0.2185-

    0.3976- 0.4086- 0.2259- 0.0432- SUU r

    ⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    ==0.8076 0.2888- 0.1800- 0.2227-

    0.0772 0.1604- 1.0139- 0.1588 0.1904- 0.2155 0.0369 1.2497-

    ˆ~ˆ †† UTYA

    ⎥⎥⎥⎥⎤

    ⎢⎢⎢⎢⎡

    ==0.5711- 0.4652 1.4124 0.0471- 0.3355 1.2803-

    ˆ,

    TpmpIUB

    ⎥⎦

    ⎢⎣ 0.4476- 0.1354 0.1181- 0.1246

    ⎥⎦

    ⎢⎣ 0.2519- 0.3121-

    ⎥⎤

    ⎢⎡

    ==0.0770- 0.8443- 0.6121 1.0915-

    ŶIC ⎥⎤

    ⎢⎡−

    ==02

    )0(HE

    Ali Karimpour June 2012

    72

    ⎥⎦

    ⎢⎣

    ==0.0034- 0.0551- 1.2598- 0.7539- ,

    YIC qmq ⎥⎦

    ⎢⎣ −

    ==34

    )0(HE

  • Chapter 5

    Exercises

    Ali Karimpour June 2012

    73