functional traits among populations of copaifera ...pos.icb.ufmg.br/pgecologia/teses/t140 - matheus...

146
UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇ Ã O EM ECOLOGIA, CONSERVAÇ Ã O E MANEJO DA VIDA SILVESTRE PPGECMVS Functional traits among populations of Copaifera langsdorffii (Leguminosaea) in an environmental gradient MATHEUS LOPES SOUZA Belo Horizonte/MG Agosto de 2016

Upload: hadung

Post on 11-Feb-2019

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

UNIVERSIDADE FEDERAL DE MINAS GERAIS

INSTITUTO DE CIÊNCIAS BIOLÓGICAS

PROGRAMA DE PÓS-GRADUAÇ Ã O EM ECOLOGIA, CONSERVAÇ Ã O E

MANEJO DA VIDA SILVESTRE – PPGECMVS

Functional traits among populations of Copaifera

langsdorffii (Leguminosaea) in an environmental

gradient

MATHEUS LOPES SOUZA

Belo Horizonte/MG

Agosto de 2016

Page 2: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

ii

MATHEUS LOPES SOUZA

Functional traits among populations of Copaifera

langsdorffii (Leguminosaea) in an environmental

gradient

Tese apresentada ao Programa de Pós-

Graduação em Ecologia, Conservação e

Manejo de Vida Silvestre do Instituto de

Ciências Biológicas da Universidade

Federal de Minas Gerais, como requisito

parcial à obtenção do título de Doutor em

Ecologia, Conservação e Manejo de Vida

Silvestre.

Orientador: Dr. José Pires de Lemos Filho

Co-orientador: Dr. Marcílio Fagundes

Co-orientador: Dr. Fernando Valladares

Belo Horizonte, MG

Agosto de 2016

Page 3: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

iii

Dedico esta Tese à minha avó

Francisca Lopes Costa

Page 4: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

iv

AGRADECIMENTOS

Durante quatro anos tive a oportunidade de conviver com todas essas pessoas

fantásticas e brilhantes que me ajudaram na construção desta tese. Neste período foram

percorridos mais de 30.000 km na coleta de dados. Infelizmente não é possível

descrever como em uma analise estatística a importância de cada uma destas pessoas

nesta trajetória, mas todas foram altamente significativas.

Gostaria de registrar os meus sinceros agradecimentos (...)

Ao Prof. José Pires de Lemos Filho pela oportunidade e confiança em mim depositada.

(...) Obrigado pela orientação, respeito, apoio, amizade.

Agradeço aos Prof. Marcel França, Queila Garcia e Luzia Modolo do

Laboratório de Fisiologia Vegetal/UFMG pelo respeito e aprendizado. A todos os

amigos deste laboratório, especialmente a Alexandre, Dávila, Laura, Silvana as meninas

da Queila e da Luzia pela amizade, pelas conversas, trocas de experiência e momentos

de descontração.

Ao Prof. Marcílio Fagundes, meu Co-orientador, que foi essencial na construção

desta tese, desde a ideia inicial do projeto até a coleta de dados em campo. Aos

companheiros do Laboratório Biologia da Conservação/UNIMONTES (Kenedy,

Leticia, Renata, Henrique e Rithiele) que foram meu braço direito nas coletas do norte,

Muito Obrigado!

Ao professor Fernando Valladares, também meu Co-orientador, com quem tive a

oportunidade de fazer o Doutorado Sanduiche. Suas contribuições foram relevantes para

a qualidade desta tese e durante minha estadia na Espanha eu aprendi muito, pois além

do Fernando ser um cientista brilhante é também uma excelente pessoa. A todos os

Page 5: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

v

companheiros da “Planta 8” do Museo de Ciências Naturales/CSIC e a Nacho, Daniela e

família “Tengo mucho que agradecer a todos por una maravillosa estancia en España y

por las amistades preciosas que hice en Madrid. Gracias chicos!”

Tenho que agradecer ao apoio que tive em Lavras dos amigos Tulio, Ailton,

Guedes e Toin pelo abrigo e força no campo durante as coletas. Em Lavras as coletas

sempre foram recheadas de aventuras e perigos, mas felizmente saímos vivos e

parcialmente e ilesos de todas!

Agradeço também aos amigos (desde os tempos de UNIMONTES) Thaise,

Falcão, Etiene, Dudu, Rambo, Fred, Laura, Marina, Sarinha, Gramps, Cotonete e aos

“Sindicalistas”. À todos muito obrigado pela companhia, discussões e conselhos, me

sinto agraciado por ter conhecido e trabalhado com pessoas tão especiais como vocês.

À professora Maria Bernadete que participou ativamente no desenvolvimento

dos manuscritos desta tese. E ao Programa de Pós Graduação em Ecologia,

Conservação e Manejo de Vida Silvestre, aos professores que ministraram as

disciplinas, em especial aos secretários Fred e Cris, que prontamente sempre me

antederam.

Por fim não poderia de destacar a importância da minha família na construção

desta tese. A Ana e Gabriel (nascido durante o doutorado), pelo amor, encorajamento e

compreensão, que tanto me ajudaram nessa caminhada. Com chegada do Gabriel

tivemos um novo, e mais amplo, sentido às nossas vidas. Só vocês sabem o quanto foi

difícil passar toda a temporada do doutorado sanduiche longe de casa. No entanto, tenho

sorte de ter uma esposa que me apoia e me ajuda em minhas decisões.

À Tia Ebia e Tio Menon que investiram em minha educação, graças a vocês

conseguir chegar onde estou. À minha amada mãe Edina, a todos meus irmãos (que são

Page 6: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

vi

muitos), mais principalmente a Bia e Rafa, Bruno, Thiago e João Victor ao meu pai JC,

Tios, Tias e primos. Obrigado a todos!

Este estudo foi realizado com o apoio financeiro do CNPq, FAPEMIG e

CAPES. Agradecemos a bolsa de estudos concedida pelo Programa Internacional de

Doutorado Sanduíche (PDSE) financiados pela CAPES. Agradecemos também ao

Museu Nacional de Ciências Naturais (MNCN-CSIC), Madrid-Espanha.

Page 7: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

vii

PELO APOIO E FINACIAMENTO

Page 8: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

viii

SUMÁRIO

INTRODUÇ Ã O GERAL ............................................................................................... 13

OBJETIVO ................................................................................................................. 19

ESPÉCIE ESTUDADA .............................................................................................. 20

Á REAS DE ESTUDO ................................................................................................ 20

REFERÊNCIAS BIBLIOGRÁ FICAS ....................................................................... 22

TABELAS .................................................................................................................. 34

FIGURAS ................................................................................................................... 35

CAPÍTULO I: Phenological variation within and among populations of Copaifera

langsdorffii in eastern tropical South America ............................................................... 39

ABSTRACT ................................................................................................................ 40

INTRODUCTION ...................................................................................................... 41

MATERIAL AND METHODS .................................................................................. 43

Study area ................................................................................................................ 43

Phenological monitoring ......................................................................................... 44

Data analysis ........................................................................................................... 44

RESULTS ................................................................................................................... 46

Vegetative phenophases .......................................................................................... 46

Reproductive phenophases ...................................................................................... 47

DISCUSSION ............................................................................................................. 49

ACKNOWLEDGEMENTS ........................................................................................ 51

LITERATURE CITED ............................................................................................... 52

TABLES ..................................................................................................................... 60

FIGURES .................................................................................................................... 64

Page 9: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

ix

CAPÍTULO II: Soil fertility determines seed size/number trade-off of a widely

distributed Neotropical tree along a climatic gradient.................................................... 65

ABSTRACT ................................................................................................................ 66

INTRODUCTION ...................................................................................................... 67

MATERIAL AND METHODS .................................................................................. 69

Species and study area ............................................................................................ 69

Seed sampling .......................................................................................................... 70

Statistical analysis ................................................................................................... 71

RESULTS ................................................................................................................... 73

DISCUSSION ............................................................................................................. 74

ACKNOWLEDGEMENTS ........................................................................................ 77

LITERATURE CITED ............................................................................................... 78

TABLES ..................................................................................................................... 87

FIGURES .................................................................................................................... 94

CAPÍTULO III: Key factors affecting seed germination of Copaifera langsdorffii, a

Neotropical tree .............................................................................................................. 99

ABSTRACT .............................................................................................................. 100

INTRODUCTION .................................................................................................... 100

MATERIALS AND METHODS .............................................................................. 101

Study area .............................................................................................................. 101

Data collection ...................................................................................................... 101

Data Analysis ........................................................................................................ 102

RESULTS ................................................................................................................. 102

DISCUSSION ........................................................................................................... 103

ACKNOWLEDGMENTS ........................................................................................ 103

REFERENCES ......................................................................................................... 104

Page 10: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

x

CAPÍTULO IV: Climatic heterogeneity as a generator of phenotypic plasticity in

functional leaf traits of a neotropical tree species widely distributed .......................... 106

ABSTRACT .............................................................................................................. 107

INTRODUCTION .................................................................................................... 108

MATERIALS AND METHODS .............................................................................. 110

Species and study area .......................................................................................... 110

Morphological traits ............................................................................................. 111

Physiological traits ............................................................................................... 111

Data analysis ......................................................................................................... 112

RESULTS ................................................................................................................. 113

Phenotypic variance partition ............................................................................... 113

Morphological and physiological traits along an aridity gradient ...................... 114

Plasticity vs. interannual variation in precipitation ............................................. 114

DISCUSSION ........................................................................................................... 115

ACKNOWLEDGEMENTS ...................................................................................... 118

LITERATURE CITED ............................................................................................. 119

TABLES ................................................................................................................... 127

FIGURES .................................................................................................................. 129

CONSIDERAÇ ÕES FINAIS ....................................................................................... 134

REFERÊNCIAS BIBLIOGRÁ FICAS ..................................................................... 139

Page 11: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

xi

RESUMO

Avaliar como as plantas alteram as características funcionais em resposta a

diferentes condições ambientais é importante para entender a amplitude de nicho de

uma espécie e essencial para prever possíveis efeitos das mudanças climáticas. O

objetivo deste trabalho foi avaliar variações em caracteres funcionais dentro e entre

populações de Copaifera langsdorffii distribuídas ao longo de um gradiente ambiental.

Especificamente, testamos hipóteses relacionadas a variações em caracteres

morfológicos, fisiológicos, comportamentais e da plasticidade fenotípica destes traços

com fatores ambientais, focando a aridez e/ou a fertilidade do solo como drivers para

diferenciação populacional. Foram selecionadas seis populações de C. langsdorffii

cobrindo um gradiente de precipitação em solos com diferentes níveis fertilidade em

três biomas de ocorrência da espécie (Caatinga, Cerrado e Mata Atlântica). Nossos

resultados demostraram que caracteres morfológicos, fisiológicos e comportamentais

variaram entre e dentro das populações. Estas variações nos traços funcionais foram

associadas com a precipitação e/ou a fertilidade do solo de cada população,

demonstrando que estes fatores são chaves para direcionamento de adaptações

ecofisiológicas, gerando diferenciação nos traços funcionais entre populações naturais

de plantas. Encontramos ainda maiores níveis de plasticidade e variação fenotípica em

populações com maior heterogeneidade climática. Alta plasticidade combinada com

capacidade de alterar as características funcionais em resposta a diferentes condições

ambientais podem contribuir significativamente para a amplitude de nicho C.

langsdorffii, o que poderia explicar o sucesso desta espécie sobre uma gama de

diferentes tipos de habitats em toda a sua ampla distribuição geográfica. Além disso,

altos níveis de plasticidade e variação fenotípica podem contribuir para a persistência de

C. langsdorffii frente às mudanças climáticas.

Palavras chave: Copaifera langsdorffii; ecofisiologia; mudanças climáticas;

diferenciação de populações; gradiente ambiental; aridez; fertilidade do solo.

Page 12: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

xii

ABSTRACT

Evaluate how plants change the functional traits under different environmental

conditions is important factor for niche breadth of the species, and essential to predict

possible effects of climate changes. The aim of this work was evaluate the variations in

functional traits within and among populations of Copaifera langsdorffii along an

environmental gradient. Specifically, we test hypotheses related to variations in

morphological, physiological, behavioral and phenotypic plasticity of these traits with

environmental factors, focusing on the aridity and/or soil fertility as drivers for

population differentiation. Six populations of C. langsdorffii were analysed covering a

rainfall gradient in soils with different fertility in the three biomes where the species

occurs (Caatinga, Cerrado, Atlantic Forest). Our results demonstrated that

morphological, physiological and behavioral traits vary within and among populations.

These variations in the functional traits were associated with rainfall and/or soil fertility

of each population, demonstrating that these environmental factors are drivers

ecophysiological adaptations, generating differentiation in functional traits among

natural populations of plants. We also found higher levels of plasticity and phenotypic

variation in populations with greater climatic heterogeneity. High plasticity and

phenotypic variation in environmentally heterogeneous sites combined with the ability

to alter the functional traits in response to different environmental conditions can

significantly contribute to the niche breadth C. langsdorffii, which could explain the

success of this species over a range of different types of habitats along its wide

geographic distribution. In addition, high levels of plasticity and phenotypic variation

can contribute for the persistence of C. langsdorffii to ongoing climatic changes.

Keywords: Copaifera langsdorffii; ecophysiology; climatic changes; population

differentiation; environmental gradient; aridity; soil fertility.

Page 13: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

13

INTRODUÇ ÃO GERAL

Avaliar os efeitos das condições ambientais sobre as populações naturais tem

importância para o entendimento dos processos evolutivos que garantem a manutenção

dos ecossistemas e da biodiversidade frente a possíveis mudanças climáticas globais

(Hooper et al. 2012; Cardinale et al. 2012; Garcia et al. 2014). Diversos cenários futuros

apontam para mudanças climáticas globais, com aumento da temperatura e aridez e

maior variabilidade na precipitação (IPCC 2014). Mudanças no clima e na paisagem

alteram as condições e a disponibilidade de recursos, o que pode pôr em risco parcela

considerável da biodiversidade (Nicotra et al. 2010). Em função das rápidas mudanças

ambientais três respostas são esperadas: (i) migrar ajustando-se a um ambiente mais

favorável, (ii) ajustar às novas condições através da plasticidade fenotípica ou (iii)

evoluir através da seleção natural (Nicotra et al. 2010; Matesanz and Valladares 2014).

Essas respostas dependem da intensidade e direção das mudanças ambientais, de

características relacionadas com a história de vida das espécies, da variação genética

intraespecífica e das interações interespecíficas (Nicotra et al. 2010; Nunney 2016).

Deste modo, estudos que buscam avaliar variações em caracteres funcionais que

determinam a distribuição de espécies em condições naturais tem importância para

prever possíveis efeitos das mudanças climáticas (Valladares et al. 2014).

Espécies com ampla distribuição, geralmente tem suas populações submetidas a

diferentes pressões de seleção ao longo de sua área de ocorrência, sendo afetadas por

múltiplos e distintos fatores estressantes como: extremos de temperatura, luminosidade,

umidade e fertilidade dos solos (Valladares and Pearcy 1997; Lemos Filho 2000; Sultan

2003). Gradientes de aridez são comumente observados em espécies com ampla

distribuição, com populações ocorrendo em ambientes úmidos até zonas semiáridas (ex:

Page 14: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

14

Copaifera lagsdoffii). Em ecossistemas semiáridos as populações dessas espécies

muitas vezes são afetadas não apenas pela limitação sazonal de água dentro de um ano,

comum nestes ambientes, mas também por maior variabilidade climática, com

amplitudes extremas de temperatura e grande variabilidade interanual na precipitação, o

que torna estes ambientes de certa forma imprevisíveis (Gianoli and González-Teuber

2005; Lázaro-Nogal et al. 2015). A combinação de fatores estressantes e

imprevisibilidade ambiental podem afetar diretamente o desempenho das plantas. No

entanto, significativas modificações nas características ecofisiológicas são esperadas em

resposta às pressões seletivas impostas em cada população (Niinemets and Valladares

2004; Uribe-Salas et al. 2008; Lázaro-Nogal et al. 2015), permitindo o crescimento, a

sobrevivência e a reprodução dessas espécies em habitats com diferentes filtros

ambientais (Sultan 2003). De fato, espécies amplamente distribuídas são capazes de

modificar suas estratégias ecológicas através de diferenças significativas nas

características funcionais relacionadas ao estresse ambiental, a capacidade competitiva e

a tolerância a distúrbios (Uribe-Salas et al. 2008; Goulart et al. 2011; Lázaro-Nogal et

al. 2015), o que torna estas espécies excelentes modelos para avaliar possíveis

consequências das mudanças climáticas sobre populações naturais devido a suas

distintas respostas a fatores ambientais.

Estudos visando analisar as estratégias que permitem a ocorrência de populações

em ambientes contrastantes tem focado avaliar distintas características que respondam

ao estresse ambiental (Valladares et al. 2014; Lázaro-Nogal et al. 2015; Salgado-Negret

et al. 2015). Dentre as variáveis avaliadas, as características funcionais ligadas ao

metâmero foliar (entre nó, pecíolo e folha correspondente) têm sido amplamente

utilizadas devido a importantes trade-offs observados nestas estruturas e suas relações

com as variáveis ambientais (ver em: Ackerly et al. 2002; Bruschi et al. 2003; Reich et

Page 15: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

15

al. 2003; González-Rodríguez e Oyama 2005; Lambrecht e Dawson 2007; Uribe-Salas

et al. 2008). A área foliar e área foliar específica (SLA - área foliar por unidade de

massa foliar) têm sido fortemente relacionadas à eficiência no uso dos recursos e à

tolerância a estresses ambientais, principalmente ao estresse hídrico (Ackerly et al.

2000; Poorter 2009). Diversos estudos tem demonstrado que plantas de ambientes com

baixa precipitação apresentam folhas com baixo SLA (Fonseca et al. 2000; Bruschi et

al. 2003; González-Rodríguez and Oyama 2005; Uribe-Salas et al. 2008). Esta estratégia

em grande parte tem sido associada à eficiência no uso da água e a capacidade

fotossintética, otimizando o desempenho da planta de acordo com as condições

ambientais (Lázaro-Nogal et al. 2015; Scoffoni et al. 2015). Além disso, outros

caracteres funcionais dos metâmeros foliares também influenciam nas taxas

fotossintéticas da planta (Ackerly et al. 2000; Poorter 2009), como as características do

entre-nó e do pecíolo, que são importantes para o suporte da folha no que diz respeito ao

posicionamento espacial, à biomecânica e à hidráulica (Santiago et al. 2004).

A capacidade de modificar a estratégia reprodutiva a diferentes condições

ambientais podem contribuir significativamente para a amplitude de nicho e a extensão

da distribuição geográfica de uma espécie vegetal (Primack 1979; Cabaço and Santos

2012; Colautti and Barrett 2013; Delerue et al. 2013). Características das sementes estão

relacionadas com o recrutamento e têm implicações na aptidão e persistência das plantas

no ambiente (Cochrane et al. 2015). A produção de poucas sementes grandes versus

maior número de sementes pequenas, representa um trade-off chave na alocação de

recursos para a reprodução (Leishman 2001). De modo geral, o número de sementes se

traduz diretamente em sucesso reprodutivo das plantas, e frequentemente a produção de

maior número de sementes ocorre em detrimento do tamanho (Leishman et al. 2000).

No entanto, em diversas situações (ex. estresse hídrico, sombreamento, alta quantidade

Page 16: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

16

de serrapilheira no solo ou a competição com a vegetação estabelecida) a estratégia de

produzir sementes grandes em detrimento da quantidade pode ser favorecida (Westoby

et al. 1996). Assim, diferentes pressões seletivas podem gerar variações no tamanho e

número das sementes produzidas pelas plantas entre e dentro das populações (Moles

and Westoby 2006; Souza et al. 2015b), afetando germinação e o estabelecimento

(Guariguata and Ostertag 2001). Variabilidade nas características das sementes entre e

dentro das populações pode aumentar a resiliência das espécies durante o período de

desenvolvimento inicial das plântulas, principalmente em ambientes sujeitos à

amplitudes extremas de temperatura e grande variabilidade na precipitação (Baker 1972;

Westoby 1998). No entanto, a relação da variação nas características das sementes com

o recrutamento em condições instáveis é pouco conhecida e muitas vezes é

desconsiderada nas avaliações do risco de extinção sob mudanças climáticas (Cochrane

et al. 2015).

Outra importante estratégia das plantas para tolerar estresses ambientais são os

ajustes no comportamento fenológico (Sultan 2003). Características relacionadas às

fenofases vegetativas em muitos casos podem ser atribuídas a tolerância ao estresse, por

exemplo, a marcante deciduidade em plantas observada em períodos mais severos de

estresse hídrico (Reich and Borchert 1984). Por outro lado, o período e a intensidade

reprodutiva podem refletir diretamente na capacidade competitiva da espécie, com

modificações que favoreçam, por exemplo, a formação e a dispersão dos diásporos

durante um período ideal para germinação das sementes (Singh and Kushwaha 2005;

Bustamante and Burquez 2008). Eventos fenológicos são regulados por características

endógenas associadas às variações do clima que regulam a época, a intensidade, a

duração e a periodicidade dos eventos (Ferraz et al. 1999). Espécies com ampla

distribuição apresentam diferenças fenológicas ao longo de gradientes geográficos e

Page 17: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

17

ambientais (Blionis et al. 2001; Bustamante and Burquez 2008; Godoy et al. 2008).

Assim, mudanças ambientais podem alterar o comportamento fenológico das plantas e,

além disso, essas alterações podem afetar importantes interações com outros

organismos, como polinizadores, dispersores e predadores de sementes (Bustamante and

Burquez 2008).

A germinação das sementes representa uma das fases críticas do ciclo de vida

das plantas e determinam tanto a distribuição quanto à abundância das espécies nas

comunidades vegetais (Wulff 1986; Armstrong and Westoby 1993). Fatores bióticos e

abióticos afetam diferentemente na germinação (Baskin and Baskin 1998).

Especificamente em sementes zoocoricas dispersores podem desempenhar um

importante papel na dinâmica populacional das plantas, não apenas por carregar

sementes para longe da planta mãe, mas também por remover substância que inibem a

germinação das sementes (Robertson et al. 2006; Lessa et al. 2013). No entanto, este

efeito não é uniforme, nem é aplicável a todas as sementes zoocoricas (Figueroa and

Castro 2002). Por sua vez, o fogo é um importante fator abiótico que limita a

distribuição das espécies de planta (Pausas and Verdú 2005; Verdú and Pausas 2007),

sendo um agente evolutivo que pode interferir em diversos aspectos do

desenvolvimento das plantas, especialmente nas fases iniciais (Paula et al. 2009).

Sementes tendem a ser vulneráveis a altas temperaturas reduzindo a viabilidade

germinativa (Baskin and Baskin 1998). No entanto, para algumas espécies o fogo é

essencial na quebra de dormência provocado por altas temperaturas (Ribeiro et al. 2013)

e a fumaça ativa importantes genes relacionados germinação (Paula et al. 2009). O fogo

é um distúrbio comum no cerrado ha milhões de anos (Salgado-Labouriau et al. 1997) e

estudos recentes têm demonstrado adaptações fenotípicas e funcionais nas espécies

vegetais deste ambiente (Silva and Batalha 2010). No entanto, nas últimas décadas o

Page 18: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

18

fogo tem se tornado mais frequente em ambientes de cerrado, principalmente devido a

ações antrópicas (Bond and Keeley 2005), e a maior frequência deste distúrbio pode

afetar a distribuição das espécies no cerrado.

Estudos sobre os níveis de variação intraespecífica em características

ecofisiológicas de espécies nativas dos biomas brasileiros são raros (mas veja Lemos

Filho et al. 2008), embora sejam fundamentais para a avaliação do potencial evolutivo

das espécies e populações frente as mudanças climáticas previstas para o século

presente. Variação intraespecífica, tanto entre como dentro de populações, tem sido

descrita para metâmeros foliares (Uribe-Salas et al. 2008), termotolerância do

fotossistema II (Barua et al. 2008), comportamento fenológico (Goulart et al. 2005) e a

morfologia das sementes (Souza et al. 2015b) para algumas espécies. Essa variação tem

sido associada às diferenças genéticas e/ou a plasticidade fenotípica (Lemos Filho et al.

2008). A plasticidade fenotípica representa a capacidade de um genótipo de produzir

diferentes respostas morfológicas e fisiológicas quando expostos a diferentes condições

ambientais (Sultan 1995; Lázaro-Nogal et al. 2015). Assim, a plasticidade pode

amortecer mudanças ambientais que ocorrem ao longo do ciclo de vida da planta,

aumentando a sua tolerância ao estresse, por exemplo, aclimatação de curto prazo para

luz e restrições hídricas. A plasticidade fenotípica pode também permitir a colonização

e o estabelecimento em diferentes habitats (Gimeno et al. 2008; Matesanz and

Valladares 2014). Por essa razão a plasticidade fenotípica tem sido considerada como

um importante mecanismo pelo qual os indivíduos podem enfrentar as variações

ambientais, sendo considerada essencial para evitar extinções locais frente a possíveis

mudanças climáticas (Matesanz et al. 2010; Hoffmann and Sgrò 2011). Estudos recentes

tem demonstrado que o grau de plasticidade varia entre as populações, sendo

frequentemente maior em ambientes mais heterogêneos (Gianoli 2004; Matesanz et al.

Page 19: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

19

2010; Baythavong 2011; Lázaro-Nogal et al. 2015). No entanto, a plasticidade

fenotípica raramente tem sido considerada no contexto das respostas evolutivas das

plantas à mudança climática ao longo de intervalos de distribuição (Lázaro-Nogal et al.

2015).

OBJETIVO

O objetivo deste trabalho foi avaliar variações em caracteres funcionais dentro e

entre populações de Copaifera langsdorffii distribuídas ao longo de um gradiente

ambiental. Especificamente, testamos hipóteses relacionadas a variações em caracteres

morfológicos, fisiológicos, comportamentais e da plasticidade fenotípica destes traços

com fatores ambientais, focando a aridez e/ou a fertilidade do solo como drivers para

diferenciação populacional. De maneira inédita nós avaliamos caracteres funcionais de

uma espécie arbórea tropical ao longo de 600 km de sua distribuição cobrindo três

biomais e cinco fisionomias vegetais distintas. Ao longo desta tese discutimos a

importância das variações nos traços funcionais para distribuição de C. langsdorffii e

possíveis efeitos das mudanças climáticas em suas populações naturais nos seguintes

artigos: (Capítulo I) “Phenological variation within and among populations of

Copaifera langsdorffii in eastern tropical South America”; (Capítulo II) “Soil fertility

determines seed size/number trade-off of a widely distributed Neotropical tree along a

climatic gradient”; (Capítulo III) “Key factors affecting seed germination of Copaifera

langsdorffii, a Neotropical tree”; e (Capítulo IV) “Climatic heterogeneity as a

generator of phenotypic plasticity in functional leaf traits of a neotropical tree species

widely distributed”.

Page 20: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

20

ESPÉCIE ESTUDADA

Copaifera langsdorffii Desf. (Figura 1) é uma espécie arbórea, com grande

variação em seu porte, dependendo do habitat de ocorrência (Carvalho 2003; Costa et

al. 2012). A espécie possui ampla distribuição, ocorrendo largamente na América do Sul

(Carvalho 2003). No Brasil, a espécie ocorre em fisionomias dos biomas Caatinga,

Cerrado, Mata Atlântica e Amazônia, desde a região norte ao sul do país (Almeida et al.

1998). C. langsdorffii possui folhas compostas, paripinadas, alternas, espiraladas com 4

a 12 folíolos alternos ou opostos (Almeida et al. 1998; Silva-Júnior 2005). A espécie

apresenta marcante queda foliar durante os meses mais secos, que é imediatamente

seguido pelo brotamento foliar (Pedroni et al. 2002; Fagundes 2014). A reprodução é

supra-anual com amadurecimento e dispersão dos frutos no período de seca entre os

meses de julho a setembro (Pedroni et al. 2002; Souza and Fagundes 2016). O fruto, ao

se abrir, expõe uma única semente elipsóide, negra e brilhante, parcialmente envolta por

um arilo amarelo-alaranjado (Carvalho 2003). C. langsdorffii apresenta diversos tipos

de dispersores generalistas, sendo os principais dispersores as aves (Rabello et al. 2010),

no entanto sementes caídas ao chão são carregadas e tem seu arilo retirado por formigas

(Leal and Oliveira 1998). As sementes possuem comportamento ortodoxo e o tamanho

das sementes e a remoção do arilo são fatores-chave na germinação de sementes de C.

langsdorffii (Souza and Fagundes 2014; Souza et al. 2015a).

ÁREAS DE ESTUDO

Foram selecionadas seis populações de Copaifera langsdorffii ao longo de 600

km combrindo três biomas no estado Minas Gerais-Brasil (Figura 2). Dados

meteorológicos dos últimos 54 anos (1961-2015) para cada população foram obtidos a

partir das estações meteorológicas mais próximas dos pontos de coleta junto ao Instituto

Nacional de Meteorologia Brasileiro (www.inmet.gov.br). Os dados meteorológicos

Page 21: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

21

demonstram que a precipitação apresenta grande variação intra interanual entre as

populações. Nós calculamos a variação intra e interanual na precipitação das populações

estudadas usando o coeficiente de variação (CV = SD mean-1). A variabilidade intra e

interanual da precipitação foram altamente correlacionadas com a precipitação anual (r

= -0.88, P < 0.05 and r = -0.95, P < 0.05, respectively), mostrando que ambientes mais

xéricos também apresentam maior heterogeneidade na precipitação.

A partir dos dados meteorológicos foi calculado o índice de aridez (IA) para cada

população pela fórmula:

𝐼𝐴 = (𝑃

𝑃𝐸𝑇)

onde P é precipitação total do mês e PET a evapotranspiração potencial mensal em cada

local (Picotte et al. 2009). Assim como a precipitação, os dados de aridez mostram que

as populações ao norte estão localizadas em clima mais xérico e as ao sul em clima mais

úmido (Tabela 1), e também que as populações mais ao norte tendem a sofrer secas

mais prolongadas como pode ser observado na Figura 3. Deste modo, as populações

selecionadas neste estudo seguem um claro gradiente de aridez.

No geral, os ambientes estudados apresentam solos profundos, não

hidromórficos e ácidos (Embrapa 2013). Especificamente no ambiente de Campo

Rupestre Ferrugínoso o solo é superficial, pouco permeável e com alto teor de ferro

(Jacobi et al. 2007). Para caracterizar o solo em cada população foram coletadas três

amostras de solo (0-10 cm profundidade). Cada amostra era composta por 10 pontos,

coletados próximo aos indivíduos de C. langsdorffii selecionados neste estudo. As

amostras de solo foram secas ao ar livre e enviado para análise de fertilidade. A

caracterização do solo de cada população pode ser observada na Tabela 2. As

características dos solos foram comparadas entre as populações através Modelos

Page 22: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

22

Lineares Generalizados (GLM) usando analise de contraste (Crawley 2000). No geral,

os resultados mostraram que as características do solo variaram entre as populações com

marcante diferença no ambiente de Campo Rupestre Ferrugínoso (Tabela 2), onde

foram encontrados os solos mais ácidos e com menor fertilidade.

REFERÊNCIAS BIBLIOGRÁFICAS

Ackerly D, Knight C, Weiss S, et al (2002) Leaf size, specific leaf area and microhabitat

distribution of chaparral woody plants: contrasting patterns in species level and

community level analyses. Oecologia 130:449–457. doi:

10.1007/s004420100805

Ackerly DD, Dudley SA, Sultan SE, et al (2000) The evolution of plant

ecophysiological traits: recent advances and future directions new research

addresses natural selection, genetic constraints, and the adaptive evolution of

plant ecophysiological traits. Bioscience 50:979–995.

Almeida S, Proença C, Sano S, Ribeiro J (1998) Cerrado: espécies vegetais úteis, 1st

edn. Embrapa, Brasília

Armstrong DP, Westoby M (1993) Seedlings from large seeds tolerated defoliation

better: A test using phylogeneticaly independent contrasts. Ecology 74:1092.

doi: 10.2307/1940479

Baker HG (1972) Seed weight in relation to environmental conditions in California.

Ecology 53:997. doi: 10.2307/1935413

Barua D, Heckathorn SA, Coleman JS (2008) Variation in heat-shock proteins and

photosynthetic thermotolerance among natural populations of Chenopodium

Page 23: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

23

album L. from contrasting thermal environments: Implications for plant

responses to global warming. J Integr Plant Biol 50:1440–1451. doi:

10.1111/j.1744-7909.2008.00756.x

Baskin CC, Baskin JM (1998) Seeds – ecology, biogeography, and evolution of

dormancy and germination. Academic Press, New York

Baythavong BS (2011) Linking the spatial scale of environmental variation and the

evolution of phenotypic plasticity: Selection favors adaptive plasticity in fine-

grained environments. Am Nat 178:75–87. doi: 10.1086/660281

Blionis GJ, Halley JM, Vokou D (2001) Flowering phenology of Campanula on Mt

Olynipos, Greece. Ecography 24:696–706.

Bond W, Keeley J (2005) Fire as a global “herbivore”: the ecology and evolution of

flammable ecosystems. Trends Ecol Evol 20:387–394. doi:

10.1016/j.tree.2005.04.025

Bruschi P, Grossoni P, Bussotti F (2003) Within-and among-tree variation in leaf

morphology of Quercus petraea (Matt.) Liebl. natural populations. Trees

17:164–172.

Bustamante E, Burquez A (2008) Effects of plant size and weather on the flowering

phenology of the organ Pipe Cactus (Stenocereus thurberi). Ann Bot 102:1019–

1030. doi: 10.1093/aob/mcn194

Cabaço S, Santos R (2012) Seagrass reproductive effort as an ecological indicator of

disturbance. Ecol Indic 23:116–122. doi: 10.1016/j.ecolind.2012.03.022

Page 24: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

24

Cardinale BJ, Duffy JE, Gonzalez A, et al (2012) Biodiversity loss and its impact on

humanity. Nature 486:59–67. doi: 10.1038/nature11148

Carvalho P (2003) Espécies arbóreas brasileiras, 1st edn. Embrapa, Brasília

Cochrane A, Yates CJ, Hoyle GL, Nicotra AB (2015) Will among-population variation

in seed traits improve the chance of species persistence under climate change?

Glob Ecol Biogeogr 24:12–24. doi: 10.1111/geb.12234

Colautti RI, Barrett SC (2013) Rapid adaptation to climate facilitates range expansion of

an invasive plant. Science 342:364–366.

Costa MP, Pereira JAA, Benicio MHM, et al (2012) Alometria e arquitetura de

Copaifera langsdorffii (Desf.) Kuntze (Fabaceae) em fitofisionomias

Neotropicais no Sul de Minas Gerais. Ciênc Florest 22:223–240.

Crawley M (2000) The R Book, 1st edn. John Wiley and Sons, New York

Delerue F, Gonzalez M, Atlan A, et al (2013) Plasticity of reproductive allocation of a

woody species (Ulex europaeus) in response to variation in resource availability.

Ann For Sci 70:219–228. doi: 10.1007/s13595-012-0260-x

Embrapa (2013) Sistema brasileiro de classificação de solos, 3a edn. Embrapa, Brasília,

DF

Fagundes M (2014) Galling insect community associated with Copaifera langsdorffii

(Fabaceae): the role of inter- and intra-annual host plant phenology. In:

Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer Netherlands,

Dordrecht, pp 163–177

Page 25: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

25

Ferraz DK, Artes R, Mantovani W, Magalhães LM (1999) Phenology of tree species in

an urban forest fragment in São Paulo, SP. Rev Bras Biol 59:305–317.

Figueroa JA, Castro SA (2002) Effects of bird ingestion on seed germination of four

woody species of the temperate rainforest of Chiloé island, Chile. Plant Ecol

160:17–23.

Fonseca CR, Overton JM, Collins B, Westoby M (2000) Shifts in trait combinations

along rainfall and phosphorus gradients. J Ecol 88:964–977.

Garcia RA, Cabeza M, Rahbek C, Araujo MB (2014) Multiple dimensions of climate

change and their implications for biodiversity. Science 344:1247579–1247579.

doi: 10.1126/science.1247579

Gianoli E (2004) Plasticity of traits and correlations in two populations of Convolvulus

arvensis (Convolvulaceae) differing in environmental heterogeneity. Int J Plant

Sci 165:825–832. doi: 10.1086/422050

Gianoli E, González-Teuber M (2005) Environmental heterogeneity and population

differentiation in plasticity to drought in Convolvulus Chilensis

(Convolvulaceae). Evol Ecol 19:603–613. doi: 10.1007/s10682-005-2220-5

Gimeno TE, Pias B, Lemos-Filho JP, Valladares F (2008) Plasticity and stress tolerance

override local adaptation in the responses of Mediterranean holm oak seedlings

to drought and cold. Tree Physiol 29:87–98. doi: 10.1093/treephys/tpn007

Godoy O, Richardson DM, Valladares F, Castro-Diez P (2008) Flowering phenology of

invasive alien plant species compared with native species in three

Page 26: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

26

Mediterranean-type ecosystems. Ann Bot 103:485–494. doi:

10.1093/aob/mcn232

González-Rodríguez A, Oyama K (2005) Leaf morphometric variation in Quercus

affinis and Q. laurina (Fagaceae), two hybridizing Mexican red oaks. Bot J Linn

Soc 147:427–435.

Goulart MF, Lemos Filho JP de, Lovato MB (2005) Phenological variation within and

among populations of Plathymenia reticulata in Brazilian Cerrado, the Atlantic

Forest and Transitional Sites. Ann Bot 96:445–455. doi: 10.1093/aob/mci193

Goulart MF, Lovato MB, de Vasconcellos Barros F, et al (2011) Which extent is

plasticity to light involved in the ecotypic differentiation of a tree species from

Savanna and Forest? Biotropica 43:695–703. doi: 10.1111/j.1744-

7429.2011.00760.x

Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in

structural and functional characteristics. For Ecol Manag 148:185–206. doi:

10.1016/S0378-1127(00)00535-1

Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature

470:479–485. doi: 10.1038/nature09670

Hooper DU, Adair EC, Cardinale BJ, et al (2012) A global synthesis reveals

biodiversity loss as a major driver of ecosystem change. Nature 486:105–108.

doi: 10.1038/nature11118

IPCC (2014) Climate change 2014: synthesis report. In: Pachauri RK, Mayer L, eds.

Climate change 2014: synthesis report. Contribution of Working Groups I, II

Page 27: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

27

and III to the Fifth Assessment Report of the Intergovernmental Panel on

Climate Change. Geneva: Intergovernmental Panel on Climate Change.

Jacobi CM, do Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on

ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodivers

Conserv 16:2185–2200. doi: 10.1007/s10531-007-9156-8

Lambrecht SC, Dawson TE (2007) Correlated variation of floral and leaf traits along a

moisture availability gradient. Oecologia 151:574–583. doi: 10.1007/s00442-

006-0617-7

Lázaro-Nogal A, Matesanz S, Godoy A, et al (2015) Environmental heterogeneity leads

to higher plasticity in dry-edge populations of a semi-arid Chilean shrub:

insights into climate change responses. J Ecol 103:338–350. doi: 10.1111/1365-

2745.12372

Leal IR, Oliveira PS (1998) Interactions between fungus-growing ants (Attini), fruits

and seeds in Cerrado vegetation in southeast Brazil. Biotropica 20:170–178.

Leishman M, Wright IJ, Moles AT, Westoby M (2000) The evolutionary ecology of

seed size. In: Seeds: the ecology of regeneration in plant communities. M.

Fenner, CAB International, Wallingford, pp 31–57

Leishman MR (2001) Does the seed size/number trade-off model determine plant

community structure? An assessment of the model mechanisms and their

generality. Oikos 93:294–302.

Page 28: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

28

Lemos Filho JP (2000) Fotoinibição em três espécies do cerrado (Annona crassifolia,

Eugenia dysenterica e Campomanesia adamantium) na estação seca e na

chuvosa. Rev Bras Botânica 23:45–50.

Lemos Filho JP, Goulart MF, Lovato MB (2008) Populational approach in

ecophysiological studies: the case of Plathymenia reticulata, a tree from Cerrado

and Atlantic Forest. Braz J Plant Physiol 20:205–216.

Lessa LG, Geise L, Costa FN (2013) Effects of gut passage on the germination of seeds

ingested by didelphid marsupials in a Neotropical Savanna. Acta Bot Bras

27:519–525.

Matesanz S, Gianoli E, Valladares F (2010) Global change and the evolution of

phenotypic plasticity in plants: Global change and plasticity. Ann N Y Acad Sci

1206:35–55. doi: 10.1111/j.1749-6632.2010.05704.x

Matesanz S, Valladares F (2014) Ecological and evolutionary responses of

Mediterranean plants to global change. Environ Exp Bot 103:53–67. doi:

10.1016/j.envexpbot.2013.09.004

Moles AT, Westoby M (2006) Seed size and plant strategy across the whole life cycle.

Oikos 113:91–105.

Nicotra AB, Atkin OK, Bonser SP, et al (2010) Plant phenotypic plasticity in a

changing climate. Trends Plant Sci 15:684–692. doi:

10.1016/j.tplants.2010.09.008

Page 29: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

29

Niinemets ü., Valladares F (2004) Photosynthetic acclimation to simultaneous and

interacting environmental stresses along natural light gradients: Optimality and

constraints. Plant Biol 6:254–268. doi: 10.1055/s-2004-817881

Nunney L (2016) Adapting to a changing environment: modeling the interaction of

directional selection and plasticity. J Hered 107:15–24. doi:

10.1093/jhered/esv084

Paula S, Arianoutsou M, Kazanis D, et al (2009) Fire-related traits for plant species of

the Mediterranean Basin. Ecology 90:1420–1420.

Pausas JG, Verdú M (2005) Plant persistence traits in fire-prone ecosystems of the

Mediterranean basin: a phylogenetic approach. Oikos 109:196–202.

Pedroni F, Sanches M, Santos FAM (2002) Fenologia da copaíba (Copaifera

langsdorffii Desf. – Leguminosae, Caesalpinioideae) em uma floresta

semidecídua no sudeste do Brasil. Rev Bras Botânica 25:183–194.

Picotte JJ, Rhode JM, Cruzan MB (2009) Leaf morphological responses to variation in

water availability for plants in the Piriqueta caroliniana complex. Plant Ecol

200:267–275. doi: 10.1007/s11258-008-9451-9

Poorter L (2009) Leaf traits show different relationships with shade tolerance in moist

versus dry tropical forests. New Phytol 181:890–900. doi: 10.1111/j.1469-

8137.2008.02715.x

Primack RB (1979) Reproductive effort in annual and perennial species of Plantago

(Plantaginaceae). Am Nat 114:51–62.

Page 30: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

30

Rabello A, Ramos FN, Hasu E (2010) Efeito do tamanho do fragmento na dispersão de

sementes de Copaíba (Copaifera langsdorffii Delf.). Biota Neotropica 10:47–54.

Reich PB, Borchert R (1984) Water stress and tree phenology in a Tropical Dry Forest

in the lowlands of Costa Rica. J Ecol 72:61. doi: 10.2307/2260006

Reich PB, Wright IJ, Cavender‐Bares J, et al (2003) The evolution of plant functional

variation: traits, spectra, and strategies. Int J Plant Sci 164:S143–S164. doi:

10.1086/374368

Ribeiro LC, Pedrosa M, Borghetti F (2013) Heat shock effects on seed germination of

five Brazilian savanna species: Heat shock and germination of Cerrado species.

Plant Biol 15:152–157. doi: 10.1111/j.1438-8677.2012.00604.x

Robertson AW, Trass A, Ladley JJ, Kelly D (2006) Assessing the benefits of frugivory

for seed germination: the importance of the deinhibition effect. Funct Ecol

20:58–66. doi: 10.1111/j.1365-2435.2005.01057.x

Salgado-Labouriau ML, Cassetti V, Ferraz-Vicentini KR, et al (1997) Late Quaternary

vegetational and climatic changes in cerrado and palm swamp from Central

Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 128:215–226.

Salgado-Negret B, Canessa R, Valladares F, et al (2015) Functional traits variation

explains the distribution of Aextoxicon punctatum (Aextoxicaceae) in

pronounced moisture gradients within fog-dependent forest fragments. Front

Plant Sci. doi: 10.3389/fpls.2015.00511

Page 31: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

31

Santiago LS, Goldstein G, Meinzer FC, et al (2004) Leaf photosynthetic traits scale

with hydraulic conductivity and wood density in Panamanian forest canopy

trees. Oecologia 140:543–550. doi: 10.1007/s00442-004-1624-1

Scoffoni C, Kunkle J, Pasquet-Kok J, et al (2015) Light-induced plasticity in leaf

hydraulics, venation, anatomy, and gas exchange in ecologically diverse

Hawaiian lobeliads. New Phytol 207:43–58. doi: 10.1111/nph.13346

Silva IA, Batalha MA (2010) Woody plant species co-occurrence in Brazilian Savannas

under different fire frequencies. Acta Oecologica 36:85–91. doi:

10.1016/j.actao.2009.10.004

Silva-Júnior MC (2005) Á rvores do Cerrado: Guia de Campo, 1st edn. Embrapa,

Brasília

Singh KP, Kushwaha CP (2005) Diversity of flowering and fruiting phenology of trees

in a Tropical Deciduous Forest in India. Ann Bot 97:265–276. doi:

10.1093/aob/mcj028

Souza ML, Fagundes M (2016) Seed predation of Copaifera langsdorffii (Fabaceae): a

tropical tree with supra-annual fruiting: Supra-annual fruiting affects seed

predation. Plant Species Biol n/a-n/a. doi: 10.1111/1442-1984.12128

Souza ML, Fagundes M (2014) Seed size as key factor in germination and seedling

development of Copaifera langsdorffii (Fabaceae). Am J Plant Sci 5:2566–2573.

doi: 10.4236/ajps.2014.517270

Page 32: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

32

Souza ML, Silva DRP, Fantecelle LB, Lemos Filho JP (2015a) Key factors affecting

seed germination of Copaifera langsdorffii, a Neotropical tree. Acta Bot Bras

29:473–477. doi: 10.1590/0102-33062015abb0084

Souza ML, Solar RR, Fagundes M (2015b) Reproductive strategy of Copaifera

langsdorffii (Fabaceae): more seeds or better seeds? Rev Biol Trop 63:1161–

1167.

Sultan SE (2003) Phenotypic plasticity in plants: a case study in ecological

development. Evol Dev 5:25–33.

Sultan SE (1995) Phenotypic plasticity and plant adaptation. Acta Bot Neerlandica

44:363–383. doi: 10.1111/j.1438-8677.1995.tb00793.x

Uribe-Salas D, Sáenz-Romero C, González-Rodríguez A, et al (2008) Foliar

morphological variation in the white oak Quercus rugosa Née (Fagaceae) along

a latitudinal gradient in Mexico: Potential implications for management and

conservation. For Ecol Manag 256:2121–2126. doi:

10.1016/j.foreco.2008.08.002

Valladares F, Matesanz S, Guilhaumon F, et al (2014) The effects of phenotypic

plasticity and local adaptation on forecasts of species range shifts under climate

change. Ecol Lett 17:1351–1364. doi: 10.1111/ele.12348

Valladares F, Pearcy RW (1997) Interactions between water stress, sun-shade

acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles

arbutifolia. Plant Cell Environ 20:25–36.

Page 33: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

33

Verdú M, Pausas JG (2007) Fire drives phylogenetic clustering in Mediterranean Basin

woody plant communities. J Ecol 95:1316–1323. doi: 10.1111/j.1365-

2745.2007.01300.x

Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil

199:213–227. doi: 10.1023/A:1004327224729

Westoby M, Leishman M, Lord J, et al (1996) Comparative ecology of seed size and

dispersal. Philos Trans R Soc Lond B Biol Sci 351:1309–1318. doi:

10.1098/rstb.1996.0114

Wulff RD (1986) Seed size variation in Desmodium paniculatum: II. Effects on seedling

growth and physiological performance. J Ecol 74:99. doi: 10.2307/2260351

Page 34: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

34

TABELAS

Tabela 1: Caracterização ambiental e climática de seis populações de Copaifera

langsdorffii. Valores de precipitação e temperatura média anual para as populações.

Média anual do Índice de Aridez. Os dados foram obtidos do Instituto Nacional de

Meteorologia (www.inmet.gov.br) para o período 1961-2015.

Descrição Lav Can Beh Par Moc Jap

Município Lavras Ibirité Belo Horizonte Paraopeba Montes Claros Japonvar

Coordenadas

21º15'S,

45º02'W

20°04’S,

43°59’W

19°53'S

43°58'W

19°20’S,

44°24’W

16o40’S,

43o48’W

15º58’S,

44º16’W

Altitude (m) 948 1423 842 763 645 804

Habitat Mata Atlântica Campo Rupestre

Ferrugínoso Mata Atlântica Cerrado Cerrado Caatinga

Precipitação

(mm) 1511.51 1490.12 1500.44 1295.27 1029.43 858.03

Variação

interanual (%) 18.06 21.35 21.94 22.22 26.24 30.68

Temperatura (°C) 20.02 20.74 21.54 21.29 22.97 24.23

Índice de aridez 1.25 1.12 1.21 1.03 0.72 0.59

Page 35: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

35

Table 2. Fertilidade do solo de seis populações de Copaifera langsdorffii. H+Al = Potencial acidez; SB = Soma de bases; T= Capacidade de

troca catiônica; t= Capacidade efetiva de troca catiônica; M= Índice de saturação de alumínio; V = Saturação por bases. Os valores médios e o

desvio padrão (Sd) das características do solo são mostrados para cada população. Letras diferentes após a média e desvio padrão (Sd) indicam

diferenças significativas na análise de contraste em GLM (P < 0.05).

Populações Lav Can Beh Par Moc Jap

pH (in H2O) 5.10 (0.35)

a 4.50 (0.20)

b 5.27 (0.21)

a 5.33 (0.21)

a 5.30 (0.26)

a 5.57 (0.25)

a

H+Al (mmolc.dm-3

) 7.20 (2.11)b 20.31 (4.74)

a 5.24(0.49)

b 7.56 (1.94)

b 5.63 (1.10)

b 3.42 (0.67)

b

Al (mmolc.dm-3

) 0.84 (0.66)a 1.55 (0.67)

a 0.33(0.14)

a 1.17 (0.80)

a 1.43 (0.50)

a 0.39 (0.38)

a

Ca (mmolc.dm-3

) 2.05 (1.23)a 1.70 (0.29)

a 3.85(0.98)

a 2.46 (1.54)

a 1.29 (0.36)

a 1.72 (0.49)

a

Mg (mmolc.dm-3

) 0.63 (0.43)b 0.33 (0.03)

b 0.58(0.16)

b 1.22 (0.54)

a 0.68 (0.08)

b 0.91 (0.24)

b

P (mg.dm-3

) 3.33 (1.50)b 4.43 (0.55)

a 4.64(1.14)

a 2.60 (0.61)

b 1.33 (0.35)

b 1.97 (031)

b

K (mg.dm-3) 109.00 (41.61)

b 76.33 (14.29)

b 66.33(17.90)

b 182.67 (20.53)

a 166.00 (22.27)

a 86.33 (13.05)

b

SB (mmolc.dm-3

) 2.96 (1.75)a 2.22 (0.27)

a 4.60(0.89)

a 5.47 (1.33)

a 2.40 (0.37)

a 2.85 (0.54)

a

T 10.16 (1.05)b 22.50 (4.51)

a 9.84(0.54)

b 11.80 (0.18)

b 8.02 (0.84)

b 6.39 (1.15)

b

t 3.8 (1.19)a 3.77 (0.41)

a 4.93(0.78)

a 5.47 (1.33)

a 3.83 (0.23)

a 3.24 (0.57)

a

M 26.91 (23.57)a 40.13 (12.9)

a 6.92(3.63)

b 26.63 (21.50)

a 22.07 (15.84)

a 11.52 (11.07)

a

V 29.37 (18.73)a 10.28 (3.23)

b 46.56(6.99)

a 35.46 (17.35)

a 30.26 (6.52)

a 45.57 (3.36)

a

Page 36: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

FIGURAS

Figura 1: Indivíduos adultos de Copaifera langsdorffii em diferentes ambientes: A) Mata

Atlântica; B) Cerrado; C) Campo Rupestre Ferrugínoso. Fases reprodutivas de Copaifera

langsdorffii: D) Flores abertas; E) Frutos imaturos; F) Frutos maduros. Fases vegetativas de

Copaifera langsdorffii: G) Brotação; H) Folhas novas; I) Folhas maduras.

Page 37: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

37

Figura 2: Populações de Copaifera langsdorffii amostradas neste estudo (códigos das

populações Tabela 1).

Page 38: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

38

Figura 3: Médias mensais históricas dos últimos 54 anos para o índice de aridez de cada

população de Copaifera langsdorffii analisada neste estudo. Os símbolos representam as

diferentes populações: triângulo fechado = Lav; circulo fechado = Can; quadrado fechado =

Beh; quadrado aberto = Par; triângulo aberto = Moc; circulo aberto = Jap; Cruz = índice de

aridez com valor < 0.5, indicando condições de hiperaridez (códigos das populações na

Tabela 1).

Page 39: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

39

Capítulo I: Phenological variation within and among populations of

Copaifera langsdorffii in eastern tropical South America

Matheus Lopes Souza1; Walisson Kenedy Siqueira

2; Cristina Crespo Bastias

3; Marcílio

Fagundes2; Fernando Valladares

3;4; Jose Pires de Lemos Filho

1

1Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Belo

Horizonte, 31270, Brazil; 2Departamento de Biologia Geral, Universidade Estadual de

Montes Claros, CCBS-UNIMONTES, Montes Claros, 39401, Brazil; 3LINCGlobal

Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias

Naturales, MNCN-CSIC, Madrid, 28006, Spain; 4Departamento de Biología y Geología

ESCET, Universidad Rey Juan Carlos, Móstoles, 28933, Spain.

* For correspondence: E-mail [email protected]. Av. Avenida Presidente

Antônio Carlos, 6627 - Pampulha, Belo Horizonte - MG, 31270-901. Phone: (031)

3409-2568; Fax: (031) 3409-2567.

Page 40: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

40

ABSTRACT 1

Phenological studies are very helpful to understand population dynamics and 2

niche width of plant species. The plant phenology is closely related climatic variables, 3

this way, dramatic changes in the climate are challenge for natural plant population. We 4

tested the effect of intra-annual variation of rainfall in the phenology within and among 5

populations of Copaifera langsdorffii along the rainfall gradient. We hypothesized that 6

plants in populations from environments with greater heterogeneity in rainfall are more 7

likely to adjust their phenology according the environmental conditions change. Six 8

populations of C. langsdorffii were selected along a climatic gradient from semi-arid to 9

more rainy regions covering three different biomes (Caatinga, Cerrado, and Atlantic 10

Forest). Our results have showed that the populations of C. langsdorffi adjust the 11

phenological pattern according to environmental conditions of the region they are 12

located. In general, the reduction in rainfall affected directly the vegetative phenology. 13

C. langsdorffii individuals in all populations began drop the leaves earlier in drought 14

years. Changes in phenology influenced by environmental conditions can significantly 15

contribute to the niche width of a species, which could explain the success of C. 16

langsdorffii over a range of different types of habitats. The plasticity that had been 17

observed in all populations studied for vegetative phenology, mainly for leaf fall, 18

modulated by water availability is an important factor for persistence of species forward 19

future climate change. 20

Key works: Copaifera langsdorffii; aridity gradient; climate changes; plasticity; 21

differentiation of populations; Leaf fall. 22

23

Page 41: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

41

INTRODUCTION 1

Phenology is an important factor that drives population dynamics of plants 2

(Walther et al. 2002; Chambers et al. 2013) and niche width of plant species (Goulart et 3

al. 2005; Godoy et al. 2008; Wolkovich and Cleland 2014). Adaptive changes in the 4

time and duration of vegetative and reproductive phases can increase the capacity of 5

established itself in a given habitat, and this could determine the distribution of the 6

species (Pau et al. 2011). In seasonal environments the vegetative phenology (i.e cycles 7

of leaf flushing and leaf fall) is attributed to maintenance of the water status with 8

deciduousness as a strategy to avoid water loss during periods of drought (Reich and 9

Borchert 1984; Toledo et al. 2012). On the other hand, the time and intensity of 10

flowering and fruiting play an important role on reproductive success. The time of 11

fruiting can directly reflect in the competitive ability like the dispersion of the seeds 12

only happen in an ideal conditions for the germination (Blionis et al. 2001; Singh and 13

Kushwaha 2005; Bustamante and Burquez 2008). 14

The phenological events of plants are regulated by endogenous factors 15

associated with climate variations that govern the timing, intensity and duration of 16

events (Silveira et al. 2013; Azevedo et al. 2014; Pezzini et al. 2014). In seasonal 17

environments, plant growth and reproduction are limited by water availability, since 18

rainfall are concentrated in few months with large intra- and inter-annual variation 19

(Walker et al. 1995; Chesson et al. 2004; Liu et al. 2016). Multiple phenological 20

strategies to assure the persistence and reproductive success in seasonal environments 21

are observed (Venable 2007; Silveira et al. 2013; Azevedo et al. 2014; Pezzini et al. 22

2014). Besides, an increase in climate unpredictability and extreme events are expected 23

due to the climatic changes (IPCC, 2014), thus phenological shifts would be able to 24

ensure populations persistence. Changes in environmental conditions and in resource 25

Page 42: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

42

availability affect the plant phenology and other associated trophic levels, endangering 1

large portion of biodiversity (Bustamante and Burquez 2008; Bewick et al. 2016). Thus, 2

the phenotypic plasticity is crucial to the persistence of these organisms to new 3

environments (Nicotra et al. 2010; Matesanz and Valladares 2014). However, 4

phenotypic plasticity varies widely among and within species. It depends on the 5

intensity and direction of environmental change, life history characteristics and 6

intraspecific genetic variation (Nicotra et al. 2010; Lázaro-Nogal et al. 2015; Nunney 7

2016). 8

Copaifera langsdorffii Desf (Fabaceae) is a tropical tree with wide distribution 9

in South America, occurring in different biomes as Caatinga, Cerrado, Atlantic Forest 10

and Amazon (Almeida et al. 1998). This species has populations under different 11

environmental conditions, such as variation in rainfall, temperature, solar radiation and 12

soil fertility (Almeida et al. 1998; Carvalho 2003; Costa et al. 2012). For this reason, 13

significant differences in phenological response of geographic and environmental 14

gradients are expected among and within populations (Rathcke and Lacey 1985). 15

Moreover the different levels of plasticity and/or genetic variability can contribute much 16

more for those differences (Goulart et al. 2005; Wilczek et al. 2010). As C. langsdorffii 17

is widely spread along the America under different environmental pressure and stress, it 18

makes C. langsdorffii an excellent model to evaluate consequences of climate change on 19

natural populations, since significant changes are observed in the functional traits in a 20

favorable way to the environmental pressures imposed on different populations (Gianoli 21

and González-Teuber 2005; Lázaro-Nogal et al. 2015). Although there are relatively 22

few studies of phenological patterns of several species in the eastern tropical south 23

America (Pedroni et al. 2002; Goulart et al. 2005; Morellato et al. 2013; Silveira et al. 24

2013; Pezzini et al. 2014) and fewer about changes of the phenological patterns among 25

Page 43: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

43

populations (Goulart et al. 2005; Toledo et al. 2012). Plants are closely linked to the 1

climate conditions of their environment, and shifts in these conditions affect 2

phenological responses of natural plant populations (Cleland et al. 2007). So it is 3

important to examine the capacity of phenological adjust of different populations along 4

a climatic gradient to cope with the new environmental conditions. We hypothesized 5

that plants from more arid populations and with more inter-annual heterogeneity in 6

rainfall would present higher capacity of adjust in their phenology according the 7

environmental conditions change. For this propose we evaluated the effect of intra-8

annual variation of rainfall in the phenological responses within and among populations 9

of C. langsdorffii distributed along a rainfall gradient. 10

11

MATERIAL AND METHODS 12

Study area 13

Six populations of C. langsdorffii were selected along a rainfall gradient in the 14

Minas Gerais state, southeastern Brazil. We obtained climatic data for the last 54 years 15

(1961-2014) for each are of study from the Brazilian National Institute of Meteorology 16

(INMET, 2015). A clear aridity gradient was assured for this sampling procedure which 17

north populations located in more xeric climate (Table 1). We calculate the intra inter-18

annual variation in annual rainfall of populations studied as coefficients of variation 19

(CV = SD mean-1). The variability of intra and inter-annual rainfall was highly 20

correlated whit annual rainfall (r = -0.88, P < 0.05 and r = -0.95, P < 0.05, 21

respectively), showing that more xeric environments also show higher temporal 22

heterogeneity in precipitation. During the study a large difference in rainfall between 23

Page 44: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

44

the years (2013 and 2014) was found with considerable reduction in rainfall in 2014 1

(Table 1 and Fig 1). 2

3

Phenological monitoring 4

Twenty-seven adult trees of C. langsdorffii were randomly selected in each 5

population. The trees were monitored monthly for 24 months, from January 2013 to 6

December 2014. In each individual, three vegetative phenophases were observed: leaf 7

fall, leaf flushing and mature leaf; and three reproductive phenophases: open flowers, 8

unripe fruit, and ripe fruit. Leaf fall was marked by visible canopy defoliation, presence 9

of senescent leaves, and ease of falling leaves by wind action. Leaf flushing was 10

identified by the presence of small red leaves, after the period of total leaf fall. Mature 11

leaves were identified by fully leaf size and dark green. The open flower phenophase 12

was characterized as the period in which the tree exhibited flowers in anthesis. The 13

unripe fruits phase was characterized by presence of developing fruits. The ripe fruit 14

phase was observed diaspores were brown and ready to be dispersed, when the fruit 15

open exposes a black seed, partially wrapped in a yellow-orange aril. We evaluated 16

monthly the activity of each phenophase for all individuals studied. Phenological 17

activity was evaluated by observing the presence or absence of each phenophase. 18

19

Data analysis 20

The rainfall was correlated with the vegetative and reproductive phenophases 21

using a Spearman correlation test. The phenological events were correlated to total 22

rainfall of the previous month to the event. 23

Page 45: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

45

To test for seasonality in vegetative and reproductive phenophases, circular 1

statistics were made with the frequency distribution of phenophases for the 27 2

individuals of each population in the years of 2013 and 2014. The frequency of 3

occurrence was considered to be the proportion of individuals in each phenophase. The 4

months were converted into angles, with intervals of 30°, and then the average angle or 5

average date (μ), the circular concentration (r), and the circular standard deviation 6

(CSD) were calculated. The average angle (μ) is the period around which a determined 7

phenophase was recorded in most individuals. A Rayleigh test (Z) was used to 8

determine the significance of the angle. When the average angle is significant, there is 9

seasonality of the phenophase. The intensity of circular concentration around the 10

average angle (r) varies from 0 (phenological activity uniformly distributed throughout 11

the year) to 1 (phenological activity concentrated in a period of the year). Phenological 12

differences among and within populations were performed with pairwise Watson–13

William F-tests in circular statistic. These analyses were performed with the ORIANA 14

package (Kovach 2007). 15

We performed generalized linear models (GLM) to test if the duration of leaf fall 16

and reproductive periods varied within and among populations. The duration of leaf fall 17

period was determined for each individual by the interval between the start of leaf fall 18

until the start of leaf flushing. In turn, the duration of the reproductive period was 19

determined by the interval between the start of open flowers until the start of ripe fruits. 20

In this analysis we used the duration of leaf fall and reproductive periods as responses 21

variables and the populations and years of study as explanatory variable. The 22

differences in the duration of leaf fall and reproductive periods within and among 23

populations were evaluated by contrast analysis (Crawley 2000). 24

Page 46: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

46

All GLMs were performed using the R software (R Core Team 2013), with 1

appropriate error distribution considering the nature of each response variable, 2

following by model criticism via residual analysis (Crawley 2000). All created models 3

were compared with the null model and the appropriateness of the models was tested by 4

residue analysis (Crawley 2000). 5

6

RESULTS 7

Vegetative phenophases 8

Individuals of Copaifera langsdorffii of the populations studied showed marked 9

seasonality in vegetative phenophases with total deciduousness in dry season (Table 2). 10

Our results showed that the vegetative phenophases were correlated with rainfall (Table 11

3). In all populations the phenophases ‘leaf fall’ and ‘leaf flushing’ were negatively 12

correlated with rainfall, except in Can population which was not observed correlation 13

between ‘leaf flushing’ and rainfall (Table 3). Instead, ‘mature leaves’ was positively 14

correlated with rainfall (Table 3). 15

Vegetative phenophases showed temporal differences within and among 16

populations (Table 4). Within populations significant differences were observed in leaf 17

fall and leaf flushing between the years of study in all populations except in Can 18

population (Table 4). For mature leaves differences were observed between the years of 19

study only in Lav, Beh and Jap populations, the other populations did not varied (Table 20

4). Among populations, to year of 2013 (the rainiest year), our results showed that 21

individuals of Can, Moc and Jap populations began the leaf fall in the end of the wet 22

season (March-May; Fig 2) with a peak in the beginning of the dry season (June-July; 23

Fig 2). The Lav, Beh and Par populations keeps the leaves for longer time, with the start 24

Page 47: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

47

of leaf fall in the beginning of the dry season (May-June; Fig 2) and peak deciduousness 1

in the middle of the dry season (July-August; and Fig 2). Leaf fall was followed by leaf 2

flushing in the end of dry season and mature leafs were maintained during the all wet 3

season (Fig 2). In the year of 2014 (the driest year) although, our results demonstrate 4

that the vegetative phenophases were anticipated in all populations studied (Fig 2). 5

Thus, a smaller difference in vegetative phenology among populations was observed in 6

the year rain lower compared to the wet year. 7

The duration of the leaf fall period varied among populations, in the two 8

monitored years of study (Fig. 3A). In general, individuals in Can, Moc and Jap 9

populations remain more time losing leaves, with some individuals in these populations 10

presenting between seven e eight months of deciduousness. On the other hand, in Lav, 11

Beh and Par populations the period of losing leaves does not exceed 6 months. Our 12

results also showed the reduction in the duration of the leaf fall period to the driest year 13

in Can and Jap populations when compared with the rainiest year, indicating that the 14

leaf fall in these populations was more abruptly in the driest year. 15

16

Reproductive phenophases 17

We observed a considerable reduction in the number of reproductive individuals 18

in the drier year. In 2013 85.2% of individuals analyzed produced flowers and 80.3% 19

completed the reproductive phase dispersing seeds, while in 2014 43.8% of individuals 20

produced flowers and only 22.8% dispersed the seeds. Due to the low proportion of 21

reproductive individuals in 2014 the analysis for reproductive phenophases were 22

conducted only for the year 2013. 23

Page 48: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

48

The reproductive phenophases of this species were also correlated with rainfall. 1

In all populations the phenophase open flower was positively correlated with rainfall 2

and ripe fruit was negatively correlated with rainfall, these results were observed for 3

activity and intensity phenological (Table 3). The activity of phenophase unripe fruit 4

was negatively correlated with rainfall in Par population and intensity this phenophase 5

was positively correlated with rainfall in Lav population (Table 3). For other 6

populations there was no correlation between phenophase unripe fruit and rainfall 7

(Table 3). 8

All reproductive phenophases were seasonal (Table 2) and varied among 9

populations (Table 4). The flowers were produced during the wet season. Individuals of 10

C. langsdorffii in Lav, Can and Beh populations presented peak flowers early in the 11

year, between the months of January and February (Fig 4), while in Par, Moc and Jap 12

presented peak flowers a little later, between the months of February and March (Fig 4). 13

The fruits development occurred during the wet and dry seasons. In Lav, Can, Beh and 14

Par populations the phenophases fruit unripe was long, occurring among the months of 15

February to August (Fig 4). In Moc and Jap populations this phenophase was shorter, 16

only among the months of March to June (Fig 4). Dispersal of seeds occurred in dry 17

season. In Moc and Jap populations the phenophase ripe fruit between the months of 18

May and July, with peak dispersion in July. Already Lav, Can, Beh and Par populations 19

presented phenophase ripe fruit from July to September, with peak dispersion in August 20

(Fig 4). 21

The duration of the reproductive period varied among populations (Fig. 3B). 22

Individuals of C. langsdorffi in Moc and Jap populations showed shorter duration of the 23

reproductive period (open flowers to ripe fruits) when compared with the others 24

populations. In Moc and Jap populations the reproductive period lasted at most 5 25

Page 49: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

49

months, while that in Lav population some individuals presenting 9 months 1

reproductive period. 2

DISCUSSION 3

In this study, we demonstrate that inter-annual differences in rainfall modulate 4

the phenology of individuals of Copaifera langsdorffii of the populations studied. The 5

year 2014 was marked by a severe drought in all populations, with reduction of 6

approximately 40% of rainfall compared with the historical average. This reduction in 7

rainfall affected directly the response of vegetative phenological of individuals of C. 8

langsdorffii in all studied populations. In general, the individuals of C. langsdorffii 9

started leaf fall early in drought year. Our results also show less differentiation in 10

vegetative phenology among populations in the year of low annual rainfall. These 11

differences between years point out that the plasticity in the vegetative phenology is 12

modulated by water availability. The phenotypic plasticity in phenologycal events has 13

been pointed as essential to prevent local extinctions of species under a possible 14

climate change scenario (Matesanz et al. 2010; Hoffmann and Sgrò 2011). 15

Individuals from more arid sites (Moc and Jap) presented leaf fall early even in 16

the wetter year. They also presented a longer time of deciduousness when compared 17

with populations from wetter sites. Similar results to leaf fall in arid sites were also 18

found in Can population, although this population is located in an environment with 19

high rainfall. This apparently contradictory result could be related with the specificity of 20

the ferruginous rock grassland environmental conditions, characterized by low fertility 21

soils, and spite of high rainfall has low capacity of soil water storage (Jacobi et al. 22

2007). The main differences among populations were related to leaf fall, whit starts leaf 23

fall earlier in the populations of more arid sites, as described by Goulart et al. (2005) for 24

populations of another legume tree. The intensity and duration of leaf fall is directly 25

Page 50: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

50

related to the availability of water in the environment (Walker et al. 1995; Silveira et al. 1

2013; Liu et al. 2016), varying among populations as demonstrated here. During the dry 2

period there is higher incidence of solar radiation with an increase on 3

evapotranspiration which and combined with the hydric deficit affects promote 4

limitation on stomatal openness reducing transpiration, damaging the photosynthetic 5

apparatus and reducing efficiency in water use (Franco 1998; Meinzer et al. 1999; 6

Lemos Filho 2000). Thus the deciduousness during periods of limited water is an 7

important strategy developed to reduce this stress by means of leaf loss, which prevents 8

transpiration and dehydration even more pronounced during this period (Borchert 1980; 9

Reich and Borchert 1984). Moreover, the reduction in transpiration is important 10

mechanism return of internal water levels in plant (Borchert 1980; Reich and Borchert 11

1984). This strategy enables leaf sprouting even in the dry season, pattern observed here 12

in C. langsdorffii. This sprouting during the dry season also has been described as 13

important anti herbivory escape strategy (Forister 2005; Fagundes 2014). 14

In all C. langsdorffii populations significant differences were observed in the 15

reproductive activity between the years of study. The reproductive pattern for C. 16

langsdorffii is described as supra-annual, with years of massive production of flowers 17

and seeds followed by years where reproduction can be drastically reduced (Pedroni et 18

al. 2002; Souza et al. 2015). A key element for the success of supra-annual reproduction 19

is the synchronism reproductive (Kelly and Sork 2002; Koenig and Knops 2005). Our 20

results demonstrate strong spatial reproductive synchrony in populations distributed 21

across 600 km. The main evolutionary advantages of supar-annual reproduction in 22

plants are increasing pollination efficiency, and the predator satiation (Silvertown 1980; 23

Sork 1993; Kelly and Sork 2002). Despite the spatial synchrony, our results also 24

showed temporal differences in the production of flowers and fruit development time 25

Page 51: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

51

among populations. Individual in wetter environments produce flowers early and fruits 1

have higher development time when compared to individual in xeric environments. 2

Precipitation has been suggested as the primary cause of variations in the start and 3

duration of reproduction seasonal environments (Petit 2001; Borchert et al. 2004). The 4

lowest levels of stress that plants of wetter sites are subjected allow a speedy recovery 5

after dry period (Toledo et al. 2012) allocating resource for flower production. In 6

addition, more time for development of the seed generate larger and more vigorous 7

seeds (unpublished data), important features for the development of seedlings in 8

competitive environments (Leishman 2001; Yanlong et al. 2007; Souza and Fagundes 9

2014). 10

Our study showed the populations of C. langsdorffi adjust the phenological 11

behavior according to environmental conditions of each population, this feature can 12

significantly contribute to the niche breadth of a species, which could explain the 13

success of C. langsdorffii over a range of different types of habitats across its wide 14

geographic distribution. Furthermore, the phenotypic plasticity observed in all 15

populations studied for vegetative phenology, mainly for leaf fall, in terms of 16

adjustments to the start and duration modulated by water availability is an important 17

factor for persistence of species forward future climate change. 18

19

ACKNOWLEDGEMENTS 20

We thank all the collaborators of the Plant Physiology Laboratory - UFMG, 21

Conservation Biology Laboratory – UNIMONTES and directors of Paraopeba National 22

Forest (FLONA-PARAOPEBA) for logistical support in the fieldwork. This study was 23

carried out with financial support from CNPq and FAPEMIG. This work was conducted 24

Page 52: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

52

with a scholarship supported by the International Doctoral Sandwich Program (PDSE). 1

Financed by CAPES – Brazilian Federal Agency for Support and Evaluation of 2

Graduate Education within the Ministry of Education of Brazil. We also thank all the 3

collaborators Ecology and Global Change Group of National Museum of Natural 4

Sciences (MNCN-CSIC), Madrid-Spain. 5

6

LITERATURE CITED 7

Almeida S, Proença C, Sano S, Ribeiro J (1998) Cerrado: espécies vegetais úteis, 1st 8

edn. Embrapa, Brasília 9

Azevedo IFP, Nunes YRF, Á vila MA, et al (2014) Phenology of riparian tree species in 10

a transitional region in southeastern Brazil. Braz J Bot 37:47–59. doi: 11

10.1007/s40415-014-0046-5 12

Bewick S, Cantrell RS, Cosner C, Fagan WF (2016) How resource phenology affects 13

consumer population dynamics. Am Nat 187:151–166. doi: 10.1086/684432 14

Blionis GJ, Halley JM, Vokou D (2001) Flowering phenology of Campanula on Mt 15

Olynipos, Greece. Ecography 24:696–706. 16

Borchert R (1980) Phenology and ecophysiology of Tropical Trees: Erythrina 17

Poeppigiana O. F. Cook. Ecology 61:1065. doi: 10.2307/1936825 18

Borchert R, Meyer SA, Felger RS, Porter-Bolland L (2004) Environmental control of 19

flowering periodicity in Costa Rican and Mexican Tropical Dry Forests. Glob 20

Ecol Biogeogr 13:409–425. doi: 10.1111/j.1466-822X.2004.00111.x 21

Page 53: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

53

Bustamante E, Burquez A (2008) Effects of plant size and weather on the flowering 1

phenology of the organ Pipe Cactus (Stenocereus thurberi). Ann Bot 102:1019–2

1030. doi: 10.1093/aob/mcn194 3

Carvalho P (2003) Espécies arbóreas brasileiras, 1st edn. Embrapa, Brasília 4

Chambers LE, Altwegg R, Barbraud C, et al (2013) Phenological changes in the 5

Southern Hemisphere. PLoS ONE 8:e75514. doi: 10.1371/journal.pone.0075514 6

Chesson P, Gebauer RLE, Schwinning S, et al (2004) Resource pulses, species 7

interactions, and diversity maintenance in arid and semi-arid environments. 8

Oecologia 141:236–253. doi: 10.1007/s00442-004-1551-1 9

Cleland E, Chuine I, Menzel A, et al (2007) Shifting plant phenology in response to 10

global change. Trends Ecol Evol 22:357–365. doi: 10.1016/j.tree.2007.04.003 11

Costa MP, Pereira JAA, Benicio MHM, et al (2012) Alometria e arquitetura de 12

Copaifera langsdorffii (Desf.) Kuntze (Fabaceae) em fitofisionomias 13

Neotropicais no Sul de Minas Gerais. Ciênc Florest 22:223–240. 14

Crawley M (2000) The R Book, 1st edn. John Wiley and Sons, New York 15

Fagundes M (2014) Galling insect community associated with Copaifera langsdorffii 16

(Fabaceae): the role of inter- and intra-annual host plant phenology. In: 17

Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer Netherlands, 18

Dordrecht, pp 163–177 19

Forister ML (2005) Influence of host plant phenology on Mitoura nelsoni (Lepidoptera: 20

Lycaenidae). Ann Entomol Soc Am 98:295–301. doi: 10.1603/0013-21

8746(2005)098[0295:IOHPPO]2.0.CO;2 22

Page 54: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

54

Franco AC (1998) Seasonal patterns of gas exchange, water relations and growth of it 1

Roupala montana, an evergreen savanna species. Plant Ecol 136:69–76. 2

Gianoli E, González-Teuber M (2005) Environmental heterogeneity and population 3

differentiation in plasticity to drought in Convolvulus Chilensis 4

(Convolvulaceae). Evol Ecol 19:603–613. doi: 10.1007/s10682-005-2220-5 5

Godoy O, Richardson DM, Valladares F, Castro-Diez P (2008) Flowering phenology of 6

invasive alien plant species compared with native species in three 7

Mediterranean-type ecosystems. Ann Bot 103:485–494. doi: 8

10.1093/aob/mcn232 9

Goulart MF, Lemos Filho JP de, Lovato MB (2005) Phenological variation within and 10

among populations of Plathymenia reticulata in Brazilian Cerrado, the Atlantic 11

Forest and Transitional Sites. Ann Bot 96:445–455. doi: 10.1093/aob/mci193 12

Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 13

470:479–485. doi: 10.1038/nature09670 14

IPCC (2014) Climate change 2014: synthesis report. In: Pachauri RK, Mayer L, eds. 15

Climate change 2014: synthesis report. Contribution of Working Groups I, II 16

and III to the Fifth Assessment Report of the Intergovernmental Panel on 17

Climate Change. Geneva: Intergovernmental Panel on Climate Change. 18

Jacobi CM, do Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on 19

ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodivers 20

Conserv 16:2185–2200. doi: 10.1007/s10531-007-9156-8 21

Page 55: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

55

Kelly D, Sork VL (2002) Mast seeding in perennial plants: Why, how, where? Annu 1

Rev Ecol Syst 33:427–447. doi: 10.1146/annurev.ecolsys.33.020602.095433 2

Koenig WD, Knops JMH (2005) The mystery of masting in trees. Some trees reproduce 3

synchronously over large areas, with widespread ecological effects, but how and 4

why? Am Sci 93:340–347. 5

Kovach WL (2007) Oriana for Windows 3. Kovach Computing Services., Wales 6

Lázaro-Nogal A, Matesanz S, Godoy A, et al (2015) Environmental heterogeneity leads 7

to higher plasticity in dry-edge populations of a semi-arid Chilean shrub: 8

insights into climate change responses. J Ecol 103:338–350. doi: 10.1111/1365-9

2745.12372 10

Leishman MR (2001) Does the seed size/number trade-off model determine plant 11

community structure? An assessment of the model mechanisms and their 12

generality. Oikos 93:294–302. 13

Lemos Filho JP (2000) Fotoinibição em três espécies do cerrado (Annona crassifolia, 14

Eugenia dysenterica e Campomanesia adamantium) na estação seca e na 15

chuvosa. Rev Bras Botânica 23:45–50. 16

Liu L, Zhang X, Donnelly A, Liu X (2016) Interannual variations in spring phenology 17

and their response to climate change across the Tibetan Plateau from 1982 to 18

2013. Int J Biometeorol. doi: 10.1007/s00484-016-1147-6 19

Matesanz S, Gianoli E, Valladares F (2010) Global change and the evolution of 20

phenotypic plasticity in plants: Global change and plasticity. Ann N Y Acad Sci 21

1206:35–55. doi: 10.1111/j.1749-6632.2010.05704.x 22

Page 56: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

56

Matesanz S, Valladares F (2014) Ecological and evolutionary responses of 1

Mediterranean plants to global change. Environ Exp Bot 103:53–67. doi: 2

10.1016/j.envexpbot.2013.09.004 3

Meinzer FC, Goldstein G, Franco AC, et al (1999) Atmospheric and hydraulic 4

limitations on transpiration in Brazilian cerrado woody species. Funct Ecol 5

13:273–282. 6

Morellato LPC, Camargo MGG, Gressler E (2013) A review of plant phenology in 7

South and Central America. In: Schwartz MD (ed) Phenology: An Integrative 8

Environmental Science. Springer Netherlands, Dordrecht, pp 91–113 9

Nicotra AB, Atkin OK, Bonser SP, et al (2010) Plant phenotypic plasticity in a 10

changing climate. Trends Plant Sci 15:684–692. doi: 11

10.1016/j.tplants.2010.09.008 12

Nunney L (2016) Adapting to a changing environment: modeling the interaction of 13

directional selection and plasticity. J Hered 107:15–24. doi: 14

10.1093/jhered/esv084 15

Pau S, Wolkovich EM, Cook BI, et al (2011) Predicting phenology by integrating 16

ecology, evolution and climate science. Glob Change Biol 17:3633–3643. doi: 17

10.1111/j.1365-2486.2011.02515.x 18

Pedroni F, Sanches M, Santos FAM (2002) Fenologia da copaíba (Copaifera 19

langsdorffii Desf. – Leguminosae, Caesalpinioideae) em uma floresta 20

semidecídua no sudeste do Brasil. Rev Bras Botânica 25:183–194. 21

Page 57: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

57

Petit S (2001) The reproductive phenology of three sympatric species of columnar cacti 1

on Curaçao. J Arid Environ 49:521–531. doi: 10.1006/jare.2001.0801 2

Pezzini FF, Ranieri BD, Brandão DO, et al (2014) Changes in tree phenology along 3

natural regeneration in a seasonally dry tropical forest. Plant Biosyst - Int J Deal 4

Asp Plant Biol 148:965–974. doi: 10.1080/11263504.2013.877530 5

R Core Team (2013) R: A language and environment for statistical computing. R 6

Foundation for Statistical Computing. R Foundation for Statistical Computing, 7

Viena, Austria 8

Rathcke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Annu Rev Ecol 9

Syst 179–214. 10

Reich PB, Borchert R (1984) Water stress and tree phenology in a Tropical Dry Forest 11

in the Lowlands of Costa Rica. J Ecol 72:61. doi: 10.2307/2260006 12

Silveira AP, Martins FR, Araújo FS (2013) Do vegetative and reproductive 13

phenophases of deciduous tropical species respond similarly to rainfall pulses? J 14

For Res 24:643–651. doi: 10.1007/s11676-013-0366-5 15

Silvertown JW (1980) The evolutionary ecology of mast seeding in trees. Biol J Linn 16

Soc 14:235–250. 17

Singh KP, Kushwaha CP (2005) Diversity of flowering and fruiting phenology of trees 18

in a Tropical Deciduous Forest in India. Ann Bot 97:265–276. doi: 19

10.1093/aob/mcj028 20

Sork VL (1993) Evolutionary ecology of mast-seeding in temperate and tropical oaks 21

(Quercus spp.). Vegetatio 107:133–147. 22

Page 58: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

58

Souza ML, Fagundes M (2014) Seed size as key factor in germination and seedling 1

development of Copaifera langsdorffii (Fabaceae). Am J Plant Sci 5:2566–2573. 2

doi: 10.4236/ajps.2014.517270 3

Souza ML, Solar RR, Fagundes M (2015) Reproductive strategy of Copaifera 4

langsdorffii (Fabaceae): more seeds or better seeds? Rev Biol Trop 63:1161–5

1167. 6

Toledo MM, Paiva EAS, Lovato MB, de Lemos Filho JP (2012) Stem radial increment 7

of forest and savanna ecotypes of a Neotropical tree: relationships with climate, 8

phenology, and water potential. Trees 26:1137–1144. doi: 10.1007/s00468-012-9

0690-y 10

Venable DL (2007) Bet hedging in a guild of desert annuals. Ecology 88:1086–1090. 11

Walker MD, Ingersoll RC, Webber PJ (1995) Effects of interannual climate variation on 12

phenology and growth of two alpine forbs. Ecology 76:1067–1083. doi: 13

10.2307/1940916 14

Walther G-R, Post E, Convey P, et al (2002) Ecological responses to recent climate 15

change. Nature 416:389–395. 16

Wilczek AM, Burghardt LT, Cobb AR, et al (2010) Genetic and physiological bases for 17

phenological responses to current and predicted climates. Philos Trans R Soc B 18

Biol Sci 365:3129–3147. doi: 10.1098/rstb.2010.0128 19

Wolkovich EM, Cleland EE (2014) Phenological niches and the future of invaded 20

ecosystems with climate change. AoB Plants 6:plu013. doi: 21

10.1093/aobpla/plu013 22

Page 59: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

59

Yanlong H, Mantang W, Shujun W, et al (2007) Seed size effect on seedling growth 1

under different light conditions in the clonal herb Ligularia virgaurea in 2

Qinghai- Tibet Plateau. Acta Ecol Sin 27:3091–3108. 3

Page 60: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

60

TABLES

Table 1: Environment and climatic characterization of Copaifera langsdorffii populations. Population values of annual rainfall and annual

temperature are means. Data were obtained from the Brazilian National Meteorology Institute (www.inmet.gov.br) for the period 1961-2014.

Population Coordinates Habitat

Annual rainfall (mm)

Historic

Annual rainfall (mm)

2013

Annual rainfall (mm)

2014

Annual temperature (°C)

Historic

Jap 15º58’S, 44º16’W Caatinga 858.03 1108.4 605.1 24.23

Moc 16o40’S, 43o48’W Cerrado 1029.43 1255.1 478.7 22.97

Par 19°20’S, 44°24’W Cerrado 1295.27 1155.4 551.2 21.29

Beh 19°53'S 43°58'W Atlantic forest 1500.44 1573 944.1 21.54

Can 20°04’S, 43°59’W Ferruginous rock grassland 1490.12 1755.7 918.7 20.74

Lav 21º15'S, 45º02'W Atlantic forest 1511.51 1380.6 1087.6 20.02

Page 61: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

61

Table 2: Seasonality in vegetative and reproductive phenophases among and within of populations of Copaifera langsdorffii.

Jap Moc Par Beh Can Lav

R Z R Z r Z R Z r Z R Z

Leaf fall -2013 0.55 49.44*** 0.70 57.35*** 0.79 52.92*** 0.89 51.75*** 0.70 50.82*** 0.75 48.34***

Leaf fall -2014 0.72 43.48*** 0.71 49.18*** 0.87 50.33*** 0.91 41.17*** 0.76 50.39*** 0.84 54.03***

Leaf flushing -2013 0.91 42.59*** 0.78 41.02*** 0.97 28.85*** 0.92 40.96*** 0.78 37.11*** 0.98 30.70***

Leaf flushing -2014 0.92 39.38*** 0.85 34.48*** 0.89 24.49*** 0.90 26.60*** 0.76 21.71*** 0.97 33.53***

Mature leaf -2013 0.50 11.37*** 0.39 8.68*** 0.41 11.00*** 0.39 10.34*** 0.38 11.92*** 0.41 11.29***

Mature leaf -2014 0.21 14.77*** 0.18 10.05*** 0.20 10.91*** 0.20 9.95*** 0.22 9.20*** 0.21 10.80***

Flower -2013 0.89 28.78*** 0.82 32.15*** 0.94 46.72*** 0.97 30.82*** 0.94 24.76*** 0.96 49.22***

Unripe fruit -2013 0.81 50.52*** 0.60 38.22*** 0.50 43.94*** 0.77 56.48*** 0.51 37.15*** 0.49 45.12***

Ripe fruit -2013 0.85 40.97*** 0.79 41.55*** 0.85 61.01*** 0.93 28.36*** 0.90 33.19*** 0.92 40.49***

r= Intensity of circular concentration around the average angle varies from 0 (phenological activity uniformly distributed throughout the year) to

1 (phenological activity concentrated in a period of the year); Z= Rayleigh test. (***P < 0.001; **P < 0.01; *P < 0.05; NS P>0.05 in Z)

Page 62: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

62

Table 3. Spearman correlations between the rainfall and the phenophases in different

populations of Copaifera langsdorffii from January 2013 to December 2014 for

vegetative phenophases and from January 2013 to December 2013 for reproductive

phenophases.

Phenophases Jap Moc Par Beh Can Lav

Activity index Leaf fall -0.39 -0.36 -0.33 -0.33 -0.27 -0.39

Leaf flushing -0.26 -0.25 -0.15 -0.19 NS -0.20

Mature leaf 0.33 0.29 0.24 0.30 0.16 0.30

Open flower 0.47 0.41 0.49 0.68 0.10 0.70

Unripe fruit NS NS -0.13 NS NS NS

Ripe fruit -0.32 -0.27 -0.69 -0.26 -0.29 -0.34

Values shown for Spearman correlations (p<0.05). NS= Non-significant results (p

>0.05).

Page 63: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

63

Table 4. Mean values in vegetative and reproductive phenophases among and within of populations of Copaifera langsdorffii.

Jap Moc Par Beh Can Lav

µ CSD µ CSD µ CSD µ CSD µ CSD µ CSD

Leaf fall -2013 200.47°aB 62.26° 187.016°aC 48.67° 218.53°aA 39.44° 222.11°aA 28.26° 179.80°aC 48.81° 213.25°aA 43.05°

Leaf fall -2014 180.00°bC 46.91° 158.492°bD 47.577° 205.47°bA 30.64° 197.74°bA 25.26° 192.40°aB 42.78° 192.70°bB 33.47°

Leaf flushing -2013 270.79°aA 24.33° 247.64°aB 40.13°a 278.68°aA 15.38° 276.98°aA 22.81° 257.14°aB 40.40° 273.22°aA 11.69°

Leaf flushing -2014 226.92°bC 24.11° 221.59°bC 32.96°b 259.93°bA 27.82° 246.27°bB 26.60° 263.52°aA 42.87° 248.05°bB 15.28°

Mature leaf -2013 69.85°aB 96.57° 53.03°aB 103.88° 81.09°aA 102.57° 75.04°aA 104.16° 54.89°aB 104.92° 79.81°aA 102.80°

Mature leaf -2014 35.67°bB 101.67° 34.36°aB 106.23° 62.50°aA 102.33° 46.34°bA 103.44° 59.96°aB 100.40° 51.22°bB 101.91°

Flower -2013 54.60°A 27.12° 38.28°B 36.27° 31.74°B 20.34° 24.83°C 14.98° 23.17°C 20.09° 20.20°C 54.60°

Unripe fruit -2013 113.59°B 37.20° 94.47°C 58.40° 130.93°A 67.22° 113.03°B 41.73° 123.06°B 66.86° 124.87°B 68.19°

Ripe fruit -2013 186.72°C 32.93° 175.11°D 38.98° 219.43°A 32.40° 194.61°B 22.30° 221.51°A 26.34° 222.74°A 186.72°

µ= Mean Vector; CSD= Circular Standard Deviation. Lowercase letters comparison vegetative phenophases within populations between years of

collecting 2013 and 2014. Capital letters comparison vegetative phenophases among populations. Different letters P<0.05.

Page 64: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

64

FIGURES

Fig. 1: Rainfall monthly for populations studied of Copaifera langsdorffii. A) Lav; B)

Can; C) Beh; D) Par; E) Moc; and F) Jap. Historical monthly average of 54 years for

rainfall of locations of Copaifera langsdorffii populations.

Page 65: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

65

Fig. 2: Activity index for the vegetative phenophases and monthly rainfall during the

study in Copaifera langsdorffii for populations A) Lav; B) Can; C) Beh; D) Par; E)

Moc; and F) Jap. The symbols represent the following phenophases: Closed triangles=

Mature leaf; Closed circles= Leaf flushing; Closed squares= Leaf fall.

Page 66: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

66

Fig 3: Variation in the duration of leaf fall (A) and reproductive (B) periods in

Copaifera langsdorffii populations for years of 2013 (black bar) e 2014 (gray bar).

Population means and SE are shown. Arrow indicating gradient mesic (M) to xeric (X)

sites.

Page 67: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

67

Fig. 4: Activity index for the reproductive phenophases and monthly rainfall during the

study in Copaifera langsdorffii for populations A) Lav; B) Can; C) Beh; D) Par; E)

Moc; and F) Jap. The symbols represent the following phenophases: Closed triangles=

Ripe fruit; Closed circles= Unripe fruit; Closed squares= Flower.

Page 68: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

65

Capítulo II: Soil fertility determines seed size/number trade-off of a widely

distributed Neotropical tree along a climatic gradient

Matheus Lopes Souza1,*

, Marcilio Fagundes2, Maria Bernadete Lovato

3, Fernando

Valladares4,5

and José Pires de Lemos Filho1

1Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Belo

Horizonte, 31270, Brazil. 2Departamento de Biologia Geral, Universidade Federal de Minas

Gerais, ICB-UFMG, Belo Horizonte 31270, Brazil; 3Departamento de Biologia Geral,

Universidade Estadual de Montes Claros, CCBS-UNIMONTES, Montes Claros, 39401,

Brazil; 4LINCGlobal Departamento de Biogeografía y Cambio Global, Museo Nacional de

Ciencias Naturales, MNCN-CSIC, Madrid, 28006, Spain; 4,5

Departamento de Biología y

Geología ESCET, Universidad Rey Juan Carlos, Móstoles, 28933, Spain.

* For correspondence: E-mail [email protected]. Av. Avenida Presidente Antônio

Carlos, 6627 - Pampulha, Belo Horizonte - MG, 31270-901. Phone: (031) 3409-2568; Fax:

(031) 3409-2567.

Page 69: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

66

ABSTRACT 1

Aims We evaluated variation in seed traits and seed allocation of the widespread Neotropical 2

tree Copaifera langsdorffi. We hypothesized a seed size/number trade-off in populations of 3

environments with limited resource availability (low soil fertility and rainfall), determining 4

the production of larger seeds and in lower number. 5

Methods Five populations of C. langsdorffii were analysed covering a rainfall gradient in soils 6

with different fertility in the three biomes where the species occurs (Caatinga, Cerrado, 7

Atlantic Forest). 8

Results An independent effect of soil fertility and rainfall on seed mass was found, but the 9

number of seeds was only affected by rainfall. The seed size/number trade-off was determined 10

only by soil fertility. The results showed that low fertility soil is a key factor for size/number 11

trade-off in C. langsdorffii determining the production of large seeds in the poorest soil. 12

However, populations from sites with lower resource limitation exhibited lack of seed size/ 13

number trade-off, with populations in more mesic environments producing not only larger 14

seeds but also in higher number. A wide phenotypic variation in both seed mass and number 15

was observed especially in sites with high sazonality and inter-annual variability in 16

precipitation. 17

Conclusion The high capacity of C. langsdorffi to adjust the reproductive strategy according 18

to environmental conditions can significantly contribute to the niche breadth of the species, 19

and represents an important attribute for its persistence under future climate changes. 20

21

Keywords: Reproductive strategy; Soil fertility; Masting fruiting; Niche breadth; Climate 22

changes; Copaifera langsdorffii. 23

24

Page 70: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

67

INTRODUCTION 1

The capacity to modulate the reproductive allocation to different environmental 2

conditions can substantially contribute to the niche breadth and the extension of the 3

geographical distribution of a plant species (Primack 1979; Cabaço and Santos 2012; Colautti 4

and Barrett 2013; Delerue et al. 2013). The resource allocated to reproduction expresses the 5

success of the plants to produce propagules and is an important measure of plant fitness 6

(Harper and Ogden 1970). However, reproduction is widely recognized as costly and due to 7

limited resources in natural conditions a trade-off among the allocation recourse for 8

reproduction and other drains of plants (Chapin, 1991; Obeso 2002; Colautti and Barrett 9

2013). Resource allocation to reproduction varies according to life history of plant and the 10

needs of plants throughout their life cycle in different environmental conditions (Harper and 11

Ogden 1970; Koenig and Knops 2005; Wong and Ackerly 2005; Delerue et al. 2013; Wang et 12

al. 2015). In general, plants tend to allocate higher proportion of their energy to reproduction 13

in environments with limited resources (Primack 1979; Cabaço and Santos 2012; Wang et al. 14

2016). However, some studies have shown the contrary (Harper and Ogden 1970; Matlaga 15

and Horvitz 2015; Yuan et al. 2016). 16

One of the key processes that optimize reproductive allocation of plants in different 17

environments is the seed size/number trade-off (Venable 1992; Paul-Victor and Turnbull 18

2009). In general, the seed number translates directly into plant reproductive success and 19

often the production of more seeds occurs in detriment of their size (Westoby et al. 1992; 20

Leishman et al. 2000). However, in many situations (water stress, soil conditions, shading or 21

competition with established vegetation), the production of large seeds can be favored over 22

seed number (Westoby et al. 1996). Strategies with respect to variations in the size and 23

number of seeds produced by plants affect important ecological processes especially those 24

related to germination and establishment in different habitats (Guariguata and Ostertag 2001; 25

Page 71: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

68

Souza and Fagundes 2014). These variations in seed production can increase resilience of 1

species during the initial growth period of seedlings, particularly in environments subject to 2

extreme temperature ranges and a great variability in the precipitation throughout the year 3

(Baker 1972; Westoby 1998). Seedling initial size is crucial for survival in stressful 4

environments and this is determined by seed size (Baker 1972; Hanley et al. 2007). However, 5

the variation of seed traits in unstable conditions is still little known and its importance under 6

climate change is often ignored (Cochrane et al. 2015). 7

Species with wide distribution generally encompass great spatial variation in soil and 8

climate conditions, making them excellent models to evaluate consequences of environmental 9

change on natural populations, since variations in functional traits are found in a way to favor 10

the persistence of populations (Gianoli and González-Teuber 2005; Lázaro-Nogal et al. 2015, 11

Ribeiro et al. 2016). The fertility of the soil and climatic conditions are key factors that 12

determine the functional traits in plant species (Ramírez-Valiente et al. 2009; Yuan et al. 13

2016; Pontara et al. 2016). Changes in climate and landscape alter the environmental 14

conditions and the availability of resources, which can endanger large portion of biodiversity 15

(Nicotra et al. 2010). 16

Studies which encompass variation of seed traits in populations from different 17

environments are scarce for Neotropical plants (Lovato et al. 1994; Lacerda et al. 2004; 18

Goulart et al. 2006; Sales et al. 2013). In this study, we evaluated variations in seed 19

size/number trade-off along rainfall and soil fertility gradients in populations of Copaifera 20

langsdorffii, a widely distributed tree species. We hypothesized that the environment affects 21

the seed size, so that populations in environments with more limited resource (arid 22

environments and low soil fertility) have larger seeds and a lower number of seeds per 23

individual. We also evaluated the effects of soil fertility and rainfall in total investment in 24

biomass of seeds per branch to test whether allocation to reproduction increases under harsh 25

Page 72: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

69

conditions as has been hypothesized in previous studies (Cabaço and Santos 2012; Miranda et 1

al. 2014). Finally, we tested the effects of soil fertility and rainfall in phenotypic variation in 2

seed production within individuals of the different populations of C. langsdorffii. 3

4

MATERIAL AND METHODS 5

Species and study area 6

Copaifera langsdorffii Desf (Fabaceae) is a tropical tree species, with wide 7

distribution in South America (Carvalho 2003). In Brazil, this species occurs in vegetation 8

biomes (Caatinga, Cerrado, Atlantic Forest and Amazon), from north to south (Fagundes 9

2014). Individuals adult of C. langsdorffii vary from 2-35m, depending on the habitat where 10

occurs (Carvalho 2003; Costa et al. 2012). This species has reproduction supra-annual with 11

maturity and dispersion of fruit in the dry season between July and September (Pedroni et al. 12

2002; Costa et al. 2016). The fruit, when open exposes a single ellipsoid seed, black, partially 13

wrapped in a yellow-orange aril (Carvalho 2003). The main seed dispersers of C. langsdorffii 14

are birds (Rabello et al. 2010), however seeds on the ground can be also charged and removed 15

its arils by ants (Leal and Oliveira 1998; Fagundes et al. 2013). The seeds of C. langsdorffii 16

are orthodox and size and aryl removal of the seeds are key factors in the germination (Souza 17

and Fagundes 2014; Souza et al. 2015a). 18

This study was conducted in five populations of C. langsdorffii along 600 km in three 19

biomes in the state Minas Gerais, southeastern Brazil (Table 1). In each population were 20

obtained climatic data for the last 54 years (1961-2014) from the Brazilian National Institute 21

of Meteorology (INMET, 2015). Populations selected follow a gradient of dryness, with 22

populations further north located in a more xeric climate (average annual rainfall of 858.03-23

1029.43mm) with rainfall concentrated in a few months (Fig. 1), whereas populations further 24

Page 73: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

70

south are under a higher average annual precipitation (1490.12-1511.51mm) and better 1

distributed during the year (Fig. 1). We calculate the intra-annual variation in annual rainfall 2

of populations as coefficients of variation (CV = SD mean-1). The variability of intra-annual 3

rainfall was highly correlated whit annual precipitation (r = -0.88, P < 0.05), showing that 4

more xeric environments also show higher temporal heterogeneity in precipitation. 5

In general, the environments studied exhibit deep soils, not hydromorphic and acids 6

(Embrapa 2013). Specifically in the environments of population Can the shallow soil with low 7

permeability and high iron content (Jacobi et al. 2007). To characterize soil fertility in each 8

population were collected three soil samples (0-10 cm depth). Each soil sample was 9

composed of 10 points, collected near the individuals of C. langsdorffii selected for this study. 10

The soil samples were air dried and sent to soil fertility analysis. The soil characteristics of 11

each population are presented in Table 2. Generalized Linear Models (GLM) were conducted 12

for each soil characteristic and compared among populations through contrast analysis 13

(Crawley 2000). In general, the results show that the soil characteristics vary among 14

populations with marked differences in the population Can (Table 2), which is characterized 15

by more acid soils with lower fertility. Finally we conducted an analysis of principal 16

component (PCA) using all the soil fertility characteristics in order to obtain a single synthetic 17

variable soil. The complete results of the PCA can be seen in Table S1. Here, we used only 18

PC1 (axis of greater explanation of the PCA), here called "soil fertility". To facilitate 19

interpretation of the results we multiply the variable soil fertility by -1. 20

21

Seed sampling 22

Between July and September 2013, ten individuals of C. langsdorffii in reproductive 23

activity were selected in each study area. All trees were with a fully developed crown and in a 24

Page 74: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

71

good phytosanitary state (e.g. without lianas, parasitic plants or evidence of pathogens attack). 1

The data were collected in a year that C. langsdorffii had mass reproduction, which in all 2

populations approximately 75% of individuals presented reproductive activity at high 3

intensity (unpublished data). To estimate the number of seeds produced by individual of C. 4

langsdorffii, ten terminal branches (30 cm long) were collected from each tree in different 5

points of the canopies (Souza et al. 2015b). This collection aimed to evaluate the number of 6

seeds produced in the fixed branch length. To estimate average seed size produced by each 7

individual, fruits at dispersion stage were randomly collected over the crown. All fruits were 8

manually processed, eliminating malformed seeds and that exhibiting symptoms of attacks by 9

predators or pathogens. After processing, 20 seeds were randomly sampled per individual. As 10

size measurements, was evaluated the mass of each seed. 11

Total investment in biomass of seeds per branch in a plant (BSB) was calculated as 12

follows: BSB = Ns * Ms(g), where Ns is the average number of seeds per branch and Ms(g) is 13

the average mass of seeds of the plant. 14

15

Statistical analysis 16

Mixed generalized linear models (GLMM) were performed using the size and number 17

of seeds per plant as response variables. The partition of the variance of size and number of 18

seeds was considered for the following hierarchical levels: among populations, trees within 19

populations, seeds within individuals, this last level used as the error term (Uribe-Salas et al. 20

2008). F-tests were conducted using the appropriate error terms, considering the variation 21

among populations as a fixed factor and other explanatory variables as random effects. The 22

differences in the size and number of seeds among populations were evaluated by contrast 23

analysis (Crawley 2000). 24

Page 75: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

72

We performed generalized linear models (GLM) to test seed mass, seed number and 1

seed size/number within and among populations. The differences in the size and number of 2

seeds and seed size/number among populations were evaluated by contrast analysis. We also 3

performed GLM analyses to evaluate the effect of soil fertility and annual rainfall in seed 4

mass, seed number and seed size/number. In this case we use ratio between seed mass (g)/ 5

number of seeds per branch as response variable and the soil fertility and annual rainfall as 6

explanatory variable. To test if the resource allocation (total investment in biomass of seeds 7

per branch) is affected by environmental conditions, GLMs were constructed by using the 8

resource allocation as the response variable and the soil fertility and annual rainfall as 9

explanatory variables. 10

We tested the effect of soil fertility and annual rainfall in phenotypic variation (PV) of 11

size and number of seeds through regression performed by GLM, using the phenotypic 12

variation as response variables and soil fertility and annual rainfall as explanatory variable. 13

The phenotypic variation in the size and number of seeds was estimated as the percentage of 14

variation for the data set of each individual using the following formula: PV = (Sd / x) * 100, 15

where Sd is the standard deviation of a particular trait in an individual and x is the mean value 16

of this trait in the individual. 17

All data were analyzed using the R software (R Core Team 2013). All models were 18

built using the appropriate error distribution considering the nature of each response variable, 19

following by model criticism via residual analysis (Crawley 2000). All created models were 20

compared with the null model and the appropriateness of the models was tested by residual 21

analysis (Crawley 2000). 22

Page 76: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

73

RESULTS 1

GLMM revealed that the size and number of seeds produced per plant varied 2

significantly among and within populations (Table 3). Seed mass showed greater variation 3

among populations (44.15% of the total variance). The number of seeds varied more strongly 4

within individuals (error term, 86.63% of the variance explained at this level), with low 5

variation among populations (3.05%). Heavier seeds were found in Can population, with 6

approximately 75% heavier seeds as compared to seeds produced in Moc and Jap populations 7

that yielded the smallest seeds (Table 4). The number of seeds produced per branch was 8

significantly higher in Lav population, which produced approximately twice seeds per branch 9

than the individuals in Can and Jap populations, which have produced fewer seeds per branch 10

(Table 4). The highest seed size/number ratio was observed for the Can population, which 11

was at least twice that observed for the other populations (Table 4). 12

The seed mass of each population was affected by soil fertility and annual rainfall 13

(Table 5). Individuals of C. langsdorffii in populations in low fertility soils presented heavier 14

seeds (Fig. 2A), but the number of seeds per branch did not vary significantly with the soil 15

fertility (Table 5, Fig. 2B). However, if a population from a very oligotrophic soil (Can) is 16

excluded of the analysis, a negative liner correlation between seed number per branch and soil 17

fertility is found (F1,38= 4.18 P < 0.05 R2= 0,86), i.e, an increase of number of seeds with the 18

decrease of soil fertility. The seed mass and number of seeds produced were affected by 19

annual rainfall (Table 5), with heavier seeds and higher number of seeds produced in 20

populations from environments with higher annual rainfall (Fig. 2D and E, respectively). The 21

seed size/number was affected by soil fertility but not by rainfall (Table 5, Fig 2), with Can 22

population showing the highest values. 23

The seed size/number trade-off was observed only Can population (F1,8= 7.68 P < 0.05 24

R2= 0,49). Our results showed a negative relationship between the size and number of seeds in 25

Page 77: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

74

the Can population (Fig 3B), but in other populations this relationship was not observed (Fig 1

3). The ratio seed mass/ number per branch did not vary among populations, except Can that 2

showed values twice to three times higher than others did (Table 4). In Can population larger 3

seeds were found, however in a smaller number per branch (Fig. 2). 4

The reproductive allocation (total investment in biomass of seeds per branch) was 5

affected by annual rainfall but not by soil fertility (Table 6; Fig4). Populations in higher 6

rainfall environments invested more in reproduction when compared to populations in lower 7

rainfall environments (Fig. 4B) producing more and larger seeds (Fig. 2D and E). 8

The phenotypic variance in seed mass per individual and number of seeds per branch 9

were affected by environmental conditions of the populations. Lower phenotypic variation for 10

mass seeds (F1,48 = 8.00 P < 0.01; Fig 5A) and number of the seeds per branch (F1,48 = 5.67 P 11

< 0.05; Fig 5B) was found in poorer soils. Annual rainfall affected negatively phenotypic 12

variation of seed mass (F1,48 = 12.87 P < 0.001; Fig 5C) and number of the seeds per branch 13

(F1,48 = 6.63 P < 0.05; Fig 5D). 14

15

DISCUSSION 16

Our study showed that highly distrophic soil determined a seed size/number trade-off 17

in Copaifera langsdorffii. In populations from less distrophic soils, the seed size was not 18

associated with the number of seeds. Different of soil fertility, no relationship was found 19

between rainfall and seed size/number. On the other hand, the reproductive allocation (total 20

seed biomass per branch) was influenced by rainfall, so that plants of populations in 21

environments more mesic produced larger seeds and in higher amounts. 22

The trade-off between the number and size of the seeds has a solid theoretical base 23

(Smith and Fretwell 1974; Lloyd 1987) and several studies have shown this trade-off in plant 24

Page 78: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

75

reproductive processes (Shipley and Dion 1992; Turnbull et al. 1999; Jakobsson and Eriksson 1

2000; Leishman 2001; Sadras 2007). Limited resource availability generates a stronger trade-2

off in the allocation of energy for the production of larger seed or more seeds in function of 3

environment of plant, usually shifted to production of large seeds (Baker 1972; Stromberg and 4

Patten 1990; Murray et al. 2004; Ramírez-Valiente et al. 2009). The size of the seeds is 5

directly related to the amount of nutritional reserves that will be allocated for the initial 6

seedling growth (Primack 1987) and large seeds produce more vigorous seedlings when 7

compared to small seeds (Gross and Werner 1983; Gross 1984; Souza and Fagundes 2014). 8

Greater amount of stored reserves allows a higher probability of seedling establishment at 9

sites with lower resource availability (Baker 1972; Moles and Westoby 2004). Individuals of 10

C. langsdorffii in the more distrophic soil (Can population) produced larger seeds and in 11

smaller amounts. Thus, the low fertility of the soil is a key factor for the seed size/number 12

trade-off in C. langsdorffii. Although the relatively high total annual rainfall in the poorest 13

soil site of Can population, it is important to note that Ferruginous Rock Grassland soils also 14

have low water storage capacity (Jacobi et al. 2007), strengthening their low resource 15

availability. 16

The lack of the seed size/number trade-off in populations from less distrophic soils in 17

C. langsdorffii can be due to the reproductive pattern of the species (Koenig et al. 2009). C. 18

langsdorffii shows mass fruiting (Pedroni et al. 2002; Souza et al. 2015b) and this 19

reproductive pattern is marked by years of high seed production followed by years in which 20

production is drastically reduced (Silvertown 1980; Ramirez and Arroyo 1987; Tsvuura et al. 21

2011; Souza et al. 2015b). This study was conducted in a year of mass reproduction and 22

during events of mass reproduction trees shunt an disproportionate amount of resources into 23

flower and seed production, causing direct negative impact on growth and subsequent 24

reproductive events of individual plants (Koenig and Knops 1998; Koenig and Knops 2005; 25

Page 79: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

76

Hacket-Pain et al. 2015). Thus, the large allocation of resources to reproduction observed in 1

masting episodes could offset the size/number of seeds trade-off in species with mass 2

reproduction, since that resource limitation is not extreme, as was the case of Can population. 3

It has been proposed that resource availability is a key factor for supra-annual species 4

to display their reproductive activity and intensity of seeds production (Sork 1993; Koenig 5

and Knops 2005). Populations in places with higher water availability usually have higher 6

photosynthetic rates (Llorens et al. 2004; Lázaro-Nogal et al. 2015), may allocate more 7

resources for reproduction, producing larger seeds and in larger amount (Yuan et al. 2016). In 8

contrast, performance of individuals from dry sites can be impaired resulting in negative 9

impacts on reproductive allocation. Our results showed that the size and number of seeds 10

were positively correlated with rainfall. Therefore the variation among populations in total 11

seed biomass per branch observed in this study may represent an allocation to reproduction 12

contingent on resource availability. This idea is reinforced by the fact that environments with 13

high rainfall but in extremely poor soils (Can population) rendered reduced seed biomass per 14

branch, with production of large seeds, but in small quantities amounts. 15

Populations in low rainfall environments and more fertile soils presented higher intra-16

individual phenotypic variability in seed size and number. This high intra-individual variation 17

phenotypic variability can be attributed to the low environmental predictability, since these 18

sampled sites are also more heterogeneous climatically, with high seasonality and interannual 19

variation in precipitation. In unpredictable environments plants can develop certain 20

morphological and physiological adaptations in their seeds that increase survival under these 21

uncertain conditions (Harper and Ogden 1970; Wang et al. 2008). Small seeds germinate 22

faster so the seedlings can quickly occupy the environment (Baskin and Baskin 1998; Souza 23

and Fagundes 2014) making better use of the window of time when water is available. On the 24

other hand, large seeds produce more vigorous seedlings with a higher probability of survival, 25

Page 80: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

77

particularly under stressful conditions (Baker 1972; Hanley et al. 2007). Therefore, the 1

variation in seed size allows species to cope well with a relatively wide range of 2

environmental conditions, buffering, for instance, the negative influence of unpredictable 3

rainfall. 4

Our study highlights the capacity of C. langsdorffi to adjust the reproductive strategy 5

according to environmental conditions. This capacity can significantly contribute to the niche 6

breadth of the species. The most likely scenario of the climatic changes for the Neotropics is 7

an increase in heterogeneity and unpredictability of rainfall (Marengo et al. 2012). Thus, the 8

wide phenotypic variation in seed production presented by C. langsdorffii, especially in 9

environments with high variability in precipitation could be an important factor for the 10

persistence of C. langsdorffii under future climatic changes. 11

12

ACKNOWLEDGEMENTS 13

We thank all the collaborators of the Plant Physiology Laboratory - UFMG, Conservation 14

Biology Laboratory – UNIMONTES and directors of Paraopeba National Forest (FLONA-15

PARAOPEBA) for logistical support in the fieldwork. This study was carried out with 16

financial support from CNPq and FAPEMIG. This work was conducted with a scholarship 17

supported by the International Doctoral Sandwich Program (PDSE). Financed by CAPES – 18

Brazilian Federal Agency for Support and Evaluation of Graduate Education within the 19

Ministry of Education of Brazil. We also thank all the collaborators Ecology and Global 20

Change Group of National Museum of Natural Sciences (MNCN-CSIC), Madrid-Spain. 21

Page 81: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

78

LITERATURE CITED 1

Baker HG (1972) Seed weight in relation to environmental conditions in California. Ecology 2

53:997. doi: 10.2307/1935413 3

Baskin CC, Baskin JM (1998) Seeds – ecology, biogeography, and evolution of dormancy 4

and germination. Academic Press, New York 5

Cabaço S, Santos R (2012) Seagrass reproductive effort as an ecological indicator of 6

disturbance. Ecol Indic 23:116–122. doi: 10.1016/j.ecolind.2012.03.022 7

Carvalho P (2003) Espécies arbóreas brasileiras, 1st edn. Embrapa, Brasília 8

Chapin, FS (1991) Integrated responses of plants to stress. BioScience 41:29–36. doi: 9

10.2307/1311538 10

Cochrane A, Yates CJ, Hoyle GL, Nicotra AB (2015) Will among-population variation in 11

seed traits improve the chance of species persistence under climate change? Glob Ecol 12

Biogeogr 24:12–24. doi: 10.1111/geb.12234 13

Colautti RI, Barrett SC (2013) Rapid adaptation to climate facilitates range expansion of an 14

invasive plant. Science 342:364–366. 15

Costa FV, Queiroz ACM, Maia MLB, et al (2016) Resource allocation in Copaifera 16

langsdorffii (Fabaceae): How a supra-annual fruiting affects plant traits and 17

herbivory? Rev Biol Trop 64:507–520. 18

Costa MP, Pereira JAA, Benicio MHM, et al (2012) Alometria e arquitetura de Copaifera 19

langsdorffii (Desf.) Kuntze (Fabaceae) em fitofisionomias Neotropicais no Sul de 20

Minas Gerais. Ciênc Florest 22:223–240. 21

Page 82: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

79

Crawley M (2000) The R Book, 1st edn. John Wiley and Sons, New York 1

Delerue F, Gonzalez M, Atlan A, et al (2013) Plasticity of reproductive allocation of a woody 2

species (Ulex europaeus) in response to variation in resource availability. Ann For Sci 3

70:219–228. doi: 10.1007/s13595-012-0260-x 4

Embrapa (2013) Sistema brasileiro de classificação de solos, 3a edn. Embrapa, Brasília, DF 5

Fagundes M (2014) Galling insect community associated with Copaifera langsdorffii 6

(Fabaceae): the role of inter- and intra-annual host plant phenology. In: Fernandes 7

GW, Santos JC (eds) Neotropical Insect Galls. Springer Netherlands, Dordrecht, pp 8

163–177 9

Fagundes M, Costa FV da, Antunes SF, et al (2013) The role of historical and ecological 10

factors on initial survival of Copaifera langsdorffii Desf.(Fabaceae). Acta Bot Bras 11

27:680–687. 12

Gianoli E, González-Teuber M (2005) Environmental heterogeneity and population 13

differentiation in plasticity to drought in Convolvulus Chilensis (Convolvulaceae). 14

Evol Ecol 19:603–613. doi: 10.1007/s10682-005-2220-5 15

Goulart MF, Pires Lemos Filho J, Lovato MB (2006) Variability in fruit and seed morphology 16

among and within populations of Plathymenia (Leguminosae - Mimosoideae) in areas 17

of the Cerrado, the Atlantic Forest, and Transitional Sites. Plant Biol 8:112–119. doi: 18

10.1055/s-2005-865964 19

Gross KL (1984) Effects of seed size and growth form on seedling establishment of six 20

monocarpic perennial plants. J Ecol 72:369. doi: 10.2307/2260053 21

Page 83: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

80

Gross RS, Werner PA (1983) Relationships among flowering phenology, insect visitors, and 1

seed-set of individuals: Experimental studies on four co-occurring species of 2

Goldenrod (Solidago: Compositae). Ecol Monogr 53:95. doi: 10.2307/1942589 3

Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in 4

structural and functional characteristics. For Ecol Manag 148:185–206. doi: 5

10.1016/S0378-1127(00)00535-1 6

Hacket-Pain AJ, Friend AD, Lageard JGA, Thomas PA (2015) The influence of masting 7

phenomenon on growth-climate relationships in trees: explaining the influence of 8

previous summers’ climate on ring width. Tree Physiol 35:319–330. doi: 9

10.1093/treephys/tpv007 10

Hanley ME, Cordier PK, May O, Kelly CK (2007) Seed size and seedling growth: differential 11

response of Australian and British Fabaceae to nutrient limitation. New Phytol 12

174:381–388. doi: 10.1111/j.1469-8137.2007.02003.x 13

Harper JL, Ogden J (1970) The reproductive strategy of higher plants: I. The concept of 14

strategy with special reference to Senecio vulgaris L. J Ecol 58:681. doi: 15

10.2307/2258529 16

Jacobi CM, do Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on ironstone 17

outcrops: a diverse and endangered Brazilian ecosystem. Biodivers Conserv 16:2185–18

2200. doi: 10.1007/s10531-007-9156-8 19

Jakobsson A, Eriksson O (2000) Seed size and frequency patterns of understory plants in 20

Swedish deciduous forests. Ecoscience 9:74–78. 21

Page 84: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

81

Koenig WD, Knops JMH (2005) The mystery of masting in trees. Some trees reproduce 1

synchronously over large areas, with widespread ecological effects, but how and why? 2

Am Sci 93:340–347. 3

Koenig WD, Knops JMH (1998) Scale of mast-seeding and tree-ring growth. Nature 4

396:225–226. doi: 10.1038/24293 5

Koenig WD, Knops JMH, Carmen WJ, Sage RD (2009) No trade‐off between seed size and 6

number in the Valley Oak Quercus lobata. Am Nat 173:682–688. doi: 7

10.1086/597605 8

Lacerda DR, Filho JPL, Goulart MF, et al (2004) Seed-dormancy variation in natural 9

populations of two tropical leguminous tree species: Senna multijuga 10

(Caesalpinoideae) and Plathymenia reticulata (Mimosoideae). Seed Sci Res 14:127–11

135. doi: 10.1079/SSR2004162 12

Lázaro-Nogal A, Matesanz S, Godoy A, et al (2015) Environmental heterogeneity leads to 13

higher plasticity in dry-edge populations of a semi-arid Chilean shrub: insights into 14

climate change responses. J Ecol 103:338–350. doi: 10.1111/1365-2745.12372 15

Leal IR, Oliveira PS (1998) Interactions between fungus-growing ants (Attini), fruits and 16

seeds in Cerrado vegetation in southeast Brazil. Biotropica 20:170–178. 17

Leishman M, Wright IJ, Moles AT, Westoby M (2000) The evolutionary ecology of seed size. 18

In: Seeds: the ecology of regeneration in plant communities. M. Fenner, CAB 19

International, Wallingford, pp 31–57 20

Page 85: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

82

Leishman MR (2001) Does the seed size/number trade-off model determine plant community 1

structure? An assessment of the model mechanisms and their generality. Oikos 2

93:294–302. 3

Llorens L, Peñuelas J, Beier C, et al (2004) Effects of an experimental increase of temperature 4

and drought on the photosynthetic performance of two Ericaceous shrub species along 5

a North-South European gradient. Ecosystems. doi: 10.1007/s10021-004-0180-1 6

Lloyd DG (1987) Selection of offspring size at independence and other size-versus-number 7

strategies. Am Nat 129:800–817. 8

Lovato MB, Martins PS, Lemos Filho JP (1994) Germination in Stylosanthes humilis 9

populations in the presence of NaCl. Aust J Bot 42:717 – 724. 10

Marengo JA, Chou SC, Kay G, et al (2012) Development of regional future climate change 11

scenarios in South America using the Eta CPTEC/HadCM3 climate change 12

projections: climatology and regional analyses for the Amazon, São Francisco and the 13

Paraná River basins. Clim Dyn 38:1829–1848. doi: 10.1007/s00382-011-1155-5 14

Matlaga DP, Horvitz CC (2015) Large size and high light do not lower the cost of 15

reproduction for the Neotropical herb Goeppertia marantifolia. Am J Bot 102:350–16

357. doi: 10.3732/ajb.1400363 17

Miranda J de D, Jorquera MJ, Pugnaire FI (2014) Phenological and reproductive responses of 18

a semiarid shrub to pulsed watering. Plant Ecol 215:769–777. doi: 10.1007/s11258-19

014-0354-7 20

Moles AT, Westoby M (2004) Seed mass and seedling establishment after fire in Ku-ring-gai 21

Chase National Park, Sydney, Australia. Austral Ecol 29:383–390. 22

Page 86: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

83

Murray BR, Brown AHD, Dickman CR, Crowther MS (2004) Geographical gradients in seed 1

mass in relation to climate. J Biogeogr 31:379–388. 2

Nicotra AB, Atkin OK, Bonser SP, et al (2010) Plant phenotypic plasticity in a changing 3

climate. Trends Plant Sci 15:684–692. doi: 10.1016/j.tplants.2010.09.008 4

Obeso JR (2002) The costs of reproduction in plants. New Phytol 155:321–348. 5

Paul-Victor C, Turnbull LA (2009) The effect of growth conditions on the seed size/number 6

trade-off. PLoS One 4:e6917. 7

Pedroni F, Sanches M, Santos FAM (2002) Fenologia da copaíba (Copaifera langsdorffii 8

Desf. – Leguminosae, Caesalpinioideae) em uma floresta semidecídua no sudeste do 9

Brasil. Rev Bras Botânica 25:183–194. 10

Pontara V, Bueno ML, Garcia LE, et al (2016) Fine-scale variation in topography and 11

seasonality determine radial growth of an endangered tree in Brazilian Atlantic forest. 12

Plant Soil 403:115–128. doi: 10.1007/s11104-016-2795-3 13

Primack RB (1979) Reproductive effort in annual and perennial species of Plantago 14

(Plantaginaceae). Am Nat 114:51–62. 15

Primack RB (1987) Relationships among flowers, fruits, and seeds. Annu Rev Ecol Syst 409–16

430. 17

Rabello A, Ramos FN, Hasu E (2010) Efeito do tamanho do fragmento na dispersão de 18

sementes de Copaíba (Copaifera langsdorffii Delf.). Biota Neotropica 10:47–54. 19

R Core Team (2013) R: A language and environment for statistical computing. R Foundation 20

for Statistical Computing. R Foundation for Statistical Computing, Viena, Austria 21

Page 87: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

84

Ramirez N, Arroyo MK (1987) Variacion Espacial y Temporal en la Depredacion de Semillas 1

de Copaifera publiflora Benth. (Leguminosae: Caesalpinioideae) en Venezuela. 2

Biotropica 19:32. doi: 10.2307/2388457 3

Ramírez-Valiente JA, Valladares F, Gil L, Aranda I (2009) Population differences in juvenile 4

survival under increasing drought are mediated by seed size in cork oak (Quercus 5

suber L.). For Ecol Manag 257:1676–1683. doi: 10.1016/j.foreco.2009.01.024 6

Sadras VO (2007) Evolutionary aspects of the trade-off between seed size and number in 7

crops. Field Crops Res 100:125–138. doi: 10.1016/j.fcr.2006.07.004 8

Sales NM, Pérez-García F, Silveira FAO (2013) Consistent variation in seed germination 9

across an environmental gradient in a Neotropical savanna. South Afr J Bot 87:129–10

133. doi: 10.1016/j.sajb.2013.04.001 11

Shipley B, Dion J (1992) The allometry of seed production in herbaceous angiosperms. Am 12

Nat 139:467–483. 13

Silvertown JW (1980) The evolutionary ecology of mast seeding in trees. Biol J Linn Soc 14

14:235–250. 15

Smith CC, Fretwell SD (1974) The optimal balance between size and number of offspring. 16

Am Nat 108:499–506. 17

Sork VL (1993) Evolutionary ecology of mast-seeding in temperate and tropical oaks 18

(Quercus spp.). Vegetatio 107:133–147. 19

Souza ML, Fagundes M (2014) Seed size as key factor in germination and seedling 20

development of Copaifera langsdorffii (Fabaceae). Am J Plant Sci 5:2566–2573. doi: 21

10.4236/ajps.2014.517270 22

Page 88: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

85

Souza ML, Silva DRP, Fantecelle LB, Lemos Filho JP (2015a) Key factors affecting seed 1

germination of Copaifera langsdorffii, a Neotropical tree. Acta Bot Bras 29:473–477. 2

doi: 10.1590/0102-33062015abb0084 3

Souza ML, Solar RR, Fagundes M (2015b) Reproductive strategy of Copaifera langsdorffii 4

(Fabaceae): more seeds or better seeds? Rev Biol Trop 63:1161–1167. 5

Stromberg JC, Patten DT (1990) Variation in seed size of a Southwestern Riparian Tree, 6

Arizona Walnut (Juglans major). Am Midl Nat 124:269. doi: 10.2307/2426176 7

Tsvuura Z, Griffiths ME, Gunton RM, Lawes MJ (2011) Predator satiation and recruitment in 8

a mast fruiting monocarpic forest herb. Ann Bot 107:379–387. doi: 9

10.1093/aob/mcq262 10

Turnbull LA, Rees M, Crawley MJ (1999) Seed mass and the competition/colonization trade-11

off: a sowing experiment. J Ecol 87:899–912. 12

Uribe-Salas D, Sáenz-Romero C, González-Rodríguez A, et al (2008) Foliar morphological 13

variation in the white oak Quercus rugosa Née (Fagaceae) along a latitudinal gradient 14

in Mexico: Potential implications for management and conservation. For Ecol Manag 15

256:2121–2126. doi: 10.1016/j.foreco.2008.08.002 16

Venable DL (1992) Size-number trade-offs and the variation of seed size with plant resource 17

status. Am Nat 287–304. 18

Wang L, Huang Z, Baskin CC, et al (2008) Germination of dimorphic seeds of the desert 19

annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 Plant without Kranz 20

Anatomy. Ann Bot 102:757–769. doi: 10.1093/aob/mcn158 21

Page 89: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

86

Wang X, Taub DR, Jablonski LM (2015) Reproductive allocation in plants as affected by 1

elevated carbon dioxide and other environmental changes: a synthesis using meta-2

analysis and graphical vector analysis. Oecologia 177:1075–1087. doi: 3

10.1007/s00442-014-3191-4 4

Wang Y, Li L, Zhou D, Weiner J (2016) The allometry of reproductive allocation in a Chloris 5

virgata population in response to simulated atmospheric nitrogen deposition. Basic 6

Appl Ecol. doi: 10.1016/j.baae.2016.01.004 7

Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 8

199:213–227. doi: 10.1023/A:1004327224729 9

Westoby M, Jurado E, Leishman M (1992) Comparative evolutionary ecology of seed size. 10

Trends Ecol Evol 7:368–372. 11

Westoby M, Leishman M, Lord J, et al (1996) Comparative ecology of seed size and 12

dispersal. Philos Trans R Soc Lond B Biol Sci 351:1309–1318. doi: 13

10.1098/rstb.1996.0114 14

Wong TG, Ackerly DD (2005) Optimal reproductive allocation in annuals and an 15

informational constraint on plasticity. New Phytol 166:159–172. doi: 10.1111/j.1469-16

8137.2005.01375.x 17

Yuan S, Guo C, Ma L, Wang R (2016) Environmental conditions and genetic differentiation: 18

what drives the divergence of coexisting Leymus chinensis ecotypes in a large-scale 19

longitudinal gradient? J Plant Ecol 1–13. doi: 10.1093/jpe/rtv084 20

21

Page 90: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

87

TABLES

Table 1: Environment and climatic characterization of Copaifera langsdorffii populations. Population values of annual rainfall and annual

temperature means. Values of intra annual variation in annual rainfall are coefficients of variation (CV = SD mean-1

) expressed as percentage.

Data were obtained from the Brazilian National Meteorology Institute (www.inmet.gov.br) for the period 1961-2014. Population Coordinates Habitat Altitude (m) Rainfall (mm) Intra annual variation rainfal (%) Temperature (°C)

Jap 15º58’S, 44º16’W Caatinga 804 858.03 100.68 24.23

Moc 16o40’S, 43o48’W Cerrado 645 1029.27 101.99 22.97

Par 19°20’S, 44°24’W Cerrado 763 1295.27 94.69 21.29

Can 20°04’S, 43°59’W Ferruginous rock grassland 1423 1490.12 91.15 20.74

Lav 21º15'S, 45º02'W Atlantic forest 948 1511.51 83.69 20.02

Page 91: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

88

Table 2. Soil fertility properties in five populations Copaifera langsdorffii. H+Al = Potential acidity; SB = Sum of bases; T= Cation exchange

capacity; t= Effective capacity of cation exchange; M= Aluminum saturation index; V = base saturation. Mean values and standard deviation

(Sd) of soil characteristics in each population are shown.

Populations Jap Moc Par Can Lav

pH (in H2O) 5.57 (0.25)

a 5.30 (0.26)

a 5.33 (0.21)

a 4.50 (0.20)

b 5.10 (0.35)

a

H+Al (mmolc.dm-3

) 3.42 (0.67)b 5.63 (1.10)

b 7.56 (1.94)

b 20.31 (4.74)

a 7.20 (2.11)

a

Al (mmolc.dm-3

) 0.39 (0.38)a 1.43 (0.50)

a 1.17 (0.80)

a 1.55 (0.67)

a 0.84 (0.66)

a

Ca (mmolc.dm-3

) 1.72 (0.49)a 1.29 (0.36)

a 2.46 (1.54)

a 1.70 (0.29)

a 2.05 (1.23)

a

Mg (mmolc.dm-3

) 0.91 (0.24)b 0.68 (0.08)

b 1.22 (0.54)

b 0.33 (0.03)

a 0.63 (0.43)

a

P (mg.dm-3

) 1.97 (031)b 1.33 (0.35)

b 2.60 (0.61)

b 4.43 (0.55)

a 3.33 (1.50)

a

K (mg.dm-3) 86.33 (13.05)

b 166.00 (22.27)

a 182.67 (20.53)

a 76.33 (14.29)

b 109.00 (41.61)

b

SB (mmolc.dm-3

) 2.85 (0.54)a 2.40 (0.37)

a 5.47 (1.33)

a 2.22 (0.27)

a 2.96 (1.75)

a

T 6.39 (1.15)b 8.02 (0.84)

b 11.80 (0.18)

b 22.50 (4.51)

a 10.16 (1.05)

b

t 3.24 (0.57)a 3.83 (0.23)

a 5.47 (1.33)

a 3.77 (0.41)

a 3.8 (1.19)

a

M 11.52 (11.07)a 22.07 (15.84)

a 26.63 (21.50)

a 40.13 (12.9)

a 26.91 (23.57)

a

V 45.57 (3.36)a 30.26 (6.52)

a 35.46 (17.35)

a 10.28 (3.23)

b 29.37 (18.73)

a

Different letters after mean and standard deviation (Sd) indicate significant differences in Contrast analysis in GLM (P < 0.05).

Page 92: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

89

Table 3: Partitioning of variance (in percentage) for seed mass and seed number in

Copaifera langsdorffii. Variance components and significance levels were determined

with a GLMM.

Level

Population

Plant

[Population]

Individual

[Error]

Seed mass 44.15*** 23.91*** 31.92

Seed number 3.05** 10.31*** 86.63

(***, P < 0.001; **, P < 0.01; in GLMM).

Page 93: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

90

Table 4: Analysis of deviance of complete models to evaluate the seed mas, seed

number per branch and seed size/number trade-off among populations of Copaifera

langsdorffii. Mean values and standard deviation (in brackets) are shown.

Variables Jap Moc Par Can Lav

Seeds mass (g) 0.44 (0.11)c 0.42 (0.09)

c 0.54 (0.08)

b 0.75 (0.11)ª 0.56 (0.10)

b

Seed number 4.16 (3.06)c 5.65 (4.05)

b 6.87 (3.50)

b 3.00 (1.90)

c 8.29 (6.57)ª

Seed size/number

trade-off †

0.18 (0.15)b 0.14 (0.16)

b 0.10 (0.05)

b 0.36 (0.24)

a 0.17 (0.19)

b

Different letters after mean and standard deviation indicate significant differences in

Contrast analysis in GLM (P < 0.05). †, ratio between seed mass (g)/seed number per

branch.

Page 94: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

91

Table 5 – Analysis of deviance of complete models to evaluate the effect of soil fertility

and the annual rainfall in the size and number of seeds and to evaluate seed size/number

trade-off in Copaifera langsdorffii in different populations.

Response

Variable

Explanatory

variable

Deviance

Residual

Df

Residual

deviance

F P

Seed mass (g)

Soil fertility 0.32 48 0.68 30.43 ***

Rainfall (mm) 0.20 47 0.49 18.52 *

Soil fertility X

Rainfall (mm)

0.01 46 0.49 0.33 NS

Seed number

Soil fertility 34.77 48 938.16 2.02 NS

Rainfall (mm) 144.27 47 793.89 8.40 **

Soil fertility X

Rainfall (mm)

3.91 46 789.97 0.22 NS

Seed

size/number

trade-off †

Soil fertility 0.40 48 1.41 13.64 ***

Rainfall (mm) 0.06 47 1.35 2.15 NS

Soil fertility X

Rainfall (mm)

0.01 46 1.34 0.28 NS

***, P < 0.001; **, P < 0.01; * P < 0.05; NS, P > 0.05 in GLM. †, ratio between seed

mass to seed number.

Page 95: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

92

Table 6: Analysis of deviance of complete models to evaluate the effect of soil fertility

and the annual rainfall in the resource allocation to reproduction of Copaifera

langsdorffii in different populations.

Response

Variable

Explanatory

variable

Deviance

Residual

Df.

Residual

deviance

F P

Reproductive

allocation†

Soil fertility 5.03 48 376.32 0.74 NS

Rainfall (mm) 64.20 47 312.12 9.48 **

Soil fertility X

Rainfall (mm)

0.49 46 311.64 0.07 NS

**, P < 0.01; NS, P > 0.05 in GLM; †, total seed mass per branch.

Page 96: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

93

Table S1: Principal component analysis (PCA) for soil fertility characteristic in populations of Copaifera langsdorffii. . H+Al = Potential acidity;

SB = Sum of bases; T = Cation exchange capacity; t = Effective capacity of cation exchange; m = Aluminum saturation index; V = base

saturation.

PCA PC1 PC2 PC3 PC4

Eigenvalues 6.69 3.08 1.35 0.34

Percent (%) 55.75 25.66 11.27 2.85

Cumulative Percent (%) 55.75 81.41 92.69 95.53

Soil characteristic Eigenvectors

pH (in H2O) -0.88 0.40 -0.04 0.15

H+Al (mmolc.dm-3

) 0.82 -0.52 0.07 -0.01

Al (mmolc.dm-3

) 0.77 -0.07 -0.58 -0.16

Ca (mmolc.dm-3

) -0.66 -0.67 0.28 0.00

Mg (mmolc.dm-3

) -0.85 -0.34 -0.22 0.17

P (mg.dm-3

) 0.46 -0.75 0.32 0.06

K (mg.dm-3) -0.58 -0.23 -0.73 -0.09

SB (mmolc.dm-3

) -0.79 -0.60 0.04 0.05

T 0.70 -0.67 0.09 0.00

T -0.49 -0.80 -0.33 -0.05

M 0.80 -0.02 -0.32 0.50

V -0.96 0.07 0.16 0.06

Page 97: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

94

FIGURES

Figure 1: Historical monthly average of 54 years for rainfall of locations of Copaifera

langsdorffii populations. The symbols represent the following populations: Closed

triangles = Lavras (Lav); Closed circles = Canga (Can); Closed squares = Paraopeba

(Par); Open triangles = Montes Claros (Moc); Open circles = Japonvar (Jap).

Page 98: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

95

Figure 2: Effect of environmental conditions in seed production of the populations of

Copaifera langsdorffii and seed size/number trade-off. Figures A, B and C) Effect of

soil fertility in seed mass (g), number per branch and seed size/number trade-off,

respectively; Figures C, D and E) Effect of annual rainfall in seed mass (g), number per

branch and seed size/number trade-off, respectively. The seed size/number trade-off was

by ratio between seed mass (g) to seed number number per branch. Population means

and SE are shown (N= 50). ***, P < 0.001; **, P < 0.01; * P < 0.05; NS, P > 0.05 in

GLM. For populations symbols see Figure 1.

Page 99: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

96

Figure 3: Seed size/number trade-off in different populations of Copaifera langsdorffii.

A) Lavras (Lav); B) Canga (Can); C) Paraopeba (Par); D) Montes Claros (Moc); D)

Japonvar (Jap). Individual means of each population are shown (N= 10). *, P < 0.05;

NS, P > 0.05 in GLM. For populations symbols see Figure 1.

Page 100: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

97

Figure 4: Effect of soil fertility (A) and rainfall (B) in the reproductive allocation (total

seed mass per branch) in Copaifera langsdorffii populations. Population means and SE

are shown (N= 50). *, P < 0.05; NS, P > 0.05 in GLM. For populations symbols see

Figure 1.

Page 101: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

98

Figure 5: Effect of environmental conditions in phenotypic variation (measured as

percentage of change) of the populations of Copaifera langsdorffii for: Figures A and

B) Effect of soil fertility in seed mass (g) and number per branch; Figures C and D)

Effect of annual rainfall in seed mass (g) and number per branch. Population means and

SE are shown (N= 50). M, mesic; X, xeric. ***, P < 0.001; **, P < 0.01; * P < 0.05 in

GLM. For populations symbols see Figure 1.

Page 102: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

99

Capítulo III: Key factors affecting seed germination of Copaifera

langsdorffii, a Neotropical tree

Artigo publicado na revista Acta Botanica Brasilica 29(4): 473-478. 2015.

Matheus Lopes Souza1, Dávila Regina Pacheco Silva

1, Laura Bubantz Fantecelle

1, José Pires

de Lemos Filho1

Corresponding author: Matheus Lopes Souza

1. Programa de Pós-Graduação em ecologia conservação e manejo da vida silvestre,

Laboratório de Fisiologia Vegetal, Universidade Federal de Minas Gerais - UFMG, Belo

Horizonte, Minas Gerais, Brazil.

Address: Av. Avenida Presidente Antônio Carlos, 6627 - Pampulha, Belo Horizonte - MG,

31270-901.

E-mail: [email protected]

Page 103: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

Received: April 11, 2015 Accepted: June 11, 2015

ABSTRACTIn natural conditions biotic and abiotic factors interact, synergistically affecting seed germination. In this study, we ex-perimentally simulated natural conditions that occur during seed dispersal that can affect the germination of Copaifera langsdorffii. Specifically we evaluated the effect of aril removal by different dispersal agents (birds and ants) and fire on germination. The seeds were submitted to the following treatments: Control (seeds placed to germinate with aril intact); Acid (simulation of passage through the digestive tract of a bird); Aril removal (simulation of aril removed by ants); Fire (seeds exposed to fire). Germination percentage and time varied among treatments (X²=89.735, P<0.001; X²=16.225, P<0.001, respectively). None of the control seeds (intact aril) germinated. Treatments that simulated dispersal (Acid, Aril removal) did not differ in germination percentage, with about 50% of the seeds germinating, however, the acid treatment accelerated seed germination. Fire also had a positive effect on seed germination with about 80% of the seeds germinating. Our results demonstrate the importance of dispersal agents to the population dynamics of C. langsdorffii. Furthermore, the capacity of seeds of C. langsdorffii to tolerate high temperatures is an important attribute for the occurrence of this species in the Cerrado.

Keywords: Cerrado, Copaifera langsdorffii, fire, plant-disperser interaction, seed germination

Acta Botanica Brasilica 29(4): 473-478. 2015.doi: 10.1590/0102-33062015abb0084

Key factors affecting seed germination of Copaifera langsdorffii, a Neotropical tree

Matheus Lopes Souza1*, Dávila Regina Pacheco Silva1, Laura Bubantz Fantecelle1 and José Pires de Lemos Filho1

1 Programa de Pós-Graduação em ecologia conservação e manejo da vida silvestre, Laboratório de Fisiologia Vegetal, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil* Corresponding author: [email protected]

IntroductionSeed germination is a critical phase of the plant life cy-

cle, influencing the distribution and abundance of species in plant communities (Wulff 1986; Armstrong & Westoby 1993). Biotic factors, intrinsic to the seed and/or interac-tions with other organisms and abiotic factors, such as light, temperature, humidity and fire, affect germination differently (Baskin & Baskin 1998). Zoochorous seeds have fleshy structures that attract and reward their dispersers (Christianini et al. 2007) and often have substances that inhibit germination (Cipollini & Levey 1997; Yagihashi & Miyamoto 1998; Robertson et al. 2006). Thus, in addition to transporting seeds away from the mother plant, seed dispersers can be important to the successful germination of some species by removing compounds that inhibit germina-tion (Robertson et al. 2006; Silveira et al. 2012; Lessa et al. 2013). Birds and ants are important groups that mutually interact as seed dispersers and can remove inhibitors, thus promoting germination (Meyer & Witmer 1998; Chris-tianini & Oliveira 2010; Guerta et al. 2011; Lima et al. 2013), however, this influence is not uniform among zoochorous species (Barnea et al. 1991; Figueroa & Castro 2002).

Fire can interfere in many aspects of plant development, especially in the biology of seeds (Paula et al. 2009). The effects of fire on the seeds include loss of viability (Schmidt et al. 2005), dormancy break (Ribeiro et al. 2013), and the activation of genes important to germination by the pres-ence of smoke (Moreira et al. 2010). These effects depend mainly on the degree of tolerance a seed and the species life history has to high temperatures (Luna et al. 2007). The Cer-rado is an environment in which fire has been a recurrent factor for thousands of years (Salgado-Laboriau et al. 1997). In fact, recent studies have shown that seeds of plants of the Cerrado tend to be more tolerant to high temperatures than seeds of forest plants (Ribeiro et al. 2013; Ribeiro & Borghetti 2014). Despite these recent efforts, studies assess-ing the effects of fire on the germination of native Cerrado plant species remain scarce, especially investigations involv-ing species that are not endemic to this biome.

Copaifera langsdorffii (Fabaceae) is a species of tropical tree of 7-30 m in height (Carvalho 2003). The species is widely distributed in South America (Carvalho 2003). In Brazil the species occurs in the physiognomies of Cerrado, Atlantic Forest and gallery forest, from the north to the south (Almeida et al. 1998). Copaifera langsdorffii presents

100

Page 104: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

474

Matheus Lopes Souza, Dávila Regina Pacheco Silva, Laura Bubantz Fantecelle and José Pires de Lemos Filho

Acta bot. bras. 29(4): 473-478. 2015.

supra-annual fruiting, with alternating years of high and low or no fruit production (Pedroni et al. 2002; Fagundes et al. 2013). Flowering occurs from November to January and fruits mature in July to September, coinciding with the period of greatest deciduousness (Pedroni et al. 2002; Fagundes et al. 2013). There are many types of dispersers of the seed of Copaifera langsdorffii, but the primary seed dis-persers are birds (see Rabello et al. 2010), and the secondary dispersers are ants (see Leal & Oliveira 1998; Silva & Souza 2014). The seeds of C. langsdorffii have orthodox behavior (Bezerra et al. 2002) and pre-germination treatments of scarification can accelerate the germination process (Perez & Prado 1993). In addition, Souza & Fagundes (2014) showed that seed size as key factor in germination of C. langsdorffii.

In natural conditions, biotic and abiotic factors interact synergistically directly affecting time to germination and the percentage of successful seed germinations. Thus, the objective of this study was to evaluate seed dispersal of C. langsdorffii, in laboratory situations simulating field conditions, in order to determine the effects of biotic and abiotic factors on the process of seed germination. Specifi-cally we seek to answer the following questions: (i) What influence does aril removal have on seed germination of C. langsdorffii? (ii) Knowing that birds and ants can disperse the seeds of C. langsdorffii and that they remove the aril differently, do they have differing affects on germination? (iii) Does fire affect seed germination of C. langsdorffii?

Materials and methodsStudy area

Fieldwork was conducted in a Cerrado (Brazilian sa-vanna) area located in the Floresta Nacional de Paraopeba (FLONA-PARAOPEBA, 19°20’S, 44°24’W), in the munici-pality of Paraopeba, in southeastern Brazil. The climate is type AW according to the Köppen classification, with a rainy summer and a dry season from April to September, corresponding to the fall and winter. The average annual temperature is 20ºC and the annual accumulated rainfall is about 1300 mm (INMET 2015). Annual climatic variation is shown in Fig. 1.

Data collection

In August 2013, 10 reproductive individuals of Copaifera langsdorffii Desf. were selected at the study area. The trees were five to seven meters high, had well-formed crowns and were in a good phytosanitary state (e.g. without lianas or parasitic plants). Fruits were haphazardly collected from throughout the canopy of each selected tree (Costa et al. 2010). All collected fruits were manually treated and using similarly sized seeds, with malformed seeds and those with visual signals of attack by predators or pathogens being eliminated. After processing, the seeds of all individuals

were mixed and divided randomly among four treatments, with 100 seeds per treatment. The probability of germina-tion was calculated assuming each seed to be a statistically independent experimental unit (see Warton & Hui 2011).

The treatments used here simulate situations observed in the field that are suspected to influence the germination process. To evaluate the affect of aril removal by different seed dispersers and of fire on seed germination of C. langsdorffii, the seeds were submitted to the following treatments: control treatment, seeds placed to germinate with aril intact; acid treat-ment, simulation of the passage through the digestive tract of birds by exposing seeds to sulfuric acid (H2SO4) for 5 minutes; aril removed, simulation of aril removal by ants; fire treatment, seeds lacking arils into were partially buried in a layer of 5 cm of Cerrado soil in a 20 x 40 cm tray and covered by a litterfall layer from the study area, which was subsequently burned for about 30 minutes. After all treatments the seeds were rinsed with distilled water and tested for germination.

The seeds were placed in a gerbox, properly identified with their treatment, and covered with filter paper. The germination experiment was conducted in a germination chamber with controlled photoperiod and temperature (12 h/light at 30°C e 12 h/dark at 25°C). The seeds were monitored daily for 30 days to determine the percentage of germination and time to germination. A seed was consid-ered germinated when primary root protrusion occurred (Ferreira & Borghetti 2004).

A soaking test was conducted under the same germi-nation conditions using 30 different seeds. Seed mass was determined and then all seeds were immersed in distilled water and reweighed after 6, 18, 30, 48, 72, 96, 120, 144, 168, 192, 216 and 240 hours of water absorption. Relative increase in fresh weight (Wr) of seeds was calculated as Wr = [(Wf −Wi)/ Wi] ×100 where Wi is the initial seed weight and Wf the weight after each time interval of water absorp-tion (Baskin & Baskin 2004). Thus, imbibition curves were based on the increase in seed mass at different time intervals of seed immersion in distilled water.

Figure 1. Average monthly precipitation and temperature in Paraopeba-MG.

101

Page 105: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

475

Key factors aff ecting seed germination of Copaifera langsdorffi i, a Neotropical tree

Acta bot. bras. 29(4): 473-478. 2015.

Data Analysis

Data were analyzed using R software (R Core Team 2014). Germinability was evaluated by constructing a generalized linear model (GLM) using an appropriate er-ror distribution for each response variable. The model was assessed via residual analysis (Crawley 2007). The germi-nability of a seed, based on a binary response (germinated or non germinated), is commonly expressed as a percentage (Ranal & Santana 2006). We used the binomial distribution error, indicated for binary data as the germination. Recently, Warton & Hui (2011) showed that this statistical approach provides a significant gain in power. The effect of treatments on germination was tested using the germination percentage of each treatment as response variables and treatments as explanatory variables.

To evaluate the probability of germination over a period of time, survival analysis was performed in order to test the effect of treatments on time of seed germination (Souza & Fagundes 2014). Thus, germination percentage within each treatment was used as response variables, while germina-tion time was the explanatory variable. Survival analysis evaluates the likelihood of germination at a certain point in time, thus avoiding the temporal pseudo-replication inherent to the data.

Seed water absorption was tested by constructing Generalized Linear Mixed Models (GLMM), since these data also showed temporal pseudo-replication (Souza & Fagundes 2014). Thus, increased seed mass (Wr) was used as the response variable and time of water absorption (6, 18, 30, 48, 72, 96, 120, 144, 168, 192, 216 and 240 hours) as the explanatory variable.

ResultsGerminability varied among treatments (X² = 89.735,

P< 0.001). Our results demonstrated that aril removal positively influenced germination (Fig. 2). No significant

differences were observed in the proportion of germinated seeds between acid treatment and without aril. No seed with aril intact (control treatment) germinated (Fig. 2). Fire also positively affected seed germination (Fig. 2), having the highest germination percentage among treatments with about 80% of the seeds germinating. At the end of the ger-mination test, all non-germinated seeds were examined and found to be damaged and marked by the presence of fungi.

Overall, seeds germinated from the 4th to 25th day. The time to seed germination varied among treatments (X² = 16.225, P< 0.001). In this case, the removal of the aril af-fected germination time. Seeds submitted to acid treatment germinated more quickly than those without aril and those exposed to fire, which did not differ significantly (Fig. 3). The soaking test showed that water absorption varied with time (F = 243.609, P <0.001), and that the seeds of C. langs-dorffii exhibited great variation in water imbibition (Fig. 4).

Figure 2. Percentage of seeds of Copaifera langsdorffii succesfully germinatiing in different treatments. Control: seeds placed to germinate with aril intact. Acid: simulation of the seed passage through the digestive tract of birds through exposing seeds to sulfuric acid for 5 minutes. Aril removal: simulation of aril removal by ants. Fire: aril removal followed by partial burial.

Figure 3. Time to seed germination for Copaifera langsdorffii in different treatments. Vertical lines indicate the time required for germination of 50% of the seeds. Acid: simulation of the seed passage through the digestive tract of birds by exposing seeds to sulfuric acid for 5 minutes. Aril removal: simulation of aril removal by ants. Fire: aril removal followed by partial burial.

102

Page 106: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

476

Matheus Lopes Souza, Dávila Regina Pacheco Silva, Laura Bubantz Fantecelle and José Pires de Lemos Filho

Acta bot. bras. 29(4): 473-478. 2015.

DiscussionIn this study we examined some of the factors that af-

fect seed germination of Copaifera langsdorffii. Our results demonstrate that removing the aril is essential for seed germination in this species, since the maintenance of the aril completely inhibited seed germination. Studies show that zoochorous seeds have secondary compounds that inhibit germination (Cipollini & Levey. 1997; Yagihashi & Miyamoto 1998; Robertson et al. 2006). The presence of secondary compounds (e.g. coumarins) in arils may inhibit seed germination by one of two ways: by direct chemical inhibition or by influencing micro-environmental factors such as light and oxygen (Cipollini & Levey 1997). The characteristics of the seeds of C. langsdorffii indicate that germination inhibition is chemical, since the seeds are not photoblastic and the aril only partially covers the seed. Furthermore, the presence of the aril favors the growth of fungi, which may prevent seed germination (Ohkawara & Akino 2005). Our results also show that the seeds of C. langsdorffii do not exhibit physical dormancy, despite their slow water uptake (Baskin & Baskin 2004).

Aril removal positively affected germination. The treat-ments that simulated the effects of a disperser increased ger-mination by about 50%. These results are in accordance with other studies (Leal & Oliveira 1998; Robertson et al. 2006; Christianini et al. 2007; Lessa et al. 2013; Lima et al. 2013), and demonstrate the potential benefits of the seed dispersal process on seed germination (Lima et al. 2013). These results suggest that dispersers, in addition to transporting seeds away from the mother plant and thus avoiding intraspecific competition and decreasing the likelihood of an attack by predators (Janzen 1970; Swamy et al. 2011), are essential in the germination success of C. langsdorffii. Furthermore, during passage through the digestive tract of a frugivore, the seeds become scarified such that structures that can reduce or even prevent germination may be removed. Such scarification can accelerate the speed of germination and increase the proportion of successful germinating seeds (Robertson et al. 2006).

In many cases, zoochorous seeds, being produced in large numbers, are not all consumed by a primary disperser and usually fall to the soil near the mother plant, becoming available to other groups of animals, among which are other important dispersers (Christianini & Oliveira 2010; Lima et al. 2013). Specifically, C. langsdorffii has supra annual mass reproduction with high fruit production (Fagundes et al. 2013; Souza et al. 2015) and many seeds may go uneaten in this manner. Studies have shown that in such cases, ants are important secondary seed dispersers, carrying the seeds far from the mother plant (see Christianini & Oliveira 2010). Also, by removing the arils, ants reduce the chances of fungal attack on the seeds fallen on the fungi-prone tropical forest floor (Lima et al. 2013).

Our results indicate that fire was not detrimental to the survival of seeds of C. langsdorffii. Historically, fires appeared concomitantly with the origin of land plants and have played an important role throughout the history of life (Pausas & Keeley 2009). Traits adaptive to fire, such as toler-ance to high temperatures, increased plant fitness in these environments (Keeley et al. 2011). Studies in savannas have shown that some species adapted to these environments are able to tolerate high temperatures from the passage of fire (Delgado et al. 2008; Fichino et al. 2012; Ribeiro et al. 2013; Ribeiro & Borghetti 2014). Copaifera langsdorffii is a com-mon tree species in tropical forest environments (Carvalho 2003), and fire tolerance may be an attribute important for the occurrence of this species in the Cerrado (Rizzini 1976). Seeds of C. langsdorffii tolerate high temperatures, and the germination percentage increases after the passage of fire, which can be attributed to the control of microorganisms, such as fungi (Alencar et al. 2009). In fact, in our study, the seeds treated with fire had a low level of infestation by fungi.

Finally, our results show that biotic and abiotic factors can interact synergistically, affecting time to germination and the percentage of successful germinations of a zoo-chorous Neotropical tree. Evaluating the effects of dispersal on germination is important for understanding the quali-tative effectiveness of seed dispersal, as well as elucidating the role that dispersers play in the population dynamics of plants (Schupp et al 2010). The lack of germination among seeds with their arils intact demonstrates the importance of dispersal to the germination of C. langdorffii. Thus, con-servation of viable habitat for the maintenance of dispersers is essential for the reproductive success of C. langsdoffii. Considering the approaches, results and analyses of the present study, additional investigations into germination in field conditions are needed to elucidate the factors that determine the spatial distribution and abundance of species in natural plant communities.

AcknowledgmentsWe thank all the collaborators of the Plant Physiology

Laboratory - UFMG, for logistical support in the fieldwork.

Figure 4. Imbibition curve for seeds of Copaifera langsdorffii.

103

Page 107: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

477

Key factors aff ecting seed germination of Copaifera langsdorffi i, a Neotropical tree

Acta bot. bras. 29(4): 473-478. 2015.

The authors are indebted to Thais Ferreira Costa for her valuable revision of the English version. We also thank the directors of FLORESTA NACIONAL DE PARAOPEBA for logistical support. This study was carried out with financial support from CNPq and FAPEMIG. The authors also ac-knowledge CAPES, CNPq and FAPEMIG for research grants.

ReferencesAlencar KMC, Laura VA, Rodrigues APAC, Resende RMS. 2009.

Tratamento térmico para superação da dormência em sementes de Stylosanthes SW. (Fabaceae Papilionoideae). Revista Brasileira de Sementes 31: 164-170.

Almeida SP, Proença CEB, Sano SM, Ribeiro JF. 1998. Cerrado: espécies vegetais úteis. Brasília, Embrapa.

Armstrong DP, Westoby M. 1993. Seedlings from large seeds tolerated defoliation better: a test using phylogeneticaly independent contrasts. Ecology 74: 1092-1100.

Barnea A, Yom-Tov Y, Friedman J. 1991. Does ingestion by birds affect seed germination? Functional Ecology 5: 394-402.

Baskin CC, Baskin JM. 1998. Seeds – ecology, biogeography, and evolution of dormancy and germination. New York, Academic Press.

Baskin JM, Baskin CC. 2004. A classification system for seed dormancy. Seed Science Research, 14: 1-16.

Bezerra AME, Medeiros SF, Moreira MG, Moreira FJC, Alves TTL. 2002. Germinação e desenvolvimento de plântulas de copaíba em função do tamanho e da imersão da semente em ácido sulfúrico. Revista Ciência Agronômica 33: 5-12.

Carvalho PER. 2003. Espécies arbóreas brasileiras. Embrapa Informação Tecnológica. Brasília, Colombo: Embrapa Florestas.

Christianini AV, Mayhé-Nunes AJ, Oliveira PS. 2007. The role of ants in the removal of non-myrmecochorous diaspores and seed germination in a Neotropical savanna. Journal of Tropical Ecology 23: 343-351.

Christianini AV, Oliveira PS. 2010. Birds and ants provide complementary seed dispersal in a neotropical savanna. Journal Ecology 98: 573-582.

Cipollini ML, Levey DJ. 1997. Secondary metabolites of fleshy vertebrate dispersed fruits: adaptive hypotheses and implications for seed dis-persal. The American Naturalist 150: 346-372.

Costa FV, Fagundes M, Neves FS. 2010. Arquitetura da planta e diversidade de galhas associadas à Copaifera langsdorffii (Fabaceae). Ecología Austral 20: 9-17.

Crawley MJ. 2007. The R Book. New York, John Wiley and Sons. Delgado JA, Serrano JM, Lopez F, Acosta FJ. 2008. Seed size and seed

germination in the Mediterranean fire-prone shrub Cistus ladanifer. Plant Ecology 197: 269-276.

Fagundes M, Maia MLB, Queiroz ACM, Fernandes GW, Costa FV. 2013. Seed Predation of Copaifera langsdorffii Desf. (Fabaceae: Caesalpini-oideae) by Rhinochenus brevicollis Chevrolat (Coleoptera: Curculioni-dae) in a Brazilian Cerrado Fragment. Ecología Austral 23: 218-221.

Ferreira AG, Borghetti F. 2004. Germinação: do básico ao aplicado. Porto Alegre, Artmed.

Fichino B, Fidelis A, Schmidt I, Pivello V. 2012. Efeitos de altas temperaturas na germinação de sementes de capim-dourado (Syngonanthus nitens (Bong.) Ruhland, Eriocaulaceae): implicações para o manejo. Acta Botanica Brasilica 26: 508-511.

Figueroa JÁ, Castro SA. 2002. Effects of bird ingestion on seed germination of four woody species of the temperate rainforest of Chiloé Island, Chile. Plant Ecology 160: 17-23.

Guerta RS, Lucon LG, Motta-Junior JC. 2011. Bird frugivory and seed ger-mination of Myrsine umbellata and Myrsine lancifolia (Myrsinaceae) seeds in a Cerrado fragment in southeastern Brazil. Biota Neotropica 11: 59-65.

INMET – Instituto Nacional de Meteorologia. 2015. http://www.inmet.gov.br/portal/. 12 Feb. 2015.

Janzen DH. 1970. Herbivores and number of tree species in tropical forests. The American Naturalist 104: 501-528.

Keeley J, Pausas JG, Rundel PW, Bond WJ, Bradstock RA. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16: 406-411.

Leal IR, Oliveira PS. 1998. Interactions between fungus-growing ants (Attini), fruits and seeds in Cerrado vegetation in southeast Brazil. Biotropica 30: 170-178.

Lessa LG, Geise L, Costa FN. 2013. Effects of gut passage on the germina-tion of seeds ingested by didelphid marsupials in a neotropical savanna. Acta Botanica Brasilica 27: 519-525.

Lima MHC, Oliveira EG, Silveira FAO. 2013. Interactions between ants and non-myrmecochorous fruits in miconia (Melastomataceae) in a neotropical Savanna. Biotropica 45: 217-223.

Luna B, Moreno JM, Cruz A, Fernández-González F. 2007. Heat-shock and seed germination of a group of Mediterranean plant species growing in a burned area: an approach based on plant functional types. Envi-ronmental and Experimental Botany 60: 324-33.

Meyer GA, Witmer MC. 1998. Influence of seed processing by frugivorous birds on germination success of three north American shrubs. The American Midland Naturalist Journal 140: 129-139.

Moreira B, Tormo J, Estrelles E, Pausas JG. 2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany 105: 627-635.

Ohkawara K, Akino T. 2005. Seed cleaning behavior by tropical ants and its anti-fungal effect. Journal of Ethology 23: 93-98.

Paula S, Arianoutsou M, Kazanis D, et al. 2009. Fire-related traits for plant species of the Mediterranean basin. Ecology 90: 1420.

Pausas JG, Keeley J. 2009. A burning btory: The role of fire in the history of life. BioScience 59: 593-601.

Pedroni F, Sanchez M, Santos AM. 2002. Fenologia da copaíba (Copaifera langsdorffii Desf. - Leguminosae, Caesalpinioideae) em uma floresta semidecídua no sudeste do Brasil. Revista Brasileira de Botânica 25: 183-194.

Perez SCJGA, Prado CHBA. 1993. Efeitos de diferentes tratamentos pré-germinativos e da concentração de alumínio no processo germina-tivo de sementes de Copaifera langsdorfii Desf. Revista Brasileira de Sementes 15: 115-118.

R Development Core Team 2008. R: A language and environment for sta-tistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.rproject. Org.

Rabello A, Ramos FN, Hasu E. 2010. Efeito do tamanho do fragmento na dispersão de sementes de Copaíba (Copaifera langsdorffii Delf.). Biota Neotropica 10: 47-54.

Ranal MA, Santana DG. 2006. How and why to measure the germination process? Revista Brasileira de Botânica 29: 1-11.

Ribeiro LC, Borghetti F. 2014. Comparative effects of desiccation, heat shock and high temperatures on seed germination of savanna and forest tree species. Austral Ecology 39: 267-278.

Ribeiro LC, Pedrosa M, Borghetti F. 2013. Heat shock effects on seed ger-mination of five Brazilian savanna species. Plant Biology 15: 152-157.

Rizzini CT. 1976. Influência da temperatura sobre a germinação de diásporos do cerrado. Rodriguésia 28: 341-381.

Robertson AW, Trass A, Ladley JJ, Kelly D. 2006. Assessing the benefits of frugivory for seed germination: the importance of the deinhibition effect. Functional Ecology 20: 58-66.

Salgado-Labouriau ML, Cassetti V, Ferraz-Vicentini KR, et al. 1997. Late Quaternary vegetational and climatic changes in cerrado and palm swamp from Central Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 128: 215-226.

Schmidt IB, Sampaio AB, Borghetti F. 2005. Efeitos da época de queima sobre a reprodução sexuada e estrutura populacional de Heteropterys pteropetala (Adr. Juss.), Malpighiaceae, em áreas de Cerrado sensu stricto submetidas a queimas bienais. Acta Botanica Brasilica 19: 927-34.

Schupp E, Jordano P, Gomez JM. 2010. Seed dispersal effectiveness revis-ited: a conceptual review. New Phytologist 188: 333-353.

Silva A, Souza DJ. 2014. Interação entre Atta sexdens e espécie arbórea Copaifera langsdorfii Desf. em remanescente florestal de Cerrado. Revista Verde 9: 182-189.

104

Page 108: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

478

Matheus Lopes Souza, Dávila Regina Pacheco Silva, Laura Bubantz Fantecelle and José Pires de Lemos Filho

Acta bot. bras. 29(4): 473-478. 2015.

Silveira FAO, Mafia PO, Lemos-Filho JP, Fernandes GW. 2012. Species-specific outcomes of avian gut passage on germination of Melastoma-taceae seeds. Plant Ecology and Evolution 145: 350-355.

Souza ML, Fagundes M. 2014. Seed size as key factor in germination and seedling development of Copaifera langsdorffii (Fabaceae). American Journal of Plant Sciences 5: 2566-2573.

Souza ML, Sollar RR, Fagundes M. 2015. Reproductive strategy of Copaifera langsdorffii (Fabaceae): more seeds or better seeds? Revista de Biologia Tropical (in press).

Swamy V, Terborgh J, Dexter KG, Best BD, Alvarez P, Cornejo F. 2011. Are all seeds equal? Spatially explicit comparisons of seed fall and sapling recruitment in a tropical forest. Ecology Letters 14: 195-201.

Warton D, Hui F. 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92: 3-10.

Wulff RD. 1986. Physiological performance seed size variation in Desmo-dium paniculatum. Journal of Ecology 74: 99-114.

Yagihashi T, Hayashida M, Miyamoto T. 1998. Effects of bird ingestion on seed germination of Sorbus commixta. Oecology 114: 209-212.

105

Page 109: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

106

Capítulo IV: Climatic heterogeneity as a generator of phenotypic plasticity

in functional leaf traits of a neotropical tree species widely distributed

Matheus Lopes Souza1,*

, Alexandre Aparecido Duarte1, Maria Bernadete Lovato

2, Marcilio

Fagundes3, Fernando Valladares

4,5, Jose Pires de Lemos Filho

1

1Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Belo

Horizonte, 31270, Brazil; 2Departamento de Biologia Geral, Universidade Federal de Minas

Gerais, ICB-UFMG, Belo Horizonte 31270, Brazil; 3Departamento de Biologia Geral,

Universidade Estadual de Montes Claros, CCBS-UNIMONTES, Montes Claros, 39401,

Brazil; 4LINCGlobal Departamento de Biogeografía y Cambio Global, Museo Nacional de

Ciencias Naturales, MNCN-CSIC, Madrid, 28006, Spain; 5Departamento de Biología y

Geología ESCET, Universidad Rey Juan Carlos, Móstoles, 28933, Spain.

* For correspondence: E-mail [email protected]. Av. Avenida Presidente Antônio

Carlos, 6627 - Pampulha, Belo Horizonte - MG, 31270-901. Phone: (031) 3409-2568; Fax:

(031) 3409-2567.

Page 110: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

107

ABSTRACT 1

Climatic changes are challenging for sessile organisms and phenotypic plasticity has been 2

regarded as an important way to cope with these changes, preventing local extinctions. We 3

evaluate variation in metamer traits (internode, petiole and corresponding leaf) and 4

chlorophyll fluorescence parameters within and between populations of Copaifera 5

langsdorffii along a climatic gradient. We hypothesized that environmental variability 6

increases both phenotypic variability and plasticity. We selected six populations of C. 7

langsdorffii along a climatic gradient from semi-arid to more humid regions covering three 8

different biomes (Caatinga, Cerrado, and Atlantic Forest) in Brazil. Local climatic conditions 9

significantly affected the morphological and physiological traits of each population. 10

Individuals from xeric regions had lower specific leaf area (SLA), lower investment in leaf 11

area per total dry mass of metamer and higher specific petiole length. Greater plasticity in 12

response to light was found in environments with greater interannual variation of rainfall and 13

higher aridity. High plasticity in environmentally heterogeneous sites and large differences 14

among populations can explain, at least in part, the wide geographic distribution of C. 15

langsdorffii over a range of different types of habitats. Higher plasticity in unpredictable 16

environments can contribute for C. langsdorffii cope with ongoing climatic changes. 17

18

Key works: Copaifera langsdorffii; heterogeneous precipitation; aridity gradient; climate 19

changes; differentiation of populations. 20

21

Page 111: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

108

INTRODUCTION 1

Evaluating the effects of environmental conditions on natural populations is important to 2

understand the evolutionary processes maintaining biodiversity and the possible impacts that 3

global climate change can cause in ecosystems (Hooper et al. 2012; Cardinale et al. 2012; 4

Garcia et al. 2014). Climate change is expected to increase average global temperature, 5

precipitation variability and frequency of extreme events, leading to drier environments in 6

many already arid regions (IPCC 2014). Changes in climate and landscape alter the 7

environmental conditions and the availability of resources, which can endanger large portion 8

of biodiversity (Nicotra et al. 2010). Due to the rapid environmental changes, species can 9

show three different responses: (i) migration to a more favorable environment, (ii) adjusting 10

their functional trait values to new conditions by phenotypic plasticity or (iii) adaptation 11

through natural selection (Nicotra et al. 2010; Matesanz and Valladares 2014). However, 12

these responses depend on the intensity and direction of environmental change, life history 13

characteristics, intraspecific genetic variation and interspecific interactions (Nicotra et al. 14

2010; Nunney 2016). 15

Phenotypic plasticity is the ability of a genotype to produce different morphological 16

and physiological responses when is exposed to different environmental conditions (Sultan 17

1995; Lázaro-Nogal et al. 2015). Thus, plasticity can attenuate effects of environmental 18

changes that occur throughout the plant life cycle, increasing their tolerance to stress 19

(Gimeno et al. 2008; Matesanz and Valladares 2014). In this sense, phenotypic plasticity is a 20

major mode of adaptation in plants, and therefore essential to prevent local extinctions of 21

species under a possible climate change scenario (Matesanz et al. 2010; Hoffmann and Sgrò 22

2011). The degree of phenotypic plasticity varies among populations and is often higher in 23

environments with greater variation in rainfall (Gianoli 2004; Matesanz et al. 2010; 24

Baythavong 2011; Lázaro-Nogal et al. 2015). The high plasticity found in some populations 25

Page 112: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

109

in unpredictable environments suggests that these populations are better prepared for possible 1

climate changes. However, phenotypic plasticity has rarely been considered in the context of 2

the evolutionary responses of plants to climate change along their geographic distribution 3

(Lázaro-Nogal et al. 2015). 4

Species that are widely distributed generally present populations under different 5

environmental pressures, being affected by multiple and unpredictable stressful factors such 6

as variation in rainfall, temperature, light and soil fertility (Valladares and Pearcy 1997; 7

Lemos Filho 2000; Sultan 2003; Lázaro-Nogal et al. 2015). For this reason, significant 8

differences in ecophysiological characteristics are expected among and within populations 9

(Bruschi et al. 2003; González-Rodríguez and Oyama 2005; Uribe-Salas et al. 2008), in 10

response to environment due to different levels of plasticity and genetic variability (Heschel 11

et al. 2004; Goulart et al. 2005; Lemos Filho et al. 2008; Ramírez-Valiente et al. 2014a). The 12

combination of stressful factors and environmental unpredictability that widely distributed 13

species are subject make them excellent models to evaluate consequences of climate change 14

on natural populations, since significant changes are observed in the functional traits of these 15

species in a favorable way to the environmental pressures imposed on each population 16

(Gianoli and González-Teuber 2005; Lázaro-Nogal et al. 2015). 17

Here we evaluated the variation in morphological and physiological traits of metamers 18

among and within populations of Copaifera langsdorffii, a neotropical tree widely 19

distributed, along a climatic gradient. In addition, we determined the effects of climate 20

heterogeneity in the phenotypic plasticity of morpho-physiological traits of metamers. For 21

that, we hypothesized that environmental conditions will determine distinct morphological 22

and physiological traits in different populations since populations exposed to long periods of 23

drought may have evolved adaptations to low availability of water. Furthermore, we expect 24

that a greater heterogeneity in rainfall may have led to greater plasticity in functional traits. 25

Page 113: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

110

MATERIALS AND METHODS 1

Species and study area 2

Copaifera langsdorffii Desf (Fabaceae) is a tropical tree species, with a wide variation in size 3

with reproductive adults varying from 2 to35m, depending on the habitat where it occurs 4

(Carvalho 2003; Costa et al. 2012). This species has a wide distribution in South America 5

(Carvalho 2003). Particularly in Brazil, it occurs in the biomes Caatinga, Cerrado, Atlantic 6

Forest and Amazon (Almeida et al. 1998). C. langsdorffii has composite leaves with 4 to 12 7

leaflets alternate or opposite (Almeida et al. 1998; Silva-Júnior 2005). This species has a 8

striking leaf fall during the driest months, which is immediately followed by leaf flush 9

(Pedroni et al. 2002). Reproduction is supra-annual with seed dispersion in the dry season 10

(Pedroni et al. 2002). C. langsdorffii seed dispersion is realized mainly by animals, 11

particularly birds (Rabello et al. 2010), however seeds on the floor can be also charged and its 12

arils removed by ants (Leal and Oliveira 1998). The size of the seeds and the aryl removal are 13

key factors in the germination of seeds of C. langsdorffii (Souza and Fagundes 2014; Souza 14

et al. 2015). 15

Six populations of C. langsdorffii were selected in the Minas Gerais state, 16

southeastern Brazil (Fig. 1). Climatic data for the last 54 years (1961-2014) for each location 17

were obtained from the Brazilian National Institute of Meteorology (INMET, 2015). 18

Distribution of studied populations follows a gradient of dryness, which north populations 19

located in more xeric climate (Table 1). Populations located further north are under lower 20

mean annual rainfall (858.0-1029.4 mm) and higher interannual rainfall variability (30.7-21

26.2%), On the other hand, population further south have a higher mean annual precipitation 22

(1490.1-1511.5mm) and less variability (21.4-18.1%). From the climatic data, we calculated 23

the aridity index (AI) for each population by the formula: AI = P/PET, where P is total 24

precipitation of the month and PET monthly potential evapotranspiration at each location 25

Page 114: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

111

obtained from climatic stations (Picotte et al. 2009). The aridity data showed that 1

northernmost populations suffer a longer drought period during the year (Figure 2). 2

3

Morphological traits 4

Between April and May 2013, 20 individuals of C. langsdorffii were selected in each 5

population, except population Beh with 12 individuals by difficulty of access to trees. From 6

each individual, we collected a total of 22 metamer (i.e. internode, petiole and corresponding 7

leaf), 11 metamers exposed to the sun and 11 metamers in the shade (Hulshof and Swenson 8

2010). Metamers in the last nodes with mature and fully expanded leaves were sampled. 9

Once collected, metamers were immediately photographed with a millimeter scale for a later 10

determination of leaf area (LA in cm²), the length of the petiole and between nodes (PL and 11

IL, respectively, in cm) using software Image J. Metamers were put in paper bags and dried 12

in an oven (at 70 ° C for 72h). Each part of metamer was weighted separately to obtain the 13

dry mass. We calculated specific leaf area (SLA; area of the leaf blade by dry mass unit, in 14

cm²g-1

), the metamer leaf area ratio (LARm; area of the leaf blade per unit mass of metamer; 15

in cm²g-1

), the specific length of the petiole (SPL; length of the petiole per unit mass of the 16

petiole; in cm g-1

), and specific length of internode (SIL; internode length per unit mass of 17

internode, in cm g-1

) (Poorter 2009). 18

19

Physiological traits 20

Photosynthesis fluorescence measurements were conducted in three individuals of C. 21

langsdorffii from each population. In each individual, chlorophyll fluorescence was measured 22

in 6 leaves, 3 exposed to sun and 3 shaded. The chlorophyll fluorescence measurements were 23

performed at midday, using portable fluorometer (PAM-2500, Walz Germany). The potential 24

Page 115: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

112

quantum yield of photosystem II was calculated by Fv/Fm = (Fm-F0)/Fm, where Fm and F0 1

are the fluorescence maximum and minimum, respectively. Fm and F0 were measured after 2

30 minutes of dark adaptation. Light saturation curves were obtained using the light curve 3

program of the fluorometer, and used to determinate maximum apparent photosynthetic 4

electron transport rate (ETRmax) and saturating photosynthetically active photon flux density 5

(PPFDsat) following Rascher et al. (2000). 6

7

Data analysis 8

Mixed generalized linear models (GLMM) were performed using all morphological and 9

physiological traits as response variables. The partition of the variance of traits was 10

considered for the following hierarchical levels: among populations, among individuals 11

within populations, among leaves within individuals in different light conditions and leaves 12

within individuals in the same light conditions, this last level was used as the error term 13

(González-Rodríguez and Oyama 2005; Uribe-Salas et al. 2008). F-tests for each metamer 14

trait were conducted using the appropriate error terms, considering the variation among 15

populations as a fixed factor and other explanatory variables as random effects (Crawley 16

2000). 17

We performed generalized linear models (GLM) to test the hypothesis that 18

populations exposed to long periods of drought have evolved adaptations to low availability 19

of water. In this case, we used average values of each individual of the morphological and 20

physiological traits as response variables and the aridity index of each population as an 21

explanatory variable. A model for each response variable was performed. 22

Phenotypic plasticity (P) was estimated as the percentage of change in the mean trait 23

value from individual for different light conditions, thus P = [(Xi - Xs) / Xi] * 100, where Xi 24

Page 116: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

113

is the highest average value of a particular trait in an individual and Xs is the lowest average 1

value of a particular trait in an individual (Valladares et al. 2006). We tested the effect of 2

environmental heterogeneity in phenotypic plasticity using GLM. We used average values of 3

each individual of the morphological and physiological traits, the average plasticity of all 4

morphological traits and the average plasticity of all physiological traits as response variables 5

and the interannual variation in precipitation and the aridity index of each population as 6

explanatory variables. 7

All data were analyzed using the R software (R Core Team 2013). All models were 8

built using the appropriate error distribution considering the nature of each response variable, 9

following by model criticism via residual analysis (Crawley 2000). All created models were 10

compared with the null model and the appropriateness of the models was tested by residue 11

analysis (Crawley 2000). 12

13

RESULTS 14

Phenotypic variance partition 15

GLMM revealed that all morphological traits significantly varied in all hierarchical levels 16

considered (Table 2). For all leaf morphological traits, the higher proportion of variance 17

(41.47-68.43%) was found among leaves within individuals in the same light condition (error 18

term) (Table 2). For all traits, a significant variation among light conditions within of 19

individual and population was found, with SLA, LARm, ETRmax and Fv/Fm, showing 20

considerable proportion of variance in this hierarchical level (17.90-67.14%). The differences 21

among individuals within of the populations for morphological traits varied from 3.93 to 22

29.34%. No variation among individuals within populations was observed for any 23

physiological trait. The traits that were the most strongly differentiated among individuals 24

Page 117: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

114

within populations were PL and IL (29.34 and 24.52%, respectively). Significant variation 1

among populations was found for all traits, with exception of Fv/Fm, ranging from 8.85 to 2

38.85%. Higher divergence among populations was found for LA (25.46%), SPL (37.71%), 3

ETRmax (26.08%) and PPDFsat (38.85%) (Table 2). 4

5

Morphological and physiological traits along an aridity gradient 6

Most of the morphological and physiological traits of metamers were significantly associated 7

with aridity (P < 0.05), except the petiole length, internode length and ETRmax. The effect of 8

aridity on morphological traits was more evident in characteristics related to water 9

conservation. Populations in more xeric environments tend to have metamers with larger 10

leaves (R² = 0.54, P = 0.001, Fig. 3a). However, these same populations have metamers with 11

lower SLA (R² = 0.91, P=0.001, Fig. 3b), lower leaf area per metamer mass (LARm; R² = 12

0.83, P = 0.001, Fig. 3c) and lower specific length of the petiole (SPL; R² = 0.97, P = 0.001, 13

Fig. 3d), and specific length of internode (SIL, R² = 0.50, P = 0.001, Fig. 3e). The level of 14

light for photosynthesis saturation (PPDFsat) was affected by aridity. Individuals of C. 15

langsdorffii in drier habitats showed higher PPDFsat compared to habitats more humid (R² = 16

0.54, P = 0.01, Fig. 3f). The potential quantum yield of photosystem II (Fv/Fm) was 17

significantly reduced along the aridity gradient, indicating a higher photoinhibition in more 18

xeric habitats (R² = 0.93, P = 0.001, Fig. 3g). 19

20

Plasticity vs. interannual variation in precipitation 21

The variability of interannual precipitation and aridity index were highly correlated (r = -22

0.96, P < 0.001), showing that more xeric environments also show higher temporal 23

heterogeneity in precipitation. So here we presented only results of the effects of interannual 24

Page 118: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

115

variation of precipitation in plasticity (Fig. 4), however the effects of aridity in plasticity can 1

be observed in Supplementary Data Fig. S1. The plasticity of petiole length, internode length, 2

ETRmax, Fv/Fm and general mean plasticity of morphological and physiological traits were 3

positively correlated with the interannual variation in precipitation (Fig. 4). LA, SLA, LARm, 4

SPL, SIL and PPDFsat showed no relation with interannual variation in precipitation (data no 5

showed). 6

7

DISCUSSION 8

In this study, we investigated climatic drivers of variation in morpho-physiological traits and 9

phenotypic plasticity in metamers of Copaifera langsdorffii populations. Our results showed 10

that aridity was associated with the variation in morphological and physiological traits in 11

different populations. Moreover, aridity index and the interannual precipitation variation 12

influenced the phenotypic plasticity of each population in response to light. Populations in 13

more arid habitats and with higher precipitation heterogeneity had higher phenotypic 14

plasticity. However, the largest fraction of total morpho-physiological variation was found 15

within individuals. The total variance within individuals, including the variance among leaves 16

both in different and in the same light conditions, was on average 64.4% and 75.1% for the 17

morphological and physiological traits, respectively. These results are in accordance with 18

other studies also showing a greater variation within individuals (Bruschi et al. 2003; 19

González-Rodríguez and Oyama 2005; Uribe-Salas et al. 2008). The traits that showed higher 20

variation within individuals were: SLA, SIL, LARm, ETRmax and Fv/Fm. These traits, 21

directly related to water economy, differential allocation of resources and the photosynthetic 22

efficiency, tended to present high phenotypic plasticity, optimizing performance in response 23

to changing environmental conditions (Lázaro-Nogal et al. 2015; Scoffoni et al. 2015). 24

Page 119: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

116

High variation was found among populations of C. langsdorffii for morphological and 1

physiological traits (ranging from 8.8 to 38.9%) in comparison with other tree species 2

(Bruschi et al. 2003; González-Rodríguez and Oyama 2005). Selection can lead to the 3

development of morphological and physiological adaptations to the local environment 4

generating ecotypic differentiation in functional traits (Lemos Filho et al. 2008; Goulart et al. 5

2011). Thus, a certain degree of genetic differentiation among populations can explain the 6

phenotypic divergence among them, with genotypes adapted to local environmental 7

conditions. Individuals from more xeric habitats showed ecophysiological traits to reduce loss 8

of water by transpiration, such as minor values of SLA, SPL, SIL and LARm. Several studies 9

analyzing the relationship between climate and leaf morphological traits in other ecosystems 10

around the world have found patters similar to our results (Fonseca et al. 2000; Reich et al. 11

2003; Calagari et al. 2006; Uribe-Salas et al. 2008; Poorter 2009; Niinemets 2015; El Zerey-12

Belaskri and Benhassaini 2016; Ribeiro et al. 2016). Plants in arid environments tend to have 13

lower investment in leaf area, tougher leaves with petioles proportionally shorter, so it has 14

been suggested that these traits are representative of a functional strategy associated with low 15

water availability (Poorter 2009; Ramírez-Valiente et al. 2014b). Populations from more 16

xeric environments also had higher values of PPFDsat and lower values of Fv/Fm, indicating 17

that these populations are more adapted to high light radiation but they suffer from certain 18

degree of photoinhibition. A high incidence of light combined with water stress can 19

compromise the photosynthetic apparatus of plants leading to photoinhibition even in 20

drought-adapted species with xeromorphic traits (Lemos Filho 2000). The variability found in 21

functional traits of C. langsdorffii among populations suggests adaptations to local conditions 22

regarding water availability 23

Several studies have shown that plants exposed to water stress tend to reduce their leaf 24

area as a strategy to minimize water loss through transpiration (Gutschick 1999; Fonseca et 25

Page 120: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

117

al. 2000; Uribe-Salas et al. 2008). However our results showed the opposite, plants in xeric 1

habitats showing higher leaf area. This result suggests that other strategies can be acting to 2

reduce the effect of water stress, for example, plants can discard the leaves in severe periods 3

of stress to prevent loss of water (Reich and Borchert 1984). In our study populations located 4

further north suffer more strongly with the seasonality and variability in rainfall, with four to 5

five months of drought. Phenological studies in these same populations of Copaifera 6

langsdorffii indicate leaf fall over the driest periods (unpublished data). Thus, we hypothesize 7

that northern populations exhibit a very dynamic foliage strategy, maximizing leaf area to 8

maximize carbon gain during the high water availability period and abruptly decrease their 9

transpiring surface area by shedding the leaves during the dry periods. 10

Overall we found greater phenotypic variability and plasticity in populations from 11

drier habitats and with greater interannual variation in precipitation. These results support the 12

theoretical predictions of greater plasticity in more heterogeneous environments (Gianoli 13

2004; Matesanz et al. 2010; Baythavong 2011). Our results are in accordance with studies 14

reporting a positive association between phenotypic plasticity and annual variability of 15

rainfall (Gianoli and González-Teuber 2005; Lázaro-Nogal et al. 2015). C. langsdorffii 16

populations from drier habitats had greater plasticity in petiole length, internode length, 17

ETRmax, Fv/Fm and also considering the mean of all traits for both, morphological and 18

physiological data. In our study, we evaluated the phenotypic plasticity in adults in their 19

natural conditions, which would be especially challenger under experimental conditions. Sun-20

exposed leaves when compared to shade leaves are subjected to conditions of greater water 21

stress due to high irradiance, higher temperature and wind action on the outermost portion of 22

the canopy (Niinemets and Kull 2001; Sanches et al. 2010). Evaluating leaves of sun and 23

shade is plausible to expect greater plasticity in populations of more mesic environments 24

where there is a greater light gradient (Houter and Pons 2012). However, we found greater 25

Page 121: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

118

plasticity in populations from more xeric habitats and with greater variability of rainfall, 1

which had open canopies and thus less variation of light within the crown (Abrahamson 2

2007). This result suggests that the variability of precipitation influences phenotypic 3

plasticity in response to other environmental factors such as light. Although it has not been 4

evaluated in this study, some authors have demonstrated that this plasticity can be adaptive in 5

some cases (Ghalambor et al. 2007; Lázaro-Nogal et al. 2015), since high levels of 6

phenotypic plasticity were positively associated with plant fitness under drought. So, it seems 7

plausible that the greater plasticity in C. langsdorffii may favor the performance at individual 8

level in populations from xeric habitats. Nevertheless, explicit attention should be given to 9

the interaction of these two factors, light and water, and how it influences the phenotypic 10

plasticity of natural plant populations in response to each factor. 11

Finally, our results demonstrate that a great part of the phenotypic variation of 12

metamers in C. langsdorffii is due to phenotypic plasticity. The ability to modify functional 13

traits in response to changing environmental conditions can significantly contribute to the 14

niche breadth of a species, which could explain the success of C. langsdorffii over a range of 15

different types of habitats across its wide geographic distribution. Populations from drier 16

environments could be better suited to cope with the climatic changes expected due not only 17

to their xerophytic features but also to their higher levels of phenotypic plasticity. 18

19

ACKNOWLEDGEMENTS 20

We thank all the collaborators of the Plant Physiology Laboratory - UFMG, Conservation 21

Biology Laboratory – UNIMONTES and directors of Paraopeba National Forest (FLONA-22

PARAOPEBA) for logistical support in the fieldwork. This study was carried out with 23

financial support from CNPq and FAPEMIG. This work was conducted with a scholarship 24

Page 122: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

119

supported by the International Doctoral Sandwich Program (PDSE) financed by CAPES – 1

Brazilian Federal Agency for Support and Evaluation of Graduate Education within the 2

Ministry of Education of Brazil. We also thank all the collaborators of Ecology and Global 3

Change Group of National Museum of Natural Sciences (MNCN-CSIC), Madrid-Spain. 4

5

LITERATURE CITED 6

Abrahamson WG (2007) Leaf traits and leaf life spans of two xeric-adapted palmettos. Am J 7

Bot 94:1297–1308. 8

Almeida S, Proença C, Sano S, RIBEIRO J (1998) Cerrado: espécies vegetais úteis, 1st edn. 9

Embrapa, Brasília 10

Baythavong BS (2011) Linking the spatial scale of environmental variation and the evolution 11

of phenotypic plasticity: Selection favors adaptive plasticity in fine-grained 12

environments. Am Nat 178:75–87. doi: 10.1086/660281 13

Bruschi P, Grossoni P, Bussotti F (2003) Within-and among-tree variation in leaf 14

morphology of Quercus petraea (Matt.) Liebl. natural populations. Trees 17:164–172. 15

Calagari M, Modirrahmati AR, Asadi F (2006) Morphological variation in leaf traits of 16

Populus euphratica Oliv. natural populations. Int J Agric Biol 8:154–158. 17

Cardinale BJ, Duffy JE, Gonzalez A, et al (2012) Biodiversity loss and its impact on 18

humanity. Nature 486:59–67. doi: 10.1038/nature11148 19

Carvalho P (2003) Espécies arbóreas brasileiras, 1st edn. Embrapa, Brasília 20

Page 123: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

120

Costa MP, Pereira JAA, Benicio MHM, et al (2012) Alometria e arquitetura de Copaifera 1

langsdorffii (Desf.) Kuntze (Fabaceae) em fitofisionomias Neotropicais no Sul de 2

Minas Gerais. Ciênc Florest 22:223–240. 3

Crawley M (2000) The R Book, 1st edn. John Wiley and Sons, New York 4

El Zerey-Belaskri A, Benhassaini H (2016) Morphological leaf variability in natural 5

populations of Pistacia atlantica Desf. subsp. atlantica along climatic gradient: New 6

features to update Pistacia atlantica subsp. atlantica key. Int J Biometeorol 60:577–7

589. doi: 10.1007/s00484-015-1052-4 8

Fonseca CR, Overton JM, Collins B, Westoby M (2000) Shifts in trait combinations along 9

rainfall and phosphorus gradients. J Ecol 88:964–977. 10

Garcia RA, Cabeza M, Rahbek C, Araujo MB (2014) Multiple dimensions of climate change 11

and their implications for biodiversity. Science 344:1247579–1247579. doi: 12

10.1126/science.1247579 13

Ghalambor CK, McKAY JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive 14

phenotypic plasticity and the potential for contemporary adaptation in new 15

environments. Funct Ecol 21:394–407. doi: 10.1111/j.1365-2435.2007.01283.x 16

Gianoli E (2004) Plasticity of traits and correlations in two populations of Convolvulus 17

arvensis (Convolvulaceae) differing in environmental heterogeneity. Int J Plant Sci 18

165:825–832. doi: 10.1086/422050 19

Gianoli E, González-Teuber M (2005) Environmental heterogeneity and population 20

differentiation in plasticity to drought in Convolvulus Chilensis (Convolvulaceae). 21

Evol Ecol 19:603–613. doi: 10.1007/s10682-005-2220-5 22

Page 124: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

121

Gimeno TE, Pias B, Lemos-Filho JP, Valladares F (2008) Plasticity and stress tolerance 1

override local adaptation in the responses of Mediterranean holm oak seedlings to 2

drought and cold. Tree Physiol 29:87–98. doi: 10.1093/treephys/tpn007 3

González-Rodríguez A, Oyama K (2005) Leaf morphometric variation in Quercus affinis and 4

Q. laurina (Fagaceae), two hybridizing Mexican red oaks. Bot J Linn Soc 147:427–5

435. 6

Goulart MF, Lemos Filho JP de, Lovato MB (2005) Phenological variation within and among 7

populations of Plathymenia reticulata in Brazilian Cerrado, the Atlantic Forest and 8

Transitional Sites. Ann Bot 96:445–455. doi: 10.1093/aob/mci193 9

Goulart MF, Lovato MB, de Vasconcellos Barros F, et al (2011) Which extent is plasticity to 10

light involved in the ecotypic differentiation of a tree species from Savanna and 11

Forest?: Ecotypic Differentiation in Savanna and Forest. Biotropica 43:695–703. doi: 12

10.1111/j.1744-7429.2011.00760.x 13

Gutschick VP (1999) Biotic and abiotic consequences of differences in leaf structure. New 14

Phytol 143:3–18. 15

Heschel MS, Sultan SE, Glover S, Sloan D (2004) Population differentiation and plastic 16

responses to drought stress in the generalist annual Polygonum persicaria. Int J Plant 17

Sci 165:817–824. doi: 10.1086/421477 18

Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 19

470:479–485. doi: 10.1038/nature09670 20

Page 125: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

122

Hooper DU, Adair EC, Cardinale BJ, et al (2012) A global synthesis reveals biodiversity loss 1

as a major driver of ecosystem change. Nature 486:105–108. doi: 2

10.1038/nature11118 3

Houter NC, Pons TL (2012) Ontogenetic changes in leaf traits of tropical rainforest trees 4

differing in juvenile light requirement. Oecologia 169:33–45. doi: 10.1007/s00442-5

011-2175-x 6

Hulshof CM, Swenson NG (2010) Variation in leaf functional trait values within and across 7

individuals and species: an example from a Costa Rican dry forest. Funct Ecol 8

24:217–223. doi: 10.1111/j.1365-2435.2009.01614.x 9

IPCC (2014) Climate change 2014: synthesis report. In: Pachauri RK, Mayer L, eds. Climate 10

change 2014: synthesis report. Contribution of Working Groups I, II and III to the 11

Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: 12

Intergovernmental Panel on Climate Change. 13

Lázaro-Nogal A, Matesanz S, Godoy A, et al (2015) Environmental heterogeneity leads to 14

higher plasticity in dry-edge populations of a semi-arid Chilean shrub: insights into 15

climate change responses. J Ecol 103:338–350. doi: 10.1111/1365-2745.12372 16

Leal IR, Oliveira PS (1998) Interactions between fungus-growing ants (Attini), fruits and 17

seeds in Cerrado vegetation in southeast Brazil. Biotropica 20:170–178. 18

Lemos Filho JP (2000) Fotoinibição em três espécies do cerrado (Annona crassifolia, 19

Eugenia dysenterica e Campomanesia adamantium) na estação seca e na chuvosa. 20

Rev Bras Botânica 23:45–50. 21

Page 126: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

123

Lemos Filho JP, Goulart MF, Lovato MB (2008) Populational approach in ecophysiological 1

studies: the case of Plathymenia reticulata, a tree from Cerrado and Atlantic Forest. 2

Braz J Plant Physiol 20:205–216. 3

Matesanz S, Gianoli E, Valladares F (2010) Global change and the evolution of phenotypic 4

plasticity in plants: Global change and plasticity. Ann N Y Acad Sci 1206:35–55. doi: 5

10.1111/j.1749-6632.2010.05704.x 6

Matesanz S, Valladares F (2014) Ecological and evolutionary responses of Mediterranean 7

plants to global change. Environ Exp Bot 103:53–67. doi: 8

10.1016/j.envexpbot.2013.09.004 9

Nicotra AB, Atkin OK, Bonser SP, et al (2010) Plant phenotypic plasticity in a changing 10

climate. Trends Plant Sci 15:684–692. doi: 10.1016/j.tplants.2010.09.008 11

Niinemets Ü (2015) Is there a species spectrum within the world-wide leaf economics 12

spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll 13

Quercus ilex. New Phytol 205:79–96. doi: 10.1111/nph.13001 14

Niinemets U, Kull O (2001) Sensitivity of photosynthetic electron transport to 15

photoinhibition in a temperate deciduous forest canopy: Photosystem II center 16

openness, non-radiative energy dissipation and excess irradiance under field 17

conditions. Tree Physiol 21:899–914. doi: 10.1093/treephys/21.12-13.899 18

Nunney L (2016) Adapting to a changing environment: modeling the interaction of 19

directional selection and plasticity. J Hered 107:15–24. doi: 10.1093/jhered/esv084 20

Page 127: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

124

Pedroni F, Sanches M, Santos FAM (2002) Fenologia da copaíba (Copaifera langsdorffii 1

Desf. – Leguminosae, Caesalpinioideae) em uma floresta semidecídua no sudeste do 2

Brasil. Rev Bras Botânica 25:183–194. 3

Picotte JJ, Rhode JM, Cruzan MB (2009) Leaf morphological responses to variation in water 4

availability for plants in the Piriqueta caroliniana complex. Plant Ecol 200:267–275. 5

doi: 10.1007/s11258-008-9451-9 6

Poorter L (2009) Leaf traits show different relationships with shade tolerance in moist versus 7

dry Tropical Forests. New Phytol 181:890–900. doi: 10.1111/j.1469-8

8137.2008.02715.x 9

Rabello A, Ramos FN, Hasu E (2010) Efeito do tamanho do fragmento na dispersão de 10

sementes de Copaíba (Copaifera langsdorffii Delf.). Biota Neotropica 10:47–54. 11

R Core Team (2013) R: A language and environment for statistical computing. R Foundation 12

for Statistical Computing. R Foundation for Statistical Computing, Viena, Austria 13

Ramírez-Valiente JA, Valladares F, Aranda I (2014a) Exploring the impact of neutral 14

evolution on intrapopulation genetic differentiation in functional traits in a long-lived 15

plant. Tree Genet Genomes 10:1181–1190. doi: 10.1007/s11295-014-0752-y 16

Ramírez-Valiente JA, Valladares F, Sánchez-Gómez D, et al (2014b) Population variation 17

and natural selection on leaf traits in cork oak throughout its distribution range. Acta 18

Oecologica 58:49–56. doi: 10.1016/j.actao.2014.04.004 19

Rascher U, Liebig M, Luttge U (2000) Evaluation of instant lightresponse curves of 20

chlorophyll fluorescence parameters obtained with portable chlorophyll fluorometer 21

on site in the field. Plant Cell Environ 23:1397–1405. 22

Page 128: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

125

Reich PB, Borchert R (1984) Water stress and tree phenology in a Tropical Dry Forest in the 1

Lowlands of Costa Rica. J Ecol 72:61. doi: 10.2307/2260006 2

Reich PB, Wright IJ, Cavender‐Bares J, et al (2003) The evolution of plant functional 3

variation: traits, spectra, and strategies. Int J Plant Sci 164:S143–S164. doi: 4

10.1086/374368 5

Ribeiro PC, Souza ML, Muller LAC, et al (2016) Climatic drivers of leaf traits and genetic 6

divergence in the tree Annona crassiflora : A broad spatial survey in the Brazilian 7

savannas. Glob Change Biol. doi: 10.1111/gcb.13312 8

Sanches MC, Ribeiro SP, Dalvi VC, et al (2010) Differential leaf traits of a neotropical tree 9

Cariniana legalis (Mart.) Kuntze (Lecythidaceae): Comparing saplings and emergent 10

trees. Trees 24:79–88. doi: 10.1007/s00468-009-0380-6 11

Scoffoni C, Kunkle J, Pasquet-Kok J, et al (2015) Light-induced plasticity in leaf hydraulics, 12

venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads. 13

New Phytol 207:43–58. doi: 10.1111/nph.13346 14

Silva-Júnior MC (2005) Á rvores do Cerrado: Guia de Campo, 1st edn. Embrapa, Brasília 15

Souza ML, Fagundes M (2014) Seed size as key factor in germination and seedling 16

development of Copaifera langsdorffii (Fabaceae). Am J Plant Sci 5:2566–2573. doi: 17

10.4236/ajps.2014.517270 18

Souza ML, Silva DRP, Fantecelle LB, Lemos Filho JP (2015) Key factors affecting seed 19

germination of Copaifera langsdorffii, a Neotropical tree. Acta Bot Bras 29:473–477. 20

doi: 10.1590/0102-33062015abb0084 21

Page 129: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

126

Sultan SE (1995) Phenotypic plasticity and plant adaptation. Acta Bot Neerlandica 44:363–1

383. doi: 10.1111/j.1438-8677.1995.tb00793.x 2

Sultan SE (2003) Phenotypic plasticity in plants: a case study in ecological development. 3

Evol Dev 5:25–33. 4

Uribe-Salas D, Sáenz-Romero C, González-Rodríguez A, et al (2008) Foliar morphological 5

variation in the white oak Quercus rugosa Née (Fagaceae) along a latitudinal gradient 6

in Mexico: Potential implications for management and conservation. For Ecol Manag 7

256:2121–2126. doi: 10.1016/j.foreco.2008.08.002 8

Valladares F, Pearcy RW (1997) Interactions between water stress, sun-shade acclimation, 9

heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia. Plant 10

Cell Environ 20:25–36. 11

Valladares F, Sanchez-Gomez D, Zavala MA (2006) Quantitative estimation of phenotypic 12

plasticity: bridging the gap between the evolutionary concept and its ecological 13

applications. J Ecol 94:1103–1116. doi: 10.1111/j.1365-2745.2006.01176.x 14

15

Page 130: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

127

TABLES

Table 1: Environment and climatic characterization of Copaifera langsdorffii populations.

Population values of annual rainfall and annual temperature are means. Values of interannual

variation in annual rainfall are coefficients of variation (CV = SD mean-1

) expressed as

percentage. Annual average aridity index. Data were obtained from the Brazilian National

Meteorology Institute (www.inmet.gov.br) for the period 1961-2014.

Description Pop. Jap Pop. Moc Pop. Par Pop. Beh Pop. Can Pop Lav

Population Japonvar Montes Claros Paraopeba Belo Horizonte Canga Lavras

Coordinates

15º58’S,

44º16’W

16o40’S,

43o48’W

19°20’S,

44°24’W

19°53'S

43°58'W

20°04’S,

43°59’W

21º15'S,

45º02'W

Altitude (m) 804 645 763 842 1423 948

Habitat Caatinga Cerrado Cerrado Atlantic forest

Ferruginous

rock grassland

Atlantic forest

Annual rainfall

(mm)

858.03 1029.43 1295.27 1500.44 1490.12 1511.51

Interannual

rainfall variation

(CV %)

30.68 26.24 22.22 21.94 21.35 18.06

Average of mean

annual

temperature (°C)

24.23 22.97 21.29 21.54 20.74 20.02

Aridity index 0.59 0.72 1.03 1.21 1.12 1.25

Page 131: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

128

Table 2: Hierarchical partitioning of variance (in percentage) for morphological and

physiological traits in the Copaifera langsdorffii. Variance components and significance

levels were determined with a GLMM.

Level

Traits

morphological

Population

Plant

[Population]

Leaf different light

[Plant, Population]

Leaf same light

[Error]

Leaf area 25.46*** 20.13*** 12.93*** 41.47

Petiole length 15.85*** 29.34*** 9.37*** 45.44

Internode length 12.51*** 24.52*** 8.02*** 54.94

SLA 11.91*** 5.07*** 17.90*** 65.12

LARm 8.85*** 3.93*** 20.86*** 66.36

SPL 33.71*** 13.65*** 5.80*** 46.84

SIL 10.56*** 10.64*** 10.38*** 68.43

Average 16.98 17.23 10.74 53.71

Traits

physiological

ETRmax 26.08** 5.13-7

NS 48.41*** 25.51

PPDFsat 38.85*** 5.94-5

NS 16.01* 45.14

Fv/Fm 7.75-8

NS 1.96-11

NS 67.14*** 32.86

Average 17.99 6.87 22.83 52.31

(***P < 0.001; **P < 0.01; *P < 0.05; NS P>0.05 in GLMM).

Page 132: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

129

FIGURES

Fig 1 Location of the six populations of Copaifera langsdorffii selected for this study (codes

in Table 1).

Page 133: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

130

Fig 2 Historical monthly average of 54 years (1961-2014) for aridity index for populations of

Copaifera langsdorffii. Study sites codes in Table 1. An aridity value < 0.5 indicates hyper

arid conditions.

Page 134: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

131

Fig 3 Relationship between different functional traits and aridity index for populations of

Copaifera langsdorffii for: a) leaf area (cm²); b) SLA (cm² g-1

); c) LARm (cm² g-1

); d) SPL

(cm g-¹); e) SIL (cm g-¹); f) PPDF sat (mmolm-2

s-1

); g) Fv/Fm;. Average values and SE of

each population are shown (for morphological traits N = 112 and physiological traits N = 18).

SLA, specific leaf area; LARm, leaf area ratio of the metamer; SPL, specific petiole length;

SIL, specific internode length; PPDF sat, saturating photosynthetically active photon flux

density; Fv/Fm, potential quantum yield of photosystem II; M, mesic; X, xeric.

Page 135: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

132

Fig 4 Relationship between trait plasticity (measured as percentage of change) and

interannual precipitation variability in populations of Copaifera langsdorffii for: a) petiole

length; b) internode length; c) overall morphological plasticity (measured as the arithmetic

mean of the percentage of change for all morphological traits); d) ETRmax; e) Fv/Fm; f)

overall physiological plasticity (measured as the arithmetic mean of the percentage of change

for all physiological traits). Average values and SE of each population are shown (for

morphological traits N = 112 and physiological traits N = 18). ETR, electron transport rate;

Fv/Fm, potential quantum yield of photosystem II.

Page 136: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

133

Supplementary Data Fig S1 Relationship between trait plasticity (measured as percentage

of change) and aridity index in populations of Copaifera langsdorffii for; a) Petiole length; b)

SPL; c) overall morphological plasticity (measured as the arithmetic mean of the percentage

of change for the all morphological traits); d) ETRmax; e) Fv/Fm; f) overall physiological

plasticity (measured as the arithmetic mean of the percentage of change for the all

physiological traits). Average values and SE of individual in each population are shown (for

morphological traits N = 112 and morphological traits N = 18). SPL, Specific petiole length;

ETR, electron transport rate; Fv/Fm, potential quantum yield of photosystem II; M, mesic; X,

xeric.

Page 137: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

134

CONSIDERAÇ ÕES FINAIS

Neste estudo, avaliamos os efeitos das condições ambientais em traços

funcionais de diferentes populações de Copaifera langsdorffii ao longo de um gradiente

de aridez em distintas condições de solo. Nossos resultados demostraram que caracteres

morfológicos, fisiológicos e comportamentais variaram entre e dentro das populações

em função das condições ambientais locais. Variações nas características dos

metâmeros foram associadas com a aridez das diferentes populações. Indivíduos de C.

langsdorffii em habitats xéricos apresentaram estratégias adaptativas associadas à baixa

disponibilidade hídrica (Poorter 2009; Ramírez-Valiente et al. 2014), com menor área

foliar especifica, pecíolos e entre-nó proporcionalmente mais curtos e aparato

fotossintético menos sensível à fotoinibição. Além disso, indivíduos de C. langsdorffii

em ambientes áridos e com maior heterogeneidade de precipitação tiveram maior

plasticidade fenotípica nas características morfológicas e fisiológicas dos metâmeros.

Uma maior plasticidade nas características morfológicas e fisiológicas implica em um

maior arcabouço de respostas e alguns autores demonstraram que essa plasticidade pode

ser adaptativa, uma vez que altos níveis de plasticidade fenotípica foram positivamente

associados com o desempenho da planta em condições de estresse hídrico (Ghalambor

et al. 2007; Lázaro-Nogal et al. 2015). Assim parece plausível que em C. langsdorffii, a

maior plasticidade pode favorecer o desempenho dos indivíduos em populações de

ambientes mais secos.

A fenologia vegetativa também demonstrou forte correlação com

disponibilidade hídrica. Indivíduos de populações em ambientes xéricos apresentaram

mais precoce senescência e abscisão foliar, com maior intensidade e duração quando

comparado com indivíduos em ambientes mésicos. A redução na precipitação observada

Page 138: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

135

no ano de 2014 afetou diretamente a fenologia dos indivíduos de C. langsdorffii em

todas as populações. De maneira geral, os indivíduos de C. langsdorffii iniciaram a

abscisão foliar mais precocemente no ano de 2014. A deciduidade foliar durante

períodos de limitação hídrica reduz a perda de água por transpiração, além de

representar um importante mecanismo de recuperação do status hídrico da planta

(Borchert 1980; Reich and Borchert 1984). Estes ajustes observados para o início,

intensidade e duração das fenofases vegetativas em resposta a variações interanuais na

precipitação sugerem plasticidade fenotípica no comportamento fenológico de C.

langsdorffii em resposta a variação interanual da precipitação, sendo um importante

atributo para persistência da espécie frente às mudanças climáticas. No entanto, apesar

da plasticidade fenotípica observada no comportamento fenológico de C. lansdorffii

nossos resultados também demonstram que a redução na precipitação diminui as

diferenças fenológicas entre populações.

A fertilidade do solo foi o fator determinante para o trade-off tamanho/número

de sementes em C. langsdorffii. Nós observamos este trade-off apenas em indivíduos de

C. langsdorffii na população do ambiente de Canga Ferrugínea, onde foram produzidas

as maiores sementes, no entanto, em menor quantidade. O ambiente de Canga

Ferrugínea é caracterizado por solos de baixa fertilidade e apesar da elevada

pluviosidade tem baixa capacidade de armazenamento de água (Jacobi et al. 2007). A

disponibilidade limitada de recursos gera um forte trade-off na alocação de recurso para

a produção de sementes grandes vs. maior número de sementes, geralmente deslocado

para produção de sementes grandes (Baker 1972; Stromberg and Patten 1990; Murray et

al. 2004; Ramírez-Valiente et al. 2009). Isso porque, o tamanho das sementes está

diretamente relacionado com a quantidade de reservas que será destinada para o

crescimento inicial das plântulas (Primack 1987) permitindo uma maior probabilidade

Page 139: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

136

de estabelecimento e sobrevivência de plântulas em locais com baixa disponibilidade de

recurso (Baker 1972; Moles and Westoby 2004). Assim a limitação de recursos em

ambientes com solos de baixa fertilidade determinou o trade-off semente

tamanho/número, direcionando a produção de sementes grandes.

A alocação reprodutiva (biomassa total de sementes) foi maior em populações

em sítios com menor fertilidade do solo e alta precipitação, exceto na população em

ambiente de Canga Ferrugínea, onde os indivíduos apresentaram baixa biomassa total

de sementes. Populações em locais com menor estresse hídrico geralmente têm maiores

taxas fotossintéticas (Llorens et al. 2004; Lázaro-Nogal et al. 2015), podendo alocar

mais recursos para a reprodução, produzindo sementes maiores e em maior quantidade

(Yuan et al. 2016). Nossos resultados corroboram essa afirmação, com indivíduos em

populações de sítios mésicos produzindo sementes grandes e em maior quantidade.

Assim, a variação entre populações na biomassa total de sementes por ramo observada

neste estudo pode representar uma alocação para reprodução dependente da

disponibilidade de recursos no ambiente. Apesar da maior alocação reprodutiva

observada em indivíduos de populações de sítios mésicos, a variação fenotípica na

produção de sementes aumentou com a aridez e a fertilidade do solo. Em nosso estudo,

as populações em ambientes com baixa precipitação e solos mais férteis também são

climaticamente mais heterogêneas, com forte sazonalidade e variabilidade na

precipitação. A maior variação fenotípica na produção de sementes em habitats

imprevisíveis sugere uma importância ecológica desta variação, com produção de

sementes com diferentes tamanhos. Por exemplo, sementes pequenas germinam mais

rapidamente formando plântulas ocupando o ambiente (Baskin and Baskin 1998; Souza

and Fagundes 2014). Por outro lado, as sementes grandes produzem mudas mais

vigorosas com uma maior probabilidade de sobrevivência, especialmente sob condições

Page 140: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

137

estressantes (Baker 1972; Hanley et al. 2007). Dessa forma, a ampla variação no

tamanho da semente permite a espécie lidar relativamente melhor com uma ampla gama

de condições ambientais, reduzindo a influência negativa da imprevisibilidade na

precipitação.

Em todas as populações foram observadas uma grande variação na proporção de

indivíduos reprodutivos entre os anos de estudo fenológico. Em 2013 encontramos um

forte sincronismo espacial reprodutivo entre indivíduos de C. langsdorffii distribuídos

ao longo de 600 km, com mais 80% dos indivíduos analisados reproduzindo. No entanto

em 2014 apenas cerca de 20% reproduziram. Estes resultados reforçam o caráter

reprodutivo supra-anual descrito para C. langsdorffii com anos de intensa reprodução

seguidos de 2 ou 3 anos no qual a reprodução é drasticamente reduzida (Pedroni et al.

2002; Souza et al. 2015). Durante eventos de reprodução em massa uma quantidade

desproporcional de recursos é deslocada para a produção de flores e sementes, causando

impactos negativos sobre o crescimento e subsequentes eventos reprodutivos das

plantas (Koenig and Knops 1998; Koenig and Knops 2005; Hacket-Pain et al. 2015).

Assim, a grande alocação de recursos para a reprodução observada em episódios de

reprodução em massa poderia cancelar o trade-off tamanho/número de sementes em

espécies com reprodução supra anual, mas a falha no trade-off tamanho/número de

sementes ocorre apenas em populações onde a limitação de recursos não é extrema.

Neste estudo, também abordamos alguns fatores que afetam a germinação das

sementes de C. langsdorffii. Experimentalmente em laboratório demonstramos que a

remoção do arilo das sementes é fundamental para a germinação, uma vez que nenhuma

semente mantida com arilo germinou. Em condições naturais as sementes C.

langsdorffii são dispersas por aves e formigas (Leal and Oliveira 1998; Rabello et al.

2010), que removem o arilo que contém compostos secundários inibidores da

Page 141: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

138

geminação (Cipollini and Levey 1997; Robertson et al. 2006). Assim, os dispersores

além de depositar sementes longe da planta mãe reduzindo competição intraespecífica e

ataque de predadores (Janzen 1970; Swamy et al. 2011), também são fundamentais no

sucesso germinativo de C. langsdorffii. Nossos resultados ainda demonstraram que as

sementes de C. langsdorffii são tolerantes ao fogo. Encontramos um efeito positivo do

fogo na germinação de sementes, com cerca de 80% das sementes germinadas. Apesar

de C. langsdorffii ser uma espécie arbórea comum em ambientes florestais, a capacidade

das sementes tolerar altas temperaturas pode ser um atributo importante para a

ocorrência desta espécie em fitofisionomias do Cerrado, cujo fogo é um distúrbio

comum ha milhões de anos (Salgado-Labouriau et al. 1997).

A variabilidade observada nos metâmeros, na fenologia e sementes entre

populações em resposta da precipitação e da fertilidade do solo demonstram que estes

fatores são chaves para direcionamento de adaptações ecofisiológicas, gerando

diferenciação nos traços funcionais entre populações naturais de plantas. A capacidade

de modificar as características funcionais em resposta às mudanças nas condições

ambientais contribui significativamente para a amplitude de nicho de uma espécie, o

que poderia explicar o sucesso de C. langsdorffii sobre uma gama de diferentes tipos de

habitats em toda a sua ampla distribuição geográfica. No entanto, em um cenário futuro

no qual se espera aumento na aridez e maior heterogeneidade na precipitação por todo

Neotrópico (Marengo et al. 2012) a capacidade de se adaptar a essas novas condições é

fundamental para o sucesso da espécie e a plasticidade fenotípica tem sido considerada

como um importante mecanismo pelo qual os indivíduos podem enfrentar as variações

ambientais futuras evitando extinções locais (Matesanz et al. 2010; Hoffmann and Sgrò

2011). Assim, populações de ambientes mais secos podem ser mais adaptadas para lidar

com as previstas mudanças climáticas, devido não só às suas estratégias funcionais

Page 142: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

139

associadas à baixa disponibilidade hídrica, mas também aos seus níveis mais elevados

de variação e plasticidade fenotípica em caracteres funcionais.

REFERÊNCIAS BIBLIOGRÁFICAS

Baker HG (1972) Seed weight in relation to environmental conditions in California.

Ecology 53:997. doi: 10.2307/1935413

Baskin CC, Baskin JM (1998) Seeds – ecology, biogeography, and evolution of

dormancy and germination. Academic Press, New York

Borchert R (1980) Phenology and ecophysiology of Tropical Trees: Erythrina

poeppigiana O. F. Cook. Ecology 61:1065. doi: 10.2307/1936825

Cipollini ML, Levey DJ (1997) Secondary metabolites of fleshy vertebrate‐dispersed

fruits: Adaptive hypotheses and implications for seed dispersal. Am Nat

150:346–372. doi: 10.1086/286069

Ghalambor CK, McKAY JK, Carroll SP, Reznick DN (2007) Adaptive versus non-

adaptive phenotypic plasticity and the potential for contemporary adaptation in

new environments. Funct Ecol 21:394–407. doi: 10.1111/j.1365-

2435.2007.01283.x

Hacket-Pain AJ, Friend AD, Lageard JGA, Thomas PA (2015) The influence of masting

phenomenon on growth-climate relationships in trees: explaining the influence

of previous summers’ climate on ring width. Tree Physiol 35:319–330. doi:

10.1093/treephys/tpv007

Page 143: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

140

Hanley ME, Cordier PK, May O, Kelly CK (2007) Seed size and seedling growth:

differential response of Australian and British Fabaceae to nutrient limitation.

New Phytol 174:381–388. doi: 10.1111/j.1469-8137.2007.02003.x

Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature

470:479–485. doi: 10.1038/nature09670

Jacobi CM, do Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on

ironstone outcrops: A diverse and endangered Brazilian ecosystem. Biodivers

Conserv 16:2185–2200. doi: 10.1007/s10531-007-9156-8

Janzen DH (1970) Herbivores and number of tree species in tropical forests. Am Nat

104:501–528.

Koenig WD, Knops JMH (1998) Scale of mast-seeding and tree-ring growth. Nature

396:225–226. doi: 10.1038/24293

Koenig WD, Knops JMH (2005) The mystery of masting in trees. Some trees reproduce

synchronously over large areas, with widespread ecological effects, but how and

why? Am Sci 93:340–347.

Lázaro-Nogal A, Matesanz S, Godoy A, et al (2015) Environmental heterogeneity leads

to higher plasticity in dry-edge populations of a semi-arid Chilean shrub:

insights into climate change responses. J Ecol 103:338–350. doi: 10.1111/1365-

2745.12372

Leal IR, Oliveira PS (1998) Interactions between fungus-growing ants (Attini), fruits

and seeds in Cerrado vegetation in southeast Brazil. Biotropica 20:170–178.

Page 144: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

141

Llorens L, Peñuelas J, Beier C, et al (2004) Effects of an experimental increase of

temperature and drought on the photosynthetic performance of two Ericaceous

shrub species along a North-South European gradient. Ecosystems. doi:

10.1007/s10021-004-0180-1

Marengo JA, Chou SC, Kay G, et al (2012) Development of regional future climate

change scenarios in South America using the Eta CPTEC/HadCM3 climate

change projections: climatology and regional analyses for the Amazon, São

Francisco and the Paraná River basins. Clim Dyn 38:1829–1848. doi:

10.1007/s00382-011-1155-5

Matesanz S, Gianoli E, Valladares F (2010) Global change and the evolution of

phenotypic plasticity in plants: Global change and plasticity. Ann N Y Acad Sci

1206:35–55. doi: 10.1111/j.1749-6632.2010.05704.x

Moles AT, Westoby M (2004) Seed mass and seedling establishment after fire in Ku-

ring-gai Chase National Park, Sydney, Australia. Austral Ecol 29:383–390.

Murray BR, Brown AHD, Dickman CR, Crowther MS (2004) Geographical gradients

in seed mass in relation to climate. J Biogeogr 31:379–388.

Pedroni F, Sanches M, Santos FAM (2002) Fenologia da copaíba (Copaifera

langsdorffii Desf. – Leguminosae, Caesalpinioideae) em uma floresta

semidecídua no sudeste do Brasil. Rev Bras Botânica 25:183–194.

Poorter L (2009) Leaf traits show different relationships with shade tolerance in moist

versus dry tropical forests. New Phytol 181:890–900. doi: 10.1111/j.1469-

8137.2008.02715.x

Page 145: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

142

Primack RB (1987) Relationships among flowers, fruits, and seeds. Annu Rev Ecol Syst

409–430.

Rabello A, Ramos FN, Hasu E (2010) Efeito do tamanho do fragmento na dispersão de

sementes de Copaíba (Copaifera langsdorffii Delf.). Biota Neotropica 10:47–54.

Ramírez-Valiente JA, Valladares F, Gil L, Aranda I (2009) Population differences in

juvenile survival under increasing drought are mediated by seed size in cork oak

(Quercus suber L.). For Ecol Manag 257:1676–1683. doi:

10.1016/j.foreco.2009.01.024

Ramírez-Valiente JA, Valladares F, Sánchez-Gómez D, et al (2014) Population

variation and natural selection on leaf traits in cork oak throughout its

distribution range. Acta Oecologica 58:49–56. doi: 10.1016/j.actao.2014.04.004

Reich PB, Borchert R (1984) Water stress and tree phenology in a Tropical Dry Forest

in the Lowlands of Costa Rica. J Ecol 72:61. doi: 10.2307/2260006

Robertson AW, Trass A, Ladley JJ, Kelly D (2006) Assessing the benefits of frugivory

for seed germination: the importance of the deinhibition effect. Funct Ecol

20:58–66. doi: 10.1111/j.1365-2435.2005.01057.x

Salgado-Labouriau ML, Cassetti V, Ferraz-Vicentini KR, et al (1997) Late Quaternary

vegetational and climatic changes in cerrado and palm swamp from Central

Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 128:215–226.

Souza ML, Fagundes M (2014) Seed size as key factor in germination and seedling

development of Copaifera langsdorffii (Fabaceae). Am J Plant Sci 5:2566–2573.

doi: 10.4236/ajps.2014.517270

Page 146: Functional traits among populations of Copaifera ...pos.icb.ufmg.br/pgecologia/teses/T140 - Matheus Souza.pdf · Ao Prof. Marcílio Fagundes, meu Co-orientador, ... disciplinas, em

143

Souza ML, Solar RR, Fagundes M (2015) Reproductive strategy of Copaifera

langsdorffii (Fabaceae): more seeds or better seeds? Rev Biol Trop 63:1161–

1167.

Stromberg JC, Patten DT (1990) Variation in seed size of a Southwestern Riparian Tree,

Arizona Walnut (Juglans major). Am Midl Nat 124:269. doi: 10.2307/2426176

Swamy V, Terborgh J, Dexter KG, et al (2011) Are all seeds equal? Spatially explicit

comparisons of seed fall and sapling recruitment in a tropical forest: All seeds

are not equal, distance matters. Ecol Lett 14:195–201. doi: 10.1111/j.1461-

0248.2010.01571.x

Yuan S, Guo C, Ma L, Wang R (2016) Environmental conditions and genetic

differentiation: what drives the divergence of coexisting Leymus chinensis

ecotypes in a large-scale longitudinal gradient? J Plant Ecol 1–13. doi:

10.1093/jpe/rtv084