gene expression and development. final exam sunday, may 27, 8:30-11:30 a.m. here – smc a110 some...

45
Gene Expression and Development

Upload: benjamin-hill

Post on 16-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Gene Expression and Development

Page 2: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Final Exam

• Sunday, May 27, 8:30-11:30 a.m.

• Here – SMC A110

• Some review during class on Friday

Page 3: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Important Readings for Gene Expression and Development

• Campbell chapter 18.4

• Campbell chapter 21.6

• Matt Ridley, Genome, chapter 12 ‘Self-Assembly’

Page 4: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Overview

• Both prokaryotes and eukaryotes alter their patterns of gene expression in response to changes in environmental conditions.

• Multicellular eukaryotes also develop and maintain multiple cell types.

• Each cell type contains the same genome but expresses a different subset of genes.

• During development, gene expression must be carefully regulated to ensure that the right genes are expressed only at the correct time and in the correct place.

Page 5: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Fig. 18-14

(a) Fertilized eggs of a frog (b) Newly hatched tadpole

How do we go from a fertilized egg to a fully developed individual?

Page 6: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Some key stages of development in animals and plants

Animal development. Most animals go through some variation of the blastula and gastrula stages. The blastula is a sphere of cells surrounding a fluid-filled cavity. The gastrulaforms when a region of the blastula folds inward, creating a tube—a rudimentary gut. Oncethe animal is mature, differentiation occurs in only a limited way—for the replacement of damaged or lost cells.

Plant development. In plants with seeds, a complete embryo develops within the seed. Morphogenesis, which involves cell division and cell wall expansion rather than cell or tissue movement, occurs throughout the plant’s lifetime. Apical meristems (purple) continuously arise and develop into the various plant organs as the plant grows to an indeterminate size.

Zygote(fertilized egg)

Eight cells Blastula(cross section)

Gastrula(cross section)

Adult animal(sea star)

Cellmovement

Gut

Cell division

Morphogenesis

Observable cell differentiation

Seedleaves

Shootapicalmeristem

Rootapicalmeristem

PlantEmbryoinside seed

Two cells Zygote

(fertilized egg)

(a)

(b)

Page 7: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

The mantra for development:

• Division

• Morphogenesis

• Differentiation

Rather like – replication, transcription, translation for Mo Bio

Page 8: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Differential gene expression leads to different cell types and multicellularity• In the development of most multicellular organisms, a

single-celled zygote gives rise to cells of many different types.

• Each type has a different structure and corresponding function.

• Cells of different types are organized into tissues, tissues into organs, organs into organ systems, and organ systems into the whole organism.

• Thus, the process of embryonic development must give rise not only to cells of different types but also to higher-level structures arranged in a particular way in three dimensions.

Page 9: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

The genetic program and development

• As a zygote develops into an adult organism, its transformation results from three interrelated processes: cell division, cell differentiation, and morphogenesis.

• Through a succession of mitotic cell divisions, the zygote gives rise to many cells.

• Cell division alone would produce only a great ball of identical cells.

• During development, cells become specialized in structure and function, undergoing cell differentiation.

• Different kinds of cells are organized into tissues and organs.• The physical processes that give an organism its shape constitute

morphogenesis, the “creation of form.”• Cell division, morphogenesis, and cell differentiation have their

basis in cellular behavior.

Page 10: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

How similar genetically are the brown rat and the house mouse?

Page 11: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

The brown rat and the house mouse are identical at 67% of their euchromatic DNA

Page 12: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

How similar genetically are the chimpanzee and the human?

Page 13: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Chimpanzees and humans are genetically identical at 94% of their DNA

Page 14: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Fig. 18-14

(a) Fertilized eggs of a frog (b) Newly hatched tadpole

How do we go from a fertilized egg to a fully developed individual?

Division, Morphogenesis, and Differentiation

Page 15: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

A copy of Ernst Haeckel’s drawing of vertebrate embryology

Page 16: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Early development of the zygote

• Different sets of activators present in different cell types

• One important source of information early in development is the egg’s cytoplasm, which contains both RNA and proteins encoded by the mother’s DNA, distributed unevenly in the unfertilized egg.

• Maternal substances that influence the course of early development are called cytoplasmic determinants.

Page 17: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Cytoplasmic determinants

• These substances regulate the expression of genes that affect the developmental fate of the cell.

• After fertilization, the cell nuclei resulting from mitotic division of the zygote are exposed to different cytoplasmic environments.

• The set of cytoplasmic determinants a particular cell receives helps determine its developmental fate by regulating expression of the cell’s genes during cell differentiation.

Page 18: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Fig. 18-15a

(a) Cytoplasmic determinants in the egg

Two differentcytoplasmicdeterminants

Unfertilized egg cell

Sperm

Fertilization

Zygote

Mitoticcell division

Two-celledembryo

Nucleus

Page 19: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

More early development of the zygote

• The other important source of developmental information is the environment around the cell, especially signals impinging on an embryonic cell from nearby cells.

• In animals, these signals include contact with cell-surface molecules on neighboring cells and the binding of growth factors secreted by neighboring cells.

• These signals cause changes in the target cells, a process called induction.

• The molecules conveying these signals within the target cells are cell-surface receptors and other proteins expressed by the embryo’s own genes.

• The signal molecules send a cell down a specific developmental path by causing a change in its gene expression that eventually results in observable cellular changes.

Page 20: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Fig. 18-15b

(b) Induction by nearby cells

Signalmolecule(inducer)

Signaltransductionpathway

Early embryo(32 cells)

NUCLEUS

Signalreceptor

Page 21: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Induction in the brown algae Fucus

Page 22: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Cell Differentiation

• During embryonic development, cells become visibly different in structure and function as they differentiate.

• The earliest changes that set a cell on a path to specialization show up only at the molecular level.

• Molecular changes in the embryo drive the process, called determination, which leads to the observable differentiation of a cell.

• Once it has undergone determination, an embryonic cell is irreversibly committed to its final fate.

• If a determined cell is experimentally placed in another location in the embryo, it will differentiate as if it were in its original position.

• The outcome of determination—observable cell differentiation—is caused by the expression of genes that encode tissue-specific proteins.

• These proteins give a cell its characteristic structure and function.

Page 23: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Cell Differentiation cont’d

• Cells produce the proteins that allow them to carry out their specialized roles in the organism.

• For example, liver cells specialize in making albumin, while lens cells specialize in making crystalline.

• Skeletal muscle cells have high concentrations of proteins specific to muscle tissues, such as a muscle-specific version of the contractile proteins myosin and actin, as well as membrane receptor proteins that detect signals from nerve cells.

• Muscle cells develop from embryonic precursors that have the potential to develop into a number of alternative cell types.

• Although the committed cells are unchanged, they are now myoblasts.

• Eventually, myoblasts begin to synthesize muscle-specific proteins and fuse to form mature, elongated, multinucleate skeletal muscle cells.

Page 24: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Fig. 18-16-1

Embryonicprecursor cell

Nucleus

OFF

DNA

Master regulatory gene myoD Other muscle-specific genes

OFF

Page 25: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Fig. 18-16-2

Embryonicprecursor cell

Nucleus

OFF

DNA

Master regulatory gene myoD Other muscle-specific genes

OFF

OFFmRNA

MyoD protein(transcriptionfactor)

Myoblast(determined)

Page 26: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Fig. 18-16-3

Embryonicprecursor cell

Nucleus

OFF

DNA

Master regulatory gene myoD Other muscle-specific genes

OFF

OFFmRNA

MyoD protein(transcriptionfactor)

Myoblast(determined)

mRNA mRNA mRNA mRNA

Myosin, othermuscle proteins,and cell cycle–blocking proteinsPart of a muscle fiber

(fully differentiated cell)

MyoD Anothertranscriptionfactor

Page 27: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Pattern formation and the embryo body plan

• Cytoplasmic determinants and inductive signals contribute to pattern formation, the development of spatial organization in which the tissues and organs of an organism are all in their characteristic places.

• Pattern formation begins in the early embryo, when the major axes of animals and plants are established.

• Before specialized tissues and organs form, the relative positions of a bilaterally symmetrical animal’s three major body axes (anterior-posterior, dorsal-ventral, right-left) are established.

• The molecular cues that control pattern formation, positional information, are provided by cytoplasmic determinants and inductive signals.

• These signals tell a cell its location relative to the body axes and to neighboring cells and determine how the cell and its progeny will respond to future molecular signals.

Page 28: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Pattern formation in Drosophila

• Studies of pattern formation in Drosophila melanogaster have established that genes control development and have identified the key roles of specific molecules in defining position and directing differentiation.

• Combining anatomical, genetic, and biochemical approaches in the study of Drosophila development, researchers have discovered developmental principles common to many other species, including humans.

• Fruit flies and other arthropods have a modular construction.• An ordered series of segments make up the three major body parts:

the head, thorax (with wings and legs), and abdomen.• Cytoplasmic determinants in the unfertilized egg provide positional

information for two developmental axes (anterior-posterior and dorsal-ventral axis) before fertilization.

Page 29: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Fig. 18-17a

ThoraxHead Abdomen

0.5 mm

Dorsal

Ventral

RightPosterior

LeftAnteriorBODY

AXES

(a) Adult

Page 30: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Fig. 18-17bFollicle cell

Nucleus

Eggcell

Nurse cell

Egg celldeveloping withinovarian follicle

Unfertilized egg

Fertilized egg

Depletednurse cells

Eggshell

FertilizationLaying of egg

Bodysegments

Embryonicdevelopment

Hatching

0.1 mm

Segmentedembryo

Larval stage

(b) Development from egg to larva

1

2

3

4

5

Page 31: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Pattern formation in Drosophila

• Nüsslein-Volhard and Wieschaus studied segment formation in the late 1970s

• They created mutants, conducted breeding experiments, and looked for corresponding genes

• Breeding experiments were complicated by embryonic lethals, embryos with lethal mutations

• They found 120 genes essential for normal segmentation

Page 32: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Wieschaus and Nüsslein-Volhard

looked for mutants that affect the fly body plan

wildtype

Page 33: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Axis Establishment

• Maternal effect genes encode for cytoplasmic determinants that initially establish the axes of the body of Drosophila

• These maternal effect genes are also called egg-polarity genes because they control orientation of the egg and consequently the fly

Page 34: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Fig. 18-17bFollicle cell

Nucleus

Eggcell

Nurse cell

Egg celldeveloping withinovarian follicle

Unfertilized egg

Fertilized egg

Depletednurse cells

Eggshell

FertilizationLaying of egg

Bodysegments

Embryonicdevelopment

Hatching

0.1 mm

Segmentedembryo

Larval stage

(b) Development from egg to larva

1

2

3

4

5

Page 35: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

• One maternal effect gene, the bicoid gene, affects the front half of the body

• An embryo whose mother has a mutant bicoid gene lacks the front half of its body and has duplicate posterior structures at both ends

Bicoid: A Morphogen Determining Head Structures

Page 36: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Figure 18.21

Head Tail

Tail Tail

Wild-type larva

Mutant larva (bicoid)

250 m

T1 T2 T3A1 A2 A3 A4 A5 A6

A7A8

A8A7A6A7

A8

Page 37: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Fig. 18-19b

Fertilization,translationof bicoidmRNA Bicoid protein in early

embryo

Anterior endBicoid mRNA in matureunfertilized egg

100 µm

RESULTS

Page 38: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Fig. 18-19b

Fertilization,translationof bicoidmRNA Bicoid protein in early

embryo

Anterior endBicoid mRNA in matureunfertilized egg

100 µm

RESULTS

Page 39: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Figure 18.22

Bicoid mRNA in matureunfertilized egg

Bicoid mRNA in matureunfertilized egg

Fertilization,translation ofbicoid mRNA

Anterior end100 m

Bicoid protein inearly embryo

Bicoid protein inearly embryo

RESULTS

Page 40: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Fig. 18-19c

bicoid mRNA

Nurse cells

Egg

Developing egg Bicoid mRNA in matureunfertilized egg

Bicoid proteinin early embryo

CONCLUSION

Page 41: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

• This phenotype suggests that the product of the mother’s bicoid gene is concentrated at the future anterior end

• This hypothesis is an example of the gradient hypothesis, in which gradients of substances called morphogens establish an embryo’s axes and other features

Page 42: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

• The bicoid research is important for three reasons:– It identified a specific protein required for some early

steps in pattern formation

– It increased understanding of the mother’s role in embryo development

– It demonstrated a key developmental principle that a gradient of molecules can determine polarity and position in the embryo

Page 43: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Genetic Analysis of Early Development

• Edward B. Lewis, Christiane Nüsslein-Volhard, and Eric Wieschaus won a Nobel Prize in 1995 for decoding pattern formation in Drosophila

• In the 1940s Lewis discovered the homeotic genes, which control pattern formation in late embryo, larva, and adult stages

Page 44: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Homeotic Genes

• Lewis was able to demonstrate that bizarre developmental mutations could be mapped on to the Drosophila chromosome map, providing the first concrete evidence that genes somehow direct the developmental process

Page 45: Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday

Figure 18.20

Wild type Mutant

Eye

AntennaLeg