general orthonormal mra ref: rao & bopardikar, ch. 3

30
General Orthonormal MR A Ref: Rao & Bopardikar, Ch. 3

Upload: erik-price

Post on 28-Dec-2015

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

General Orthonormal MRA

Ref: Rao & Bopardikar, Ch. 3

Page 2: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

Outline

• MRA characteristics– Nestedness, translation, dilation, …

• Properties of scaling functions

• Properties of wavelets

• Digital filter implementations

Page 3: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

Recall Formal Definition of an MRA

An MRA consists of the nested linear vector space such that

• There exists a function (t) (called scaling function) such that is a basis for V0

• If and vice versa•

• Remarks:– Does not require the set of (t) and its integer translates

to be orthogonal (in general)– No mention of wavelet

2101 VVVV

integer:)( kkt

1)2( then )( kk VtfVtf

)(lim 2 RLV jj

}0{jV

Page 4: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

Properties of Scaling Functions

1)( dtt

1)(

2dtt

0for basis

tindependenlinearly :)(

)()(),(

V

Zkkt

nntt

)(t

)1( t

Explained using Haar basis

Page 5: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

Dilation of Scaling Functions

)(2)2

1(),

2

1(

)(2

1)2(),2(

nntt

nntt

)(2)2(),2( nntt kkk

)(t

)2( t

)12( t

)2/(t

1

2

1t

k

k

V

Zllt

for basistindependenlinearly

:)2(

Page 6: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

Nested Spaces

• Every vector in V0 belongs to V1 as well

– In particular (t)

• Possible to express (t) as a linear combination of the basis for V1

ZkktV

ZkktV

VV

:)2(: of basis

:)(: of basis

1

0

10

Page 7: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

Haar may be misleading …

• One can translate an arbitrary function by integers and compress it by 2; BUT there is no reason to think that the spaces Vj created by the function and its translates and dilates will necessarily be nested in each other

V0

V1

10 VV 10 VV

Remark

Page 8: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

Two-Scale Relations(Scaling Fns)

n

ntnct )2()()(

2

1)(

)2()()(1

:sidesboth gintegratin

n

n

nc

dtntncdtt

n

nc 2)(

Page 9: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

n

ntnct )2()()(

nn

lntncnltnclt )22()())(2()()(

)()2()(2

1)(),( llmcmcltt

m

Constraints on c(n)

Page 10: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

n

kk ntnkatf )2(),()(

)(),()(),(

0)(),()(

)()()( :fn detail

01

000

010

nttfnttf

nttgVtg

tftftg

),0()(),(0 nanttf )2(),(),1()(),(1 mtntmanttfm

Orthogonal Projection in Subspaces

n

ntnatf )(),0()(0

n

ntnatf )2(),1()(1 Finer approx

Coarser approx

See next page

Page 11: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

)(2

1

)2(),2()()2(),(

mc

mtntncmttn

)2(2

1)2(),(

)2(2

1

)2(),22()(

)2(),)1(2()()2(),1(

nmcmtnt

mc

mtntnc

mtntncmtt

n

n

m

nmcmana

2

)2(),1(),0(

From previous pageFiner coefficients and coarser ones are related by c(n)

Page 12: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

0)( dtt

1)(

2dtt

0for basist independenlinearly

)()(),(

W

nntt

0)(),( ntt

Properties of Wavelets

Orthogonality

Page 13: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

Two-Scale Relations(wavelet)

0)(

)(2

1)2()()(0

:sidesboth gintegratin

)2()()()( 1

n

nn

n

nd

nddtntnddtt

ntndtVt

Page 14: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

)()2()(2

1)(),( llmcmcltt

m

We showed :

Similarly :

)()2()(2

1)(),( llmdmdltt

m

0)2()(2

1)(),(

m

lmcmdltt

Constraints on c(n) and d(n)

Page 15: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

),0()(),(

)(),0()(),0(

)()()(

1

001

nbnttf

ntnbntna

tgtftf

nn

Function Reconstruction

m

m

mtntmanttf

mtmatf

)2(),(),1()(),(

)2(),1()(

1

1

See next page

Page 16: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

m

nmdmanb

2

)2(),1(),0(

)(2

1

)2(),2()()2(),(

md

mtntndmttn

)2(2

1

)2(),22()()2(),1(

md

mtntndmttn

)2(2

1)2(),( nmdmtnt

Detail coefficients and finer representation are related by d(n)

Page 17: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

jj

kj

kjk WVWV

WWWV

WWVWVV

WVV

WVV

1

1011

100112

110

001

Nested Space

VN

VN-1 WN-1

VN-2 WN-2

VN-3 WN-3

Page 18: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

Digital Filter Implementation

Use existing methodology in signal processing for discrete wavelet comput

ation

Page 19: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

Digital Filter Implementation

)()(~2

)()(

)()(~

2

)()(

Define

ngngnd

ng

nhnhnc

nh

m

nmcmana

2

)2(),1(),0(

m

nmdmanb

2

)2(),1(),0(

Recall

m

mnhmana )2(~

),1(),0(

m

mngmanb )2(~),1(),0(

Then

Page 20: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

n

nh 1)(

n

n

n

kngnh

kkngng

kknhnh

0)2()(

)(2

1)2()(

)(2

1)2()(

n

nc 2)(

)()2()(2

1llmdmd

m

0)2()(2

1

m

lmcmd

)()2()(2

1llmcmc

m

n

ng 0)(

n

nd 0)(

Page 21: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

)0(

~)2,1()1(

~)1,1()2(

~)0,1()3(

~)1,1(

)2(~

),1()1,0(

hahahaha

mhmaam

)0(

~)0,1()1(

~)1,1()2(

~)2,1()3(

~)3,1(

)(~

),1()0,0(

hahahaha

mhmaam

)0,0(a

)0(~h)1(

~h)2(

~h)3(

~h

)2,1( a )1,1( a )0,1(a )1,1(a)3,1( a )2,1(a )3,1(a

)1,0(a

)0(~h)1(

~h)2(

~h)3(

~h

)2,1( a )1,1( a )0,1(a )1,1(a)3,1( a )2,1(a )3,1(a

two)offactor aby n (decimatio

samples indexed retain and ~

with ),1( Convolve

:),0( getting ...

evenhma

naCoarsening

Page 22: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

Similarly, …

two)offactor aby n (decimatio

samples indexed retain and ~ with ),1( Convolve

:),0( getting ...

evengma

nbencethe differComputing

)0,0(b

)0(~g)1(~g)2(~g)3(~g

)2,1( a )1,1( a )0,1(a )1,1(a)3,1( a )2,1(a )3,1(a

)1,0(b

)0(~g)1(~g)2(~g)3(~g

)2,1( a )1,1( a )0,1(a )1,1(a)3,1( a )2,1(a )3,1(a

Page 23: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

Signal Reconstruction

m lm l

ll

mltmdlbmltmcla

ltlbltla

tgtftf

)22()(),0()22()(),0(

)(),0()(),0(

)()()( 001

m

mtmct )2()()(

m

mtmdt )2()()(

n ln l

ntlndlbntlnclatf

mln

)2()2(),0()2()2(),0( )(

2 ngSubstituti

1

Page 24: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

)2()1,0()1(0)0()0,0()1(0)2()1,0(

)2()1,0()0()0,0()2()1,0()2(),0(

caccacca

cacacalclal

)1(c)0(c)1(c)2(c

0 )0,0(a 0 )1,0(a)1,0( a

)2(c

Subdivision … getting a(1,n):Zero insertion (upsampling) and convolve with 2H

n=0

)2(),1( )(1 ntnatfn

l l

l l

lnglblnhla

lndlblnclana

)2(),0(2)2(),0(2

)2(),0()2(),0(),1(

Hence

Page 25: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

)2()1,0()1(0)0()0,0()1(0)2()1,0(

)2()1,0()0()0,0()2()1,0()2(),0(

dbddbddb

dbdbdbldlbl

)1(d)0(d)1(d)2(d

0 )0,0(b 0 )1,0(b)1,0( b

)2(d

Detail part: … getting a(1,n):upsampling and convolve with 2Gn=0

Similarly, …

Page 26: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

Notations of Digital Filters

Page 27: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

Interpolator and Decimator

nnMxny for )()(

otherwise0

,for )('

kkMnM

ny

nx

Page 28: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

H~ H

G~ G

analysis filter bankperfect reconstruction pair:

Whatever goes into analysis bank isrecovered perfectly by the synthesisbank

synthesis filter bank

H~

H

G~

G

Page 29: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

Haar Revisited

3,2,1,05379)( nnx

Analysis Filters

0

9

7

3

5 0

8

5

4

2.5

2

0

1

2

-1

2.5

2

-1 0

h(-n)

0.5 0.5

0

-1g(-n)0.5

-0.5

2

1)1()0( hh

2

1)1(,

2

1)0( gg

Haar:

Page 30: General Orthonormal MRA Ref: Rao & Bopardikar, Ch. 3

Haar Revisited

Synthesis Filters

0 1

2 h(n)

1

0

2 g(n)

0

9

7

3

50

8

4

2

0

1

-1

2

-1

1

11