gail’s equations

21
1 10 100 1000 5 6 7 8 Distance (km) Moment Magnitude validregion forusing BJF equations Western North America (used by BJF93, 97 forpga) 1 10 100 1000 5 6 7 8 Distance (km) World (NGA, with BA exclusions) File:C:\atc_portland_2005\m_d_wna_bjf_peer_pga.draw; Date: 2005-03-29; Time: 16:48:58

Upload: aricin

Post on 04-Feb-2016

40 views

Category:

Documents


0 download

DESCRIPTION

Gail’s equations. correct data for V30 using BJF exclude Chi-Chi aftershocks T = 0.1, 0.3, 1.0, 2.0 sec log Y = c0 – c1 exp(c2*M)-0.5logR-bR R=sqrt(Rjb^2+h(M)^2) h= 8(M7.0) log b = c3 + c4*M. Dave’s equations. correct data for V30 using BJF exclude Chi-Chi aftershocks - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Gail’s equations

1 10 100 1000

5

6

7

8

Distance (km)

Mom

ent

Mag

nitu

de

valid region for using BJF equations

Western North America (used by BJF93, 97 for pga)

1 10 100 1000

5

6

7

8

Distance (km)

World (NGA, with BA exclusions)

File

:C

:\atc

_por

tland

_200

5\m

_d_w

na_b

jf_pe

er_p

ga.d

raw

;D

ate:

2005

-03-

29;

Tim

e:16

:48:

58

Page 2: Gail’s equations

1 10 100 1000

5

6

7

8

Distance (km)

Mom

ent

Mag

nitu

de

valid region for using BJF equations

Western North America (used by BJF93, 97 for pga)

1 10 100 1000

5

6

7

8

Distance (km)

World (NGA, with BA exclusions)

File

:C

:\atc

_por

tland

_200

5\m

_d_w

na_b

jf_pe

er_p

ga_w

ith_b

ig_t

ext.d

raw

;D

ate:

2005

-03-

29;

Tim

e:16

:48:

28

Includes02 Denali Fault (M 7.9)99 Chi-Chi (M 7.6)99 Kocaeli (M 7.5)78 Tabas (M 7.4)86 Taiwan (M 7.3)99 Duzce (M 7.1)

Page 3: Gail’s equations

1 2 10 20 100 200

10

100

1000

T=

0.1

sec

D

PS

A(c

m/s

2)

M 4 to 5 M 5 to 6 M 6 to 7 M 7 to 8

T=0.1 sec

1 2 10 20 100 200

10

100

1000

T=

0.3

sec

D

PS

A(c

m/s

2)

nobs _> 5

T=0.3 sec

1 2 10 20 100 200

10

100

1000

T=

1.0

sec

D

PS

A(c

m/s

2)

T=1.0 sec

1 2 10 20 100 200

1

10

100T

=2

.0se

c

D

PS

A(c

m/s

2)

T=2.0 sec

File

:C

:\pe

er_n

ga\t

eam

x\bi

ns_b

jf_vs

_r_v

ref2

55.d

raw

;D

ate:

2005

-04-

11;

Tim

e:21

:04:

07

Page 4: Gail’s equations

4 5 6 7 8 9-1

-0.5

0

0.5

1

T=

0.1

sec

M

Eve

ntT

erm

(Avg

(ob

s-B

JFC

alc

))

M _< 7.5 M > 7.5 (Kocaeli, Chi-Chi, Denali)

T=0.1 sec

4 5 6 7 8 9-1

-0.5

0

0.5

1

T=

0.3

2se

c

M

Eve

ntT

erm

(Avg

(ob

s-B

JFC

alc

)) T=0.32 sec

4 5 6 7 8 9-1

-0.5

0

0.5

1

T=

1.0

sec

M

Eve

ntT

erm

(Avg

(ob

s-B

JFC

alc

)) T=1.0 sec

4 5 6 7 8 9-1

-0.5

0

0.5

1

T=

2.0

sec

M

Eve

ntT

erm

(Avg

(ob

s-B

JFC

alc

)) T=2.0 sec

File

:C

:\pe

er_n

ga\t

eam

x\ev

ent_

term

s_v3

0ref

_255

.dra

w;

Dat

e:20

05-0

3-29

;T

ime:

16:0

2:00

? ?

?

?

?

?

Page 5: Gail’s equations

Gail’s equations

• correct data for V30 using BJF

• exclude Chi-Chi aftershocks

• T = 0.1, 0.3, 1.0, 2.0 sec

• log Y = c0 – c1 exp(c2*M)-0.5logR-bR

• R=sqrt(Rjb^2+h(M)^2)

• h= 8(M<5.5)2(M>7.0)

• log b = c3 + c4*M

Page 6: Gail’s equations
Page 7: Gail’s equations
Page 8: Gail’s equations

Dave’s equations

• correct data for V30 using BJF

• exclude Chi-Chi aftershocks

• T = 0.1, 0.3, 1.0, 2.0 sec

• log Y = c1 + c2*(M-6) + c3*(M-6)^2 + c4 log R• (log Y = c1 + c2*(M-6) + c3*(M-6)^2 + (c4+c5*M) log R)

• (log Y = c1 + c2*(M-6) + c3*(M-6)^2 + c4log R + c6*R)

• R=sqrt(Rjb^2+h(T)^2)

• h from BJF

Page 9: Gail’s equations

1 2 10 20 100 200

10

100

1000

T=

0.1

sec

D

PS

A(c

m/s

2)

M 4 to 5 M 5 to 6 M 6 to 7 M 7 to 8

T=0.1 sec

1 2 10 20 100 200

10

100

1000

T=

0.3

sec

D

PS

A(c

m/s

2)

nobs _> 5

T=0.3 sec

1 2 10 20 100 200

10

100

1000

T=

1.0

sec

D

PS

A(c

m/s

2)

T=1.0 sec

1 2 10 20 100 200

1

10

100T

=2

.0se

c

D

PS

A(c

m/s

2)

T=2.0 sec

File

:C

:\pe

er_n

ga\t

eam

x\bi

ns_d

mb_

c6_6

_c5_

vs_r

_vre

f255

.dra

w;

Dat

e:20

05-0

4-11

;T

ime:

21:0

8:31

Page 10: Gail’s equations

0.1 1 10 100-1.5

-1

-0.5

0

0.5

1

1.5

T=

0.1

sec

r4plt

log

(ob

s/ca

lc)

obs-calc nobs >= 5

0.1 1 10 100-1.5

-1

-0.5

0

0.5

1

1.5

T=

0.3

2se

c

r4plt

log

(ob

s/ca

lc)

0.1 1 10 100-1.5

-1

-0.5

0

0.5

1

1.5

T=

1.0

sec

r4plt

log

(ob

s/ca

lc)

0.1 1 10 100-1.5

-1

-0.5

0

0.5

1

1.5

T=

2.0

sec

r4plt

log

(ob

s/ca

lc)

File

:C

:\pe

er_n

ga\t

eam

x\re

sids

_dm

b_m

6_6_

vs_r

_m_4

_to_

5_v3

0ref

_255

.dra

w;

Dat

e:20

05-0

4-11

;T

ime:

20:5

1:43

Page 11: Gail’s equations

0.1 1 10 100-1.5

-1

-0.5

0

0.5

1

1.5

T=

0.1

sec

r4plt

log

(ob

s/ca

lc)

obs-calc nobs >= 5

0.1 1 10 100-1.5

-1

-0.5

0

0.5

1

1.5

T=

0.3

2se

c

r4plt

log

(ob

s/ca

lc)

0.1 1 10 100-1.5

-1

-0.5

0

0.5

1

1.5

T=

1.0

sec

r4plt

log

(ob

s/ca

lc)

0.1 1 10 100-1.5

-1

-0.5

0

0.5

1

1.5

T=

2.0

sec

r4plt

log

(ob

s/ca

lc)

File

:C

:\pe

er_n

ga\t

eam

x\re

sids

_dm

b_m

6_6_

vs_r

_m_5

_to_

6_v3

0ref

_255

.dra

w;

Dat

e:20

05-0

4-11

;T

ime:

20:5

2:12

Page 12: Gail’s equations

0.1 1 10 100-1.5

-1

-0.5

0

0.5

1

1.5

T=

0.1

sec

r4plt

log

(ob

s/ca

lc)

obs-calc nobs >= 5

0.1 1 10 100-1.5

-1

-0.5

0

0.5

1

1.5

T=

0.3

2se

c

r4plt

log

(ob

s/ca

lc)

0.1 1 10 100-1.5

-1

-0.5

0

0.5

1

1.5

T=

1.0

sec

r4plt

log

(ob

s/ca

lc)

0.1 1 10 100-1.5

-1

-0.5

0

0.5

1

1.5

T=

2.0

sec

r4plt

log

(ob

s/ca

lc)

File

:C

:\pe

er_n

ga\t

eam

x\re

sids

_dm

b_m

6_6_

vs_r

_m_6

_to_

7_v3

0ref

_255

.dra

w;

Dat

e:20

05-0

4-11

;T

ime:

20:5

2:35

Page 13: Gail’s equations

0.1 1 10 100-1.5

-1

-0.5

0

0.5

1

1.5

T=

0.1

sec

r4plt

log

(ob

s/ca

lc)

obs-calc nobs >= 5

0.1 1 10 100-1.5

-1

-0.5

0

0.5

1

1.5

T=

0.3

2se

c

r4plt

log

(ob

s/ca

lc)

0.1 1 10 100-1.5

-1

-0.5

0

0.5

1

1.5

T=

1.0

sec

r4plt

log

(ob

s/ca

lc)

0.1 1 10 100-1.5

-1

-0.5

0

0.5

1

1.5

T=

2.0

sec

r4plt

log

(ob

s/ca

lc)

File

:C

:\pe

er_n

ga\t

eam

x\re

sids

_dm

b_m

6_6_

vs_r

_m_7

_to_

8_v3

0ref

_255

.dra

w;

Dat

e:20

05-0

4-11

;T

ime:

20:5

2:58

Page 14: Gail’s equations

4 5 6 7 81

10

100

1000

10000

T=

0.1

sec

M

0.1

00

nobs >=5 BJF, with RJB = 6.3 ABNGAv0.1, with RJB = 6.3 SMSIM (AS00-WR), R=8 DMB_M6_6

4 5 6 7 81

10

100

1000

10000

T=

0.3

sec

M

0.3

00

4 5 6 7 81

10

100

1000

10000

T=

1.0

sec

M

1.0

00

4 5 6 7 8

1

10

100

1000

T=

2.0

sec

M

2.0

00

File

:C:\

peer

_nga

\tea

mx\

psa_

vs_m

_r_l

t_20

_v30

ref_

255.

draw

;Dat

e:20

05-0

4-11

;Ti

me:

18:3

0:01

Page 15: Gail’s equations

4 5 6 7 8-1.5

-1

-0.5

0

0.5

1

1.5

T=

0.1

sec

m

log

(ob

s/ca

lc)

obs-calc nobs >= 5

4 5 6 7 8-1.5

-1

-0.5

0

0.5

1

1.5

T=

0.3

2se

c

m

log

(ob

s/ca

lc)

RJB< 40 km.

4 5 6 7 8-1.5

-1

-0.5

0

0.5

1

1.5

T=

1.0

sec

m

log

(ob

s/ca

lc)

4 5 6 7 8-1.5

-1

-0.5

0

0.5

1

1.5

T=

2.0

sec

m

log

(ob

s/ca

lc)

File

:C

:\pe

er_n

ga\t

eam

x\re

sids

_dm

b_c6

_6_v

s_m

_r_l

t_40

_v30

ref_

255.

draw

;D

ate:

2005

-04-

11;

Tim

e:20

:56:

01

Page 16: Gail’s equations

4 5 6 7 8-1.5

-1

-0.5

0

0.5

1

1.5

T=

0.1

sec

m

log

(ob

s/ca

lc)

obs-calc nobs >= 5

4 5 6 7 8-1.5

-1

-0.5

0

0.5

1

1.5

T=

0.3

2se

c

m

log

(ob

s/ca

lc)

40 _<RJB< 200 km.

4 5 6 7 8-1.5

-1

-0.5

0

0.5

1

1.5

T=

1.0

sec

m

log

(ob

s/ca

lc)

4 5 6 7 8-1.5

-1

-0.5

0

0.5

1

1.5

T=

2.0

sec

m

log

(ob

s/ca

lc)

File

:C

:\pe

er_n

ga\t

eam

x\re

sids

_dm

b_c6

_6_v

s_m

_r_g

t_40

_lt_

200_

v30r

ef_2

55.d

raw

;D

ate:

2005

-04-

11;

Tim

e:20

:55:

26

Page 17: Gail’s equations

1 2 10 20 100 2000.1

1

10

100

1000P

SA

(cgs

)fo

rT

=

Distance Rjb (km)

PS

A00

.10

Compare BA2stage1 to data(all for data within 0.25 M units of target, corrected using BJF to NEHRP D)

1 2 10 20 100 2000.1

1

10

100

1000

PS

A(c

gs)

for

T=

Distance Rjb (km)

PS

A00

.30

Anza eq, obs. reduced to V30 = 255 m/secobservations (reduced to V30 = 255 m/s)nobs(0.3sec) _> 5mag. independ. gspreadmag. dep. gspreadanelastic term

1 2 10 20 100 2000.01

0.1

1

10

100

1000

PS

A(c

gs)

for

T=

Distance Rjb (km)

PS

A01

.00

1 2 10 20 100 2000.01

0.1

1

10

100

PS

A(c

gs)

for

T=

Distance Rjb (km)

PS

A02

.00

File

:C:\p

ee

r_n

ga

\tea

mx\

BA

2st

ag

e1

_m

5p

0_

ad

d_

an

za.d

raw

;Da

te:2

00

5-0

4-1

1;

Tim

e:

20

:26

:21

Page 18: Gail’s equations

1 2 10 20 100 2000.1

1

10

100

1000P

SA

(cgs

)fo

rT

=

Distance Rjb (km)

PS

A00

.10

Compare BA2stage1 to data(all for data within 0.25 M units of target, corrected using BJF to NEHRP D)

1 2 10 20 100 2000.1

1

10

100

1000

PS

A(c

gs)

for

T=

Distance Rjb (km)

PS

A00

.30

Anza eq, obs. reduced to V30 = 255 m/secobservations (reduced to V30 = 255 m/s)nobs(0.3sec) _> 5mag. independ. gspreadmag. dep. gspreadanelastic termimpose anelastic term

1 2 10 20 100 2000.01

0.1

1

10

100

1000

PS

A(c

gs)

for

T=

Distance Rjb (km)

PS

A01

.00

1 2 10 20 100 2000.01

0.1

1

10

100

PS

A(c

gs)

for

T=

Distance Rjb (km)

PS

A02

.00

File

:C:\p

ee

r_n

ga

\tea

mx\

m5

p0

_d

mb

_a

nza

_im

po

se_

an

ela

stic

.dra

w;D

ate

:20

05

-04

-12

;Tim

e:

06

:30

:07

Page 19: Gail’s equations

10 20 100 200-4

-2

0

2

4lo

g0

p1

Anza3.92024647404-0.992*log(x)+-0.0080363939*xlog0p1

10 20 100 200-2

-1

0

1

2

3

log

0p

3

Anza3.30952883968-0.901*log(x)+-0.0049737909*xlog0p3

10 20 100 200-2

-1

0

1

2

3

log

1p

0

Anza2.24491828892-0.721*log(x)+-0.0026974862*xlog1p0

10 20 100 200-3

-2

-1

0

1

2

r_ep (km)

log

2p

0

Anza1.58294294949-0.739*log(x)+-0.0014094007*xlog2p0 F

ile:

C:\

pe

er_

ng

a\a

nz

ae

q\a

nz

a_

ps

a_

vs

_r.

dra

w;D

ate

:20

05

-04

-12

;Tim

e:

11:2

1:5

5

Page 20: Gail’s equations

1 2 10 20 100 2000.1

1

10

100

1000P

SA

(cgs

)fo

rT

=

Distance Rjb (km)

PS

A00

.10

Compare BA2stage1 to data(all for data within 0.25 M units of target, corrected using BJF to NEHRP D)

1 2 10 20 100 2000.1

1

10

100

1000

PS

A(c

gs)

for

T=

Distance Rjb (km)

PS

A00

.30

Big Bear City eq, obs. reduced to V30 = 255 m/secobservations (reduced to V30 = 255 m/s)nobs(0.3sec) _> 5mag. independ. gspreadmag. dep. gspreadanelastic term

1 2 10 20 100 2000.01

0.1

1

10

100

1000

PS

A(c

gs)

for

T=

Distance Rjb (km)

PS

A01

.00

1 2 10 20 100 2000.01

0.1

1

10

100

PS

A(c

gs)

for

T=

Distance Rjb (km)

PS

A02

.00 F

ile:C

:\pe

er_

ng

a\te

am

x\m

5p

0_

dm

b_

bb

c.d

raw

;D

ate

:20

05

-04

-11

;T

ime

:2

0:3

2:1

3

Page 21: Gail’s equations

1 2 10 20 100 2000.1

1

10

100

1000P

SA

(cgs

)fo

rT

=

Distance Rjb (km)

PS

A00

.10

Compare BA2stage1 to data(all for data within 0.25 M units of target, corrected using BJF to NEHRP D)

1 2 10 20 100 2000.1

1

10

100

1000

PS

A(c

gs)

for

T=

Distance Rjb (km)

PS

A00

.30

Yorba Linda eq, obs. reduced to V30 = 255 m/secobservations (reduced to V30 = 255 m/s)nobs(0.3sec) _> 5mag. independ. gspreadmag. dep. gspreadanelastic term

1 2 10 20 100 2000.01

0.1

1

10

100

1000

PS

A(c

gs)

for

T=

Distance Rjb (km)

PS

A01

.00

1 2 10 20 100 2000.01

0.1

1

10

100

PS

A(c

gs)

for

T=

Distance Rjb (km)

PS

A02

.00 F

ile:C

:\pe

er_

ng

a\te

am

x\m

5p

0_

dm

b_

yl.d

raw

;D

ate

:20

05

-04

-11

;Tim

e:

20

:33

:52