gec210note

Upload: makinde-favour

Post on 06-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 GEC210note

    1/15

    1

    COMPLEX NUMBERS

    BRIEF REVIEW: Cantor, Dedekind and Weierstrass etc, extended the concept of rational

    numbers to a larger field known as real numbers which constitute rational as well as irrational

    numbers. It is evident that the system of real numbers is not sufficient for all mathematical needs

    e.g.

    The solution of a polynomial in equation (1) below is but for equation (2), the values ofx are:

    The value of is neither -2 nor +2. We, in fact cannot represent by an ordinary

    number because there is no real number whose square is a negative quantity i.e. no real number

    (rational or irrational) satisfies equation (2). It was therefore felt necessary by Euler Gauss,Hamilton, Cauchy, Reiman and Weierstrass etc to extend the field of real numbers to the still

    larger field of complex numbers. Euler for the first time introduced the symbol j with the

    property and then Gauss introduced a number of the form in equation (3) below

    which satisfies every algebraic equation with real coefficients.

    Such a number with and , being real is known as a complex number. is called the

    real part and the imaginary part of the complex number, z and denoted by:

    Modulus of a Complex Number:

    If equation (4) is a complex number, then its modulus (or module) is denoted by and given

    by:

    Conjugate Complex Numbers:

    For every complex number (4), there exists its conjugate denoted by (5):

    )1.......(..........042 x

    2x

    )2.......(..........042 x

    4x

    4 4

    12 j

    )3.......(.......... jz

    1j

    (z)ror R(z) oRz Re(z)ror I(z) oI

    zIm

    )4.......(..........jyxz

    ||z

    22|||| yxjyxz

    )5.......(..........jyxz

  • 8/2/2019 GEC210note

    2/15

    2

    The Representation of Complex Numbers

    Recall that:

    There are 4 principal formats for representing complex numbers. These include:

    Graphical representation Polar form Vector interpretation Spherical representation

    Graphical Representation:

    Equation (4) and (5) can be represented graphically. This form allows us to represent every

    complex number by just one point in a plane. Also, in the reverse sense, every point in the plane

    may be associated with just one complex number. Assume x = 6 and y = 2, (4) and (5) are

    graphically represented thus:

    Such representation as described above is called the Argand diagram.

    jjjj

    j

    jj

    jj

    i

    jj

    jjj.j)(jjjj

    .

    11

    11

    1

    1.;;1

    23

    3

    2

    2

    2

    1

    224232

    P(z )

    y

    6

    j

    -j

    z

    z

    -y

    -x x

    -2

    2

    P(z)

  • 8/2/2019 GEC210note

    3/15

    3

    Polar Form of Complex Numbers:

    From the above figure, we can transform the coordinate(s) to the polar form thus:

    Note the following:

    In Pictorial form:

    )x

    y(zandrz

    rerejSinCosr

    jrSinrCoszSojyxzbut

    rCosxrSiny

    r

    xCos

    r

    ySin

    kjj

    arctanarg;||

    )(

    ,

    ;

    ;

    2

    1

    1

    2

    2

    3

    2

    j

    j

    e

    je

    e

    je

    j

    j

    P(r,-)

    y

    x

    j

    -i

    z

    z

    -y

    -x x

    -2

    y

    P(r,)

    dians and is in ra

  • 8/2/2019 GEC210note

    4/15

    4

    ELEMENTARY FUNCTIONS OF A COMPLEX VARIABLE

    These functions include:

    Polynomial functions Rational functions Exponential functions Trigonometric functions Hyperbolic functions Logarithmic functions Inverse Trigonometric functions Inverse Hyperbolic functions

    POLYNOMIAL FUNCTIONS

    A polynomial function, P(z) can be defined as:

    Where a0 is not zero, a1.an are complex constants. N is a positive integer

    called the degree of the polynomial P(z) and Z is a complex variable.

    RATIONAL FUNCTIONS

    Are defined by:

    Where P(z) and R(z) are polynomials.

    EXPONENTIAL FUNCTIONS

    The exponential function of a real (not complex) function is simply written as . So, for a

    complex variable, z given as :

    If y is used as a radian measure of the angle to define Cos y, Sin y etc, then the exponentialfunction in terms of real valued functions is defined by:

    In case z is purely real i.e. y = 0, we have ez = ex and if z is purely imaginary i.e. x = 0, we have:

    Recall that e is the base of natural logarithms (e = 2.718281828). Complex exponential functions

    have properties similar to those of real exponential functions.

    )6.......(...................)(1

    2

    2

    1

    10 nn

    nnn azazazazazP

    )7(..............................)(

    )()(

    zR

    zPzF

    xe

    ;jyxz

    )8........().........sin(. yjCosyeeeee xjyxjyxz

    )9(..............................sinyjCosyejy

  • 8/2/2019 GEC210note

    5/15

    5

    In polar form,

    Illustrations:

    1) Show that 2121. zzzz eee

    RHSLHSHence

    eRHS

    e

    ee

    eeee

    ee

    yyjyye

    yyyyjyyjyye

    yjyyjyeeRHS

    yjyeyjyeee

    RHSLHS

    zz

    jyxjyx

    jyxjyx

    jyjyxx

    yyjxx

    xx

    xx

    xx

    xxzz

    ,

    .

    ...

    .

    )]sin().[cos(

    ]sin.sincos.sinsin.coscos..[cos

    )]sin).(cossin[(cos.

    )sin(cos).sin(cos.

    21

    2211

    2211

    2121

    121

    21

    21

    21

    2121

    )()(

    )(

    2121

    21212121

    2211

    2211

    )210(;20

    )2sin()2cos(1,

    0

    exp

    00|

    arg|

    ;

    )sin(cos

    :

    )sin(cos.

    ,,nnand yx

    njneNow

    where rthe originexcluding

    plae complexthe entirunction isonential fnge of theSo, the ra

    e of zevery valufori.e. eAlso, |e

    yeander|e

    yerwhere

    rejre

    tten ascan be wri

    yjyeeeee

    z

    zz

    zxz

    x

    jz

    xjyxjyxz

  • 8/2/2019 GEC210note

    6/15

    6

    2) Show that 2121/ zzzz eee

    3) Find all values of z such that 1z

    e Solution:

    .....),,(nn)(z

    o orx

    eger.n is an; wheren; yx

    e; eee

    orm; i.e.onential fnumbers inextwo complquality ofciple of eg the prinate uWe can equ

    .ee.ee

    RHSLHS

    LHS.eeeSo, e

    radianinangle iswhere the

    RHSjecall that

    jjyx

    jjyx

    jyxjyxz

    j

    210210

    01log

    int20

    expsin

    1sincosRe

    0

    0

    RHSLHSHence

    eLHS

    e

    e

    e

    eeee

    e

    eLHS

    RHSLHS

    zz

    jyxjyx

    jyx

    jyx

    jyx

    jyx

    yjyx

    yjyx

    ,

    .

    .

    21

    2211

    22

    11

    22

    11

    222

    111

    )()(

    )sin.(cos

    )sin.(cos

  • 8/2/2019 GEC210note

    7/15

    7

    4) Find the values of z for which 14 ze Solution:

    n

    z

    ....),,nn

    ; yx

    y;x

    e; eee

    jecall that

    eeeeee

    jyjx

    j

    jyjxjyxz

    22

    210(22

    0

    2404

    12sin2cosRe

    ..

    2404

    2

    2044)(44

    5) Find the values of z for which 13 ze Solution:

    n

    z

    ....),,nn

    ; yx

    y;x

    e; eee

    eeeeeejyjx

    jyjxjyxz

    23

    2

    210(23

    20

    2303

    ..2303

    2033)(33

  • 8/2/2019 GEC210note

    8/15

    8

    TRIGONOMETRIC FUNCTIONS

    Recall that trigonometric functions of real variable x include sinx, cosx, tanx etc. For complex

    variables, trigonometric functions are defined in terms of exponential functions as follows:

    jzjz

    jzjz

    jzjz

    jzjz

    jzjz

    jzjz

    jzjzjzjz

    jzjzjzjz

    jyjy

    jyjy

    jy

    jy

    ee

    eej

    zz

    eej

    ee

    eej

    ee

    z

    zz

    ee

    j

    zz

    eezz

    j

    ee

    z

    ee

    z

    e manner:In the sam

    j

    eey

    *** fromSubtract

    eey

    *** &Adding

    **...............y.........jyand e

    *...........y.........jycall:e

    )(

    tan

    1cot

    )(

    2

    2cos

    sintan

    2

    sin

    1csc;

    2

    cos

    1sec

    2sin;2cos

    2sin

    :11

    2cos

    :11

    1sincos

    1sincosRe

    Many of the properties satisfied by real trigonometric functions are also satisfied by complex

    trigonometric functions: e.g.

    21

    21

    21

    212121

    212121

    22

    2222

    tantan1

    tantan)tan(

    sinsincoscos)cos(

    sincoscossin)sin(

    tantancos)cos(

    sinsin;csccot1

    sectan1;1cossin

    zz

    zzzz

    zzzzzz

    zzzzzz

    z-(-z)z;z

    z-(-z)zz

    zzzz

  • 8/2/2019 GEC210note

    9/15

    9

    Illustration:

    6) Prove that 1cossin 22 zz Solution: Recall that:

    14

    4

    4

    224

    2

    4

    2

    4

    2.

    4

    ...

    22

    1cossin,

    2sin;

    2cos

    2222

    2222

    22

    22

    22

    zjzjzjzj

    zjzjzjzj

    zjjzjzzjjzjzjzjzjzjz

    jzjzjzjz

    jzjzjzjz

    eeee

    eeee

    eeeeeeeeee

    ee

    j

    eeLHS

    RHSLHS

    zzSo

    j

    eez

    eez

    HYPERBOLIC FUNCTIONS

    Are defined as follows:

    zz

    zz

    zz

    zzzz

    zz

    zzzz

    ee

    ee

    z

    zz

    eezechz

    eezhzee

    ee

    z

    eez

    eez

    sinh

    coshcoth;

    2

    sinh

    1cos

    2

    cosh

    1

    sec;tanh

    2cosh;

    2sinh

    The following properties hold:

    21

    21

    21

    212121

    212121

    22

    2222

    tanhtanh1

    tanhtanh)tanh(

    sinhsinhcoshcosh)cosh(

    sinhcoshcoshsinh)sinh(

    tanhtanhcosh)cosh(

    sinhsinh;csc1coth

    sectanh1;1sinhcosh

    zz

    zzzz

    zzzzzz

    zzzzzz

    z-(-z)z;z

    z-(-z)zhz

    zhzzz

  • 8/2/2019 GEC210note

    10/15

    10

    These properties can easily be proved from the definitions.

    Illustration:

    7) Show that 1sinhcosh 22 zz

    14

    4

    4

    22

    4

    2

    4

    2

    4

    2

    4

    ..

    22sinhcosh,

    2sinh;

    2cosh

    2222

    2222

    2222

    22

    22

    zzzz

    zzzz

    zzzzzzzz

    zzzz

    zzzz

    eeee

    eeee

    eeeeeeee

    eeeezzSo

    eez

    eez

    Exercise: The proofs of others are left as exercise

    Try the following:

    14

    j)(1TanhthatShow(3.)

    cos3z(b)

    cos2z(a)

    find2,zcosIf2.)

    jtanztanhjzcosz;coshjzjsinz;sinhjz

    jtanhztanjzcoshz;cosjzjsinhz;sinjz

    csc1cothz;2sechz2tanh11.) 22

    zhz

    LOGARITHMIC FUNCTIONS

    zarithm oflthe naturaz, calledwrite w, then wee If zw logln

    Thus the natural logarithmic function is the reverse of the exponential function and can be defined as

    follows:

    )2(

    ...2,1,0),2(lnln

    kjj

    rerezwhere

    kkjrzw

    Note that z is a multiple valued (in this case, infinitely many valued) function with the principal

    value or branch. The principal value of

  • 8/2/2019 GEC210note

    11/15

    11

    quivalent. or its ewherejred asimes definz is somet 20lnln

    However, any other interval of length like etc can be used.

    The logarithmic function for real bases other than e can be defined. Thus ifw

    az , then

    wz

    alog . Where 0a and 1,0a . In this case, awez ln and so

    a

    zw

    ln

    ln

    Illustration:

    8) Evaluate (i) )4ln( ; (ii) )3ln( j Solutions:

    ,....)2,1,0(:

    )2(4ln

    )2(ln)4ln(

    0tan4

    0tan)arg(

    4)0()4(||

    04..

    )4ln()(

    11

    22

    kNote

    kj

    kjr

    z

    zr

    jzei

    wLeti

    ,....)2,1,0(:

    )26

    11(2ln

    )26

    11()2ln()3ln(

    6

    11

    63

    1tan)arg(

    2)1()3(||

    )1(33)(

    1

    22

    kNote

    kj

    kjj

    orz

    zr

    jjzii

    Assessment Exercise

    j)-((c)j(b)j-a 23ln;2

    3

    2

    1ln;

    2

    3

    2

    1ln)(

  • 8/2/2019 GEC210note

    12/15

    12

    INVERSE TRIGONOMETRIC FUNCTIONS

    To define the inverse of sine function i.e. arcsine of z, z1

    sin

    , we write:

    wzThen

    zw

    sin

    sin 1

    Also, we define other inverse trigonometric or circular functions z1cos

    , z

    1tan etc.These functions are multiple-valued and can be expressed in terms of natural logarithms as

    follows:

    )1ln(sin,

    )1ln(1

    )1ln(

    12

    122

    2

    442

    1*2

    )1(*1*42201)(2

    0)(2.2

    Re

    2

    )1ln(1

    sin)1(

    21

    22

    2

    22

    2

    2

    2

    21

    zjzjzHence

    zjzj

    wzjzjw

    zjzezjz

    ezjz

    e

    jzjzeejze

    ejzeeeeejz

    us:written th

    j

    eezwhere

    zjzj

    z

    jwjwjw

    jwjwjw

    jwjwjwjwjwjw

    jwjw

  • 8/2/2019 GEC210note

    13/15

    13

    )1ln(cos,

    )1ln(1

    )1ln(

    12

    122

    2

    442

    1*2

    )1(*1*42201)(2

    0)(2.2

    2

    )1ln(1

    cos)2(

    21

    22

    2

    22

    2

    2

    2

    21

    zzjzHence

    zzj

    wzzjw

    zzezz

    ezz

    e

    zzeeze

    ezeeeeez

    eezwhere

    wzzj

    z

    jwjwjw

    jwjwjw

    jwjwjwjwjwjw

    jwjw

    jz

    jz

    jzwHence

    jz

    jz

    jw

    jz

    jzjw

    jz

    jzejzjze

    ejzejzejzejze

    eejzejze

    eeejzejz

    like termscollectandExpand

    eeeejzeeeejz

    eej

    eezBut

    jz

    jz

    jzthatshowwzif

    jwjw

    jwjwjwjwjw

    jwjwjwjw

    jwjwjwjw

    jwjwjwjwjwjwjwjw

    jwjw

    jwjw

    1

    1ln

    2

    1tan,

    1

    1ln

    2

    1

    1

    1ln2

    1

    1011.

    0.11.011

    0.

    ..

    :

    ).()(

    )(

    )1

    1ln(

    2

    1tan,tan)3(

    1

    22

    2

    11

  • 8/2/2019 GEC210note

    14/15

    14

    OTHERS:

    jz

    jz

    jztw,show thaz) if(

    z

    z

    jztw,show thaz) if(

    z

    zj

    jztw,show thaz) if(

    ln2

    1cotcot6

    11ln

    1secsec5

    1ln

    1csccsc4

    11

    2

    11

    2

    11

    Note that they are all multiple-valued functions.

    Illustration:

    9) Find the values of 2sin 1 Solution:

    kjHence

    jkj

    ej

    jj

    jjjjjSo

    zjzjzjzj

    zcall

    jk

    22

    )32ln(2sin,

    22)32ln(2sin

    ).32(ln2sin

    )32ln(2sin

    )32ln()212ln(2sin,

    )1ln()1ln(1sinRe

    1

    1

    221

    1

    21

    221

    Assessment Exercise

    2csc;2)( 1(b)ca-1

    os

    INVERSE HYPERBOLIC FUNCTIONS

    If e of zolicrse hyperbd the invez is callew then wz- sinsinhsinh 1

    Other inverse hyperbolic functions are similarly defined:

    z

    zz;zzz;zzz

    1

    1ln

    2

    1tanh1lncosh1lnsinh 12121

    In each case, the constant k2 has been omitted. They are all multiple valued functions.

  • 8/2/2019 GEC210note

    15/15

    15

    jkj

    ejjj

    jjjjj

    jjjjj

    jk

    2221lncosh

    .21lncosh.21lncosh

    .21lncosh2lncosh

    11lncosh1lncosh

    1

    2211

    11

    121

    OTHERS:

    1

    1

    ln2

    1

    coth6

    11lnsec5

    11lncsc4

    1

    2

    1

    2

    1

    z

    z

    z)(

    z

    zzh)(

    z

    zzh)(

    Assessment Exercise

    )]([j;(b)(a)- 1lnsinhsinh 11