future power plant requirements

23
Technische Universität München Future Power Plant Requirements 2nd Colloquium of the Munich School of Engineering 28.06.2012 Dipl.-Ing. (FH) Christian Schuhbauer, M.Sc.

Upload: others

Post on 15-Jan-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Technische Universität München

Future Power Plant Requirements

2nd Colloquium of the Munich School of Engineering

28.06.2012

Dipl.-Ing. (FH) Christian Schuhbauer, M.Sc.

Technische Universität München

2 Speeker: Christian Schuhbauer, Institute for Energy Systems

Structure

1. Current situation and future development

2. Future power plant requirements

3. Role of the electricity market

4. Flexibility of power plants

5. Challenges in energy supply

6. Conclusion

Technische Universität München

3 Speeker: Christian Schuhbauer, Institute for Energy Systems

1. Current situation and future development

Technische Universität München

1. Current situation and future development

13%

31%

14%

3% 3%

3%

33%

capacity [%] sum = 168 GW

nuclear

coal

gas

oil

pump storage

other

renewable

23%

42%

14%

1%

1%

3% 16%

generation [%] sum = 621 TWh

Power plant characteristics:

Full load hours (calculated) 3705 h/a

Utilisation: 42 %/a

Speeker: Christian Schuhbauer, Institute for Energy Systems 4

Source: BMWi

Capacity and power generation in Germany 2010

Technische Universität München

-100

0

100

200

300

400

500

600

700

2008 2020 2030 2040 2050

Cu

rre

nt [T

Wh

]

Year

import/export conventional renewable consumption

1. Current situation and future development

Speeker: Christian Schuhbauer, Institute for Energy Systems 5

Source: BMWi, Bundesnetzagentur

Technische Universität München

6 Speeker: Christian Schuhbauer, Institute for Energy Systems

2. Future power plant requirements

Technische Universität München

7 Speeker: Christian Schuhbauer, Institute for Energy Systems

2. Future power plant requirements

Frequency stability

Source: Siemens

1) Power decrease

2) Frequency deviation

3) Primary controlling power

Stabilisation of frequency

4) Secondary controlling power

Reset the frequency to 50Hz

Technische Universität München

8 Speeker: Christian Schuhbauer, Institute for Energy Systems

2. Future power plant requirements

Development of the residual load until 2020

Summer week 2011

(top)

contra

Summer week 2020

(bottom)

0

10

20

30

40

50

60

70

27/06/ 28/06/ 29/06/ 30/06/ 01/07/ 02/07/ 03/07/

Capacity

[GW

]

conventional wind solar

0

10

20

30

40

50

60

70

27/06/ 28/06/ 29/06/ 30/06/ 01/07/ 02/07/ 03/07/

Capacity

[GW

]

conventional wind solar

onshore wind: 27,2 GW 33,3 GW

offshore wind: 0 GW 7,6 GW

photovoltaic: 17,3 GW 33,3 GW

Technische Universität München

9 Speeker: Christian Schuhbauer, Institute for Energy Systems

- Residual load decrease to

1 GW

- Increase of 3,5 GW/h

- Power plants at 30% load

Reserves reached after 40

minutes

More capacities are needed after 40 min without accurate prediction!!

2. Future power plant requirements

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22 24

Resid

ual lo

ad [

GW

]

Time [h]

Technische Universität München

10 Speeker: Christian Schuhbauer, Institute for Energy Systems

3. Role of the electricity market

Technische Universität München

Speeker: Christian Schuhbauer, Institute for Energy Systems 11

3. Role of the electricity market

Load [GW]

Load [GW]

Merit-Order-Effect:

1) Increase of renewables leads

to lower market clearing price

(MCP)

2) Load volume for conventional

power is decreased

No more classic base load

Full load hours decrease

Technische Universität München

12 Speeker: Christian Schuhbauer, Institute for Energy Systems

4. Flexibility of conventional power plants

Technische Universität München

13 Speeker: Christian Schuhbauer, Institute for Energy Systems

4. Flexibility of conventional power plants

Nuclear Coal Gas-CCP Gasturbine

Load change 4 – 5 %/min 2 – 6 %/min 4 – 9 %/min 15 %/min

During load 50 – 100 % 40 – 100 % 40 – 100 % 50 – 100 %

Primary control 60 %/min >60 %/min 180 %/min 180 %/min

Minimum load 20 – 35 % 20 – 40 % 15 – 50 % 50 %

Minimum operating

duration

24 h 3 – 5 h 1 h 15 min

Minimum down time 24 h 3 – 8 h 1 h 15 min

Hot start-up 60 – 120 min 80 – 150 min 30 – 60 min A few min

Warm start-up 2 – 3 h 3 – 5 h 1 – 1,5 h A few min

Cold start-up 15 – 20 h 5 – 10 h 2 – 3 h Ca. 15 min

Source: Balling 2011 (Siemens); Steck und Mauch 2008

Technische Universität München

Speeker: Christian Schuhbauer, Institute for Energy Systems 14

4. Flexibility of conventional power plants

Condensate stop for primary control

Indirect method:

- Choking condensate pump and /

or condensate valves

- slower but no additional costs

Direct method:

- Additonally closing the bleeder

valves

- Very quick but additional costs Source: Zehtner 2009

Technische Universität München

Speeker: Christian Schuhbauer, Institute for Energy Systems 15

4. Flexibility of conventional power plants

Source: Siemens (Irsching)

Advantages:

- Short start-up time

- Higher load change

gradients

~30 min.

BENSON Once-through operation leads to higher flexibility

Technische Universität München

16 Speeker: Christian Schuhbauer, Institute for Energy Systems

5. Challenges in energy supply

Technische Universität München

Speeker: Christian Schuhbauer, Institute for Energy Systems 17

5. Challenges in energy supply

KW 21 – BY5DE: Dynamic of the 700°C hard coal-fired power plant

- Higher electrical efficiency: Increase from 46 % to 50 %

- Higher pressures and temperatures: live steam parameters 365 bar / 705 °C

- New materials: Ni-base alloys instead of ferritic steels

Focus on:

- Influence of flue gas imbalances and fouling

- Transient behaviour during load changes and start-ups

- Durability decrease of thick-walled components caused of start-ups

Project partners:

- E.ON Energy AG

- Alstom Power Systems

- Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst

Technische Universität München

Speeker: Christian Schuhbauer, Institute for Energy Systems 18

5. Challenges in energy supply – Video: Temperatur as f(boiler height)

Technische Universität München

Speeker: Christian Schuhbauer, Institute for Energy Systems 19

6. Conclusion

Conventional power generation still needed for frequency stabilisation!

- Storage technologies are going forward takes time

- Electricity network expansion too slow

Electricity market problematic for the future:

- Capacity market would be one possibility

- CCPs only economical if the provided capacity is paid

Dynamic and flexibility of conventional power plants has to be further

improved to meet the necessary requirements for the future!

Technische Universität München

Speeker: Christian Schuhbauer, Institute for Energy

Systems 20

Backup

Technische Universität München

-100

0

100

200

300

400

500

600

700

2008 2020 2030 2040 2050

Cu

rre

nt [T

Wh

]

Year

import/export conventional renewable consumption

1. Current situation and future development

Speeker: Christian Schuhbauer, Institute for Energy Systems 21

Source: Bundesnetzagentur, BMWi

Technische Universität München

22 Speeker: Christian Schuhbauer, Institute for Energy Systems

Comparing the flexibility and costs of hardcoal-fired and combined cycle plants

0

5

10

15

20

25

30

35

40

45

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100

Changes in f

uel costs

[%

]

Rela

tive p

lant

eff

icie

ncy [

%]

Load [%]

ηHardcoal-fired

ηGas CCP

Fuel CostsGas CCP

Fuel CostsHardcoal-fired

Source: Jeschke 2011 (Hitachi Power)

3. Role of the electricity market

Technische Universität München

Speeker: Christian Schuhbauer, Institute for Energy Systems 23

300

350

400

450

500

550

600

0 60 120 180 240 300 360 420 480 540 600 660 720

Liv

e s

tea

m m

ass f

low

[kg/s

]

Time [s]

direct firing indirect firing

4. Flexibility of conventional power plants

More flexibility through indirect firing

Feeding out of coal silos mills inertia is omitted

Source: Alstom Power