functional bioelectronic interfaces on electrolessly deposited gold for bioelectronic applications...

22
Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy, Robert Ofoli, Ilsoon Lee, and R. Mark Worden. Chemical Engineering and Materials Science Michigan State University East Lansing, Michigan

Upload: peyton-stamps

Post on 31-Mar-2015

216 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications

Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy, Robert Ofoli, Ilsoon Lee, and R. Mark Worden.

Chemical Engineering and Materials ScienceMichigan State UniversityEast Lansing, Michigan

Page 2: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Presentation Outline Background on sensing mechanisms Formation of the gold interface Interface formation/characterization

Lipid bilayer with membrane protein Bioelectronic interface with dehydrogenase

Summary

Page 3: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Sensing Mechanisms Electrochemical: oxidation/reduction

Conductive substrates Gold

Optical: fluorescence, luminescence Clear substrates

Glass Plastics

Page 4: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Formation of Gold Film Treat with oxygen plasma Deposit polyelectrolyte mulilayers

Poly(acrylic acid) (PAA) Poly(allylamine hydrochloride) (PAH)

Deposit colloidal gold Seed by reductive deposition of gold salt

Page 5: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

SEM-Time

(after colloidal solution) (20 minutes seeding)

(40 minutes seeding) (60 minutes seeding)

Page 6: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

EDS-Analysis

Au

Si Si

Page 7: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Development and Characterization of Lipid Based Interfaces

Interface development Interface characterization

Fluorescence recovery after patterned photobleaching (FRAPP) Determine mobile fraction Determine diffusion coefficient

Page 8: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Interface Development Lipid bilayer formation

DGP: 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine- N-[3-(2-pyridyldithio) propionate]

DPGP: 1,2-di-O-phytanyl-sn-glycero-3-phosphoethanolamine

NBD-PE: 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl)

(A) Cystamine, DPGP, and DGP in ethanol (B) DPGP and NBD-PE in 0.1 M NaCl

(A) (B)

Page 9: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Fringe patterns using Ronchi ruling

Excitation wavelength (=488 nm) Emission (=510 nm) Bleaching time (3 1-s pulses)

(a) Bleached area (b) Area Interrogated

Page 10: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

FRAPP Results Diffusion coefficient

0.12 ± 0.06×10-8 cm2 s-1

Mobile fraction 0.87 ± 0.10

2 2

2 2 2

8 4 1 36( ) (0) 1 (0) . 1 . exp exp

2 9

m Dt Dtf t f f

a a

Wright, L. L.; Palmer, A. G.; Thompson, N. L. Biophysical Journal 1988, 54, 463-470.

Page 11: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Development of Dehydrogenase Based Bioelectronic Devices

Interface development Interface characterization

Cyclic voltammetry Chronoamperometry

Page 12: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Reaction Mechanism

Page 13: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Cyclic Voltammetry on Glass Scan Parameters

Initial potential: 400 mV Final potential: -200 mV Scan rate: 100 mV s-1

Results Turnover rate= 69.8 s-1 Sensitivity= 2.0 A mM-1 Saturation current= 60 A

Page 14: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Cyclic Voltammetry on Polystyrene Scan Parameters

Initial potential: 400 mV Final potential: -200 mV Scan rate: 100 mV s-1

Results Turnover rate= 47.2 s-1 Sensitivity= 1.7 A mM-1 Saturation current= 43 A

Page 15: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Comparison

Turnover Number

(s-1)

Sensitivity

(A mM-1)

Saturation Current

(A)Glass 69.8 2.0 60.0Polystyrene 47.2 1.7 43.0Silicon 23.4 0.8 21.0

Hassler and Worden, Biosensors and Bioelectronics (2005), In press

Page 16: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Chronoamperometry Procedure

Step change in potential Plot current vs. time

Characterization Equation for current decay

Evaluation of constants ket= Electron transfer constant Q= Charge associated with oxidation/reduction = Surface coverage

I=k’etQ’exp(-k’ett)+k”etQ”exp(-k”ett)

=Q/(nFA)

http://www.chemistry.msu.edu/courses/cem837/

Page 17: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Chronoamperometry on Glass Potentials:

Initial: 400 mV Final: -200 mV

Results: Electron transfer coefficients

k’et= 3.2×102 s-1

k”et= 3.5×101 s-1

Surface coverage ’= 3.0×10-12 mol cm-2

”= 3.0×10-12 mol cm-2

Page 18: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Chronoamperometry on Polystyrene Potentials:

Initial: 400 mV Final: -200 mV

Results: Electron transfer coefficients

k’et= 4.2×102 s-1

k”et= 2.1×102 s-1

Surface coverage ’= 6.3×10-12 mol cm-2

”= 2.1×10-12 mol cm-2

Page 19: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Comparison

k'et k"et' "

Glass 3.20E+02 3.50E+02 3.00E-12 3.00E-12Polystyrene 4.20E+02 2.10E+02 6.30E-12 2.10E-12Silicon 2.40E+02 2.10E+02 2.10E-12 2.40E-12

Surface Coverage

(mol cm-2)

Kinetic Parameters

(s-1)

Hassler and Worden, Biosensors and Bioelectronics (2005), In press

Page 20: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Summary Designed bioelectronic interfaces

Electrolessly deposited gold Lipid bilayers Dehydrogenase enzymes

Characterized interfaces Optical Techniques

FRAPP Electrochemical

Cyclic voltammetry Chronoamperometry

Page 21: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Acknowledgements Funding

Michigan Technology Tri-Corridor Department of Education GAANN Fellowship

Undergraduate participants Sean O’Brien Craig Pereira

Page 22: Functional Bioelectronic Interfaces on Electrolessly Deposited Gold for Bioelectronic Applications Brian L. Hassler, Neeraj Kohli, Lavanya Parthasarathy,

Thank You