fundamentals and advancements in analytical sfc ·

28
©2012 Waters Corporation 1 Acquity UPSFC Granada, 23 Febrero 2012 Alberto Méndez Applications Specialist [email protected]

Upload: others

Post on 12-Mar-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 1

Acquity UPSFC

Granada, 23 Febrero 2012

Alberto Méndez Applications Specialist

[email protected]

Page 2: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 2

Remember Smaller Particles - Enabler of Productivity

Page 3: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 3

SFC Column Efficiency Curves

2.5 µm XBridge™ HILIC, 3.0x50 mm

5.0 µm XBridge™ HILIC, 3.0x50 mm

3.5 µm XBridge™ HILIC, 3.0x50 mm

1.7 µm ACQUITY BEH HILIC, 3.0x50 mm

Isocratic Conditions CO2/Methanol 85:15 130 bar outlet pressure

Page 4: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 4

Resolution Comparison

AU

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

AU

0.00

0.05

0.10

0.15

0.20

0.25

Minutes0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

1.7 µm

5 µm 3.0x100 mm Column 2 mL/minute CO2/Methanol Gradient

Page 5: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 5

Effect of System Volume

0.46

4

0.51

3

0.62

0

0.64

6

0.70

0

0.82

6

0.85

50.

870

0.90

9

0.94

3

1.03

9

1.07

3

AU

0.00

0.10

0.20

0.30

0.40

0.50

0.47

1

0.53

9

0.65

20.

670

0.89

8

0.92

60.

946

0.98

5

1.01

9

AU

0.00

0.10

0.20

0.30

0.40

Minutes0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10

3.0x100 mm, 1.7 µm, at 3 mL/minute, CO2/MeOH gradient

non-optimized

optimized

Page 6: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 6

Effect of System Volume

0.62

0

0.64

6

AU

0.00

0.02

0.04

0.06

0.65

2

0.67

0

AU

-0.010

0.000

0.010

0.020

0.030

0.040

0.050

Minutes0.590 0.600 0.610 0.620 0.630 0.640 0.650 0.660 0.670 0.680 0.690

non-optimized

optimized

Page 7: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 7

ACQUITY UPSFC™ Design Objectives

Develop an Analytical SFC System based upon proven UPLC® technology

Purposeful Innovation: – Peltier cooling of BSM pump heads – Accurate, linear and precise injections – CO2 management and pressure control – Reduced system volume – Detection sensitivity

Meaningful Impact: – Total solution – Reduced Chiral/Achiral separation times – Reduced cost per injection – System validation

Page 8: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 8

ACQUITY UPSFC™ Design Objectives

Column Manager CM-A

SFC PDA Detector

SFC Manager

Sample Manager - FL

SFC BSM Pump

Page 9: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 9

18 Compounds Mixture 6 Overlaid Injections

3-B

enzo

ylpy

ridin

e - 1

.187

Cho

leca

lcife

rol -

1.4

77

6-H

ydro

xyfla

vano

ne -

1.76

6

4-N

itroa

nilin

e - 2

.179

Caf

fein

e - 2

.308

Theo

phyl

line

- 2.7

70

Car

bam

azep

ine

- 3.3

89

Est

radi

ol -

3.59

4 4,4'

-Bip

heno

l - 3

.695

Cor

tison

e - 4

.285

Pre

dnis

one

- 4.5

92

Ace

tam

inop

hen

- 4.8

56

Sul

fisox

azol

e - 5

.014

Hyd

roco

rtiso

ne -

5.29

2

Sul

fam

ethi

zole

- 5.

487

Pre

dnis

olon

e - 5

.647

Sul

faph

enaz

ole

- 5.8

15

4-A

min

ophe

nyl S

ulfo

ne -

7.18

5

AU

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Minutes0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00

Consistent peak widths High resolution <0.4% RSD in RT

2.1 x 150 mm Viridis Hybrid 1.7 µm @ 1.20 mL/min @ 45 °C A=Carbon Dioxide B=Methanol UV 230 nm (compensated 400-500 nm) 2 µL injection Gradient 2% B to 16% B over 7 minutes

Page 10: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 10

Pea

k1 -

2.53

9

AU

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

Minutes0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00

1.5% MeOH

Pea

k1 -

4.44

1

AU

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Minutes0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00

Pea

k1 -

1.4

46

AU

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Minutes0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00

2.5% MeOH

Pea

k1 -

1.80

6

AU

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

Minutes0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00

2.0% MeOH

Mobile phase strength is a non-linear function of modifier concentration

The first small additions of modifier have a large effect on retention

1.0% MeOH

Precision at Low % Co-Solvent

Viridis Hybrid 2.1x150 mm @ 1 mL/min

Page 11: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 11

1-Couma

rin - 0.8

40

2-Flavon

e - 1.116

3-Caffein

e - 1.247

4-Thymin

e - 1.584

5-Papave

rine - 1.6

64

AU

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Minutes0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00

1-Coumar

in - 0.788

2-Flavone

- 1.072

3-Caffeine

- 1.209

4-Thymin

e - 1.559

5-Papave

rine - 1.64

1

AU

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Minutes0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00

Gradient Performance

RT %RSD: <0.15 Area %RSD: <0.67

1-20% B back to 1% B

RT %RSD: <0.34 Area %RSD: <0.69

1.5-20% B back to 1.5% B

Viridis® BEH 2-Ethylpyridine, 3 x 100 mm, 1.7 µm 2.00 mL/min, 55 °C, 1958 psi (135 Bar) Injection Volume = 3 µL, 10 repeated injections PDA 280 nm compensated (500-600 nm) 20 Hz, TC = 0.2 sec

Page 12: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 12

Linearity - 1-10µL injections AU

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

0.110

0.120

0.130

0.140

0.150

0.160

Minutes1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60

Peak 1 - Coumarin Peak 2 - Flavone Peak 3 - Caffeine Peak 4 - Thymine Peak 5 - Papaverine

Column 4.6 x 150 mm Viridis Silica 2-EP, 5 um; Flow Rate : 3.00 mL/min; Column Temp = 55°C,A=CO2 B=Methanol 5-20% B Grad over 5 min followed by a return to 5% B over 1 min; ABPR = 1958 psi (135 Bar) PDA 280 nm compensated (500-600 nm) 20 Hz, TC = 0.2 sec

Page 13: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 13

Linearity - 1-10µL injections

Coumarin: y = 43495x - 4326.9 R² = 0.9999 Flavone: y = 28758x - 2908 R² = 0.9999

Caffeine: y = 52213x - 5212.3 R² = 0.9999

Papaverine: y = 14608x - 2097.1 R² = 0.9994 Thymine: y = 26624x - 2774.5 R² = 0.9999

0

100000

200000

300000

400000

500000

600000

0 2 4 6 8 10

Are

a C

ou

nts

uL Injected

Coumarin

Flavone

Caffeine

Thymine

Papaverine

Linear (Coumarin)

Linear (Flavone)

Linear (Caffeine)

Linear (Thymine)

Linear (Papaverine)

Page 14: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 14

ABPR Performance: “FINE” Control

0.54

8

1.24

3

2.85

9

4.65

6

0.55

3

1.25

9

2.90

6

4.73

4

0.55

1

1.25

2

2.88

4

4.70

0

AU

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Minutes0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00

ABPR @ 1980 psi ABPR @ 2000 psi ABPR @ 2020 psi

Page 15: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 15

(Cathode)

(Anode)

(Glass board)

Organic Light Emitting Diode (OLED))

OLED Separation and Impurity Profiling

Page 16: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 16

OLED Degradation Investigation with LC/UV/MS

TCTA

Flrpic

α-NHP

BAlq

Flrpic Structural Isomers

Normal Phase LC Separation

Page 17: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 17

Standards Flrpic

1.01

9

1.36

0

1.46

3

1.61

9

1.93

5

2.74

6

3.62

2

4.12

4

AU

0.00

0.03

0.06

0.09

0.12

Minutes0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Flrpic

N

FF

N

F

F

Ir

N

F

F

N

F

F

Ir

N

F

F

N

F

F

Flrpic Isomer

N

F

Ir

N

F

F

N

F

F

Flrpic -F

N

F

Ir

N

F

N

F

F

Flrpic -2F

Flrpic -3F

N

F

Ir

N

F

N

F

Page 18: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 18

Standards and Spectra Flrpic and MS ES+ m/z Values

1.00

3

1.34

51.

448

1.60

01.

643

1.92

0

2.73

0

3.60

4

4.10

2

Inte

nsity

1.8x107

3.6x107

5.4x107

7.2x107

9.0x107

Minutes0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

1.345 Peak 2 - SQ 1: MS Scan 1: 300.00-1000.00 ES+, Centroid, CV=Tune

743.93

745.90

Inte

nsity

0.0

9.0x105

1.8x106

2.7x106

3.6x106

m/z734.40 737.10 739.80 742.50 745.20 747.90 750.60 753.30 756.00 758.70

1.446 Peak 3 - SQ 1: MS Scan 1: 300.00-1000.00 ES+, Centroid, CV=Tune

743.97

745.91

Inte

nsity

0.0

1.2x106

2.4x106

3.6x106

4.8x106

m/z738.00 740.00 742.00 744.00 746.00 748.00 750.00 752.00 754.00

1.601 Peak 4 - SQ 1: MS Scan 1: 300.00-1000.00 ES+, Centroid, CV=Tune

743.90

745.90

746.97

Inte

nsity

0

1x106

2x106

3x106

4x106

m/z739.20 741.30 743.40 745.50 747.60 749.70 751.80 753.90 756.00

1.922 Peak 6 - SQ 1: MS Scan 1: 300.00-1000.00 ES+, Centroid, CV=Tune

761.97

763.93

765.08

Inte

nsity

0.0

7.0x106

1.4x107

2.1x107

2.8x107

m/z757.80 759.60 761.40 763.20 765.00 766.80 768.60 770.40 772.20

2.731 Peak 7 - SQ 1: MS Scan 1: 300.00-1000.00 ES+, Centroid, CV=Tune

743.96

745.95

747.05

Inte

nsity

0.0

6.0x106

1.2x107

1.8x107

2.4x107

m/z738.00 740.00 742.00 744.00 746.00 748.00 750.00 752.00 754.00 756.00

3.605 Peak 8 - SQ 1: MS Scan 1: 300.00-1000.00 ES+, Centroid, CV=Tune

725.97

727.94

729.01

Inte

nsity

0.0

1.6x106

3.2x106

4.8x106

6.4x106

m/z722.40 723.80 725.20 726.60 728.00 729.40 730.80 732.20 733.60 735.00

4.101 Peak 9 - SQ 1: MS Scan 1: 300.00-1000.00 ES+, Centroid, CV=Tune

804.01

805.99

806.96

Inte

nsity

0.0

1.2x106

2.4x106

3.6x106

4.8x106

m/z802.80 803.70 804.60 805.50 806.40 807.30 808.20 809.10 810.00

1.004 Peak 1 - SQ 1: MS Scan 1: 300.00-1000.00 ES+, Centroid, CV=Tune

761.95

763.92

765.01

Inte

nsity

0.0

7.0x106

1.4x107

2.1x107

2.8x107

m/z759.60 760.80 762.00 763.20 764.40 765.60 766.80 768.00 769.20

m/z=763.9 m/z=763.9 m/z=746.0 m/z=727.9 m/z=706.0

m/z=745.9 m/z=745.9 m/z=763.9

ES+

Page 19: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 19

Comparison MS/UV Flrpic Mixture

1.01

9

1.36

0

1.46

3

1.61

9

1.93

5

2.74

6

3.62

2

4.12

5

AU

0.00

0.06

0.12

0.18

0.24

1.00

3

1.34

5

1.44

8

1.59

8

1.92

0

2.73

0

3.60

4

4.10

2Inte

nsity

1.8x107

3.6x107

5.4x107

7.2x107

9.0x107

1.91

9

2.73

1

4.10

4Inte

nsity

0.0

6.0x106

1.2x107

1.8x107

2.4x107

Minutes0.00 0.55 1.10 1.65 2.20 2.75 3.30 3.85 4.40 4.95

Conditions: 3.0 x 100mm Viridis BEH 2-EP, 1.7µm; OLED Mixture prepared at 0.1mg/mL in THF; Inj. Volume:2 µL; Temperature:60°C; ABPR: 130 bars; Flow: 2mL/min, CO2, MeOH (ammonium formate) 10 to 25% gradient

Page 20: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 20

Major Constituents in OLED Mixture

1.00

9

1.42

1

1.92

0

2.02

8

2.47

1

AU

0.000

0.025

0.050

0.075

0.100

Minutes0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Flrpic Area = 0.4% Rt = 0.1%

TCTA Area = 1.1% Rt = 0.1%

Balq (a) Area = 1.1% Rt = 0.1%

α-NHP Area = 0.4% Rt = 0.1%

*Minor impurities of 1% or lower yielded values typical of impurity analysis: Area %RSD < 5% Rt %RSD < 0.2%

Page 21: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 21

There are hundreds of FSV formulations on the market

Vitamin A Only

Vitamins A + D

Vitamin E

Vitamin K

Vitamins K + D

Vitamin D Only

Fat Soluble Vitamins

Page 22: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 22

1.20

71.

304

Retin

yl A

ceta

te -

1.79

71.

938

2.44

0

3.21

8Re

tinol

Pal

mita

te -

3.35

4

Retin

ol -

3.82

6

4.64

4

5.80

7

6.37

6

AU

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

Minutes0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00

Vitamin A Forms

Page 23: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 23

0.29

7 0.41

1

0.79

6

0.94

3

1.15

51.

207

1.30

4

1.51

61.

586 1.

797

1.93

8

2.15

3 2.44

0

2.88

6

3.02

6

3.21

83.

268

4.05

54.

144

4.39

14.

493

4.64

44.

701

4.93

75.

064

5.45

8

5.67

9

5.80

7

6.01

0

6.17

7

6.37

6

6.69

3

AU

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

Minutes0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50

Vitamin A Forms (Zoom)

Page 24: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 24

AU

0.000

0.010

0.020

0.030

0.040

0.050

0.060

Minutes0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

Fat Soluble Vitamins

Red - MS TIC (ESi+) Blue - UV at 317 nm Black - UV at 262 nm

Page 25: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 25

Chiral Method Development with MS

Speeding up chiral method development can be achieved using Mass Spectrometry

Thanks to the selectivity of MS detection, several chiral mixtures can be injected together and the chiral resolution is confirmed using the MS data

Page 26: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 26

IC, 4.6 x 150mm, 5 µm 3 ml/min CO2 / Methanol 5-45% - 4 min 45% - 1 min 45-5% - 0.5 min 5% - 0.5 min 40 °C, 120 bar Oxfendazole & Pantoprazole sodium hydrate (0.2 mg/mL)

Chiral Method Development with MS

Page 27: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 27

Conclusions

SFC is a highly orthogonal analytical tool, compatible with many detection techniques, and applicable in any field

Technique of choice for normal phase methods replacement – uses up to 80% less solvent, low solvent cost and disposal

UPSFC™ , designed with proven UPLC® technology, provides measurable increases in productivity for UV, MS and ELSD based work flows

UPSFC™ capability with LC familiarity

Complete solution for SFC analysis including chemistry, software, service, and support

Page 28: Fundamentals and Advancements in Analytical SFC ·

©2012 Waters Corporation 28

Thank You for Your Attention and…

Many thanks to: -Michael D Jones -Andy Aubin -Magdalena Abad -Rui Chen -Stéphane Dubant -Isabelle Durieux