gas dynamics esa 341 chapter 3

15
Gas Dynamics ESA 341 Chapter 3 Dr Kamarul Arifin B. Ahmad PPK Aeroangkasa

Upload: flynn-william

Post on 01-Jan-2016

148 views

Category:

Documents


9 download

DESCRIPTION

Gas Dynamics ESA 341 Chapter 3. Dr Kamarul Arifin B. Ahmad PPK Aeroangkasa. Normal shock waves. Definition of shock wave Formation of normal shock wave Governing equations Shock in the nozzle. Shock wave. V. P. T. Definition of shock wave. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Gas Dynamics ESA 341 Chapter 3

Gas DynamicsESA 341Chapter 3

Dr Kamarul Arifin B. Ahmad

PPK Aeroangkasa

Page 2: Gas Dynamics ESA 341 Chapter 3

Normal shock waves

Definition of shock wave Formation of normal shock wave Governing equations Shock in the nozzle

Page 3: Gas Dynamics ESA 341 Chapter 3

Definition of shock waveShock wave is a very thin region in a flow where a supersonic flow is decelerated to subsonic flow. The process is adiabatic but non-isentropic.

Shock wave

V

P

T

Page 4: Gas Dynamics ESA 341 Chapter 3

Formation of Shock WaveA piston in a tube is given a small constant velocity increment to the right magnitude dV, a sound wave travel ahead of the piston.

A second increment of velocity dV causing a second wave to move into the compressed gas behind the first wave.

As the second wave move into a gas that is already moving (into a compressed gas having a slightly elevated temperature), the second waves travels with a greater velocity.

The wave next to the piston tend to overtake those father down the tube. As time passes, the compression wave steepens.

Page 5: Gas Dynamics ESA 341 Chapter 3

Types of Shock Waves:

Normal shock wave - easiest to analyze

Oblique shock wave - will be analyzed based on normal shock relations

Curved shock wave - difficult & will not be analyzed in this class

- The flow across a shock wave is adiabatic but not isentropic (because it is irreversible). So:

0201

0201

PP

TT

Page 6: Gas Dynamics ESA 341 Chapter 3

Governing Equations

1

1

1

1

T

P

V

2

2

2

2

T

P

VConservation of mass:

Conservation of momentum:

Rearranging:

Combining:

AVAV 2211

122221

121121

1221

VVVPP

VVVPP

VVmAPP

2

2121

22

1

212121

PP

VVV

PPVVV

21

22

2121

11VVPP

Conservation of energy:

Change of variable:

0

22

2

21

1 22Tc

VTc

VTc ppp

2

2

1

121

22 1

2

PP

VV

combine

22

2

221

1

1

1

2

1

2V

PV

P

Page 7: Gas Dynamics ESA 341 Chapter 3

Continued:

Multiplied by 2/p1:

Rearranging:

2

2

1

1

2121 1

211

PP

PP

1

2

1

2

1

2

1

2

1

211

P

P

P

P

1

2

1

2

1

2

11

111

P

P

1

2

1

2

1

2

11

111

PP

PP

or

Governing Equations cont.

Page 8: Gas Dynamics ESA 341 Chapter 3

1

2

1

2

2

1

1

2

11

111

PP

PP

V

V

2

1

1

2

1

2

P

P

T

T

2

1

1

2

1

2

11

11

PP

PP

T

T

Governing Equations cont.

From conservation of mass:

From equation of state:

Page 9: Gas Dynamics ESA 341 Chapter 3

Governing Equations cont.

2211 VV

222

211

2

2222

2111

1221

11 MPMP

Pa

VPVP

VVmAPP

22

21

1

2

22

2

21

1

21

1

21

1

22

M

M

T

T

Vh

Vh

C

O

M

BINE

Conservation of mass

Conservation of momentum

Conservation of energy

02

21

1

)2

11(

1

)2

11(

2

11

12

11

1

21

22

21

22

21

22

41

42

222

22

22

221

21

21

222

2

2212

1

1

222

211

1

1

2211

MM

MMMMMM

M

MM

M

MM

MM

MM

M

M

RTMRT

PRTM

RT

P

VV

Expanding the equations

Page 10: Gas Dynamics ESA 341 Chapter 3

Governing Equations cont.

12

212

1

21

2

M

MM

Solution:

Mach number cannot be negative. So, only the positive value is realistic.

Page 11: Gas Dynamics ESA 341 Chapter 3

Governing Equations cont.

1

1

1

2

1

1

121

11

22

11

21

1

21

1

21

1

2

22

21

1

2

21

2

21

21

1

2

22

21

1

2

M

P

P

M

M

P

P

M

MM

T

T

M

M

T

T

2)1(

)1(

121

11

22

11

1221

21

21

1

2

21

2

21

21

21

21

1

1

2

2

1

2

1

2

1

1

2

M

M

M

MM

MM

M

T

T

M

M

V

V

Temp. ratio

Pres. ratio

Dens. ratio

Simplifying:

1

2

3

Page 12: Gas Dynamics ESA 341 Chapter 3

Stagnation pressures:

Other relations:

1

12

21

1

21

1 21

1

21

22

01

02

1

2

01

1

2

02

01

02

M

M

M

P

P

P

P

P

P

P

P

P

P

2

02

02

01

2

01

1

01

01

02

1

02

P

P

P

P

P

P

P

P

P

P

P

P

Governing Equations cont.

Page 13: Gas Dynamics ESA 341 Chapter 3

Entropy change:

But, S02=S2 and S01=S1 because the flow is all isentropic before and after shockwave.

So, when applied to stagnation points:

But, flow across the shock wave is adiabatic & non-isentropic:

And the stagnation entropy is equal to the static entropy:

So:

Shock wave

1 2

1

2

1

212 lnln

P

PR

T

Tcss p

01

02

01

020102 lnln

P

PR

T

Tcss p

0201 TT

1ln 1201

020102

ss

P

PRss

1exp 12

01

02

R

ss

P

P Total pressure decreases across shock wave !

Governing Equations cont.

Page 14: Gas Dynamics ESA 341 Chapter 3

Group Exercises 3

1. Consider a normal shock wave in air where the upstream flow properties are u1=680m/s, T1=288K, and p1=1 atm. Calculate the velocity, temperature, and pressure downstream of the shock.

2. A stream of air travelling at 500 m/s with a static pressure of 75 kPa and a static temperature of 150C undergoes a normal shock wave. Determine the static temperature, pressure and the stagnation pressure, temperature and the air velocity after the shock wave.

3. Air has a temperature and pressure of 3000K and 2 bars absolute respectively. It is flowing with a velocity of 868m/s and enters a normal shock. Determine the density before and after the shock.

Page 15: Gas Dynamics ESA 341 Chapter 3

0sM

11 M 12 M

01

01

1

1

1

T

P

T

P

0102

0102

12

12

12

TT

PP

TT

PP

1M 2M1

2

P

P

1

2

T

T

1

2

1

2

a

a

01

02

P

P

1

02

P

P

Stationary Normal Shock Wave Table – Appendix C: