geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf,...

137

Upload: others

Post on 28-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Plant Fun tional Types for LandSurfa e Modelling in SouthE uador Spatial Delineation,Sensitivity and ParameterDeterminationDietri h Göttli her

Page 2: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Plant Fun tional Types for LandSurfa e Modelling in SouthE uador Spatial Delineation,Sensitivity and ParameterDeterminationKumulative DissertationzurErlangung des Doktorgradesder Naturwissens haften(Dr. rer. nat)demFa hberei h Geographieder Philipps-Universität Marburgvorgelegt vonDietri h Göttli heraus Marl (Westf.)Marburg / Lahn 2010

Page 3: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Als Dissertation vom Fa hberei h Geographie derPhilipps-Universität Marburg am 23. Juni 2010angenommen.Erstguta hter: Prof.Dr. Jörg BendixZweitguta hter: Prof.Dr.Thomas NaussTag der Disputation: 14. Juli 2010

Page 4: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Prefa eAt the end of a hallenging time omprising numerous short eld trips to the beau-tiful mountain forests of South E uador, I have to thank those persons who a om-panied me on the way to nish this work.First of all I have to thank my supervisor Jörg Bendix. He had open ears at alltimes and ondu ted me in many s ienti dis ussions. He overwhelmed me withhis enthusiasm on geo-e ologi al resear h and provided all that support I needed. Ihave been proud to be a part of his team.Spe ial thanks go to my olleagues at the Laboratory for Climatology and RemoteSensing of Philipps-University, Marburg. From little help with everyday problemsover in deep s ienti dis ussions to just oee breaks have been very mu h appre- iated. Parti ularly, I have to thank Thomas Nauss (now University of Bayreuth)for fruitful dis ussions and multiple help ranging from solving te hni al problemsto making useful omments on the manus ript. I thank Rütger Rollenbe k for hisassistan e in logisti s around our study site in E uador and in Marburg as well ashis introdu tion to the E uadorian way of life. The diploma theses of André Reif-s hneider (now Obregón), Thomas Böth (now Lotz) and Janina Albert (Universityof Köln) were of great use for this work, as were the help of my additional studentassistants Miriam Ha helaf, Meike Kühnlein, Vera Petrikat, Johannes S hwer andNora S hmid.I am very thankful to many olleagues within the DFG resear h unit FOR816and its prede essor FOR402 for olle ting so many useful data. Espe ially I like tothank Kristin Roos (University of Bayreuth) for the help during the eld studies withthe spe trometer in a tion, Jürgen Homeier (University of Göttingen) and FlorianWerner (University of Oldenburg) for their help with the determination of plantmaterial.My general work within the resear h unit was funded by the Deuts he Fors hungs-gemeins haft (DFG) under multiple subprograms (Be 1780/15-1, Na 783/1-1) andis gratefully a knowledged.Furthermore this work ould not have been ondu ted without the ontributionsof the open sour e software ommunity. Not only the used Community Land Modelbut also a lot of other free software was used throughout the study and their existen eand non-restri tive availability are very mu h appre iated.Finally, I thank my parents and my brother for their multiple support and en- ouragement those re ent years of s ienti work. Moreover, I have to deeply thankmy wife Veronika and our hildren Adelheid, Gregor and Bruno for their patien ewhenever I was not at home and their onstant reminder that the real priorities inlife an be pursued without a omputer. Dietri h Göttli herMarburg, June 2010IV

Page 5: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Contents1 Introdu tion 11.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Study outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.4 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Referen es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Con eptual Design 112.1 Land Surfa e Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.1.1 The Role of Land Surfa e Models . . . . . . . . . . . . . . . . 112.1.2 Evolution of Land Surfa e Models . . . . . . . . . . . . . . . . 112.1.3 Overview of Land Surfa e Models . . . . . . . . . . . . . . . . 122.1.4 Chara teristi s of the CLM . . . . . . . . . . . . . . . . . . . 132.1.5 De ision Making of the Land Surfa e Model . . . . . . . . . . 172.2 Plant Fun tional Types . . . . . . . . . . . . . . . . . . . . . . . . . . 172.2.1 The Con ept of PFT . . . . . . . . . . . . . . . . . . . . . . . 172.2.2 PFTs for the Study Area . . . . . . . . . . . . . . . . . . . . . 192.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Referen es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Spatial Delineation 303.1 Introdu tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.2 Study area and data . . . . . . . . . . . . . . . . . . . . . . . . . . . 343.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.3.1 Pre-pro essing . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.3.2 Training Sites and syntheti hannel . . . . . . . . . . . . . . 393.3.3 Classi ation . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.3.4 A ura y assessment . . . . . . . . . . . . . . . . . . . . . . . 433.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443.4.1 MLC of the Landsat ETM+ s ene . . . . . . . . . . . . . . . . 443.4.2 Soft lassi ation of the Landsat ETM+ s ene . . . . . . . . . 473.5 Appli ation of lassi ation results in a model run . . . . . . . . . . . 483.6 Con lusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Referen es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52V

Page 6: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Contents4 Sensitivity of PFT Parameter 584.1 Introdu tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594.2 Sensitivity study setup . . . . . . . . . . . . . . . . . . . . . . . . . . 614.3 Inuen e of vegetation stru ture and soil parameters . . . . . . . . . 624.3.1 Monthly vegetation height . . . . . . . . . . . . . . . . . . . . 624.3.2 Leaf and stem area index . . . . . . . . . . . . . . . . . . . . . 694.3.3 Soil properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 694.4 Inuen e of the parametrization of the plant fun tional types . . . . . 764.5 Summary and on lusion . . . . . . . . . . . . . . . . . . . . . . . . . 84Referen es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855 Quanti ation of Opti al Properties 875.1 Introdu tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885.2 Methods and Material . . . . . . . . . . . . . . . . . . . . . . . . . . 905.2.1 Study site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905.2.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 905.2.3 Colle ted Plants and Vegetation Units . . . . . . . . . . . . . 935.2.4 Statisti s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965.3.1 Plant Spe tra . . . . . . . . . . . . . . . . . . . . . . . . . . . 965.3.2 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 965.3.3 Cluster versus Vegetation Unit . . . . . . . . . . . . . . . . . . 995.4 Dis ussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995.4.1 Ree tan e and Transmittan e Values . . . . . . . . . . . . . 995.4.2 Opti al Properties of the Clusters . . . . . . . . . . . . . . . . 1015.4.3 Opti al Properties of the CLM . . . . . . . . . . . . . . . . . 1025.4.4 Opti al Properties of FORMIND . . . . . . . . . . . . . . . . 1065.5 Con lusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Referen es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086 Summary and Outlook 1136.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156.2.1 Preliminary Model Runs . . . . . . . . . . . . . . . . . . . . . 1156.2.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118Referen es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207 Zusammenfassung 121VI

Page 7: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

List of Figures1.1 Study outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.1 S hemati overview of the CLM . . . . . . . . . . . . . . . . . . . . . 142.2 S hemati overview of the nested subgrid system of the CLM . . . . . 152.3 S hemati distribution of PFTs and hara teristi traits to des ribemixed biomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.4 Con eptual design of the study . . . . . . . . . . . . . . . . . . . . . 203.1 Study site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.2 Flow hart of the pro essing steps . . . . . . . . . . . . . . . . . . . . 383.3 Un orre ted and orre ted olour omposites . . . . . . . . . . . . . . 393.4 Lo ation of the training sites . . . . . . . . . . . . . . . . . . . . . . . 413.5 Classi ation result of the ETM+ s ene . . . . . . . . . . . . . . . . . 453.6 Per entages of land- over lasses . . . . . . . . . . . . . . . . . . . . . 463.7 Results of the soft lassi ation . . . . . . . . . . . . . . . . . . . . . 483.8 Results of a 1-year model run for anopy transpiration rate . . . . . . 503.9 Close-up look at two single grid ells . . . . . . . . . . . . . . . . . . 503.10 Aggregated daily anopy transpiration of two individual grid ells . . 514.1 Air temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644.2 Transpiration from vegetation . . . . . . . . . . . . . . . . . . . . . . 654.3 Evaporation from vegetation . . . . . . . . . . . . . . . . . . . . . . . 664.4 Sensible heat ux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.5 Air humidity at 2m above ground . . . . . . . . . . . . . . . . . . . . 685.1 Lo ation of the study site and vegetation units from satellite lassi- ation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915.2 Experimental setup for measuring ree tan e. . . . . . . . . . . . . . 935.3 Experimental setup for measuring transmittan e. . . . . . . . . . . . 935.4 Example of three single ree tan e and transmittan e spe tra. . . . . 975.5 Dendrogram of the luster analysis of the ree tan e data. The di-mensionless height indi ates the distan e of the links between thespe ies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97VII

Page 8: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

List of Figures5.6 Dendrogram of the luster analysis of the transmittan e data. Thedimensionless height indi ates the distan e of the of the links betweenthe spe ies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985.7 Dendrogram of the luster analysis of the ombined ree tan e andtransmittan e data. The dimensionless height indi ates the distan eof the links between the spe ies . . . . . . . . . . . . . . . . . . . . . 985.8 Values of ree tan e in the visible and near infrared se tion . . . . . . 1025.9 Values of transmittan e in the visible and near infrared se tion . . . . 1035.10 Changes in for the air temperature in 2m height and the sensibleheat from vegetation using the original CLM ree tan e data and themeasured values presented in this study . . . . . . . . . . . . . . . . . 1056.1 Distribution of PFT over whi h are stable in the preliminary modelruns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1166.2 Distribution of PFT over in the preliminary model runs . . . . . . . 1176.3 Results of the preliminary model runs for anopy transpiration . . . . 119

VIII

Page 9: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

List of Tables3.1 Land- over lasses and training sites . . . . . . . . . . . . . . . . . . 403.2 Contingen y matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443.3 Comparison of the a ura y indi es . . . . . . . . . . . . . . . . . . . 463.4 Parameters for the plant fun tional types . . . . . . . . . . . . . . . . 494.1 Modi ation of input parameters . . . . . . . . . . . . . . . . . . . . 634.2 Tenden y of the orrelation . . . . . . . . . . . . . . . . . . . . . . . 704.3 Absolute values and relative deviation from the mean value for theair temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714.4 Absolute values and relative deviation from the mean value for thespe i air humidity . . . . . . . . . . . . . . . . . . . . . . . . . . . 724.5 Absolute values and relative deviation from the mean value for thesensible heat ux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.6 Absolute values and relative deviation from the mean value for theevaporation from vegetation . . . . . . . . . . . . . . . . . . . . . . . 744.7 Absolute values and relative deviation from the mean value for thetranspiration from vegetation . . . . . . . . . . . . . . . . . . . . . . 754.8 PFT parameters leading to a hange of more than 1% . . . . . . . . 774.9 Dependen y of the omputed output values . . . . . . . . . . . . . . . 784.10 Mean values and relative deviations from the mean values of outputvariables for trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804.11 Mean values and relative deviations from the mean values of outputvariables for shrubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814.12 Mean values and relative deviations from the mean values of outputvariables for C3 grass . . . . . . . . . . . . . . . . . . . . . . . . . . . 824.13 Mean values and relative deviations from the mean values of outputvariables for C4 grass . . . . . . . . . . . . . . . . . . . . . . . . . . . 835.1 Te hni al spe i ations of the two sensors from the used spe trometer. 925.2 List of spe ies, referring odes and dominate vegetation units. . . . . 955.3 Number of spe ies of ea h botani ally derived PFT against the al- ulated lusters and their relative frequen y . . . . . . . . . . . . . . 1005.4 Cal ulated values of ree tan e and transmittan e in the visible andnear infrared se tor for all trees ompared to the CLM standard inputvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104IX

Page 10: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

List of Tables5.5 Cal ulated values of ree tan e in the visible and near infrared se torfor the botani ally derived PFTs . . . . . . . . . . . . . . . . . . . . . 1075.6 Ree tan e and transmittan e values in the visible and near infraredse tion and the dominant vegetation unit for all measured spe ies . . 108

X

Page 11: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

List of AbbreviationsALMIP AMMA Land surfa e Model Inter omparison Proje tAMMA Afri an Monsoon Multidis iplinary AnalysisBATS Biosphere-Atmosphere-Transfer-S hemeBET Broadleaf Evergreen TreeBVOC Biogeni Volatile Organi CompoundC4MIP Coupled Carbon Cy le Climate Model Inter omparison Proje tCCM Community Climate ModelCCSM Community Climate System ModelCLM Community Land ModelCSU Colorado State UniversityDFG Deuts he Fors hungsgemeins haft (German resear h oun il)DGVM Dynami Global Vegetation ModelECSF Esta ión S ientí a San Fran is oEROS Earth Resour es Observation and S ien eETM+ Enhan ed Thematik MapperFOR816 Resear h unit Biodiversity and Sustainable Management of a Megadi-verse Mountain E osystem in South E uadorGCM Global Cir ulation ModelGENESIS Global Environmental and E ologi al Simulation of Intera tive Sys-temsGLCF Global Land Cover Fa ilityGOES Geostationary Operational Environmental SatellitesHadCM3 Hadley Center Climate ModelIAP94 Institute of Atmospheri Physi s, Chinese A ademy of S ien es landmodelIBIS Integrated Biosphere SimulatorIPCC Intergovernmental Panel on Climate ChangeLAI Leaf Area IndexLSM Land Surfa e ModelMLC Maximum-Likelihood Classi ationXI

Page 12: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

List of TablesNCAR National Center for Atmospheri Resear hNCEP National Center for Environmental Predi tionNCI Nature and Culture InternationalNIR Near InfraredNOAA National O eani and Atmosphere AdministrationPAR Photosyntheti A tive RadiationPBL Planetary Boundary LayerPFT Plant Fun tional TypePILPS Proje t for Inter omparison of Land-Surfa e Parameterization S hemesRBSF Reserva Biológi a San Fran is oRTM River Transport ModelSiB Simple Biosphere ModelSRES2 Spe ial report on Emissions S enariosSRTM Shuttle Radar Topography MissionSVAT Soil-Vegetation-Atmosphere-TransferTM Themati MapperUTM Universal Transverse Mer atorVIS VisibleWGS84 World Geodeti System 1984WP Work pa kageWRF Weather Resear h and Fore asting Model

XII

Page 13: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

1 Introdu tion1.1 MotivationThe hange of land over has severe inuen e on the e ologi al onguration andthe limati intera tion between the land surfa e and the atmosphere (Feddemaet al., 2005; Foley et al., 2005; Zhao et al., 2001). Global hange of the limate aswell as the hange of spatial distribution and bioti o urren e of terrestrial e osys-tems pose a hallenge to our generation (Thuiller, 2007). Biologi al diversity isone of the most threatened features in global onsiderations (Colwell et al., 2008;Brooks et al., 2006). A major task for mankind will be the preservation of thesustainability of natural resour es and biologi al diversity under these hanging on-ditions (Naidoo et al., 2008; Sala et al., 2000). To bear this hallenge not onlyglobal a tion is required but also regional steps to gather more understanding of theunderlying pro esses and developing pra ti al solutions.The resear h unit `Biodiversity and Sustainable Management of a MegadiverseMountain E osystem in South E uador' (FOR816) funded by the German resear h oun il (Deuts he Fors hungsgemeins haft, DFG) works in one of the hottest hotspotsof biodiversity of the world (Barthlott et al., 2007; Brummitt & Lughadha,2003; Liede-S humann & Bre kle, 2008). For the last 10 years this resear h unitand its prede essors have been investigating the bioti , abioti and human intera -tions to solve the problem of loss of sustainability due to land over hange for edby the pressure of the lo al inhabitants on the environment (Be k et al., 2008a).Fundamental knowledge about the geo-e ologi al pro esses in this tropi al moun-tain e osystem is missing or is in omplete (Brehm et al., 2008a,b). Various eldexperiments and resear h studies are arried out within the resear h unit FOR816 to lose this gap in knowledge. Parti ularly, new land use strategies are developed andinvestigated to provide the bases for a sustainable management and the onservationthe biodiversity (Pohle & Gerique, 2008;Makes hin et al., 2008;Weber et al.,2008).The use of models to investigate the intera tions between the atmosphere and theland surfa e are a sensible addition to other geo-e ologi al eld studies and experi-ments. Results of these models do not only provide spatial ontinuous abioti datato the e ologists for the investigation of interrelations but primarily help to ana-lyze the whole pro esses within the e ologi system in regards to energy, water andmatter uxes. Numeri models open up the possibility to investigate the potential1

Page 14: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

1 Introdu tion hanges in land over without neither any interferen e on the a tual lands ape nortesting new strategies for a sustainable management in a longer period of time.1.2 AimsNumeri al models are apable to investigate the hanges of the mentioned futureland over hanges and its response to limati and hydrologi variability (see se tion1.1). The han e to test numerously land use s enarios without interfering intothe real environment oers the possibility to investigate and evaluate the proposedmanagement strategies. In re ent years global aspe ts of land over hange and limate hange were in fo us of the s ienti ommunity (e.g. Feddema et al.,2005; Bonan, 2008; Gibbard et al., 2005). To verify these global onsiderationswith eld data on one hand some sort of downs aling has to be applied (e.g. Shinet al., 2006; Misra et al., 2003; Druyan et al., 2002). On the other hand it ispossible to adapt the models to a regional s ale with a ner resolution and lessgeneralized input parametrization.The embedding of this work within the resear h unit FOR816 opens up the pos-sibility to a ess a lot of sophisti ated eld data gathered by the numerous subpro-grams. This gives the unique han e to develop and test a regional adaption of astate-of-the-art land model. One of the major hypotheses of the multidis iplinaryresear h unit is stated as follows:Sustainable management of the pastures and a regional repastorization ofrangeland areas are possible whi h boost livelihood of the lo al popula-tion, redu e the pressure on learing natural forests and improve e osys-tem servi es at the lands ape s ale.Water- and limate regulation are examples of e osystem servi es (de Groot et al.,2002) whi h are dependent on the spe i ation of the environment. These e osys-tem servi es whi h are ree tive of the energy and water uxes, will be alteredunder hanging land use onditions and an be analyzed using soil-vegetation-atmosphere-transfer (SVAT) s hemes (Foley et al., 2005). The energy and wateruxes should be al ulated with the in lusion of a de ided vegetation over. Theused model setup has to be he ked of its regional integrity. Underlying these gen-eral onsiderations the entral hypotheses of this study an be postulated as follows:

2

Page 15: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

1 Introdu tionH1: A ontinuous spatial delineation of land use lasses based on e ologi al-fun tional eld studies an be mapped in a subpixel a ura y from mediumspa e-resolved satellite data.H2: Gradual hanges in the omposition of vegetation, its morphologi al, op-ti al and physiologi al behavior do not have inuen e on the energy andwater uxes estimated in a SVAT model.H3: Clusters of spe ies with similar plant opti al properties ree t e ologi allyderived vegetation types.Following work pa kages (WP) are applied on the bases of the preliminary on-siderations and to nally test the hypotheses as follows:WP1: Classi ation of Landsat Enhan ed Themati Mapper (ETM+) datawith a linear spe tral unmixing approa h (soft lassi ation) to allowsubpixel a ura y. Spatial delineation of dierent vegetation lasses tobe used as input parameter for the used SVAT model.WP2: Condu tion of a sensitivity study of the PFT parameters of the usedSVAT s heme.WP3: Quanti ation of opti al properties of spe ies from all PFTs with a eldspe trometer. Comparison of lusters with similar opti al hara teristi swith e ologi al derived PFTs.The single WPs assemble the supply of a regional model setup to investigate theintera tions between the soil, the vegetation and the atmosphere under hangingland over onditions. The signi ant innovations in this ontext an be stated asfollows: soft lassi ation of land over using Landsat ETM+ data in rugged terrain, rst found sensitivity study of the PFT parameter of the used SVAT model, regional parametrization of the used SVAT model in luding the rst foundregionalization of PFTs, operation of a eld spe trometer to determine the ree tan e and the trans-mittan e of rarely or even insu iently investigated spe ies from a tropi almountain forest, determination of new values for the opti al parameters of the used SVATmodel, ontribution to the s ienti dis ussion on the linkage of PFTs to remote sens-ing data. 3

Page 16: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

1 Introdu tionReview and decision making of land

surface models; review of PFT conceptChapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Spatial delineation of PFT; hard and soft

classification of satellite data

Sensitivity studie of PFT parameter;

analysis of significant traits

Quantification of optical properties;

comparison with composition of PFTs

Summary and outlook; preliminary model

runs under changing conditionsFigure 1.1: Outline of the presented work. Numbers in red refer to the single hapters ofthis work1.3 Study outlineThe study outline is illustrated in gure 1.1. The introdu tion in this hapter is ompleted with a short presentation of the study area ( hapter 1.4). Chapter 2gives an overview of the methodi al approa h. This omprises the evolution, theprin iple hara teristi s and the de ision making of SVAT models ( hapter 2.1) aswell as a review of the on ept of PFTs and their implementation in the study area( hapter 2.2). The workow of the single WPs is presented in hapter 2.3.Chapter 3 introdu es the spatial delineation of the PFTs in the study area fromLandsat data with 2 dierent lassi ation algorithms and a analysis of their dif-ferent impa t on the use within the SVAT model. The sensitivity study of all PFTparameter is presented in hapter 4. The results of the sensitivity study are ree tedin the new quanti ation of opti al properties (ree tan e and transmittan e) andits relevan e for the assigned PFTs ( hapter 5).Finally, hapter 6.1 summarizes the work and evaluates the entral hypotheses.Additional preliminary ase studies and an outlook are given in hapter 6.2.4

Page 17: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

1 Introdu tion

Figure 1.2: The study area in South E uador. Altitudinal data from ETOPO5 (NationalO eani and Atmospheri Administration (NOAA), 1988), GTOPO30(Earth Resour es Observation and S ien e (EROS) Center) and the ShuttleRadar Topography mission (SRTM, Jarvis et al., 2008)1.4 Study AreaThe study area of the resear h unit FOR816 is situated in the Andes of southernE uador (gure 1.2). Field studies are undertaken within the Reserva Biológi aSan Fran is o (RBSF). This prote ted area is maintained by the non-governmentalorganization of Nature & Culture International whi h also maintains and providesthe entral resear h fa ility Esta ión S ientí a San Fran is o (ECSF). The area islo ated in the valley of the Rio San Fran is o between the two provin ial apitalsof Loja and Zamora. The altitude starts from 1800m above sea level (asl) at thevalley oor and rises up to 3200m asl at the Cerro del Consuelo. A omprehensiveoverview of the whole study area is given by (Be k et al., 2008 ).5

Page 18: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

1 Introdu tionThe perhumid limate of the valley is hara terized with a strong altitudinal gradi-ent in all relevant elements (windspeed, winddire tion, in oming radiation, humidity,pre ipitation and temperature). Seasonal variability in loud over and pre ipitationis also found due to the unique position of the resear h area in the Andes between theAmazonian lowlands and the Pa i oast. The distin t topographi features havesevere inuen e on the lo al limati onditions as well (Bendix et al., 2008b,a).The rugged and steep terrain is dominated on one hand by natural mountainrainforests superseded by Subpáramo and Páramo vegetation in the higher altitudes(Homeier et al., 2008). On the other hand anthropogeni repla ement systemsmainly in the form of pastures, its su essional stages and reforestration areas withexoti trees (pines and eu alyptus) dene the lands ape (Be k et al., 2008b). Thepastures are dominated by Setaria spha elata and are o asionally burnt in someareas. Abandoned pasture areas are ompletely overgrown by the invasive southernbra ken fern Pteridium ara hnoideum (Hartig & Be k, 2003).The model domain is set to a bigger area than the RBSF to over the whole at hment of the Rio San Fran is o and adja ent valleys in whi h new settlementa tivities are taken pla e. Human indu ed and natural landslides are a ommonfa tor of disturban e to the e osystem (Bussmann et al., 2008).The vegetation in the resear h area is very heterogeneous. The natural forest an be subdivided into 4 vegetation types by the means of botani al ompositionand topographi features (hillside situation) (Homeier et al., 2008). Forest type Idominates the valley bottom and major ravines from 1800m up to 2200masl. Foresttype II is des ribed as forest along ridges and upper slopes from approximately1900m to 2100masl. Forest Type III ontinues on the ridges and upper slopes from2100m to 2250masl. Forest type IV is monodominated by Purdiaea nutans andstret hes from 2250m up to the timberline at around 2700masl. The Subpáramo isdominated by shrubs also alled evergreen eln forest and rises from the timberlineup to approx. 3150masl.An additional forest type is mentioned in an earlier des ription of the vegeta-tion units. The type overs the forest in the ravines from 2100masl to 2700maslbut is merged to the orresponding forest types IIV later (Homeier et al., 2002;Homeier, 2004). Only hapter 3 still refers to the older lassi ation.

6

Page 19: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esReferen esBarthlott, W., A. Hostert, G. Kier, W. Küper, H. Kreft, J. Mutke,M. Rafiqpoor & J. H. Sommer: (2007): Geographi patterns of vas ularplant diversity at ontinental to global s ale, Erdkunde, 61, 305315.Be k, E., J. Bendix, I. Kottke, F. Makes hin &R. Mosandl (eds.): (2008a):Gradients in a Tropi al Mountain E osystem of E uador, E ologi al Studies, vol.198, Springer, Berlin, Heidelberg.Be k, E., K. Hartig & K. Roos: (2008b): Forest learing by slash and burn,in Be k, E., J. Bendix, I. Kottke, F. Makes hin & R. Mosandl (eds.)Gradients in a Tropi al Mountain E osystem of E uador, E ologi al Studies, vol.198, hap. 28, 387390, Springer, Berlin, Heidelberg.Be k, E., F. Makes hin, F. Haubri h, M. Ri hter, J. Bendix &C. Valerezo: (2008 ): The e osystem (reserva biológi a san fran is o), inBe k,E., J. Bendix, I. Kottke, F. Makes hin & R. Mosandl (eds.) Gradients ina Tropi al Mountain E osystem of E uador, E ologi al Studies, vol. 198, hap. 1,Springer, Berlin, Heidelberg.Bendix, J., R. Rollenbe k, P. Fabian, P. Em k, M. Ri hter &E. Be k: (2008a): Climati variability, in Be k, E., J. Bendix, I. Kottke,F. Makes hin & R. Mosandl (eds.) Gradients in a Tropi al Mountain E osys-tem of E uador, E ologi al Studies, vol. 198, hap. 20, 281290, Springer, Berlin,Heidelberg.Bendix, J., R. Rollenbe k, M. Ri hter, P. Fabian & P. Em k: (2008b):Climate, in Be k, E., J. Bendix, I. Kottke, F. Makes hin & R. Mosandl(eds.) Gradients in a Tropi al Mountain E osystem of E uador, E ologi al Studies,vol. 198, hap. 8, 6373, Springer, Berlin, Heidelberg.Bonan, G. B.: (2008): Forests and limate hange: For ings, feedba ks, and the limate benets of forests, S ien e, 320, 14441449.Brehm, G., K. Fiedler, C. Häuser & H. Dalitz: (2008a): Methodologi al hallenges of a megadiverse e osystem, in Be k, E., J. Bendix, I. Kottke,F. Makes hin & R. Mosandl (eds.) Gradients in a Tropi al Mountain E osys-tem of E uador, E ologi al Studies, vol. 198, hap. 5, 4147, Springer, Berlin,Heidelberg.Brehm, G., J. Homeier, K. Fiedler, I. Kottke, J. Illig, N. M. Nöske,F. Werner & S.-W. Bre kle: (2008b): Mountain rain forests in southerne uador as a hotspot of biodiversity limited knowledge and diverging patterns,7

Page 20: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esin Be k, E., J. Bendix, I. Kottke, F. Makes hin & R. Mosandl (eds.)Gradients in a Tropi al Mountain E osystem of E uador, E ologi al Studies, vol.198, hap. 2, Springer, Berlin, Heidelberg.Brooks, T. M., R. A. Mittermeier, G. A. B. da Fonse a, J. Gerla h,M. Hoffmann, J. F. Lamoreux, C. G. Mittermeier, J. D. Pilgrim &A. S. L. Rodrigues: (2006): Global biodiversity onservation priorities, S ien e,313, 5861.Brummitt, N.& E. N. Lughadha: (2003): Biodiversity: Where's hot and where'snot, Conservation Biology, 17, 14421448.Bussmann, R., W. Wil ke & M. Ri hter: (2008): Landslides as importantdisturban e regimes auses and regeneration, in Be k, E., J. Bendix, I. Kot-tke, F. Makes hin & R. Mosandl (eds.) Gradients in a Tropi al MountainE osystem of E uador, E ologi al Studies, vol. 198, hap. 24, 319330, Springer,Berlin, Heidelberg.Colwell, R. K., G. Brehm, C. L. Cardelus, A. C. Gilman & J. T. Longino:(2008): Global warming, elevational range shifts, and lowland bioti attrition inthe wet tropi s, S ien e, 322, 258261.de Groot, R. S., M. A. Wilson & R. M. J. Boumans: (2002): A typologyfor the lassi ation, des ription and valuation of e osystem fun tions, goods andservi es, E ologi al E onomi s, 41, 393408.Druyan, L. M., M. Fulakeza & P. Lonergan: (2002): Dynami downs alingof seasonal limate predi tions over brazil, Journal of Climate, 15, 34113426.Feddema, J. J., K. W. Oleson, G. B. Bonan, L. O. Mearns, L. E. Buja,G. A. Meehl & W. M. Washington: (2005): The importan e of land- over hange in simulating future limates, S ien e, 310, 16741678.Foley, J. A., R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R.Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, H. K. Gibbs, J. H.Helkowski, T. Holloway, E. A. Howard, C. J. Ku harik, C. Monfreda,J. A. Patz, I. C. Prenti e, N. Ramankutty & P. K. Snyder: (2005):Global onsequen es of land use, S ien e, 309, 570574.Gibbard, S., K. Caldeira, G. Bala, T. J. Phillips & M. Wi kett: (2005):Climate ee ts of global land over hange, Geophysi al Resear h Letters, 32,L23705.Hartig, K. & E. Be k: (2003): The bra ken fern (Pteridium ara hnoideum(Kaulf.) Maxon) dilemma in the andes of southern e uador, E otropi a, 9, 313.8

Page 21: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esHomeier, J.: (2004): Baumdiversität, Waldstruktur und Wa hstumsdynamikzweier tropis her Bergregenwälder in E uador und Costa Ri a, DissertationesBotani ae, vol. 391, Borntraeger, Stuttgart, dissertation Universität Bielefeld.Homeier, J., H. Dalitz & S.-W. Bre kle: (2002): Waldstruktur und bau-martendiversität im montanen regenwald der esta ión ientí a san fran is o insüde uador, Beri hte der Reinhold-Tüxen Gesells haft, 14, 109118.Homeier, J., F. Werner, S. Gradstein, S.-W. Bre kle & M. Ri hter:(2008): Potential vegetation and oristi omposition of andean forests in southe uador, with a fo us on the rbsf, in Be k, E., J. Bendix, I. Kottke,F. Makes hin & R. Mosandl (eds.) Gradients in a Tropi al Mountain E osys-tem of E uador, E ologi al Studies, vol. 198, 87100, Springer, Berlin.Jarvis, A., H. Reuter, A. Nelson & E.Guevara: (2008): Hole-lled seamlesssrtm data v4, online, URL http://srtm. si. giar.org, International Centrefor Tropi al Agri ulture (CIAT).Liede-S humann, S. & S.-W. Bre kle (eds.): (2008): Provisional Che klists ofFlora and Fauna of the San Fran is o Valley and its Surroundings, E otropi alMonographs, vol. 4.Makes hin, F., F. Haubri h, M. Abiy, J. Burneo & T. Klinger: (2008):Pasture management and natural soil regeneration, in Be k, E., J. Bendix,I. Kottke, F. Makes hin & R. Mosandl (eds.) Gradients in a Tropi alMountain E osystem of E uador, E ologi al Studies, vol. 198, hap. 31, 413423,Springer, Berlin, Heidelberg.Misra, V., P. A. Dirmeyer & B. P. Kirtman: (2003): Dynami downs alingof seasonal simulations over south ameri a, Journal of Climate, 16, 103117.Naidoo, R., A. Balmford, R. Costanza, B. Fisher, R. E. Green,B. Lehner, T. R. Mal olm & T. H. Ri ketts: (2008): Global mappingof e osystem servi es and onservation priorities, Pro eedings of the NationalA ademy of S ien es, 105, 94959500.National O eani and Atmospheri Administration (NOAA): (1988):Digital relief of the surfa e of the earth, Data Announ ement 88-MGG-02, NOAA,National Geophysi al Data Center, Boulder, CO.Pohle, P. & A. Gerique: (2008): Sustainable and non-sustainable use of naturalresour es by indigenous and lo al ommunities, in Be k, E., J. Bendix, I. Kot-tke, F. Makes hin & R. Mosandl (eds.) Gradients in a Tropi al MountainE osystem of E uador, E ologi al Studies, vol. 198, hap. 25, 347361, Springer,Berlin, Heidelberg. 9

Page 22: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esSala, O. E., I. Chapin, F. Stuart, J. J. Armesto, E. Berlow, J. Bloom-field, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Ja kson,A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld,N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall:(2000): Global biodiversity s enarios for the year 2100, S ien e, 287, 17701774.Shin, D. W., J. G. Bellow, T. E. LaRow, S. Co ke & J. J. O'Brien: (2006):The role of an advan ed land model in seasonal dynami al downs aling for ropmodel appli ation, Journal of Applied Meteorology and Climatology, 45, 686701.Thuiller, W.: (2007): Biodiversity: Climate hange and the e ologist, Nature,448, 550552.Weber, M., S. Günter, N. Aguirre, B. Stimm & R. Mosandl: (2008): Re-forestation of abandoned pastures: Silvi ultural means to a elerate forest re ov-ery and biodiversity, in Be k, E., J. Bendix, I. Kottke, F. Makes hin &R. Mosandl (eds.) Gradients in a Tropi al Mountain E osystem of E uador,E ologi al Studies, vol. 198, hap. 34, 447457, Springer, Berlin, Heidelberg.Zhao, M., A. Pitman & T. Chase: (2001): The impa t of land over hange onthe atmospheri ir ulation, Climate Dynami s, 17, 467477.

10

Page 23: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

2 Con eptual Design2.1 Land Surfa e Models2.1.1 The Role of Land Surfa e ModelsThe terms Land surfa e models (LSM) and soil-vegetation-atmosphere-transfer (SVAT)s hemes are often used synonymously. A learly separated fun tionality is not ob-served but LSM may look beyond the surfa e overage on erning anthropogeni lasses. The main role of these models is to provide the boundary onditions at theland-atmosphere interfa e. Several partitions of energy, water and matter uxes are al ulated from the atmosphere into the surfa e layer and ba k again losing theimportant e ologi al y les (Bonan, 2008a).Furthermore these types of models are applied to study e ologi al pro esses inthe soil olumn or within the vegetation layer of its own (e.g. Thornton & Zim-mermann, 2007; Levis & Bonan, 2004; Barlage & Zeng, 2004; Lawren e& Slater, 2005). In new models all relevant partitions are al ulated and an beused without a oupling to a limate or at least an atmospheri model. A dynami aldowns aling of limatologi al features or data assimilation is possible and may beused in appended e ologi al studies (Shin et al., 2006; Wilby & Wigley, 1997;Rodell et al., 2004; Zhou et al., 2006; Wood et al., 2004).A real advantage of numeri models in ontrast to in-situ measurements or eldexperiments is the possibility to investigate pro esses under hanging onditions, e.g.land over hanges that annot not be done in reality (deforestation) or for a longertime period (several hundred years in the future and also in the past) (Gibbardet al., 2005; Otto-Bliesner et al., 2006a,b).2.1.2 Evolution of Land Surfa e ModelsThe evolution of land models started in the 1960s and is still under development.Until now 4 generations of model on epts an be distinguished (Bonan, 2008b;Pitman, 2003; Sellers et al., 1997): First generation models: Bu ket models for the water y le, a simple solution ofsolving the energy balan e, no inuen e of the vegetation, no soil heat storage.Examples are presented in the model of Manabe (1969) and the boundary11

Page 24: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

2 Con eptual Design ondition of the rst version of the NCAR Community Climate Model (CCM1,Williamson et al., 1987). Se ond generation models: addition of vegetation and a hydrologi al y le. Ex-amples are Biosphere-Atmosphere-Transfer-S heme (BATS, Di kinson et al.,1986) and Simple Biosphere Model (SiB, Sellers et al., 1986). Third generation models: addition of photosynthesis. Examples are the LandSurfa e Model (LSM, Bonan, 1995, 1996) and the planetary boundary layer(PBL) of the global ir ulation model (GCM) of Colorado State University(CSU, Denning et al., 1995). Fourth generation models: addition of the arbon y le and dynami vege-tation. Examples are the fully oupled Global Environmental and E ologi alSimulation of Intera tive Systems - Integrated Biosphere Simulator, a limate-vegetation model (GENESISIBIS, Levis et al., 1999, 2000; Foley et al.,1996) and the GCM of the Hadley Center (HadCM3) oupled to a dynami vegetation model(TRIFFID, Cox et al., 2000). further developments: a biogeo hemi al y le and human systems in the sur-fa e parametrization (urban model). Example is the urrent version 4.0 of theCommunity Land Model (CLM, Oleson et al., 2010)2.1.3 Overview of Land Surfa e ModelsA omprehensive overview and omparison of numerously publi ized models is notavailable. A lot of the studies ompare only a limited number of models dire tlyand often fo us on a spe ial issue (e.g. Zeng et al., 2002; Chen et al., 1996;Abramowitz et al., 2008). The biggest eorts are made by the Proje t for In-ter omparison of Land-Surfa e Parameterization S hemes (PILPS, Pitman et al.,1999;Qu et al., 1998;Henderson-Sellers et al., 2003), the Coupled Carbon Cy leClimate Model Inter omparison Proje t (C4MIP, Friedlingstein et al., 2006) andthe AMMA Land surfa e Model Inter omparison Proje t (ALMIP, AMMA=Afri anMonsoon Multidis iplinary Analysis, Boone et al., 2009). These international or-ganized studies lead to improvements in the general model parametrization and arenot arried out to investigate good or bad models. Unfortunately, the CLM wasonly overed by its prede essors through these inter omparisons. However it hasshown its s ienti eligibility through other studies (Lawren e & Chase, 2010;Di kinson et al., 2006; Bonan et al., 2002b; Bonan & Levis, 2006; Collinset al., 2006; Thornton et al., 2007, 2009).The sele tion of one of the published models to use within the resear h unit is a as ading task satisfying following priority list:12

Page 25: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

2 Con eptual Design The sour e ode has to be freely available to modify or to add spe ial featuresand to fully omprehend the methods and algorithms used. The vegetation has to be parametrized in a manner that the regional needs ould be implemented, the favourable way would be the use of plant fun tionaltypes rather than dis rete vegetational units like biomes. The s aling of the model should be in a dynami way allowing a ne mesh ofvegetation and soil properties in a oarser mesh of atmospheri for ing. The model should be still under urrent development to have the han e to onta t the ollaborators if ne essary. All important partitions of the e ologi al y les (energy, water, nutrients)should be al ulated. The model should run alone with a for ing dataset of atmospheri variablesand favourable also in a oupled setup in onne tion with an atmospheri or limatologi al model.2.1.4 Chara teristi s of the CLMThe CLM was rst mentioned as Common Land Model (Dai et al., 2003) but wasrenamed in the stru ture of the NCAR Community Climate System Model (CCSM)family to Community Land Model (Zeng, 2003). The parallel developments of themodel and a time delay during publi ation pro esses lead to an earlier mentionof the Community Land Model Bonan et al. (2002b). Generally the CLM is a ombination of 3 preexisting land surfa e parametrization: BATS, LSM and theInstitute of Atmospheri Physi s, Chinese A ademy of S ien es land model (IAP94,Dai & Zeng, 1997). Up to now (June 2010) it has 5 major releases (2.0, 2.1, 3.0,3.5, 4.0) with several improvements both in parametrization and software engineer-ing aspe ts. For a omprehensive overview of the model development see NCARTerrestrial S ien e Se tion (2010).The te hni al implementation of the CLM is des ribed in Oleson et al. (2004,2010) with further improvements des ribed by Oleson et al. (2008); Stö kli et al.(2008); Lawren e et al. (2010). Figure 2.1 gives a s hemati overview of the singlepartitions of the model.Spatial heterogeneityThe CLM is organized in multiple nested subgrids (see g. 2.2). Atmospheri for ing is applied to a grid ell whi h an be subdivided in up to 5 landunits (gla ier,wetland, lake, urban, vegetated). These landunits imply dierent al ulation of thevarious pro esses. All landunits an be split in multiple olumns. In the urrent13

Page 26: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

2 Con eptual Design

Figure 2.1: S hemati overview of all pro essed partitions of the CLM (Bonan, 2008b).

14

Page 27: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

2 Con eptual DesignVegetated

Atmospheric forcing

Wetland

Lake

Glacier

Urban

Gridcell

PFTs

Columns

Landunits

Snow layer

Soil layerLake levels

bare

soil PFT 2

PFT 1PFT 3Figure 2.2: S hemati overview of the nested subgrid system of the CLM.version only the urban landunit is split into 5 olumns all others ontain just 1. The olumn of the vegetated landunit represents the information on the soil (15 layers)and snow (up to 5 layers). The olumn's next subgrid is the PFT level al ulatingall biogeophysi al and biogeo hemi al pro esses on erning the plant over but alsothe bare soil.Energy balan eThe energy balan e is solved for dierent surfa es from the landunits, the anopy (i.e.the vegetation), the soil and the snow layer. It in ludes the absorption, ree tion andtransmittan e of in oming solar radiation, the absorption and ree tion of longwaveradiation, the sensible and latent heat uxes from the ground and the vegetationas well as the momentum using the Monin-Obukhov similarity theory (Zeng et al.,15

Page 28: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

2 Con eptual Design1998).Water balan eThe water balan e is solved for the surfa e and separately for the soil and snowlayers. The anopy hydrology separates into throughfall, drip and inter eption.The soil water distribution is al ulated using Dar y's Law and Ri hards equation(Zeng & De ker, 2009). Surfa e and sub-surfa e runo is modelled by simpliedTOPMODEL approa h (Niu et al., 2005). Routing the surfa e runo to the o eanis al ulated using a river transport model (RTM, Branstetter, 2001).Carbon-Nitrogen balan eThe photosynthesis and respiration rate is al ulated using stomatal resistan e intwo layers of leaf area (sunlit and shaded), also alled two-big-leaf model (Sellerset al., 1996). A fully oupled arbon and nitrogen model (adapted from the Biome-BGC, Thornton et al., 2002; Thornton & Rosenbloom, 2005) onsists of 20single arbon pools and 19 nitrogen pools.Dynami vegetationOn one hand the phenology is taken into a ount supplying a seasonal shift withinthe leaf area index (LAI) of the single PFTs. On the other hand a transient land over hange an be implemented, hanging the spatial distribution of PFTs over time witha for ing dataset of land over or a dynami global vegetation model (DGVM) anbe added (Levis et al., 2004).Additional al ulationsMore partitions in the CLM are al ulated with minor priority for this study asfollows: Dust depositions and uxes Emission of biogeni volatile organi ompounds (BVOCs) Urban energy balan e and uxes.The primary intention to develop CLM is to provide a state of the art boundarylayer for global limate models but a ongoing task is to examine a ne mesh setupon a regional s ale. The work is still in progress and bases on the work of Hahmann& Di kinson (2001).16

Page 29: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

2 Con eptual Design2.1.5 De ision Making of the Land Surfa e ModelThe CLM overs all aspe ts of the presented priority list and benets from a veryeager development ommunity ree ted in the major updates sin e its rst releasein 2002. A lot of the dierent models are based on the same physi al prin iplesand algorithms anyway, so that the availability of the sour e ode and the exibleand dynami parametrization of the vegetation with plant fun tional types tippedthe s ales. Espe ially the implementation of the nested grid approa h makes it verysuitable for a regional setup.2.2 Plant Fun tional Types2.2.1 The Con ept of PFTA signi ant feature within the CLM is the parametrization of the vegetation overusing plant fun tional types. The development of the on ept of PFTs dates ba k tothe exploration of the New World in the 19th entury. Ustin &Gamon (2010) givesa omprehensive overview of the history of fun tional lassi ation of vegetation andis summarized below.Alexander von Humboldt's lassi ation of spe ies-based, stru tural lasses re-lating physiognomi forms to the physi al environment leads to the rst fun tional lassi ation of Andreas F. W. S himper at the beginning of the 20th entury. Fur-ther developments were nalized in the on ept of life forms from Raunkiaer. This on ept is still present in a lot of fundamental books in vegetation s ien e (e.g. El-lenberg, 1996; Huggett, 1998). An improved understanding of plant physiologyin onne tion with the responses of plants to environmental onditions and plant dis-tribution leads to the formulation of the `fun tional onvergen e hypothesis'(Field,1991). This theory applied to PFT shows that there is a linkage between the pe u-liarity of opti al, morphologi al, phenologi al and physiologi al traits of plants.The observing s ale (from leaf over stand to lands ape or biome) is an importantfa tor to sele t the traits for fun tional onvergen e. Consequently, there is nogeneral pro edure to distinguish fun tional types, rather the fun tional traits haveto be assigned separately for ea h purpose (Gitay & Noble, 1997). Nevertheless,PFTs have shown there ability to balan e between abstra tion of the vegetation over and detail of pro esses in various s ales of e osystems (Smith et al., 1997).Classi al vegetation lassi ations are based primarily on limati and edaphi ir umstan es and ause generally dis rete lasses (e.g. Bre kle, 2002; S hultz,2005; Matthews, 1983). The term fun tional type impli ate dis rete lasses aswell but the ombination of PFTs makes it possible to des ribe the vegetation asa ontinuous ow. Parti ularly, mixed biomes are presented as the ombination oftwo or more PFTs. One example (see g2.3) is the des ription of Savannah madefrom grass and single trees with two PFTs in a variable ombination. This allows17

Page 30: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

2 Con eptual Design

C3 grass

C3 grass

broadleaf tree

needleleaf treetree

grass

C3 and C4 grasses mixed forests savannahbio

me

trait

PFTFigure 2.3: Distribution of PFTs and hara teristi traits to des ribe mixed biomes. Forfurther information see text (adapted and modied from NCAR Terres-trial S ien e Se tion, 2010).a smooth hangeover from plain grasslands to forests instead of dis rete lasses ofthe biomes. Other examples illustrated are the des ription of a mixed forest withbroadleaf and needleleaf trees and grasslands made of C3 and C4 grasses. For all3 mixed biomes a exemplary fun tional trait is in luded to larify the dieren e ine ologi al fun tioning.Over the years a lot of s ienti papers have been presented on the de ision whi htraits and whi h plants should be used to distinguish PFTs. Cornelissen et al.(2003) gives a omprehensive overview on methodi al approa hes to determine allkinds of fun tional traits. The 16 global dened PFTs of the CLM are presented inthe work of Bonan et al. (2002a). PFTs are not limited to the use within modelsbut have found appli ation in a variety of elds of e ologi al resear h (Woodward& Cramer, 1996; Lavorel & Cramer, 1999; Du kworth et al., 2000; Pausaset al., 2003). de Bello et al. (2010) review the apabilities of fun tional types toassess e osystem servi es.There is still riti ism on the on ept of PFTs (e.g. Lavorel et al., 2007). Themain di ulty to determine and to apply PFTs is the la k of a unique method of lassi ation. Espe ially, this omes true if the geographi al area is large and a lotof intermediate traits exist like in megadiverse e osystems (Lavorel et al., 1997;Westby & Leishman, 1997). Another problem is the large amount of suggested18

Page 31: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

2 Con eptual Designtraits and the de ient foundation of values for PFT parameters (Prenti e et al.,2007).2.2.2 PFTs for the Study AreaTaking the onsiderations in hapter 2.2.1 into a ount, the determination of PFTsin the study area is not an easy task. The traits for lassi ation are dened bythe PFT parameters of the CLM. The omplete determination of the values of theseparameters for the spe ies of this megadiverse e osystem is not pra ti able. Hen ekeeping the lasses from the e ologi al survey as des ribed in hapter 1.4 seems tobe the appropriate way. A systemati measuring of some fun tional parameters anbe arried out not until a sensitivity study is ondu ted as presented in hapter 4to spe ify the most signi ant traits regarding the model output.A priori some PFTs an be very well distinguished (pastures, su ession withbra ken fern) be ause of their obvious fun tional response where other PFTs annot(dierent forest types or spe i trees within the forest). The rux is to determinethe fun tional types on one hand and delineate the spatial distribution of the PFTson the other hand.To start of with the CLM-PFTs for the use within the study area will be denedby the e ologi ally derived 4 forest types, the pastures (grasslands), the su essionalstages of bra ken fern as well as bushes and the Subpáramo.2.3 ImplementationAll onsiderations mentioned so far imply a development of a running and testedland surfa e model system in a lands ape s ale. The geo-e ologi al uxes of waterand energy have to be al ulated to analyze the the value of e osystem servi esunder hanging environmental onditions. Figure 2.4 is illustrating the on urren eof the single steps presented in the following hapters as explained in the WPs (seese tion 1.2).

19

Page 32: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

2 Con eptual Design

CLM

Spatial

delineation PFTs

PFT

Chap. 3

Sensitivity study

PFTs

Chap. 4

Quantifying

optical properties

Chap. 5

new PFT distribution

determination significant PFT traits

testing PFT composition

application of new values

Preliminary

model runs

Chap. 6.2.1Figure 2.4: Con eptual design of the study.

20

Page 33: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esReferen esAbramowitz, G., R. Leuning, M. Clark & A. Pitman: (2008): Evaluatingthe performan e of land surfa e models, Journal of Climate, 21, 54685481.Barlage, M. & X. Zeng: (2004): The ee ts of observed fra tional vegetation over on the land surfa e limatology of the ommunity land model, Journal ofHydrometeorology, 5, 823830.Bonan, G.: (1996): A land surfa e model (LSM version 1.0) for e ologi al, hydro-logi al and atmospheri studies: Te hni al des ription and user's guide, Te hni alNote NCAR/TN-417+STR, National Center for Atmospheri Resear h (NCAR).Bonan, G.: (2008a): E ologi al Climatology - Con epts and appli ations, 2nd edn.,Press Syndi at of the University of Cambridge.Bonan, G., S. Levis, L. Kergoat&K. Oleson: (2002a): Lands apes as pat hesof plant fun tional types: An integrating on ept for limate and e osystem mod-els, Global Bio hemi al Cy les, 16 No.2, 51530.Bonan, G., K. Oleson,M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. Di k-inson & Z.-L. Yang: (2002b): The land surfa e limatology of the ommunityland model oupled to the NCAR ommunity limate model, Journal of Climate,15, 31233149.Bonan, G. B.: (1995): Land-atmosphere o2 ex hange simulated by a land surfa epro ess model oupled to an atmospheri general ir ulation model, Journal ofGeophysi al Resear h, 100, 28172831.Bonan, G. B.: (2008b): Forests and limate hange: For ings, feedba ks, and the limate benets of forests, S ien e, 320, 14441449.Bonan, G. B. & S. Levis: (2006): Evaluating aspe ts of the ommunity land andatmosphere models (CLM3 and CAM3) using a dynami global vegetation model,Journal of Climate, 11, 22902301.Boone, A., B. De harme, F. Gui hard, P. de Rosnay, G. Bal-samo, A. Beljaars, F. Chopin, T. Orgeval, J. Pol her, C. Delire,A. Du harne, S. Gas oin, M. Grippa, L. Jarlan, L. Kergoat, E. Mou-gin, Y. Gusev, O. Nasonova, P. Harris, C. Taylor, A. Norgaard,I. Sandholt, C. Ottlé, I. Po ard-Le ler q, S. Saux-Pi art & Y. Xue:(2009): The amma land surfa e model inter omparison proje t (almip), Bulletinof the Ameri an Meteorologi al So iety, 90, 18651880.21

Page 34: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esBranstetter, M.: (2001): 2001. Development of a parallel river transport al-gorithm and appli ations to limate studies. Ph.D. dissertation,, Ph.D. thesis,University of Texas at Austin.Bre kle, S.-W.: (2002): Walter's Vegetation of the Earth, 4th edn., Ulmer,Stuttgart.Chen, F., K. Mit hell, J. S haake, Y. Xue, H.-L. Pan, V. Koren, Q. Y.Duan,M. Ek & A. Betts: (1996): Modeling of land surfa e evaporation by fours hemes and omparison with fe observations, Journal of Geophysi al Resear h,101, 72517268.Collins, W. D., C. M. Bitz,M. L. Bla kmon, G. B. Bonan, C. S. Brether-ton, J. A. Carton, P. Chang, S. C. Doney, J. J. Ha k, T. B. Henderson,J. T. Kiehl, W. G. Large, D. S. M Kenna, B. D. Santer & R. D. Smith:(2006): The ommunity limate system model version 3 (CCSM3), Journal ofClimate, 11, 21222143.Cornelissen, J. H. C., S. Lavorel, E. Garnier, S. Díaz, N. Bu hmann,D. E. Gurvi h, P. B. Rei h, H. ter Steege, H. D. Morgan, M. G. A.van der Heijden, J. G. Pausas & H. Poorter: (2003): A handbook of proto- ols for standardised and easy measurement of plant fun tional traits worldwide,Australian Journal of Botany, 51, 335380.Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall & I. J. Totterdell:(2000): A eleration of global warming due to arbon- y le feedba ks in a oupled limate model, Nature, 408, 184187.Dai, Y. & Q. Zeng: (1997): A land surfa e model (IAP94) for limate studies. parti: Formulation and validation in o-line experiments, Advan es in Atmospheri S ien e, 14, 433460.Dai, Y., X. Zeng, R. Di kinson, I. Baker, G. Bonan, M. Bosilovi h, A. S.Denning, P. Dirmeyer, P. Houser, G. Niu, K. Oleson, C. S hlosser &Z.-L. Yang: (2003): The ommon land model, Bulletin Ameri an Meteorologi alSo iety, 84, 10131023.de Bello, F., S. Lavorel, S. Díaz, R. Harrington, J. Cornelissen,R. Bardgett,M. Berg, P. Cipriotti, C. Feld, D. Hering, P. Martins daSilva, S. Potts, L. Sandin, J. Sousa, J. Storkey, D. Wardle & P. Harri-son: (2010): Towards an assessment of multiple e osystem pro esses and servi esvia fun tional traits, Biodiversity and Conservation, OnlineFirst.Denning, A. S., I. Y. Fung & D. Randall: (1995): Latitudinal gradient ofatmospheri o2 due to seasonal ex hange with land biota, Nature, 376, 240243.22

Page 35: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esDi kinson, R., K. Oleson, G. Bonan, F. Hoffman, P. Thornton,M. Vertenstein, Z. Yang & X. Zeng: (2006): The ommunity land modeland its limate statisti s as a omponent of the ommunity limate system model,Journal of Climate, 19, 23022324.Di kinson, R. E., A. Henderson-Sellers, P. J. Kennedy & M. F. Wilson:(1986): Biosphere-atmosphere transfer s heme (BATS) for the NCAR ommunity limate model, Te hnote, National Center for Atmospheri Resear h (NCAR).Du kworth, J. C., M. Kent & P. M. Ramsay: (2000): Plant fun tionaltypes: an alternative to taxonomi plant ommunity des ription in biogeogra-phy?, Progress in Physi al Geography, 24, 515542.Ellenberg, H.: (1996): Vegetation Mitteleuropas mit den Alpen, 5th edn., Ulmer,Stuttgart, in German.Field, C. B.: (1991): E ologi al s aling of arbon gain to stress and resour eavailability, in Mooney, H. A., W. E. Winner & E. J. Pell (eds.) Responseof plants to multiple stresses, 3565, A ademi Press, San Diego, CA.Foley, J. A., I. C. Prenti e, N. Ramankutty, S. Levis, D. Pollard,S. Sit h & A. Haxeltine: (1996): An integrated biosphere model of landsurfa e pro esses, terrestrial arbon balan e, and vegetation dynami s, GlobalBiogeo hemi al Cy lesa, 10, 603628.Friedlingstein, P., P. M. Cox, R. A. Betts, L. Bopp, W. Von Bloh,V. Brovkin, P. Cadule, S. Doney, M. Eby, I. Fung, G. Bala, J. John,C. D. Jones, F. Joos, T. Kato, M. Kawamiya, W. Knorr, K. Lindsay,H. D. Matthews, T. Raddatz, P. Rayner, C. Rei k, E. Roe kner, K.-G.S hnitzler, R. S hnur, K. Strassmann, A. J. Weaver, C. Yoshikawa &N. Zeng: (2006): Climate- arbon y le feedba k analysis: results from the 4mipmodel inter omparison, Journal of Climate, 19, 33373353.Gibbard, S., K. Caldeira, G. Bala, T. J. Phillips & M. Wi kett: (2005):Climate ee ts of global land over hange, Geophysi al Resear h Letters, 32,L23705.Gitay, H. & I. R. Noble: (1997): What are fun tional types and how should weseek them?, in Smith, T. M., H. H. Shugart & F. I. Woodward (eds.) Plantfun tional types their relevan e to e osystem properties and global hange, Inter-national Geosphere-Biosphere Programme Book Series, vol. 1, 319, CambridgeUniversity Press, New York.23

Page 36: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esHahmann, A. N. & R. E. Di kinson: (2001): A ne-mesh land approa h forgeneral ir ulation models and its impa t on regional limate, Journal of Climate,14, 16341646.Henderson-Sellers, A., P. Irannejad, K. M Guffie & A. J. Pitman:(2003): Predi ting land-surfa e limates-better skill or moving targets?, Geophys-i al Resear h Letters, 30, 17771781.Huggett, R. J.: (1998): Fundamentals of Biogeography, Routledge, London, NewYork.Lavorel, S. &W. Cramer (eds.): (1999): Plant fun tional types and disturban edynami s, Journal of Vegetation S ien e Spe ial Feature, vol. 10.Lavorel, S., S. Díaz, J. H. C. Cornelissen, E. Garnier, S. P. Harrison,J. G. Pausas, N. Pérez-Harguindeguy, C. Roumet & C. Ur elay: (2007):Plant fun tional types: Are we getting any loser to the holy grail?, in Canadell,J. G., D. E. Pataki & L. F. Pitelka (eds.) Terrestrial E osystems in a Chang-ing World, hap. 13, 149164, Springer, Berlin, Heidelberg.Lavorel, S., S. M Intyre, J. Landsberg & T. D. A. Forbes: (1997): Plantfun tional lassi ations: from general groups to spe i groups based on responseto disturban e, Trends in E ology & Evolution, 12, 474478.Lawren e, D., K. W. Oleson, M. G. Flanner, P. E. Thornton, S. C.Swenson, P. J. Lawren e, X. Zeng, Z.-L. Yang, S. Levis, K. Sakagu hi,G. B. Bonan & A. G. Slater: (2010): Parameterization improvements andfun tional and stru tural advan es in version 4 of the ommunity land model,Journal of Advan es in Modeling Earth Systems, Submitted, on Dis ussion.Lawren e, D. M. & A. G. Slater: (2005): A proje tion of severe near-surfa epermafrost degradation during the 21st entury, Geophysi al Resear h Letters, 32,L24401.Lawren e, P. J. & T. N. Chase: (2010): Investigating the limate impa ts ofglobal land over hange in the ommunity limate system model, InternationalJournal of Climatology, Early View.Levis, S. & G. Bonan: (2004): Simulating springtime temperature patterns inthe ommunity atmosphere model oupled to the ommunity land model usingprognosti leaf area, Journal of Climate, 17, 45314540.Levis, S., G. Bonan, M. Vertenstein & K. Oleson: (2004): The ommu-nity land model's dynami global vegetation model CLM-DGVM: Te hni al de-s ription and user's guide, NCAR Te hni al Note NCAR/TN-459+STR, NationalCenter for Atmospheri Resear h (NCAR), Boulder, CO.24

Page 37: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esLevis, S., J. A. Foley & D. Pollard: (1999): Co2, limate, and vegetationfeedba ks at the last gla ial maximum, Journal of Geophysi al Resear h, 104,3119131198.Levis, S., J. A. Foley & D. Pollard: (2000): Large-s ale vegetation feedba kson a doubled o2 limate, Journal of Climate, 13, 13131325.Manabe, S.: (1969): Climate and the o ean ir ulation: I. the atmospheri ir- ulation and the hydrology of the earth's surfa e, Monthly Weather Review, 97,739774.Matthews, E.: (1983): Global vegetation and land use: New high-resolution databases for limate studies, Journal of Climate and Applied Meteorology, 22, 474487.NCAR Terrestrial S ien e Se tion: (2010): Community land model, Online,URL http://www. gd.u ar.edu/tss/ lm, 2010-06-05.Niu, G.-Y., Z.-L. Yang, R. Di kinson & L. Gulden: (2005): A simpleTOPMODEL-based runo parameterization (SIMTOP) for use in global limate,Journal of Geophysi al Resear h, 110, D21106.Oleson, K., D. Lawren e, G. Bonan, M. Flanner, E. Kluzek,P. Lawren e, S. Levis, S. Swenson, P. Thornton, A. Dai, M. De ker,R. Di kinson, J. Feddema, C. Heald, F. Hoffman, J.-F. Lamarque,N. Mahowald, G.-Y. Niu, T. Qian, J. Randerson, S. Running, K. Sak-agu hi, A. Slater,R. Stö kli, A. Wang, Z.-L. Yang, X. Zeng &X. Zeng:(2010): Te hni al des ription of version 4.0 of the ommunity land model (CLM),NCAR Te hni al Note NCAR/TN-478+STR, National Center for Atmospheri Resear h, Boulder, CO.Oleson, K. W., Y. Dai, G. Bonan, M. Bosilovi h, R. Di kinson,P. Dirmeyer, F. Hoffman, P. Houser, S. Levis, G. Y. Niu, P. Thornton,M. Vertenstein, Z. L. Yang & X. Zeng: (2004): Te hni al des ription of the ommunity land model ( lm), Te h. Rep. NCAR/TN-461+STR, NCAR Te hni alNote.Oleson, K. W., G.-Y. Niu, Z.-L. Yang, D. M. Lawren e, P. E. Thornton,P. J. Lawren e, R. Stö kli, R. E. Di kinson, G. B. Bonan, S. Levis,A. Dai & T. Qian: (2008): Improvements to the ommunity land model andtheir impa t on the hydrologi al y le, Journal of Geophysi al Resear h, 113,G01021.25

Page 38: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esOtto-Bliesner, B. L., E. C. Brady, G. Clauzet, R. Tomas, S. Levis &Z. Kothavala: (2006a): Last gla ial maximum and holo ene limate in CCSM3,Journal of Climate, 11, 25262544.Otto-Bliesner, B. L., R. Tomas, E. C. Brady, C. Ammann, Z. Kothavala& G. Clauzet: (2006b): Climate sensitivity of moderate- and low-resolutionversions of CCSM3 to preindustrial for ings, Journal of Climate, 11, 25672583.Pausas, J., G. Rus h & J. Lep² (eds.): (2003): Plant Fun tional Types in relationto disturban e and land use, Journal of Vegetaion S ien e Spe ial Feature, vol. 14.Pitman, A. J.: (2003): The evolution of, and revolution in, land surfa e s hemesdesigned for limate models, International Journal of Climatology, 23, 479510.Pitman, A. J., A. Henderson-Sellers, C. E. Desborough, Z.-L. Yang,F. Abramopoulos, A. Boone, R. E. Di kinson, N. Gedney, R. Koster,E. Kowal zyk, D. Lettenmaier, X. Liang, J.-F. Mahfouf, J. Noilhan,J. Pol her, W. Qu, A. Robo k, C. Rosenzweig, C. A. S hlosser, A. B.Shmakin, J. Smith, M. Suarez, D. Verseghy, P. Wetzel, E. Wood &Y. Xue: (1999): Key results and impli ations from phase 1( ) of the proje t forinter omparison of land-surfa e parametrization s hemes, Climate Dynami s, 15,673684.Prenti e, I. C., A. Bondeau, W. Cramer, S. P. Harrison, T. Hi kler,W. Lu ht, S. Sit h, B. Smith & M. T. Sykes: (2007): Dynami globalvegetation modeling: Quantifying terrestrial e osystem responses to large-s aleenvironmental hanges, in Canadell, J. G., D. E. Pataki & L. F. Pitelka(eds.) Terrestrial E osystems in a Changing World, hap. 15, 175192, Springer,Berlin, Heidelberg.Qu, W., A. Henderson-Sellers, A. Pitman, T. H. Chen, F. Abramopou-los, A. Boone, S. Chang, F. Chen, Y. Dai, R. E. Di kinson, L. Dumenil,M. Ek, N. Gedney, Y. M. Gusev, J. Kim, R. Koster, E. A. Kowal zyk,J. Lean, D. Lettenmaier, X. Liang, J.-F. Mahfouf, H.-T. Mengelkamp,K. Mit hell, O. N. Nasonova, J. Noilhan, A. Robo k, C. Rosen-zweig, J. S haake, C. A. S hlosser, J.-P. S hulz, A. B. Shmakin, D. L.Verseghy, P. Wetzel, E. F. Wood, Z.-L. Yang & Q. Zeng: (1998): Sen-sitivity of latent heat ux from PILPS land-surfa e s hemes to perturbations ofsurfa e air temperature, Journal of Atmospheri S ien e, 55, 19091926.Rodell, M., P. R. Houser, U. Jambor, J. Gotts hal k, K. Mit hell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovi h, M. Bosilovi h,J. K. Entin, J. P. Walker, D. Lohmann & D. Toll: (2004): The global26

Page 39: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esland data assimilation system, Bulletin of the Ameri an Meteorologi al So iety,85, 381394.S hultz, J.: (2005): The E ozones of the World, 2nd edn., Springer, Berlin.Sellers, P., D. Randall, G. Collatz, J. Berry, C. Field, D. Dazli h,C. Zhang, G. Collelo & L. Bounoua: (1996): A revised land surfa e pa-rameterization (sib2) for atmospheri g ms. part i: Model formulation, Journalof Climate, 9, 676705.Sellers, P. J., R. E. Di kinson, D. A. Randall, A. K. Betts, F. G. Hall,J. A. Berry, G. J. Collatz, A. S. Denning, H. A. Mooney, C. A. No-bre, N. Sato, C. B. Field & A. Henderson-Sellers: (1997): Modeling theex hanges of energy, water, and arbon between ontinents and the atmosphere,S ien e, 275, 502509.Sellers, P. J., Y. Mintz, Y. C. Sud & A. Dal her: (1986): A simple biospheremodel (SIB) for use within general ir ulation models, Journal of the Atmospheri S ien es, 43, 505531.Shin, D. W., J. G. Bellow, T. E. LaRow, S. Co ke & J. J. O'Brien: (2006):The role of an advan ed land model in seasonal dynami al downs aling for ropmodel appli ation, Journal of Applied Meteorology and Climatology, 45, 686701.Smith, T. M., H. H. Shugart & F. I. Woodward (eds.): (1997): Plant fun -tional types their relevan e to e osystem properties and global hange, Interna-tional Geosphere-Biosphere Programme Book Series, vol. 1, Cambridge UniversityPress, New York.Stö kli, R., D. M. Lawren e, G.-Y. Niu, K. W. Oleson, P. E. Thornton,Z.-L. Yang, G. B. Bonan, A. S. Denning & S. W. Running: (2008): Useof FLUXNET in the ommunity land model development, Journal of Geophysi alResear h, 113, G01025.Thornton, P. E., S. C. Doney, K. Lindsay, J. K. Moore, N. Mahowald,J. T. Randerson, I. Fung, J.-F. Lamarque, J. J. Feddema & Y.-H. Lee:(2009): Carbon-nitrogen intera tions regulate limate- arbon y le feedba ks:results from an atmosphere-o ean general ir ulation model, Biogeos ien es, 6,20992120.Thornton, P. E., J.-F. Lamarque, N. A. Rosenbloom & N. M. Mahowald:(2007): Inuen e of arbon-nitrogen y le oupling on land model response to o2fertilization and limate variability, Global Biogeo hemi al Cy les, 21, GB4018.27

Page 40: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esThornton, P. E., B. E. Law, H. L. Gholz, K. L. Clark, E. Falge, D. S.Ellsworth, A. H. Goldstein, R. K. Monson, D. Hollinger, M. Falk,J. Chen & J. P. Sparks: (2002): Modeling and measuring the ee ts of distur-ban e history and limate on arbon and water budgets in evergreen needleleafforests, Agri ultural and Forest Meteorology, 113, 185222.Thornton, P. E. & N. A. Rosenbloom: (2005): E osystem model spin-up:Estimating steady state onditions in a oupled terrestrial arbon and nitrogen y le model, E ologi al Modelling, 189, 2548.Thornton, P. E. & N. Zimmermann: (2007): An improved anopy integrations heme for a land surfa e model with prognosti anopy stru ture, Journal ofClimate, 20, 39023923.Ustin, S. L. & J. A. Gamon: (2010): Remote sensing of plant fun tional types,New Phytologist, 186, 795816.Westby, M. & M. Leishman: (1997): Categorizing plant spe ies into fun tionaltypes, in Smith, T. M., H. H. Shugart & F. I. Woodward (eds.) Plant fun -tional types their relevan e to e osystem properties and global hange, Interna-tional Geosphere-Biosphere Programme Book Series, vol. 1, 104121, CambridgeUniversity Press, New York.Wilby, R. L. & T. M. L. Wigley: (1997): Downs aling general ir ulation modeloutput: a review of methods and limitations, Progress in Physi al Geography, 21,530548.Williamson, D. L., J. T. Kiehl, V. Ramanathan, R. E. Di kinson & J. J.Ha k: (1987): Des ription of the n ar ommunity limate model ( m1), Te h-Note NCAR/TN-285+STR, National Center for Atmospheri Resear h (NCAR).Wood, A. W., L. R. Leung, V. Sridhar & D. P. Lettenmaier: (2004):Hydrologi impli ations of dynami al and statisti al approa hes to downs aling limate model outputs, Climati Change, 62, 189216.Woodward, F. &W. Cramer (eds.): (1996): Plant fun tional types and limati hange, Spe ial features in Vegetation S ien e, vol. 12.Zeng, X.: (2003): The ommon land model experien e, Global Change News Letter,55, 1920.Zeng, X.&M. De ker: (2009): Improving the numeri al solution of soil moisture-based ri hards equation for land models with a deep or shallow water table, Jour-nal of Hydrometeorology, 10, 308319.28

Page 41: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esZeng, X.,M. Shaikh, Y. Dai & R. Di kinson: (2002): Coupling of the ommonland use model to the NCAR ommunity limate model, Journal of Climate, 15,18321854.Zeng, X., M. Zhao & R. Di kinson: (1998): Inter omparison of bulk aero-dynami algorithms for the omputation of sea surfa e uxes using the TOGACOARE and TAO data, Journal of Climate, 11, 26282644.Zhou, Y., D. M Laughlin & D. Entekhabi: (2006): Assessing the performan eof the ensemble kalman lter for land surfa e data assimilation,Monthly WeatherReview, 134, 21282142.

29

Page 42: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial DelineationThis hapter was printed in International Journal of Remote Sensing, Vol. 30, No.8, 20 April 2009, pp. 18671886. The manus ript was submitted 29 January 2007,in nal form 22 August 2008.

30

Page 43: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial DelineationLand- over lassi ation in the Andes ofsouthern E uador using Landsat ETM+data as a basis for SVAT modellingDietri h Göttli her*, André Obregón, Jürgen Homeier, Rütger Rollenbe k,Thomas Nauss and Jörg BendixDepartment of Geography, Laboratory for Climatology and Remote Sensing, Universityof Marburg, Deuts hhausstr. 10, 35032 Marburg, GermanyPlant E ology, Albre ht-von-Haller-Institute for Plant S ien es, University of Göttingen,Untere Karspüle 2, 37073 Göttingen, GermanyA land- over lassi ation is needed to dedu e surfa e boundary onditions fora soil-vegetation-atmosphere transfer s heme whi h is operated by a geoe olog-i al resear h unit working in the Andes of southern E uador. Landsat ETM+data is used to lassify distin t vegetation types in the tropi al mountain for-est. Besides a hard lassi ation, a soft lassi ation te hnique is applied.Dempster-Shafer eviden e theory is used to analyse the quality of the spe traltraining sites and a modied linear spe tral unmixing te hnique is sele tedto produ e abundan ies of the spe tral end members. The hard lassi ationshows very good results with a Kappa value of 0.86. The Dempster-Shaferambuigity underlines the good quality of the training sites and the probabilityguided spe tral unmixing is hosen for the determination of plant fun tionaltypes for the land model. A similar model run done with a spatial distributionof land over from both the hard and the soft lassi ation learly points tomore realisti model results by using the land surfa e based on the probabilityguided spe tral unmixing te hnique.Keywords: Classi ation, Land over, Landsat, CLM, Dempster-Shafer,probability guided spe tral unmixing3.1 Introdu tionThe hanging atmospheri onditions along altitudinal gradients in tropi al moun-tains are one important fa tor for the biodiversity of various organismi groups.This holds espe ially true for the resear h area of a joint e ologi al resear h pro-gramme in the Andes of southern E uador (refer to se tion 3.2, Be k & Müller-Hohenstein, 2001;Bendix et al., 2004). For instan e, air humidity whi h is relatedto the latent heat ux plays a major role for the diversity of vas ular epiphytes (e. g.31

Page 44: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial DelineationWerner et al., 2005), while the spe ies turnover among moths along an altitudinaltranse t is asso iated with a orresponding hange in air temperature (and sensibleheat ux) (e. g. Brehm et al., 2003). Moreover, the growth and phenology of thehosting megadiverse mountain forest is learly related to the ourse of weather inthe area (Bendix et al., 2006a). Unfortunately, it is not possible to provide me-teorologi al observations for every individual e ologi al resear h plot in a proje tarea of 60 km in diameter, onsidering the rugged terrain of the Andes whi h, inaddition, is hara terised by small-s ale patterns of meteorologi al windward andleeward ee ts. However, numeri al weather models an provide a full spatial ov-erage of the atmospheri onditions in dierent, question-spe i spatial s ales. Ofparti ular interest for e ologi al investigations are models whi h deal with the inter-fa e between soil, vegetation and atmosphere, so- alled soil-vegetation-atmospheretransfer (SVAT) s hemes. In our joint resear h eort (Resear h Unit 816) we usethe Community/Common Land Model (CLM) of Dai et al. (2003) to simulate theenergy and water uxes with a spatial resolution of 30m.The operation of a SVAT model requires the adaptation of boundary onditionswith regard to the study area. The denition of the lower boundary onditions ofthe CLM must in lude a detailed des ription of land over and fun tional vegeta-tion units (plant fun tional types, PFT) for every grid ell. The on ept of plantfun tional types is des ribed in Bonan et al. (2002). Generally, CLM-PFTs aree ologi al groups of plants with similar morphologi al and physiologi al traits. TheCLM is designed by a nested grid whi h permits the appli ation of dierent PFTsand their per entual overage to one single grid ell (pixel). It is obvious that the onstru tion of suitable PFTs in a megadiverse mountain forest requires profoundbotani al knowledge for the lo al/regional appli ations of the model. This holdsespe ially true for the omposition of appropriate tree groups in the natural forestbut also for the main fun tional spe ies groups in the areas whi h are urrently usedas pastures. The latter system is omparatively simple be ause it is dominated bypasture grasses (Setaria apha elata, Melinis minutiora) whi h are ompletely over-grown by the invasive southern bra ken fern Pteridium ara hnoideum in abandonedareas (Hartig & Be k, 2003).Several resear hers su essfully used satellite data to dene the lower boundary onditions of SVAT models on dierent s ales. The basis of those approa hes is amulti-sensor land over lassi ation with spe ial referen e to the vegetation over(e. g. Geostationary Operational Environmental Satellites (GOES) and LandsatThemati Mapper (TM); Anderson et al., 2004).Land over lassi ation and mapping in tropi al mountain areas are subje tedto various di ulties. First of all, the steep topography and limited a essabilitymake terrestrial mapping extremely di ult and ost intensive (Salovaara et al.,2005). Thus, remote sensing is prin ipally a useful tool to ompensate for this entraldisadvantage. However, to date, su essful lassi ations by using satellite imageryin the tropi s are mostly ondu ted in rather at terrain (Helmer et al., 2000), while32

Page 45: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial Delineationimage lassi ation in a mountainous region is still a hallenging task (Tottrup,2004). It ould be shown for the Andes en ompassing southern E uador and otherhigh altitude regions that orre tions of the satellite signal due to topographi ee tssu h as hill shading or geometri displa ements are required to improve lassi ationresults and to obtain a similar degree of a ura y as in the lowland tropi s (Hill& Foody, 1994; Colby & Keating, 1998; E havarria, 1998; Shepherd &Dymond, 2003). Moreover, it is not easy to distinguish between dierent fun tionaltypes of trees in an area of tropi al rain forest (Hill, 1999). Expert knowledge hasbeen proven to improve lassi ation results signi antly in previous studies (e. g.S hweitzer et al., 2005).To obtain the fra tional land over in one single pixel, an unmixing approa h isobvious but holds the problem that normal unmixing needs more spe tral hannelsin the satellite data than land over lasses to be distinguished. Espe ially the ommonly used Landsat data needs a modied approa h be ause only six spe tral hannels are suitable for vegetation lassi ation and are not su ient in our studywith respe t to the number of plant fun tional type and other land over lasses.Other te hniques su h as the Dempster-Shafer eviden e theory an provide informa-tion about the quality of the training sites but annot produ e the a tual fra tionalland over. Generally, spe tral mixture analysis based on the ground data a qui-sition of spe tral endmembers by using eld spe trometers ould help to improvethe multi-/hyperspe tral lassi ation of vegetation (e. g. Peddle & Smith, 2005),but this is di ult to realise in the omplex topography of the Andes, espe ially ifa respe tive ostly eld instrument is not available.Consequently, the urrent paper follows three main aims:1. To provide data on land over and suitable vegetation lasses whi h an be usedto dene CLM-PFTs. For this purpose, a detailed landuse lassi ation basedon 30m Landsat ETM+ (Enhan ed Themati Mapper) data is performedwhi h onsiders all relevant vegetation lasses su h as dierent forest types.The determination of the land over map relies on multispe tral lassi ationte hniques, a high resolution aerial photograph and profound expert knowledgeof a big resear h unit whi h is ne essary for the signature training pro ess (seese tion 3.3).2. To apply one hard and two soft lassi ation s hemes. The sele ted soft lassi-ers are based on the Dempster-Shafer eviden e theory and a modied spe tralunmixing te hnique.3. A omparison of lassi ation results by means of exemplary model runs withboth lassi ation types to test the suitability of hard and soft lassi ationapproa hes for the use in SVAT models.The urrent paper is stru tured as follows: The study area and the data aredes ribed in se tion 3.2. Se tion 3.3 briey summarises the applied lassi ation33

Page 46: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial Delineationapproa hes. The dis ussion and appraisal of the lassi ation results are presentedin se tion 3.4 and the results of the omparative model runs is the subje t of se tion3.5.3.2 Study area and dataThe study area is situated in southern E uador and omprises parts of the mountainforests of the eastern Andean es arpment. This area is renowned as part of the`Andean hot spot' of vas ular plant diversity (Barthlott et al., 2005; Brummitt& Lughadha, 2003). The study area hosts the model domain in 30m resolutiongrid size (see gure 3.1).The Reserva Biológi a San Fran is o (RBSF) is the main study area of the e olog-i al resear h unit 816 (RU816) of the German Resear h Coun il (DFG). It omprisesthe valley of the Rio San Fran is o where the slopes are mainly overed with thenatural mountain forest, an environment in whi h most of the e ologi al groups areworking. It is situated between Loja, a dryer inner-Andean basin in the west andthe slopes of the eastern Andean ordillera in the east. A detailed geographi de-s ription of the ore area is found in Be k & Müller-Hohenstein (2001) andmore general information is given in Bendix et al. (2004). The general weathersituation is des ribed by Bendix & Lauer (1992); Ri hter (2003); Bendix et al.(2004, 2006b).The Landsat ETM+ image used in the urrent study is a loud-free s ene from3 November 2001 whi h was obtained from the Global Land Cover Fa ility (GLCF,http://gl f.umia s.umd.edu/index.shtml) as a level 1G produ t.An illary data are used for signature training and image lassi ation. To de-termine the exa t position of training sites from the vegetation surveys in the orearea, a re tied olor ortho-aerial photograph was used. The dataset was a quiredduring several ights in 2001 on behalf of our joint resear h eort. The ortho-photowas pro essed using the te hnique of aero-triangulation (Jordan et al., 2005) andhas a spatial resolution of 1m. A digital elevation model from the national mappingagen y IGM (Instituto Geográ o Militar, Quito) with a spatial resolution of 25mwas used during image lassi ation. All resulting land- over maps are added tothe entral database of the resear h unit to provide a ess for further investigations(Göttli her & Bendix, 2004).The natural vegetation of the study area (gure 3.1) an be des ribed as `bosquesiempreverde montano', evergreen montane forest (Balslev & Øllgaard, 2002)or as `bosque montano nublado', montane loud forest (Valen ia et al., 1999)rea hing the treeline at around 2700m. Above the treeline we nd sub-páramos (aspart of the evergreen eln forests of the region).Some forest areas on the south-fa ing slopes within the valley of the San Fran is ohave been onverted into pastures. Partly they are now subje t to aggressive bra ken34

Page 47: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial Delineation

Figure 3.1: The study site is marked with the white re tangle (30m resolution). Thedark green oloured area en ompassing the `Esta ión Cientí a San Fran is o'(ECSF resear h station) represents the region overed by the high resolutionaerial photograph.35

Page 48: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial Delineationfern su ession (Hartig & Be k, 2003).Combining dierent approa hes of vegetation typi ation (Homeier et al., 2002;Pauls h, 2002; Homeier, 2004; Parolly & Kürs hner, 2004), Homeier et al.(2008) distinguished six main fun tional types of primary vegetation for the studyarea based on their detailed des ription of the natural vegetation. These vegetationtypes are ompiled by ombining results of the investigation of forest stru ture andtree spe ies omposition on permanent plots (Homeier et al., 2002; Homeier,2004), a forest stru tural analysis on non-permanent plots (Pauls h, 2002) ande oso iologi al studies of the bryophyte ommunities (Parolly & Kürs hner,2004).The tallest and spe ies-ri hest forest is found on lower slopes and within ravinesbelow 2100m where the anopy rea hes 25 to 30m with some emergents rea hingup to 35m (type I). Megaphyllous shrubs and large ground herbs are ommon inthe understorey. On nearby upper slopes and ridges, the forest stature and treespe ies omposition is ompletely dierent with few trees rea hing between 15 and20m (type II). Between 2100 and 2250m on the ridges and upper slopes the treesattain a height of not more than 15m and the anopy be omes more open with trees overed by dense layers of epiphytes (type III). With in reasing elevation the treeheight de reases further to 68m, and the forest above 2250m is dominated by onlyone tree spe ies, Purdiaea nutans Plan h. (Cyrilla eae). The herba eous layer ofthis forest is well developed and prin ipally omposed of terrestrial bromeliads (typeIV). The forest in the ravines from 2100 to 2700m diers also from the upper slopeswith greater tree heights and in tree spe ies omposition (type V). The sub-páramo(type VI) o urs above the treeline attaining heights of up to 2m, terrestrial herbsare the most spe iose life form of this vegetation type. The hara terised vegetationtypes dier in their omposition of life forms and plant spe ies. By their distin tnessin stru tural parameters they are easy to re ognise even for non-botanists. Standbasal area (in luding all trees with a diameter > 10 m) de reases with elevation,from maximum values of 40-50m2 ha-1 at around 2000m (type I) to 1020m2 ha-1above 2300m (type IV) and average tree stature is shorter ompared to trees atlower elevations (Homeier, 2004).Above ground, forest produ tivity measured as the annual in rement of the treebasal area re edes with elevation. LAI ( al ulated from hemispheri al photos) ishighly variable in the stands. Most of the values from below 2250m are between 5and 7, within the uppermost forest stands it de reases to values between 2 and 3(Homeier, 2004). The same stru tural patterns as in the elevational gradient werefound on a smaller s ale in the topographi gradient from ravines to ridges espe iallyfor forest type I and type II but also in the upper ompartments (type III and IVto type V, Homeier, 2004).36

Page 49: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial Delineation3.3 MethodologyThe whole pro essing hain of this study is presented in gure 3.2 and an besubdivided into four working steps: (i) pre-pro essing of the satellite image, (ii)multispe tral image lassi ation based on Landsat ETM+ data in luding signaturetraining, (iii) appraisal of the lassi ation results and (iv) omparison of CLM-model runs based on hard and soft lassi ation.3.3.1 Pre-pro essingThe rst pre-pro essing step was the geometri proje tion of the Landsat ETM+s ene in order to produ e a geo-ortho-re tied image. The ETM+ s ene was deliv-ered in the spa e-oblique-mer ator proje tion whi h had to be reproje ted to theUTM proje tion zone 17S (WGS84), the standard proje tion of all spatial datasets of the resear h unit 816. Even if the level 1G data have undergone a geo-metri pre- orre tion, a residual lo ation error of up to 250m must be taken intoa ount (NASA, 2002). Thus, an additional geo- orre tion was performed by using32 ground ontrol points whi h were obtained from the high-resolution aerial ortho-photo, another existing geo-ortho re tied satellite image from 1986 and the digitalelevation model. The orre tion was ondu ted with the ERDAS Imagine (V.8.6) `Landsat model' module whi h uses higher-order polynomi equations in lud-ing terrain altitude provided by the digital elevation model (DEM). The a hievedroot-mean-square error was 20m whi h means that the nal lo ation a ura y isbetter than one ETM+ pixel.The se ond step of pre-pro essing needed for a proper land-surfa e lassi ationin high mountain areas is a topographi normalisation of radian es in luding at-mospheri orre tion. For the ETM+ s ene, atmospheri orre tion was ondu tedusing the COST model of Chavez (1996) whi h ombines a dark obje t subtra tionand a pro edure to minimise the ee ts of absorption and Rayleigh s attering in theatmosphere to al ulate absolute ree tan e. A dark lake surfa e in the Paramoof Cajanuma was hosen for the dark obje t subtra tion. To eliminate dieren esin the ree tan e due to topographi slope and aspe t, an illumination model isrequired (Riaño et al., 2003). This is based on the digital elevation model whi hprovides the slope and aspe t of every pixel and the al ulated sun elevation andazimuth angles. Based on this information, a hill-shade image was derived. Therst step of orre tion is to relate the radian es in the spe tral bands (15 and 7) ofthe ETM+ image to illumination by linear regression analysis.Lλ = aI + b (3.1)where Lλ is the spe tral radian e at wavelength λ (after atmospheri orre tion), Iis the illumination s ore from the hill-shade image, a and b are the linear regression oe ients. 37

Page 50: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial Delineation

Figure 3.2: Flow hart of the pro essing steps.38

Page 51: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial Delineation

(a) un orre ted (b) orre tedFigure 3.3: Atmospheri ally and topographi ally un orre ted (a) and orre ted (b) true olour omposites (RGB = 3,2,1) of the study site.The nal orre tion is then a hieved by applying the following equation whi hin ludes the standard osine orre tion due to the angle of in iden e:L∗

λ = Lλ − [cos θ(a − b)] + Lλ (3.2)where L∗

λ is the orre ted spe tral radian e, Lλ is the average spe tral radian e ofthe s ene with the angle of in iden e θ:cos θ = cos β cos β + sin β sin β cos(Ω − Ω) (3.3)where β is the sun elevation angle, β the terrain slope angle, Ω the solar azimuthangle and Ω the terrain azimuth angle.The results of the atmospheri and topographi orre tion are depi ted in gure3.3. A visual inspe tion of the olour- omposites reveals the su essful removal ofterrain shadow ee ts for the study area of the valley of the Rio San Fran is o.3.3.2 Training Sites and syntheti hannelRegarding the natural vegetation, only areas whi h ould undoubtedly be assignedto pure ompositions of the above-des ribed six main units were hosen for signa-ture training. Additionally, pure training sites overed with pasture grasses, bra kenfern and su essions, but also areas representing bare soil (e. g. urrent landslides),water surfa es and buildings/streets were digitised using expert knowledge and theaerial photograph (table 3.1, gure 3.4). The sele ted pure training polygones an39

Page 52: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial DelineationTable 3.1: Sele tion of land- over lasses and training sites used for the lassi ation inthe ore area. For the identi ation of training sites, refer to gure.ID Land over lass Expert Knowledge Lo ation identi ation ofthe training site1 Pre-Montane forest Homeier 12 Forest type I, ravines19002100m Homeier 23 Forest type II, rest andupper slopes 19002100m Homeier 34 Forest type III, rest andupper slopes 21002250m Homeier 45 Forest type IV, rest andupper slopes 22502700m Homeier 56 Forest type VI, ravines21002700m Homeier 67 Subpáramo type VI,>2700m Homeier 78 Bra ken fern Homeier 89 Grassland Homeier 910 Shrubs Homeier 1011 unvegetated (roads &landslides) Homeier, aerial photogra-phy, Rollenbe k 1112 Water aerial photography, Rol-lenbe k 12be treated as spe tral endmembers and enable the appli ation of a soft lassi a-tion based on a modied spe tral unmixing te hnique whi h is ne essary to derivethe share of dierent land surfa e lasses/PFTs on single grid ells. All denedvegetation types show dieren es in their physiologi al and morphologi al hara -teristi s and thus, provide appropriate plant fun tional types ne essary for a properinitialisation of the SVAT model.Generally, the training sites related to lasses of the native mountain forest areintensively surveyed botani al plots (see se tion 3.2 and Homeier, 2004; Hartig& Be k, 2003; Pauls h, 2002). Additional training sites were determined by using learly marked areas with a distin t land- over type (streets, urban, freshly burnedforest, landslides) in the aerial photo, in omparison with the olour omposite ofthe satellite image. These training site polygones were also onrmed by expertkowledge. The overall riterion for the sele tion of the individual training sites wasthe homogeneity of the surfa e stru ture.A spe i lassi ation problem is the distin tion of dierent lasses of native

40

Page 53: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial Delineation

Figure 3.4: Lo ation of the training sites used for the ETM+ lassi ation. Aerial pho-tograph (a) with the dierent vegetation units, superimposed to the Landsatimage (b) in the study area (for all numbering of the training sites, refer totable 3.1). 41

Page 54: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial Delineationforest in the entral study area whi h reveal similar spe tral signatures. Hen e,the suitability of additional syntheti hannels for multispe tral lassi ations e. g.terrain altitude, slope aspe t or other topographi parameters ( on ave/ onvexslopes) were examined. After testing all possible variations, only the slope angle aused a lear improvement in the lassi ation result and thus was used in the nal lassi ation s heme (refer to se tion 3.4.1).3.3.3 Classi ationTo lassify the ETM+ s ene, several te hniques are applied: (i) A hard lassi a-tion based on the maximum-likelihood approa h, (ii) an evaluation of un ertaintybased on Dempster-Shafer eviden e theory and (iii) a sub-pixel lassi ation usinga modied approa h of linear spe tral unmixing.Image segmentation is ondu ted by means of the image pro essing softwareIDRISI (Kilimanjaro Version) using the modules `Maxlike' (Maximum Likelihood lassier), `Bel lass' (Dempster-Shafer belief soft lassier) and `Unmix' (LinearSpe tral Unmixing lassier) (Eastman, 2003).The maximum-likelihood lassi ation (MLC) belongs to the group of hard las-siers, whi h make a denite de ision about the lass membership of any pixel,while soft lassi ation gives expli it information on the degree of lass membership(Eastman & Laney, 2002).In ontrast to ommon soft lassi ations, Dempster-Shafer does not assume tohave full information and expli itly a epts that the existing knowledge i. e. thetraining site information might be in omplete. Thus, it in orporates the on ept ofignoran e. Dempster-Shafer as implemented in Idrisi performs a soft lassi ation asit al ulates a degree to whi h eviden e provides on rete support for a hypothesis.This degree is known as belief, the degree to whi h a hypothesis annot be disbelievedis known as plausibility (Eastman, 2003). The belief is a lower estimate on thesupport for a hypothesis, while plausibility represents the onden e band to whi ha hypothesis annot be disbelieved. Un ertainty is the dieren e between belief andplausibility (Comber et al., 2005), also known as belief interval. A full des riptionof the belief al ulation method is given by several authors (e. g. Mertikas &Zervakis, 2001; Comber et al., 2004; Malpi a et al., 2007). Ambiguity is afurther aspe t of un ertainty whi h an be expressed as the dieren e between thebelief interval for a spe i lass and the overall un ertainty (Eastman, 2003). Inthis study, the Dempster-Shafer theory was primarily used in order to he k thequality of the training sites and to analyse the degree of un ertainty. The role ofambiguity was also investigated.However, the Dempster-Shafer approa h annot be used for subpixel lassi ationas it outputs belief values per pixel ex lusively for only one spe i lass. Thereforeother te hniques of soft lassi ation are used in order to derive the proportions ofthe dierent vegetation types within a mixed pixel in a ordan e with the subgrid42

Page 55: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial DelineationPFT on ept of the CLM model.Thus, a se ond lassi ation done in this study uses a probability guided linearspe tral unmixing approa h as proposed by Zhu (2005), whi h is able to providethe fra tional over of fun tional vegetation units per grid ell. Classi al linearunmixing assumes that the image spe tra are the results of mixtures of dierentsurfa e materials, whi h an be expressed as linear ombinations of their respe tivespe tra in the image (Sohn & M Coy, 1997). Although spe tral mixture analysishas long been re ognized as an ee tive method for the determination of mixedpixels (Lu &Weng, 2007), it suers from the limitation that the number of trainingsites annot ex eed the number of image bands. The approa h des ribed by Zhu(2005) oers an ee tive solution for this short oming. In a rst step it al ulatesposterior probabilities for all endmembers in a pixel, a ording to the lassi ationbased on Bayesian probability. Then, the proportions of the identied endmembersare al ulated by the linear spe tral unmixing model. When mixing endmembersin a ba kward dire tion, less endmembers lead to a better orresponden e of thedata to derive subpixel endmember fra tions (Song, 2005). Thus, in our study,three endmembers for ea h pixel are hosen as andidates for further unmixing todetermine their proportions.All results of the soft lassi ations are hardened, i. e. the maximum Dempster-Shafer beliefs (Idrisi `Maxbel') and the maximum mixture fra tions (`Maxfra ') areextra ted for ea h pixel to derive a hard lassi ation for omparison reasons.3.3.4 A ura y assessmentFor the appraisal of the individual lassi ation results, a ontingen y matrix of thetraining sites was al ulated (Story & Congalton, 1986) in whi h also indepen-dent ground truth sites ould be used to al ulate the matrix and Kappa values(Congalton, 1991). The appraisal of the lassi ation results is ondu ted by al- ulating three indi es: (i) the overall, (ii) the produ er's and (iii) the user's a ura y.The overall a ura y des ribes the relation of the pixel number orre tly lassiedto the sum of referen e pixel of all training polygones. The produ er's a ura y isbased on the analysis of the individual obje t lasses and illustrates the likelihoodof a orre t lassi ation of the training site pixels for individual lasses while theuser's a ura y explains to what extend the lassi ation result renders reality (forthe al ulation of the indi es refer to Congalton, 1991).

43

Page 56: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial DelineationTable 3.2: Contingen y matrix for the Landsat lassi ation of the ore area. A u =user's a ura y, A p = produ er's a ura y. Columns are training sites, rowsare land- over lasses, the numbers of the lasses are explained in table 3.1.Kappa = 0.86.1 2 3 4 5 6 7 8 9 10 11 12 Σ A u1 71 0 0 0 0 0 0 0 0 0 2 0 73 0.972 0 25 1 0 0 4 0 0 0 0 0 0 30 0.833 0 2 37 14 4 0 0 0 0 0 0 0 57 0.654 0 0 2 27 9 0 0 0 0 0 0 0 38 0.715 0 0 1 4 69 1 0 0 0 0 0 0 75 0.926 0 4 1 0 1 49 0 0 0 0 0 0 55 0.897 0 0 0 0 0 3 60 0 0 0 0 0 63 0.958 0 0 0 0 0 0 0 33 0 0 0 0 33 1.009 4 0 0 0 0 0 4 1 85 0 0 0 94 0.9010 0 0 1 14 0 0 0 0 0 20 0 0 35 0.5711 0 0 0 0 0 0 0 0 0 0 35 0 35 1.0012 0 0 0 0 0 0 0 0 0 0 0 20 20 1.00Σ 75 31 43 59 83 57 64 34 85 20 37 20 608A p 0.95 0.81 0.86 0.46 0.83 0.86 0.94 0.97 1.00 1.00 0.95 1.00 0.873.4 Results3.4.1 MLC of the Landsat ETM+ s eneThe lassi ation (gure 3.5) of the ore area learly illustrates the well-known alti-tudinal distribution patterns of the native vegetation (refer to se tion 3.2), without onsidering terrain altitude during the lassi ation pro ess. The ontingen y ma-trix for all lasses is presented in table 3.2.The overall a ura y of 87.3% is very high (84.7%90% with a 95% onden elevel); the Kappa value is 0.86. The produ er's a ura y of 89% shows a very goodseparation of the individual obje t lasses. The user's a ura y of 87% also points toa good lassi ation result. With regard to the forest lasses, the a ura y slightlyde reases (produ er's a ura y = 80 % and user's a ura y = 83 %) ompared to theoverall s ores. Examining lassi ation runs onsidering dierent syntheti bandsfrom topographi parameters showed that the use of the slope angle an learlyimprove the lassi ation results, espe ially in the di ult lasses of native forestwhere the produ er's a ura y in reases from 69% to 80% (see table 3.3).The spatial statisti s of the obje t lasses in dierent altitudinal belts underlinesthe human impa t espe ially on the lower parts of the area (gure 3.6). While thenative forest is the dominating land- over type above 2200masl, the anthropogeni 44

Page 57: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3SpatialDelineation

Figure 3.5: Classi ation result of the ETM+ s ene in the study area in luding a syntheti hannel of hill slope derived fromthe digital elevation model (DEM).

45

Page 58: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial DelineationTable 3.3: Comparison of the a ura y indi es with and without the use of the syntheti hannel (hill slope) in the ore area for all vegetation lasses and forest lassesonly. A u = user's a ura y, A p = produ er's a ura y.Overall a ura y A p A u Kappa A p(forest) A u(forest)Classi ationwith slope 0.87 0.89 0.87 0.86 0.80 0.83Classi ationwithout slope 0.79 0.82 0.78 0.77 0.69 0.67

Figure 3.6: Per entages of land- over lasses in (a) the lower (<2200m above sea level)and (b) the upper parts (> 2200masl) of the study area.repla ement system indi ated by a high portion of pastures whi h originates fromthe slash-and-burn of the natural forest by the lo al population overs nearly half theslope area in the lower part of the valley. However, it is obvious that this urrent landuse system is not sustainable be ause only 15.4% of this area is still in use. Otherformer pastures are overgrown by the invasive bra ken fern (10.6%) or other mixedsu essions (21.7%). It should be stressed that the abandoned pasture land anneither ontribute to the livelihood of the lo al population nor to the rehabilitationof the lost biodiversity due to the logging of the native forest (for the bra ken ferndilemma, refer also to Hartig & Be k, 2003).The statisti s markedly indi ate that the threat to the natural e osystem and thusto the biodiversity learly radiates from the valley bottom en roa hing the nativeforest aloft.46

Page 59: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial Delineation3.4.2 Soft lassi ation of the Landsat ETM+ s eneThe applied te hniques of soft lassi ation use the same signatures as the MLC.The belief values of the Dempster-Shafer lassi ation show low values for all land- over lasses. In ontrast, plausibilities show very high values, whi h leads to largebelief intervals for all spe i lasses. Thus, overall un ertainty is also high. Due tothe ability of Dempster-Shafer to in lude the aspe t of ignoran e, un ertainty in ourinformation be omes apparent. An explanation for the high un ertainty might bethat the information of the training sites is not omplete and that unknown lassesexist. However, the distribution of the belief values for ea h lass mat hes the land- over lasses determined by the MLC rather well. High belief values o ur mainlyin the entre of these land- over lasses while pixels in the area of neighbouringland over lasses show very low beliefs and high values of un ertainty. A highero urren e of mixed pixels in these transition zones might be an explanation forthis.The investigation of ambiguity shows that the transition zones between land over lasses show the highest values, espe ially for the forest lasses. Ea h forest lassshows the highest ambiguity in its neighbouring forest lass, e. g. subpáramo showsambiguity in forest type V, while forest type III shows ambiguous behaviour inforest types II and IV. This fa t ree ts reality rather well, as the dierent foresttypes are not stri tly separated. Boundaries between the dierent forest types arenot distin t in the eld whi h is represented in the lassi ation by the o urren eof ambiguity in the areas of transition. All non-forest lasses show lower ee ts ofambiguity, whi h is also restri ted to surrounding areas of the spe i land- over lass. Although training site information might be in omplete, the distribution ofambiguity points out the good quality of the training sites in the aspe t of permittinga good separation between the dierent land- over lasses. The problem of mixedpixels and the eviden e of unknown land- over lasses nally lead to a high overallun ertainty in the Dempster-Shafer lassi ation.The result of the hardened Dempster-Shafer belief lassi ation shows a similardistribution of land over as the MLC. The overall a ura y is also high (80.8%)with a 95% onden e interval of 78.6%83.1%. Kappa value is 0.77.Subpixel lassi ation in order to derive the proportions of land over in mixedpixels is done by means of probability guided linear spe tral unmixing. The out omeof this pro edure is a set of separate images for ea h obje t lass where the digital ount indi ates the abundan e of the individual lass in ea h pixel as required bythe SVAT model. Figure 3.7 shows an example for the lass `grassland' done bythe probability guided spe tral unmixing and Dempster-Shafer belief lassi ation.These images of the probability guided unmixing will be used to dene the PFTensemble for ea h pixel in the CLM run (see se tion 3.5).The overall a ura y of the hardened results of the unmixing shows a low valueof only 48.8% (45.9%51.7% with a 95% onden e level) in ontrast to the MLC47

Page 60: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial Delineation

Figure 3.7: Results of the soft lassi ation for the lass `grassland' using (a) Dempster-Shafer belief lassi ation (belief value) and (b) probability guided spe tralunmixing (per entage of fra tional over in ea h grid ell).approa h. This low value is the result of the representation of the onstituentmembers of ea h spe i pixel.3.5 Appli ation of lassi ation results in a modelrunTo test the dierent lassi ation results in the SVAT-model, two identi al runs wereperformed with the spatial land over of (i) the MLC and (ii) the modied spe tralunmixing te hnique. The latter gives the han e to determine more than one PFTfor the desired grid ell resolution of 30m.Atmospheri for ing was in luded by NCEP/NCAR (National Center for Environ-mental Predi tion/National Center for Atmospheri Resear h) reanalysis data for awhole year whi h are provided by the datasets of the model sour e ode. The for ingis homogenous for the whole area. The parameters of the PFT whi h an be vari-able through spa e and time like leaf/stem area index (LAI/SAI) and top/bottomheight of the anopy were set stati for ea h PFT and are shown in table 3.4. Thisis done to eliminate ee ts of these parameters, so that only the onsequen es of thevariation of the spatial distribution of the PFT, as the result of both lassi ationapproa hes, are visible.To save omputational time, only a subset of 100 by 100 pixels of the studyarea is used. Spin-up time in the model run was 1 year, the model time step wasset to 3 h. The presented results are from the end of the model run. In gure48

Page 61: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial DelineationTable 3.4: Parameters for the plant fun tional types (PFTs) used in the model run. Allvariables are onstant over time and spa e. LAI, leaf area index; SAI, stemarea index. Top height is anopy top height above ground. Bottom height is anopy bottom height above ground.PFT no. PFT name LAI SAI Top height (m) Bottom height (m)0 Bare soil 0.0 0.0 0.00 0.001 Forest type I 7.0 1.5 30.00 10.002 Forest type II 6.0 1.5 20.00 5.003 Forest type III 5.0 1.5 15.00 5.004 Forest type IV 4.0 1.5 8.00 3.005 Forest type V 6.0 1.5 20.00 5.006 Forest type VI, sub-páramo 3.0 1.0 2.00 0.507 Bra ken fern 1.0 2.0 1.50 0.108 Shrubs 0.5 0.5 1.50 0.109 Grassland, pastures 1.0 2.0 0.50 0.013.8 the transpiration of the anopy is shown exemplarily for the dieren es ausedby the two input datasets for the PFT. In both images, the river valley with thelowest transpiration is learly marked be ause of the la k of vegetation. In thenothern part, pastures and various su ession stages in luding bra ken fern areasalso show low transpiration values ompared to the forest areas in the south. Here,higher values in the ravines represent the taller and markedly denser vegetation in ontrast to the ridges. It is obvious that the results from the modied spe tralunmixing show a mu h smoother spatial distribution. Espe ially in the river valleywith little vegetation the maximum likelihood parametrisation shows larger areaswith no vegetation at all.Two single grid ells were extra ted to have a loser look at how the land- over isdistinguished in the lassi ation s hemes. Both pixels ontain mixed information ofbare ground (a urrent landslide) and a vegetated part. To determine the respe tivearea of the unvegetated and vegetated se tions the aerial photography was digitisedin these grid ells using the geographi information system MapInfo. Figure 3.9shows the outline of ea h PFT lass in the grid ells. In both pixels the maximumlikelihood pro edure lassies only bare ground. The modied unmixing omes toa over of 12% bare ground and 88% forest type III in pixel (a). In pixel (b) thevalues are 30% bare ground and 70% forest type I respe tively. The digitising givesrounded results for pixel (a) as 14% bare ground, 84% vegetated and pixel (b) 58%bare ground and 42% vegetated.Canopy transpiration values are zero at all times in the maximum likelihood lassi- ation due to the la k of vegetation. In the model run using the modied spe tral49

Page 62: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial Delineation

Figure 3.8: Results of a 1-year model run for anopy transpiration rate (mms-1) on thebasis of PFT overage with (a) the maximum likelihood hard lassi ationand (b) the modied spe tral unmixing te hnique (soft lassier).

Figure 3.9: Close-up look at two single grid ells with digitised outlines of PFT from theaerial photography for omparison with the lassi ation results. The bordersof (a) and (b) indi ate the Landsat pixel border, the red line the unvegetatedarea. Results from the maximum likelihood hard lassi ation are bare groundonly for both pixels, the probability guided unmixing results 12% bare ground,82% forest type III pixel (a) and 30% bare ground, 70% forest type I pixel(b).50

Page 63: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial Delineation

Figure 3.10: Aggregated daily anopy transpiration (mm) from model results of two in-dividual grid ells ((a) and (b) same as in gure 3.9) for a whole month.PFT overage for pixel (a) is 12% bare ground and 82% forest type III, forpixel (b) 30% bare ground and 70% forest type I using the modied spe tralunmixing te hnique (unmix). Canopy transpiration values in the same pixels(a) and (b) using the hard maximum likelihood lassier (maxlike) are always0mm be ause of the la k of vegetation (both pixels lassied with 100% bareground).unmixing data, maximum transpiration values are 2.3mm/day for pixel (a) and1.9mm/day for pixel (b). Figure 3.10 shows the anopy transpiration for a wholemonth in the sele ted grid ells for the lassi ation results from the end of themodel run. This learly marks the dieren e between the two lassi ation s hemeswith no anopy transpiration for unvegetated pixels from the maximum likelihoodhard lassi ation and values >0 depending on the vegetation fra tion and atmo-spheri for ing of the orresponding soft lassied pixels. This points to a generalunderestimation of transpiration in unvegetated hard lassied pixels. Otherwise,an overestimation of anopy transpiration is expe ted for pixels whi h are lassiedas forest with the maximum likelihood method but show a small amount of bareground in the soft lassi ation.51

Page 64: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

3 Spatial Delineation3.6 Con lusionsThe urrent study shows that multispe tral hard and soft lassi ations based onLandsat ETM+ images, profound expert knowledge and high resolution ortho-photos an also provide suitable land over lasses in the omplex terrain of the highAndes of southern E uador, assuming a proper orre tion of atmospheri and topo-graphi ee ts. Parti ularly the botani al expert knowledge based on intensive eldsurveys and the in lusion of a syntheti hannel (terrain slope angle) signi antly ontribute to a su essful dis rimination of fun tional types of natural forest for thestudy area of a joint resear h eort (RU816). Thus, the lassi ation is an optimalprerequisite for dening PFTs whi h are needed for the vegetation parametrisationof the SVAT CLM.A omparison of the lassi ation results with the aerial photograph reveals thatthe soft lassi ation, whi h usually provides more than one PFT/land- over lassin a grid ell (pixel), shows a mu h more realisti result of spatial land- over distri-bution than the maximum likelihood hard lassi ation. Exemplary model resultsfor the anopy transpiration reveal a dis repan y between both lassi ation ap-proa hes, espe ially in mixed pixel environments, with a general underestimation oftranspiration in pure bare ground hard- lassied pixels. Consequently, the initiali-sation of SVAT models on the lo al and regional s ale should be supported by a softland- over lassi ation based on expert knowledge and/or spe tral eld measure-ments of endmembers where the fra tional land over is determined by the modiedspe tral unmixing te hnique.Future studies will fo us on the determination of spe i plant parameters su has the leaf-area index from the satellite data whi h are needed for the SVAT modelas well. The presented lassi ation will also be the basis for dierentiating spe i transfer fun tions between the satellite signal (e. g. vegetation indi es) and the planttraits (LAI) for dierent types of natural vegetation. In addition, further satellites enes of the same area but dierent dates will be pro essed by the method outlinedin this paper. Change dete tion te hniques will help to estimate the stability ofland- over lasses over time and will allow SVAT modelling for dierent s enariosof land-use development.A knowledgementsThe urrent study was performed within the framework of the DFG Resear h Unit816 `Biodiversity and sustainable management of a megadiverse mountain rain forestin south E uador' and was generously funded by the German Resear h Coun il DFG(Be 1780/15-1, Le 762/10-1, Na783/1-1). We thank Nature and Culture Interna-tional (NCI, Loja) for logisti support and two anonymous reviewers for onstru tive omments and suggestions. 52

Page 65: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esReferen esAnderson, M., J. Norman, J. Me ikalski, R. Torn, W. Kustas & J. B.Basara: (2004): A multis ale remote sensing model for disaggregating regionaluxes to mi rometeorologi al s ale, Journal of Hydrometeorology, 5, 343363.Balslev, H. & B. Øllgaard: (2002): Botáni a Austroe uatoriana. Estudios so-bre los re ursos vegetales en las provin ias de El Oro, Loja y Zamora-Chin hipe, hap. Mapa de vegeta ión del sur de E uador, 5164, Edi iones Abya-Yala, Quito,E uador.Barthlott, W., J. Mutke, M. D. Rafiqpoor, G. Kier & H. Kreft: (2005):Global entres of vas ular plant diversity, Nova A ta Leopoldina, NF 92, 6183.Be k, E. & K. Müller-Hohenstein: (2001): Analysis of undisturbed and dis-turbed tropi al mountain forest e osystems in southern e uador, Die Erde, 132,18.Bendix, J., J. Homeier, E. Cueva Ortiz, P. Em k, S.-W. Bre kle,M. Ri hter & E. Be k: (2006a): Seasonality of weather and tree phenology ina tropi al evergreen mountain rain forest, International Journal Biometeorology,50, 370384.Bendix, J. & W. Lauer: (1992): Die nieders hlagsjahreszeiten in e uador undihre klimadynamis he interpretation, Erdkunde, 46, 118134.Bendix, J., R. Rollenbe k, D. Göttli her & J. Cermak: (2006b): Cloudo uran e and loud properties in e uador, Climate Resear h, 30, 133147.Bendix, J., R. Rollenbe k & W. Pala ios: (2004): Cloud dete tion in thetropi s: a suitable tool for limate-e ologi al studies in the high mountains ofe uador, International Journal of Remote Sensing, 25, 45214540.Bonan, G., K. Oleson,M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. Di k-inson & Z.-L. Yang: (2002): The land surfa e limatology of the ommunityland model oupled to the NCAR ommunity limate model, Journal of Climate,15, 31233149.Brehm, G., J. Homeier & K. Fiedler: (2003): Beta diversity of geometridmoths (lepidoptera: Geometridae) in an andean montane rainforest, Diversityand Distributions, 9, 351366.Brummitt, N.& E. N. Lughadha: (2003): Biodiversity: Where's hot and where'snot, Conservation Biology, 17, 14421448.53

Page 66: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esChavez, P. J.: (1996): Image-based atmospheri orre tions - revisited and im-proved, Photogrammetri Engineering and Remote Sensing, 62, 10251036.Colby, J. & P. L. Keating: (1998): Land over lassi ation using landsatTM imagery in the tropi al highlands: the inuen e of anisotropi ree tan e,International Journal of Remote Sensing, 19, 14761500.Comber, A., P. Fisher & R. Wadsworth: (2004): Integrating land overdata with dierent ontologies, identifying hange from in onsisten y, InternationalJournal of Geographi al Information S ien e, 18, 691708.Comber, A., P. Fisher &R. Wadsworth: (2005): Comparing the onsisten y ofexpert land over knowledge, International Journal of Applied Earth Observationand Geoinformation, 7, 189201.Congalton, R. G.: (1991): A review of assessing the a ura y of lassi ationsof remotely sensed data, Remote Sensing of Environment, 37, 3546.Dai, Y., X. Zeng, R. Di kinson, I. Baker, G. Bonan, M. Bosilovi h, A. S.Denning, P. Dirmeyer, P. Houser, G. Niu, K. Oleson, C. S hlosser &Z.-L. Yang: (2003): The ommon land model, Bulletin Ameri an Meteorologi alSo iety, 84, 10131023.Eastman, J.: (2003): IDRISIKilimanjaro Guide to GIS and Image Pro essing,Clark University, Wor ester, MA, USA.Eastman, J. & R. Laney: (2002): Bayesian soft lassi ation for sub-pixel analy-sis: A riti al evaluation, Photogrammetri Engineering and Remote Sensing, 68,11491154.E havarria, F.: (1998): Nature's Geography: new lessons for onservation in de-veloping ountries, hap. Monitoring Forests in the Andes Using Remote Sensing.An example from E uador, 100120, The University of Wis onsin Press, Madison.Göttli her, D. & J. Bendix: (2004): Eine modulare multi-user datenbank füreine ökologis he fors hergruppe mit heterogenem datenbestand, Zeits hrift fürAgrarinformatik, 4, 95103.Hartig, K. & E. Be k: (2003): The bra ken fern (Pteridium ara hnoideum(Kaulf.) Maxon) dilemma in the andes of southern e uador, E otropi a, 9, 313.Helmer, E., S. Brown & W. Cohen: (2000): Mapping montane tropi al forestsu essional stage and land use with multi-date landsat imagery, InternationalJournal of Remote Sensing, 21, 21632183.54

Page 67: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esHill, R.: (1999): Image segmentation for humid tropi al forest lassi ation inlandsat tm data, International Journal of Remote Sensing, 20, No. 5, 10391044.Hill, R. & G. Foody: (1994): Separability of tropi al rain-forest types in thetambopata- andamo reserved zone, peru, International Journal of Remote Sens-ing, 15, 26872693.Homeier, J.: (2004): Baumdiversität, Waldstruktur und Wa hstumsdynamikzweier tropis her Bergregenwälder in E uador und Costa Ri a, DissertationesBotani ae, vol. 391, Borntraeger, Stuttgart, dissertation Universität Bielefeld.Homeier, J., H. Dalitz & S.-W. Bre kle: (2002): Waldstruktur und bau-martendiversität im montanen regenwald der esta ión ientí a san fran is o insüde uador, Beri hte der Reinhold-Tüxen Gesells haft, 14, 109118.Homeier, J., F. Werner, S. Gradstein, S.-W. Bre kle & M. Ri hter:(2008): Potential vegetation and oristi omposition of andean forests in southe uador, with a fo us on the rbsf, in Be k, E., J. Bendix, I. Kottke,F. Makes hin & R. Mosandl (eds.) Gradients in a Tropi al Mountain E osys-tem of E uador, E ologi al Studies, vol. 198, 87100, Springer, Berlin.Jordan, E., L. Ungere hts, B. Cá eres, A. Penafiel & B. Fran ou:(2005): Estimation by photogrammetry of the gla ier re ession on the otopaxivol ano (e uador) between 1956 and 1997, Hydrologi al S ien es-Journal-des S i-en es Hydrologiques, 50, 949961.Lu, D. & Q. Weng: (2007): A survey of image lassi ation methods and te h-niques for improving lassi ation performan e, International Journal of RemoteSensing, 28, 823870.Malpi a, J., M. Alonso & M. Sanz: (2007): Dempster-shafer theory in ge-ographi information systems: A survey, Expert Systems with Appli ations, 32,4755.Mertikas, P. & M. Zervakis: (2001): Exemplifying the theory of eviden e inremote sensing image lassi ation, International Journal of Remote Sensing, 22,10811095.NASA: (2002): Landsat 7 s ien e datausers handbook, Te h. rep., National Aero-nauti s and Spa e Administration.Parolly, G. & H. Kürs hner: (2004): E oso iologi al studies in e uadorianbryophyte ommunities. ii. syntaxonomy of the submontane and montane epi-phyti vegetation of s e uador, Nova Hedwigia, 79, 377424.55

Page 68: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esPauls h, A.: (2002): Development and Appli ation of a Classi ation Systemfor Undisturbed and Disturbed Tropi al Montane Forests on Vegetation Stru ture,Dissertation thesis, Fakultät für Biologie, Chemie und Geowissens haften der Uni-versität Bayreuth.Peddle, D. & A. Smith: (2005): Spe tral mixture analysis of agri ultural rops:endmember validation and biophysi al estimation in potato plots, InternationalJournal of Remote Sensing, 26, 49594979.Riaño, D., E. Chuvie o, J. Salas & I. Aguado: (2003): Assessment of dierenttopographi orre tions in landsat-tm data for mapping vegetation types, IEEETransa tions on Geos ien e and Remote Sensing, 41, 10561061.Ri hter, M.: (2003): Using plant fun tional types and soil temperatures for e o- limati interpretation in southern e uador, Erdkunde, 57, 161181.Salovaara, K., S. Thessler, R. Malik & H. Tuomisto: (2005): Classi a-tion of amazonian primary rain forest vegetation using landsat ETM+ satelliteimagery, Remote Sensing of Environment, 97, 3951.S hweitzer, C., G. Rü ker, C. Conrad, G. Strunz & J. Bendix: (2005):Knowledge-based land use lassi ation ombining expert knowledge, GIS, multi-temporal landsat 7 ETM+ and MODIS time series data in khorezem, uzbekistan,Göttinger Geographis he Abhandlungen, 113, 116123.Shepherd, J. & J. Dymond: (2003): Corre ting satellite imagery for the varian eof ree tan e and illumination with topography, International Journal of RemoteSensing, 24, 35033514.Sohn, Y. & R. M Coy: (1997): Mapping desert shrub rangeland using spe tralunmixing and modeling spe tral mixtures with tm data, Photogrammetri Engi-neering and Remote Sensing, 63, 707716.Song, C.: (2005): Spe tral mixture analysis for subpixel vegetation fra tions in theurban environment: How to in orporate endmember variability?, Remote Sensingof Environment, 95, 248263.Story, M. & R. Congalton: (1986): A ura y assessment: A user's perspe tive,Photogrammetri Engineering and Remote Sensing, 52, 397399.Tottrup, C.: (2004): Improving tropi al forest mapping using multi-data landsatTM data and pre- lassi ation image smoothing, International Journal of RemoteSensing, 25 No.4, 717730.56

Page 69: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esValen ia, R., C. Cerón, W. Pala ios & R. Sierra: (1999): Propuesta pre-liminar de un sistema de lasi a ión de vegeta ión para el E uador ontinen-tal, hap. Las forma iones naturales de la sierra del E uador, 79108, Proye toINEFAN/GEF-BIRF y E oCien ia, Quito, E uador.Werner, F., J. Homeier & S. Gradstein: (2005): Diversity of vas ular epi-phytes on isolated remnant trees in the montane forest belt of southern e uador,E otropi a, 11, 2140.Zhu, H.: (2005): Linear spe tral unmixing assisted by probability guided and min-imum residual exhaustive sear h for subpixel lassi ation, International Journalof Remote Sensing, 26, 55855601.

57

Page 70: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT ParameterThis hapter was submitted 29 May 2010 to Computers & Geos ien es.

58

Page 71: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT ParameterSensitivity of the Community Land Modelto plant and soil parameters for thepredi tion of ommonly requiredparameters for applied e ologi andso io-e onomi studiesDietri h Göttli her*, Thomas Nauss and Jörg BendixFa ulty of Geography, Philipps-Universität Marburg, Deuts hhausstr. 10, 35037Marburg, GermanyFa ulty of Geography, University of Bayreuth, 95440 Bayreuth, GermanyA multi dis iplinary resear h unit is investigating the land over hanges ande ologi al pro esses in the tropi al mountain rainforest and pastures in south-ern E uador. To evaluate whi h parameters used in the Community LandModel are more dominant to various output results a sensitivity study is on-du ted. All implemented plant fun tional type parameters and also the soilparameters are altered in xed rates one by one keeping the others onstant.Five output parameters (surfa e air temperature, surfa e humidity, sensibleheat ux, transpiration and evaporation) are hosen to determine the abso-lute and relative deviations. The results are used to de ide whi h parametersmust be gathered with priority in the eld to properly parametrize the modelfor so io-e onomi appli ations. With respe t to temperature and humiditysimulations needed by the so io-e onomi proje ts, the variation of most in-vestigated parameters of ±30% appeared to ause only negligible variations(< 1%). Other output variables like transpiration and evaporation from thevegetation show mu h higher deviations (> 30%) espe ially by variations ofthe stru tural parameter (leaf area index). In summary, the operation of theSVAT model with default parameters provides data a urate enough for theso io-e onomi investigations.Keywords: CLM, SVAT, sensitivity, E uador, plant fun tional type4.1 Introdu tionSoil-vegetation-atmosphere transfer (SVAT) models are widely used within e o- limatologi al studies. Moreover, robust landsurfa e models are ne essary for mul-tide adal global limate simulations (Foley et al., 2000). Sin e SVAT models sim-ulate the land-atmosphere ex hanges in response to atmospheri for ing and a tual59

Page 72: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT Parameterland- over, su h models are also valueable for studies in the eld of e ology orientedso ial s ien e and e onomi s.The resear h unit Biodiversity and Sustainable Management of a MegadiverseMountain E osystem in South E uador funded by the German resear h foundation(Deuts he Fors hungsgemeins haft, DFG) aims in the design of sustainable strate-gies and ee tive measures for the prote tion of the natural forests and for theregeneration of abandoned pasture areas in the mountain at hment of the Rio SanFran is o within the Podo arpus-El Condor United Nations Biosphere Reserve (seehttp://www.tropi almountainforest.org).The resear h area is lo ated in the Andes of E uador whi h are onsidered as oneof the `hottest' hotspots of vas ular plant biodiversity worldwide (Brummitt &Lughadha, 2003; Barthlott et al., 2005; Jørgensen & Ulloa Ulloa, 1994)while at the same time the ountry suers the highest rate (−1.7 %) of deforesta-tion in the period 20002005 within South Ameri a (Mosandl et al., 2008). Forest learing for onversion to agri ultural land is the main threat to E uador's biodi-versity but mainly due to the use of re as an agri ultural tool, the gained pastureareas annot be used sustainably as they are overgrown by persistent weeds like thebra ken fern (Pteridium ara hnoideum) (Hartig & Be k, 2003).Reforestation and repastorization of the abandoned agri ultural areas must there-fore be ome entral elements of a sustainable development strategy for the ountry.Be ause of a la k of knowledge (and indigenous material), reforestation eorts sup-ported by international organizations mainly rely on mono ultures of exoti treespe ies and have shown only temporary and, at best, moderate su ess. In thissituation, the livelihood of settlers is endangered while the (illegal) destru tion ofnatural forests ontinues. Sustainable land use strategies however require a profoundknowledge of the relevant e osystem and of its human users.Therefore the 25 interdis iplinary proje t teams of the resear h unit endeavourto generate this knowledge by investigating the me hanisms and pro esses of thenatural e osystem i. e. a tropi al mountain rain forest and its anthropogeni re-pla ement system within the at hment. In this ontext, several so io-e onomi proje t teams evaluate the intera tions between human a tors and the alteration ofthe landuse/land over system and the resulting insights are forming the basis forthe implementation of agent-based models. Preliminary surveys of lo al residentsreveal that the knowledge about hanges in lo al limate onditions due to hangesin the land over will inuen e the de ision-making pro ess. Therefore, the Commu-nity Land Model version 3.5 (CLM) (Oleson et al., 2004, 2008) should be used tosimulate the alteration of lo al limate parameters by hanges in the land over.One prerequisite for su essfully applying the CLM in this ontext is the provisionof area-wide datasets with a spatial resolution of about 30m overing the distribu-tion of the morphologi al properties of the relevant vegetation ommunities (i. e.plant fun tional types) and basi soil parameters. In addition, the physiologi al andopti al properties of the vegetation ommunities have to be quantied using a set of60

Page 73: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT Parameter48 plant fun tional type parameters. These datasets are prepared by several proje tteams of the resear h unit but with respe t to the omplexity of the investigationarea and the diversity of the land over and vegetation types, un ertainties withinthese datasets are onsiderable.Therefore, the sensitivity of the relevant CLM output parameters to plant and soilproperties is investigated in a preparatory study. In the present ontext, the 2m airtemperature and humidity is of spe ial importan e for the so io-e onomi proje ts.Sin e insights into heat and humidity uxes are also important ba kground informa-tion with respe t to the interpretation of the simulation results, the sensitivity of thesensible heat ux and the evaporation and transpiration from vegetation surfa es isalso onsidered in this study. Depending on the results of this study, the botany,soil s ien e and forestry proje t teams of the resear h unit will relay a spe ial fo uson the measurement and area-wide a quisition of those input parameters that havebeen identied as ru ial for the simulation of these output parameters.4.2 Sensitivity study setupThe input parameters of the CLM onsidered within this study an be divided into (i)time and spa e dependent vegetation stru ture (ii) spa e dependent soil parametersand (iii) time independent xed plant fun tional types parameters. The former overthe top and bottom height of the anopy, the leaf and stem area index. The soil is hara terized by the fra tion of sand and lay and its albedo. The latter des ribethe morphologi al, physiologi al and opti al properties of ea h plant fun tional typei. e. ea h vegetation ommunity. Sin e the resear h area presented in the previous hapter is mainly omposed by tropi al tree, shrub, and grassland ommunities, thefour already implemented plant fun tional types evergreen tropi al trees, shrubs, C3grass, and C4 grass are used within in this study.To investigate the sensitivity of the simulated 2m air temperature and humidity,the sensible heat ux, and the evaporation and transpiration from vegetation, on hanges of the input parameters, the latter are hanged by ertain fa tors from apredened mean value while all other parameters have been held onstant. Themean values of the plant fun tional type parameters are taken from the CLM 3.5standard onguration as des ribed by Bonan et al. (2002) and Zeng (2001). Themean values of the vegetation stru ture and soil parameters whi h have been held onstant over time for ea h model run are taken with respe t to the results of dierenteld surveys by botany, soil s ien e, and forestry proje t teams of the resear h unit.For the atmospheri for ing, a subset overing the Andean E uadorian regionof the observation-based analyses ombined with intramonthly variations from theNCEP/NCAR by (Qian et al., 2006) are used. For ea h modi ation of an inputparameter, a three year model run has been started overing the time period betweenJanuary 2003 and De ember 2005. The analysis of the deviations of the output61

Page 74: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT Parameterparameters is based on the monthly mean values of January 2005 and September2005. These two month mark the end of a humid (January) and dry (September)period for whi h the inuen e of some of the input parameters diers onsiderablyin magnitude.4.3 Inuen e of vegetation stru ture and soilparametersIn order to investigate the inuen e of vegetation stru ture and soil parameters, theupper and lower height of the anopy layer, the leaf and stem area index, the sandand lay fra tion of the soil layer as well as the soil olour have been modied oneby one while all the respe tive other parameters have been held onstant. Table 4.1shows the deviation of the parameters for the three land over types (grass, shrubs,trees) as well as for the soil parameters. The bold numbers represent the standardvalues of the parameters that have been used while one other parameter has beenmodied. The fra tion of sand and lay is set to a standard value of 33% ea h duringthe various model runs but is not used as an input value while the soil texture itselfis hanged. As one an see from the per entage deviation, the initial parametervalues have generally been de reased or in reased by fa tor 2 in three steps. Oneex eption is the anopy top height for trees whi h has been in reased only up to140% (i. e. from 25m to 35m) sin e a further in rease would have aused problemswith respe t to the meteorologi al initialization in the planetary boundary layer.The inuen e of these modi ations on the resulting values of the 2m air tem-perature and humidity, the sensible heat ux and the evaporation and transpirationfrom vegetation surfa es is dis ussed in the next se tions. A graphi al overview ofthis inuen e an be seen for ea h output parameter in gures 4.1 to 4.5 while ta-bles 4.3 to 4.7 give a omprehensive overview of the absolute results and per entagedeviations relative to the average value also shown in the tables.4.3.1 Monthly vegetation heightGenerally, the vegetation height ae ts the aerodynami resistan e to matter andenergy uxes by hanging the roughness length z0 and displa ement height d whi hare plant spe i but onstant fra tions of the vegetation top height. An in reasein vegetation height implies an in rease in z0 and therefore a de rease in the aero-dynami resistan e whi h results in a loser oupling between the surfa e (i. e. the anopy layer) and the atmosphere.The 2m air temperature is based on the onservation of anopy energy and resultsfrom the omputation of heat uxes between the soil and anopy layer and the anopy layer and the atmosphere above respe tively under the assumption that theair inside the anopy has a negligible heat storage apa ity. Sin e the temperature62

Page 75: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT ParameterTable 4.1: Modi ation of morphologi al and soil related input parameters and per entagedieren e relative to the standard mean value (bold) used for this study. Thestandard mean value of the fra tion of sand and lay is set to 33% ea h. Thenumbers in bra kets indi ate the modi ation ID of the gures 4.1, 4.2, 4.4, 4.5and 4.3.Grass ParametersHeight Top 0.25 0.34 0.42 0.50 0.67 0.83 1.00(0 6) 50.00 % 67.00 % 83.00 % 100.00 % 133.00 % 166.00 % 200.00 %Height Bottom 0.01 0.01 0.01 0.01 0.01 0.02 0.02(7 13) 50.00 % 67.00 % 83.00 % 100.00 % 133.00 % 166.00 % 200.00 %LAI 1.00 1.34 1.66 2.00 2.66 3.32 4.00(14 20) 50.00 % 67.00 % 83.00 % 100.00 % 133.00 % 166.00 % 200.00 %SAI 0.13 0.17 0.21 0.25 0.33 0.42 0.50(21 27) 50.00 % 67.20 % 83.20 % 100.00 % 132.00 % 166.00 % 200.00 %Shrub ParametersHeight Top 0.25 0.34 0.42 0.50 0.67 0.83 1.00(0 6) 50.00 % 67.00 % 83.00 % 100.00 % 133.00 % 166.00 % 200.00 %Height Bottom 0.05 0.07 0.08 0.10 0.13 0.17 0.20(7 13) 50.00 % 67.00 % 83.00 % 100.00 % 133.00 % 166.00 % 200.00 %LAI 1.50 2.01 2.49 3.00 3.99 4.98 6.00(14 20) 50.00 % 67.00 % 83.00 % 100.00 % 133.00 % 166.00 % 200.00 %SAI 0.13 0.17 0.21 0.25 0.33 0.42 0.50(21 27) 50.00 % 67.20 % 83.20 % 100.00 % 132.00 % 166.00 % 200.00 %Tree ParametersHeight Top 12.50 16.75 20.75 25.00 29.25 33.30 35.00(0 6) 50.00 % 67.00 % 83.00 % 100.00 % 117.00 % 133.20 % 140.00 %Height Bottom 2.00 2.68 3.32 4.00 5.32 6.64 8.00(7 13) 50.00 % 67.00 % 83.00 % 100.00 % 133.00 % 166.00 % 200.00 %LAI 2.00 2.68 3.32 4.00 5.32 6.64 8.00(14 20) 50.00 % 67.00 % 83.00 % 100.00 % 133.00 % 166.00 % 200.00 %SAI 0.38 0.50 0.62 0.75 1.00 1.25 1.50(21 27) 50.00 % 67.07 % 83.07 % 100.00 % 133.07 % 166.00 % 200.00 %Soil parametersSand / Clay 0/0 100/0 0/100 20/20 46/20 46/46 20/46(28 34)Soil Color 11.00 13.00 15.00 17.00 19.00 20.00 20.00(35 41) 64.71 % 76.47 % 88.24 % 100.00 % 111.76 % 117.65 % 117.65 %

63

Page 76: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT Parameter

292.5

293

293.5

294

294.5

295

295.5

296

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

2m A

ir T

empe

ratu

re [K

]

Modification ID

HeightTop HeightBottom LAI SAI SoilTexture SoilColor tree wettree dry

shrubs wetshrubs dry

c3grass wetc3grass dryc4grass wetc4grass dry

Figure 4.1: Air temperature (K) at 2m above ground as a fun tion of dierent values forthe plant morphologi al and soil parameters stated in table 4.1.Ts of the anopy layer is onsidered to equal the air temperature at height z0 + d,dieren es in the sensible heat ux at this height level have to be balan ed bysensible heat from the vegetation and the ground. This results in small positive orrelations of the 2m air temperature and the top-height of vegetation for grassduring the wet season while negative orrelations exist for the dry period (see gure4.1). Shrubs show a negative orrelation for wet and espe ially for dry onditionsand evergreen tropi al trees show a small negative orrelation for anopy top heightsbelow 25m and a strong positive orrelation for anopy top heights above 25m. Thelatter an be explained by ompeting inuen es of an in reased roughness leadingto a stronger oupling to the ( older) atmosphere and in reasing energy storage apa ities for thi ker anopy layers.The negative orrelation of air temperature for shrubs under dry onditions anbe explained by the enhan ed entrainment of slightly older air due to a more pro-noun ed atmospheri oupling for larger vegetation heights. With respe t to transpi-ration, asso iated hanges in the vapour pressure de it due to enhan ed turbulen esare generally not (dry period) or negatively (wet period) orrelated to the anopytop height ex ept for trees during dry periods, where a positive orrelation exists up64

Page 77: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT Parameter

0

5e-06

1e-05

1.5e-05

2e-05

2.5e-05

3e-05

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Can

opy

Tra

nspi

ratio

n [m

m/s

]

Modification ID

HeightTop HeightBottom LAI SAI SoilTexture SoilColor tree wettree dry

shrubs wetshrubs dry

c3grass wetc3grass dryc4grass wetc4grass dry

Figure 4.2: Transpiration (mm/s) from vegetation as a fun tion of dierent values for theplant morphologi al and soil parameters stated in table 4.1.to heights of about 30m (see gure 4.2).The inuen es of the anopy height on the evaporation from vegetation has negli-gible inuen es ex ept for tree heights above 25m whi h lead to a positive orrelation(see gure 4.3). Even though the partly in reasing transpiration and evaporationleads to an in rease in the latent heat uxes, these energy losses an be ounterbal-an ed by sensible heat uxes from the ground surfa e layer ex ept for trees underdry onditions.For all other onditions, a positive orrelation between the sensible heat ux andthe vegetation height due to the stronger oupling between the surfa e layer andthe atmosphere exists (see gure 4.4). As a onsequen e of the transpiration andevaporation uxes, the spe i humidity shows a slight in rease with anopy heightfor trees while for shrubs and grass, no or a small negative trend an be identied.The anopy bottom height shows no inuen e on the resulting parameters.The dependen ies stated above lead to negligible per entage dieren es (≪1%)in the resulting 2m air temperatures and spe i humidities but absolute tempera-ture dieren es an ex eed 0.5K for trees during dry onditions (see table 4.3 and4.4). For the sensible heat ux, deviations of about 8% from the mean value have65

Page 78: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT Parameter

1e-06

2e-06

3e-06

4e-06

5e-06

6e-06

7e-06

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Can

opy

Eva

pora

tion

[mm

/s]

Modification ID

HeightTop HeightBottom LAI SAI SoilTexture SoilColor tree wettree dry

shrubs wetshrubs dry

c3grass wetc3grass dryc4grass wetc4grass dry

Figure 4.3: Evaporation (mm/s) from vegetation as a fun tion of dierent values for theplant morphologi al and soil parameters stated in table 4.1.

66

Page 79: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT Parameter

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Sen

sibl

e H

eat [

W/m

2 ]

Modification ID

HeightTop HeightBottom LAI SAI SoilTexture SoilColor tree wettree dry

shrubs wetshrubs dry

c3grass wetc3grass dryc4grass wetc4grass dry

Figure 4.4: Sensible heat ux (W/m2) as a fun tion of dierent values for the plant mor-phologi al and soil parameters stated in table 4.1.

67

Page 80: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT Parameter

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

2m S

peci

fic H

umid

ity [k

g/kg

]

Modification ID

HeightTop HeightBottom LAI SAI SoilTexture SoilColor tree wettree dry

shrubs wetshrubs dry

c3grass wetc3grass dryc4grass wetc4grass dry

Figure 4.5: Air humidity (kg/kg) at 2m above ground a fun tion of dierent values forthe plant morphologi al and soil parameters stated in table 4.1.to be expe ted (see table 4.5), if the vegetation top height hanges by the fa torsof table 4.1 (i. e. by a fa tor of ±2 ex ept for trees where the in rease of vegeta-tion top height is limited to a fa tor of +1.4). Larger per entage dieren es an beseen only for transpiration and evaporation from trees during dry onditions withvalues of 16.63 % and −22.33 % respe tively whi h equals absolute deviations of62mm/month and −349mm/month. For grass and shrubs, the deviation in evapo-ration and transpiration is below 3% for hanges in the vegetation height by fa tor±2 (see table 4.6 and 4.7). The bottom height of the anopy layer has no inuen eon any of the output parameters onsidered.As a onsequen e of the already mentioned humidity uxes, the spe i air hu-midity shows negative orrelations with vegetation height ex ept for shrubs andgrass during dry onditions (see gure 4.5). For the evaporation (see gure 4.3) nosigni ant inuen e of the vegetation top height exists. The same is true for thebottom height of the vegetation anopy for all parameters.

68

Page 81: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT Parameter4.3.2 Leaf and stem area indexThe leaf area index (LAI) and its sunlit and shaded fra tions have a dominant inu-en e on the radiative transfer inside the anopy and in turn on the energy availablefor photosynthesis, heat and water vapour uxes. Consequently, the 2m air temper-ature shows a negative orrelation with in reasing LAI values (see gure 4.1) be auseof in reasing shading ee ts and a positive orrelated in rease in transpiration andevaporation with leaf area exists (see gure 4.2, 4.3) resulting in an evaporative heatloss of the anopy air. Ex ept for grass during dry onditions and for large trees(>25m), the sensible heat ux shows a positive orrelation with the leaf area index(see gure 4.4). The energy redu tion at the ground surfa e due to an in reasedshading with in reasing leaf area index signi antly redu es the evaporation fromthe surfa e layer ex ept for grass areas (during dry onditions) whi h explains thepredominately negative orrelations between the LAI and the spe i air humidityat 2m height (see gure 4.5).The stem area index (SAI) is also positively orrelated with the anopy energybudget and generally shows the same tenden ies as the LAI. One ex eption is thetranspiration whi h shows a positive orrelation with SAI for trees during dry on-ditions resulting in deviations of the sensible heat ux a ordingly. The reason forthat is un lear but might be related to ee ts of the losure of the anopy energybudget by numeri al iteration leading to a de rease of evaporation and an in reasein the soil water available for transpiration.As for hanges in the anopy height, hanges in the LAI and SAI have a negligibleper entage inuen e on the 2m air temperature and humidity but this time, the airtemperature deviation over grass and shrubs an ex eed 0.5K and the air humidityex eeds 1% for trees and shrubs under dry onditions. For the sensible heat uxesand espe ially for the evapotranspiration, the dieren es resulting from hangingleaf and stem areas are larger than the ones from the anopy height alteration.In general, the largest deviations are related to dry onditions and do not ex eedabout 14% for the sensible heat ux but rea h up to 60% for the evaporation if thegrass leaf area index is in reased by fa tor 2. Sin e transpiration is at least partly ontrolled by the plants, an in rease in the leaf area does generally result in smalleralterations that do not ex eed 25% for trees and shrubs and 47% for grass. TheSAI has only a minor inuen e ex ept for trees during dry onditions where it anindu e an in rease of the transpiration by 33% (see tables 4.3 to 4.7).4.3.3 Soil propertiesSoil water availability is - among others - a fun tion of the sand/ lay fra tion withfeedba ks on eld apa ity, wilting point and water availability. For transpiration,the latter fa tors lead to a negative orrelation with in reasing lay fra tion of theunderlying soil. The same tenden y an be found for evaporation. Under dry ondi-69

Page 82: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT ParameterTable 4.2: Tenden y of the orrelation between the omputed values of the 2m air temper-ature (TSA), the 2m air humidity (Q2M), the sensible heat ux (FSH), theevaporation (QV EGE) as well as the transpiration (QV EGT ) from vegetationsurfa es and the morphologi al and soil related input parameters des ribed intable 4.1.Surfa e Parameter TSA Q2M FSH QV EGE QV EGTHeight TopTrees Wet Period - + - + + - + -Dry Period - + 0 + - - + + -Shrubs Wet Period - 0 + 0 -Dry Period - - + 0 0Grass Wet Period 0 0 + 0 -Dry Period - 0 + 0 0Height BottomTrees Wet Period 0 0 0 0 0Dry Period 0 0 0 0 0Shrubs Wet Period 0 0 0 0 0Dry Period 0 0 0 0 0Grass Wet Period 0 0 0 0 0Dry Period 0 0 0 0 0LAITrees Wet Period - - + - + +Dry Period - - + + -Shrubs Wet Period - - + + +Dry Period - - + + + -Grass Wet Period - 0 - + + +Dry Period - + - + +SAITrees Wet Period - - + + -Dry Period - - - + +Shrubs Wet Period - 0 + + 0Dry Period - - + + +Grass Wet Period 0 0 - + -Dry Period - + - + +ClayTrees Wet Period - + + - -Dry Period + - + 0 -Shrubs Wet Period - 0 - - -Dry Period + 0 + - -Grass Wet Period - + - - -Dry Period + - + - -ColorTrees Wet Period 0 0 0 0 -Dry Period 0 0 0 0 -Shrubs Wet Period 0 0 0 0 -Dry Period + 0 0 0 -Grass Wet Period 0 0 + + -Dry Period + 0 + + -70

Page 83: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT ParameterTable 4.3: Absolute values (K) and relative deviation from the mean value (%) for the airtemperature in 2m height with respe t to the modi ation of morphologi aland soil related input parameters des ribed in table 4.1.Trees Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 295.05 295.05 294.91 295.00 295.02 295.040.00 % 0.00 % -0.05 % -0.02 % -0.01 % -0.00 %Maximum 295.25 295.05 295.34 295.09 295.05 295.050.07 % 0.00 % 0.10 % 0.01 % 0.00 % 0.00 %Dieren e 0.20 0.00 0.43 0.09 0.03 0.01Average 295.05 295.05 295.05 295.05 295.04 295.05Dry PeriodMinimum 292.78 292.81 292.67 292.71 292.65 292.80-0.01 % 0.00 % -0.05 % -0.04 % -0.04 % -0.00 %Maximum 293.48 292.82 293.19 292.89 292.83 292.820.23 % 0.00 % 0.13 % 0.02 % 0.02 % 0.00 %Dieren e 0.70 0.00 0.53 0.18 0.18 0.02Average 292.81 292.81 292.81 292.81 292.77 292.81Shrubs Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 295.47 295.50 295.20 295.48 295.47 295.49-0.01 % 0.00 % -0.10 % -0.01 % -0.01 % -0.00 %Maximum 295.51 295.50 295.60 295.51 295.50 295.500.01 % 0.00 % 0.03 % 0.00 % 0.00 % 0.00 %Dieren e 0.04 0.00 0.40 0.03 0.03 0.02Average 295.50 295.50 295.50 295.50 295.49 295.50Dry PeriodMinimum 293.48 293.56 293.16 293.50 293.25 293.54-0.03 % 0.00 % -0.14 % -0.02 % -0.09 % -0.01 %Maximum 293.64 293.56 293.95 293.60 293.59 293.580.03 % 0.00 % 0.13 % 0.01 % 0.03 % 0.00 %Dieren e 0.16 0.00 0.79 0.10 0.34 0.04Average 293.56 293.56 293.56 293.56 293.51 293.56C3 Grass Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 295.54 295.54 295.45 295.54 295.53 295.54-0.00 % 0.00 % -0.03 % -0.00 % -0.01 % -0.00 %Maximum 295.55 295.54 295.60 295.55 295.59 295.550.00 % 0.00 % 0.02 % 0.00 % 0.01 % 0.00 %Dieren e 0.01 0.00 0.15 0.01 0.06 0.01Average 295.54 295.54 295.54 295.54 295.55 295.54Dry PeriodMinimum 293.65 293.69 293.23 293.62 293.52 293.63-0.01 % 0.00 % -0.16 % -0.03 % -0.04 % -0.02 %Maximum 293.72 293.69 293.85 293.73 293.80 293.720.01 % 0.00 % 0.05 % 0.01 % 0.06 % 0.01 %Dieren e 0.07 0.00 0.61 0.11 0.29 0.09Average 293.69 293.69 293.69 293.69 293.63 293.69C4 Grass Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 295.53 295.54 295.47 295.54 295.52 295.53-0.00 % 0.00 % -0.03 % -0.00 % -0.01 % -0.00 %Maximum 295.55 295.54 295.59 295.55 295.58 295.550.00 % 0.00 % 0.02 % 0.00 % 0.01 % 0.00 %Dieren e 0.02 0.00 0.13 0.01 0.06 0.01Average 295.54 295.54 295.54 295.54 295.55 295.54Dry PeriodMinimum 293.65 293.68 293.19 293.61 293.49 293.62-0.01 % 0.00 % -0.17 % -0.03 % -0.05 % -0.02 %Maximum 293.71 293.68 293.86 293.72 293.82 293.710.01 % 0.00 % 0.06 % 0.01 % 0.07 % 0.01 %Dieren e 0.06 0.00 0.67 0.11 0.33 0.09Average 293.68 293.68 293.68 293.68 293.62 293.68

71

Page 84: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT ParameterTable 4.4: Absolute values (g/kg) and relative deviation from the mean value (%) for thespe i air humidity in 2m height with respe t to the modi ation of morpho-logi al and soil related input parameters des ribed in table 4.1.Trees Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 181.02 181.02 179.75 180.38 180.83 180.910.00 % -0.00 % -0.70 % -0.35 % -0.09 % -0.06 %Maximum 182.10 181.02 183.27 181.50 181.13 181.070.60 % 0.00 % 1.25 % 0.27 % 0.08 % 0.03 %Dieren e 1.09 0.00 3.52 1.11 0.30 0.15Average 181.02 181.02 181.02 181.02 180.99 181.02Dry PeriodMinimum 134.84 134.94 133.66 134.60 134.49 134.86-0.08 % -0.00 % -0.95 % -0.25 % -0.37 % -0.06 %Maximum 136.07 134.94 137.38 135.23 135.42 134.980.83 % 0.00 % 1.80 % 0.22 % 0.32 % 0.03 %Dieren e 1.23 0.00 3.72 0.63 0.93 0.12Average 134.94 134.94 134.94 134.94 134.99 134.94Shrubs Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 185.15 185.39 183.01 185.23 185.24 185.34-0.13 % 0.00 % -1.28 % -0.08 % -0.02 % -0.02 %Maximum 185.50 185.39 185.40 185.45 185.45 185.410.06 % 0.00 % 0.01 % 0.03 % 0.09 % 0.01 %Dieren e 0.36 0.00 2.40 0.22 0.21 0.07Average 185.39 185.39 185.39 185.39 185.29 185.39Dry PeriodMinimum 138.41 138.87 135.82 138.51 136.45 138.71-0.34 % -0.00 % -2.20 % -0.26 % -1.59 % -0.12 %Maximum 139.25 138.87 139.34 139.05 138.95 138.950.27 % 0.00 % 0.33 % 0.12 % 0.22 % 0.06 %Dieren e 0.84 0.00 3.51 0.54 2.50 0.24Average 138.87 138.87 138.87 138.87 138.65 138.87C3 Grass Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 184.85 184.90 184.51 184.89 184.36 184.88-0.02 % 0.00 % -0.21 % -0.00 % -0.25 % -0.01 %Maximum 184.93 184.90 185.20 184.90 185.07 184.910.02 % 0.00 % 0.17 % 0.00 % 0.13 % 0.00 %Dieren e 0.08 0.00 0.69 0.01 0.71 0.03Average 184.90 184.90 184.90 184.90 184.83 184.90Dry PeriodMinimum 140.24 140.42 139.56 140.16 139.13 140.29-0.13 % -0.00 % -0.61 % -0.18 % -1.34 % -0.09 %Maximum 140.60 140.42 140.76 140.93 141.21 140.780.13 % 0.00 % 0.24 % 0.36 % 0.14 % 0.26 %Dieren e 0.36 0.00 1.19 0.77 2.08 0.49Average 140.42 140.42 140.42 140.42 141.02 140.42C4 Grass Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 184.87 184.91 184.57 184.89 184.41 184.90-0.03 % 0.00 % -0.19 % -0.01 % -0.23 % -0.01 %Maximum 184.96 184.91 185.12 184.92 185.13 184.920.02 % 0.00 % 0.11 % 0.00 % 0.15 % 0.00 %Dieren e 0.09 0.00 0.55 0.03 0.71 0.01Average 184.91 184.91 184.91 184.91 184.84 184.91Dry PeriodMinimum 140.35 140.47 139.10 140.25 138.97 140.34-0.09 % -0.00 % -0.97 % -0.16 % -1.37 % -0.09 %Maximum 140.64 140.47 140.93 140.96 141.08 140.760.12 % 0.00 % 0.33 % 0.35 % 0.13 % 0.21 %Dieren e 0.29 0.00 1.83 0.71 2.11 0.42Average 140.47 140.47 140.47 140.47 140.89 140.47

72

Page 85: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT ParameterTable 4.5: Absolute values (W/m2) and relative deviation from the mean value (%) forthe sensible heat ux with respe t to the modi ation of morphologi al andsoil related input parameters des ribed in table 4.1.Trees Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 52.09 56.84 55.62 53.79 54.99 56.79-8.36 % -0.00 % -2.16 % -5.38 % -2.81 % -0.11 %Maximum 57.05 56.85 56.85 61.40 56.58 56.970.36 % 0.00 % 0.00 % 8.02 % 0.00 % 0.22 %Dieren e 4.96 0.00 1.23 7.61 1.59 0.19Average 56.84 56.85 56.85 56.85 56.58 56.85Dry PeriodMinimum 66.21 71.46 61.16 62.78 47.51 71.15-7.35 % -0.00 % -14.41 % -12.14 % -24.55 % -0.42 %Maximum 77.77 71.46 81.33 75.04 84.10 71.588.83 % 0.00 % 13.81 % 5.03 % 33.54 % 0.19 %Dieren e 11.56 0.00 20.17 12.26 36.59 0.43Average 71.46 71.46 71.46 71.45 62.98 71.44Shrubs Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 38.11 41.42 41.03 40.72 41.22 41.39-7.98 % -0.00 % -0.94 % -1.70 % -1.29 % -0.07 %Maximum 45.02 41.42 42.72 42.79 41.90 41.498.70 % 0.00 % 3.14 % 3.31 % 0.32 % 0.15 %Dieren e 6.91 0.00 1.69 2.07 0.67 0.09Average 41.42 41.42 41.42 41.42 41.76 41.42Dry PeriodMinimum 68.44 72.55 67.21 72.13 70.94 72.50-5.67 % -0.00 % -7.37 % -0.59 % -1.47 % -0.07 %Maximum 76.34 72.55 79.20 73.33 75.97 72.665.22 % 0.00 % 9.16 % 1.08 % 5.53 % 0.14 %Dieren e 7.90 0.00 11.99 1.21 5.03 0.15Average 72.55 72.55 72.55 72.55 71.99 72.55C3 Grass Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 31.62 34.14 33.11 33.75 33.06 33.57-7.37 % -0.00 % -2.99 % -1.13 % -4.79 % -1.64 %Maximum 36.80 34.14 38.39 34.44 38.54 34.417.81 % 0.00 % 12.46 % 0.90 % 10.97 % 0.80 %Dieren e 5.18 0.00 5.27 0.69 5.47 0.83Average 34.14 34.14 34.14 34.14 34.73 34.14Dry PeriodMinimum 35.05 37.29 37.07 34.57 33.48 34.85-6.01 % -0.00 % -0.59 % -7.30 % -3.75 % -6.56 %Maximum 39.23 37.29 39.71 38.75 51.03 38.475.19 % 0.00 % 6.50 % 3.92 % 46.73 % 3.15 %Dieren e 4.18 0.00 2.65 4.18 17.55 3.62Average 37.29 37.29 37.29 37.29 34.78 37.29C4 Grass Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 31.10 33.61 33.58 33.55 32.17 32.92-7.46 % -0.00 % -0.09 % -0.18 % -6.00 % -2.06 %Maximum 36.28 33.61 37.27 33.76 37.57 33.947.95 % 0.00 % 10.91 % 0.44 % 9.77 % 1.00 %Dieren e 5.18 0.00 3.70 0.21 5.40 1.03Average 33.61 33.61 33.61 33.61 34.23 33.61Dry PeriodMinimum 33.18 35.60 32.76 32.94 31.91 33.32-6.80 % -0.00 % -7.97 % -7.49 % -4.24 % -6.42 %Maximum 37.74 35.60 39.85 37.10 52.29 36.716.02 % 0.00 % 11.94 % 4.21 % 56.90 % 3.10 %Dieren e 4.56 0.00 7.09 4.16 20.37 3.39Average 35.60 35.60 35.60 35.60 33.32 35.60

73

Page 86: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT ParameterTable 4.6: Absolute values (mm/month) and relative deviation from the mean value (%)for the evaporation from vegetation with respe t to the modi ation of mor-phologi al and soil related input parameters des ribed in table 4.1.Trees Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 544.70 544.70 391.30 520.50 542.60 544.000.00 % 0.00 % -28.16 % -4.44 % -0.39 % -0.13 %Maximum 608.10 544.70 672.90 581.90 631.00 545.1011.64 % 0.00 % 23.54 % 6.83 % 15.84 % 0.07 %Dieren e 63.40 0.00 281.60 61.40 88.40 1.10Average 544.70 544.70 544.70 544.70 544.70 544.70Dry PeriodMinimum 373.40 373.50 242.50 353.70 370.80 372.80-0.03 % 0.00 % -35.07 % -5.30 % -0.62 % -0.19 %Maximum 435.60 373.50 486.10 408.50 470.10 373.8016.63 % 0.00 % 30.15 % 9.37 % 26.00 % 0.08 %Dieren e 62.20 0.00 243.60 54.80 99.30 1.00Average 373.50 373.50 373.50 373.50 373.10 373.50Shrubs Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 431.60 433.90 292.90 421.80 425.50 432.30-0.53 % 0.00 % -32.50 % -2.79 % -2.52 % -0.37 %Maximum 436.50 433.90 619.50 457.50 558.70 434.700.60 % 0.00 % 42.77 % 5.44 % 28.00 % 0.18 %Dieren e 4.90 0.00 326.60 35.70 133.20 2.40Average 433.90 433.90 433.90 433.90 436.50 433.90Dry PeriodMinimum 285.60 287.10 203.90 276.90 276.50 286.30-0.52 % 0.00 % -28.98 % -3.55 % -5.05 % -0.31 %Maximum 289.50 287.10 448.20 307.30 416.30 287.600.84 % 0.00 % 56.11 % 7.04 % 42.96 % 0.14 %Dieren e 3.90 0.00 244.30 30.40 139.80 1.30Average 287.10 287.10 287.10 287.10 291.20 287.20C3 Grass Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 342.60 344.90 226.00 332.90 307.70 339.40-0.67 % 0.00 % -34.47 % -3.48 % -12.31 % -1.59 %Maximum 346.50 344.90 525.00 369.20 469.80 347.300.46 % 0.00 % 52.22 % 7.05 % 33.88 % 0.70 %Dieren e 3.90 0.00 299.00 36.30 162.10 7.90Average 344.90 344.90 344.90 344.90 350.90 344.90Dry PeriodMinimum 222.00 223.70 156.60 218.20 203.00 214.70-0.76 % 0.00 % -30.00 % -2.46 % -10.22 % -4.02 %Maximum 225.40 223.70 358.90 235.50 350.00 228.300.76 % 0.00 % 60.44 % 5.27 % 54.80 % 2.06 %Dieren e 3.40 0.00 202.30 17.30 147.00 13.60Average 223.70 223.70 223.70 223.70 226.10 223.70C4 Grass Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 344.50 346.70 230.30 334.90 308.90 341.70-0.63 % 0.00 % -33.57 % -3.40 % -12.54 % -1.44 %Maximum 348.20 346.70 525.70 370.60 469.80 349.200.43 % 0.00 % 51.63 % 6.89 % 33.01 % 0.72 %Dieren e 3.70 0.00 295.40 35.70 160.90 7.50Average 346.70 346.70 346.70 346.70 353.20 346.70Dry PeriodMinimum 222.80 224.40 162.30 219.10 207.10 215.60-0.71 % 0.00 % -27.67 % -2.36 % -8.77 % -3.92 %Maximum 226.10 224.40 358.50 236.10 350.00 228.900.76 % 0.00 % 59.76 % 5.21 % 54.19 % 2.01 %Dieren e 3.30 0.00 196.20 17.00 142.90 13.30Average 224.40 224.40 224.40 224.40 227.00 224.40

74

Page 87: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT ParameterTable 4.7: Absolute values (mm/month) and relative deviation from the mean value (%)for the transpiration from vegetation with respe t to the modi ation of mor-phologi al and soil related input parameters des ribed in table 4.1.Trees Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 2005.00 2195.60 1883.50 2134.30 0.00 2191.10-8.69 % -0.00 % -14.21 % -2.79 % -100.00 % -0.20 %Maximum 2348.50 2195.70 2297.40 2226.50 2331.20 2204.306.96 % 0.00 % 4.64 % 1.41 % 5.14 % 0.40 %Dieren e 343.50 0.10 413.90 92.20 2331.20 13.20Average 2195.70 2195.70 2195.60 2195.60 2217.20 2195.50Dry PeriodMinimum 1213.30 1562.20 1207.00 1305.30 0.00 1551.70-22.33 % 0.00 % -22.75 % -16.47 % -100.00 % -0.72 %Maximum 1657.00 1562.30 1742.60 2076.50 2755.00 1587.006.08 % 0.01 % 11.53 % 32.89 % 40.37 % 1.54 %Dieren e 443.70 0.10 535.60 771.20 2755.00 35.30Average 1562.10 1562.20 1562.40 1562.60 1962.70 1562.90Shrubs Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 2576.20 2642.20 2048.10 2635.10 0.00 2629.60-2.50 % 0.00 % -22.49 % -0.26 % -100.00 % -0.47 %Maximum 2690.60 2642.20 2950.10 2644.80 2741.10 2667.501.83 % 0.00 % 11.65 % 0.10 % 3.48 % 0.96 %Dieren e 114.40 0.00 902.00 9.70 2741.10 37.90Average 2642.30 2642.20 2642.20 2642.10 2648.90 2642.10Dry PeriodMinimum 1063.40 1076.40 810.70 1059.30 0.00 1068.10-1.21 % 0.00 % -24.68 % -1.59 % -100.00 % -0.77 %Maximum 1086.20 1076.40 1256.20 1109.30 1399.00 1093.100.91 % 0.00 % 16.70 % 3.06 % 19.36 % 1.55 %Dieren e 22.80 0.00 445.50 50.00 1399.00 25.00Average 1076.40 1076.40 1076.40 1076.40 1172.10 1076.40C3 Grass Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 1342.10 1382.20 804.40 1357.20 0.00 1373.90-2.90 % 0.00 % -41.80 % -1.81 % -100.00 % -0.60 %Maximum 1411.30 1382.20 2030.10 1397.10 1531.60 1398.902.11 % 0.00 % 46.87 % 1.08 % 9.24 % 1.21 %Dieren e 69.20 0.00 1225.70 39.90 1531.60 25.00Average 1382.20 1382.20 1382.20 1382.20 1402.00 1382.20Dry PeriodMinimum 1370.00 1376.20 904.10 1341.10 0.00 1334.20-0.46 % 0.00 % -34.30 % -2.55 % -100.00 % -3.04 %Maximum 1389.10 1376.20 1856.10 1444.50 1690.30 1461.000.93 % 0.00 % 34.87 % 4.96 % 7.55 % 6.17 %Dieren e 19.10 0.00 952.00 103.40 1690.30 126.80Average 1376.30 1376.20 1376.20 1376.20 1571.60 1376.10C4 Grass Height Top Height Bot LAI SAI Sand Clay Soil ColorWet PeriodMinimum 1390.40 1433.50 959.70 1379.80 0.00 1420.90-3.01 % 0.00 % -33.05 % -3.75 % -100.00 % -0.87 %Maximum 1465.10 1433.50 1916.30 1462.80 1590.90 1459.202.20 % 0.00 % 33.68 % 2.04 % 9.25 % 1.80 %Dieren e 74.70 0.00 956.60 83.00 1590.90 38.30Average 1433.60 1433.50 1433.50 1433.50 1456.20 1433.40Dry PeriodMinimum 1486.70 1490.00 1085.70 1454.40 0.00 1449.90-0.22 % 0.00 % -27.13 % -2.38 % -100.00 % -2.68 %Maximum 1501.50 1490.00 2097.70 1551.80 1846.10 1571.000.77 % 0.00 % 40.79 % 4.15 % 9.63 % 5.44 %Dieren e 14.80 0.00 1012.00 97.40 1846.10 121.10Average 1490.00 1490.00 1490.00 1489.90 1684.00 1489.90

75

Page 88: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT Parametertions, the de rease in evapotranspiration also dominates the air humidity leading toa negative orrelation with the lay fra tion while for wet onditions, no or positive orrelations an be found. The sensible heat ux trend shows the opposite behaviouras the air humidity with positive (negative) orrelations for trees and dry shrubs andgrass land areas (wet shrubs and grass land areas) and the air temperature generallyfollows the same trends as the sensible heat ux.The soil olour is a proxy for the soil albedo with larger values represent darkersoils and therefore a lower albedo and in reasing absorption oe ients for ele -tromagneti radiation. It shows no inuen e on trees and shrubs ex ept for thetranspiration whi h has a negative orrelation (i. e. positive orrelation with soilalbedo). For grasslands, the soil surfa e has a stronger inuen e on the resultingparameters and generally shows a positive orrelation between the soil olour andthe respe tive energy and ux parameters.Sin e soil water also has a major inuen e on the heat ex hange, the deviationsin the sensible heat ux that result from rather extreme soil modi ations (see table4.1) are larger than for hanges in any of the morphologi al parameters dis ussed sofar. For trees the deviations ex eed 30% for pure sand or lay soils and for grasslands,a deviation larger 50% an be identied. Yet one should to keep in mind, that su hextreme soil onditions an rather be found under vegetation in real ase s enarios.The same is true for the evaporation results whi h also ex eed 50% for the ase ofan ideal silt soil (0% sand and lay fra tion) but show only negligible inuen e ofthe soil substrate for all other input modi ations. The maximum inuen e of thesoil omposition on the transpiration is smaller than for the evaporation but stillshows an in rease of 40% under dry onditions and soils with a 46% sand and 20% lay fra tion. Air temperature and humidity are again barely ee ted by the soil omposition and the soil olour also has only a minor inuen e (generally way below5%) on all dis ussed output parameters (see tables 4.3 to 4.7).4.4 Inuen e of the parametrization of the plantfun tional typesBeside vegetation stru ture and soil parameters, the inuen e of the plant phys-iologi al behaviour on the omputed parameters is investigated. To simulate thevegetation ommunities already used in the previous hapter (i. e. evergreen trop-i al trees, shrubs, C3 and C4 grass), ea h of these plant fun tional types (PFT)is des ribed by 48 parameters. Similar to the study setup in se tion 4.3, ea h ofthe plant spe i parameters has been modied by ±30 % from the standard valuesused within the CLM. The resulting hanges in the air temperature and humidity,the sensible heat ux and the evaporation and transpiration from vegetation ex eed±1 % only for 19 of the 48 parameters mainly related to plant morphology, plant

76

Page 89: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT ParameterTable 4.8: PFT parameters leading to a hange of more than 1% in at least one of theoutput values dis ussed in this study.PFT parameter Symbolroughness length/ anopy top height Rz0mslope of ondu tan e-to-photosynthesis relationship mquantum e ien y at 25 qeleaf ree tan e (VIS) αleafvisleaf ree tan e (NIR) αleafnirstem ree tan e (NIR) αstemnirleaf transmittan e (VIS) τ leafvisleaf transmittan e (NIR) τ leafnirstem transmittan e (NIR) τ stemnirleaf/stem orientation index χlCLM rooting distribution parameter a raCLM rooting distribution parameter b rbspe i leaf area at the top of the anopy SLAsundSLA/dLAI dSLA/dLAIleaf C/N Cleaf/Nleaffra tion of leaf N in Rubis o enzyme NRubiscosoil water potential at full stomatal opening βsosoil water potential at full stomatal losure βscnitrogen limitation fa tor for non-CN mode Nlimitopti al properties, photosynthesis and plant physiology. Table 4.8 gives an overviewof these 19 parameters and their formula symbols used within the following tables.As an be seen from table 4.9, the 2 m air temperature is not ae ted by hangesof any of the PFT parameters mentioned in table 4.8 and the orresponding airhumidity is only modied over grassland areas during dry onditions by hanges ofthe ondu tan e-to-photosynthesis relationship (m). The sensible heat ux and thetranspiration is ae ted by many of the PFT parameters while inuen es on theevaporation from vegetation are again restri ted to grassland (ex ept for hanges inthe ondu tan e-to-photosynthesis relationship of shrubs under dry onditions). Inmost of the ases where an output value is ae ted by hanges in a PFT parameter,this is for both wet and dry onditions. If the inuen e is restri ted to only one ondition, this is generally during the dry period for evaporation and transpirationbut during the wet period for the sensible heat ux. In addition, deviations ex eeding10% (indi ated by ∗ in table 4.9) an only be found for the sensible heat ux andthe transpiration.Tables 4.10 through 4.13 give an overview of the resulting relative deviationsfrom the average value of ea h output parameter for a negative (DNeg) or positive77

Page 90: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4SensitivityofPFTParameter

Table 4.9: Dependen y of the omputed values of the 2m air humidity (Q2M), the sensible heat ux (FSH), the evaporation(QV EGE) as well as the transpiration (QV EGT ) from vegetation from the parametrizations of the tree (T ), shrub(S) and grassland (C3 and C4) plant fun tional types for wet (W ) and dry (D) onditions. Indi es marked with ∗indi ate deviations ex eeding 10%. The meaning of abbreviations of the PFT parameters is given in table 4.8.Q2M FSH QV EGE QV EGT

Rz0m TW TD SW SD C3W C3D C4W C4D TW T ∗

D SW C3W C4W

m C3D C4D T ∗

W T ∗

D S∗

W S∗

D C3∗W C4∗W C4D SD C3W C3D C4W C4D T ∗

W T ∗

D S∗

W S∗

D C3∗W C3∗D C4∗W C4∗Dqe TW T ∗

D SW C3W C3D C4W C4D C4D TW T ∗

D SW SD C3W C3D C4∗W C4D

αleafvis TW C3W C3D C4D TD C3W C4W

αleafnir TW T ∗

D SW SD C3∗W C3∗D C4∗W C4∗D TW T ∗

D SW C3∗W C3D C4∗W C4D

αstemnir TW TD C3W C3D C4W C4D TD C3W C4W

τ leafvis C3D C4D TD

τ leafnir TW TD SW SD C3W C3∗D C4W C4∗D TW TD C3W C3D C4W

τ stemnir C3W C3D C4W C4D C3W C4W

χl C3D C3D C4D TD C3D C4W C4D

ra TD C3D C4D TD SD C3D

rb TW TD SW SD C3D C4D TW TD SW S∗

D C3D C4D

SLAsun TW T ∗

D SW C3W C3D C4W C4D C3D TW T ∗

D SW SD C3∗W C4W C4D

dSLA/dLAI TD TW TD

Cleaf/Nleaf TW T ∗

D SW C3W C3D C4W C4D C3D TW T ∗

D SW SD C3∗W C4W C4D

NRubisco TW T ∗

D SW C3W C4W C4D C3W C3D TW T ∗

D SW SD C3∗W C3D C4W C4D

βso TD TD C3D C4D

βsc TD C3D C4D TD SD C3D C4D

Nlimit TW T ∗

D SW C3W C4W C4D C3W C3D TW T ∗

D SW SD C3∗W C3D C4W C4D

78

Page 91: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT Parameter(DPos) modi ation of the respe tive PFT parameter by 30% and for ea h plantfun tional type. Sin e the hanges of the parametrization has no inuen e on the2m air temperature, it is not onsidered in these tables. The same applies forthe 2m air humidity even though hanges in the ondu tan e-to-photosynthesisrelationship (m) over grassland areas lead to a maximum deviation of 1.03% duringdry onditions.Out of the remaining output parameters, the sensible heat ux is inuen ed frommost of the PFT parameters followed by the transpiration and nally the evapora-tion. The latter shows (almost) no dependen y from the PFT parameters for treesand shrubs and the sensitivity of grassland is mainly restri ted to nutrition and pho-tosynthesis related parameters also ontrolling the transpiration and therefore thewater vapour pressure de it in the vi inity of the plants. With deviations of theevaporation generally not ex eeding 2% ex ept for modi ations of the ondu tan e-to-photosynthesis relationship (m) for C4 grass, the sensitivity is insigni ant (seetables 4.12 and 4.13).In ontrast to the evaporation, deviations of the transpiration values are moresigni ant and onsiderably ex eed 10% or even 20% espe ially for trees (see tables4.10 and 4.11). At this, the largest deviations an be found during dry periodsand depend on modi ations of the slope of ondu tan e-to-photosynthesis rela-tionship (m), the quantum e ien y at 25(qe) , the leaf C/N ratio (Cleaf/Nleaf),the fra tion of leaf N in the Rubis o enzyme (NRubisco), and the nitrogen limitationfa tor (Nlimit). These PFT parameters have a major inuen e on the simulatedmetabolism whi h is linked to water uptake and stomata resistan e. For wet on-ditions or grassland areas, the deviations are generally smaller but the ondu tan erelationship and the quantum e ien y still lead to maximum deviations between15% and 25% (see tables 4.12 and 4.13).Be ause hanges in the transpiration have a negative feedba k on the sensibleheat ux, the latter de reases (in reases) if the transpiration in reases (de reases) aused by hanges in the parametrization of the metabolism of the vegetation types.Although the resulting deviations of the sensible heat ux are generally less than10% to 15%, the feedba k an learly be identied for all vegetation types (seetables 4.10 to 4.13). In addition, hanges in the absorption properties of the plantsexpressed by the ree tion and transmission of leafs and stems (α...... and τ ...

... ) leadto hanges in the sensible heat ux whi h are most signi ant for grassland areaswhere they ould ex eed 30% although the majority of deviations is below 15% to10% (see tables 4.12 and 4.13). For trees under dry onditions, they ould rea h upto 15% to 20% (see tables 4.10).79

Page 92: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT ParameterTable 4.10: Mean values and relative deviations from the mean values (%) for the sensibleheat ux (FSH, W/m2), the evaporation and transpiration from vegetation(QV EGE and QV EGT , mm/month) with respe t to the negative (DNeg) andpositive (DPos) modi ations of the PFT parameters for trees. If no valuesare given in the table, the respe tive deviations are less than 1%.

FSH QV EGE QV EGTTrees Mean DNeg DPos Mean DNeg DPos Mean DNeg DPosWet PeriodRz0m 56.84 96.66 102.13 2195.71 102.84 97.83m 56.84 115.81 86.49 2195.71 81.25 115.86qe 56.84 107.01 94.21 2195.71 91.61 106.80αleaf

vis 56.84 101.28 98.72αleaf

nir 56.84 108.03 89.03 2195.71 103.03 95.83αstem

nir 56.84 101.45 98.47τ leafvis

τ leafnir 56.84 104.49 94.59 2195.71 101.73 97.90

τstemnir

χl

ra

rb 56.84 102.27 98.15 2195.71 97.38 102.13SLAsun 56.84 93.03 104.46 2195.71 108.16 94.70dSLA/dLAI 2195.71 101.00 99.06Cleaf /Nleaf 56.84 92.01 104.87 2195.71 109.36 94.20NRubisco 56.84 106.27 93.97 2195.71 92.53 107.07βso

βsc

Nlimit 56.84 106.27 93.97 2195.71 92.53 107.07Dry PeriodRz0m 71.46 105.04 95.48 1562.09 88.38 109.05m 71.46 72.23 115.51 1562.09 152.48 69.92qe 71.46 72.27 113.35 1562.09 154.92 73.77αleaf

vis 1562.09 101.85 98.44αleaf

nir 71.46 114.75 79.35 1562.09 88.80 116.62αstem

nir 71.46 102.73 97.11 1562.09 97.86 102.31τ leafvis 1562.09 101.26 98.83

τ leafnir 71.46 108.12 90.20 1562.09 93.94 107.43

τstemnir

χl 1562.09 98.20 101.82ra 71.46 102.29 98.52 1562.09 95.14 103.11rb 71.46 95.09 98.39 1562.09 109.70 103.30SLAsun 71.46 114.58 80.37 1562.09 71.54 138.84dSLA/dLAI 71.46 103.10 96.91 1562.09 93.89 106.10Cleaf /Nleaf 71.46 115.10 78.55 1562.09 70.52 142.45NRubisco 71.46 73.56 113.83 1562.09 152.27 72.98βso 71.46 98.43 101.38 1562.09 103.09 97.28βsc 71.46 102.77 97.89 1562.09 93.62 104.74Nlimit 71.46 73.56 113.83 1562.09 152.27 72.98

80

Page 93: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT ParameterTable 4.11: Same as table 4.10 but for shrubs.

FSH QV EGE QV EGTShrubs Mean DNeg DPos Mean DNeg DPos Mean DNeg DPosWet PeriodRz0m 41.42 95.81 103.21 2642.27 101.02 99.13m 41.42 117.72 90.32 2642.27 82.72 109.49qe 41.42 106.09 95.35 2642.27 94.08 104.51αleaf

vis

αleafnir 41.42 103.88 95.49 2642.27 102.78 96.60

αstemnir

τ leafvis

τ leafnir 41.42 101.09 98.86

τstemnir

χl

ra

rb 41.42 102.01 99.01 2642.27 98.12 100.99SLAsun 41.42 94.31 104.73 2642.27 105.57 95.37dSLA/dLAICleaf /Nleaf 41.42 93.57 105.24 2642.27 106.30 94.86NRubisco 41.42 107.13 95.16 2642.27 93.01 104.74βso

βsc

Nlimit 41.42 107.13 95.16 2642.27 93.01 104.74Dry PeriodRz0m 72.55 97.13 102.03m 72.55 88.91 100.25 287.15 98.83 100.37 1076.42 137.06 100.52qe 1076.42 101.38 99.18αleaf

vis

αleafnir 72.55 104.40 94.83

αstemnir

τ leafvis

τ leafnir 72.55 101.22 98.71

τstemnir

χl

ra 1076.42 96.97 102.11rb 72.55 103.54 99.80 1076.42 86.99 100.97SLAsun 1076.42 101.46 97.50dSLA/dLAICleaf /Nleaf 1076.42 101.56 97.00NRubisco 1076.42 95.92 101.50βso

βsc 1076.42 96.65 102.04Nlimit 1076.42 95.92 101.50

81

Page 94: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT ParameterTable 4.12: Same as table 4.10 but for C3 grass.

FSH QV EGE QV EGTC3 Grass Mean DNeg DPos Mean DNeg DPos Mean DNeg DPosWet PeriodRz0m 34.14 96.14 102.89 1382.22 101.18 99.00m 34.14 111.81 92.24 344.92 98.18 100.60 1382.22 75.61 115.16qe 34.14 102.94 99.15 1382.22 94.41 101.62αleaf

vis 34.14 101.21 98.77 1382.22 101.03 98.90αleaf

nir 34.14 115.38 78.42 1382.22 115.00 76.16αstem

nir 34.14 102.18 97.73 1382.22 102.25 97.60τ leafvis

τ leafnir 34.14 107.09 91.81 1382.22 107.21 91.18

τstemnir 34.14 101.42 98.54 1382.22 101.49 98.45

χl

ra

rb

SLAsun 34.14 93.60 106.02 1382.22 112.68 87.83dSLA/dLAICleaf /Nleaf 34.14 93.60 106.02 1382.22 112.68 87.83NRubisco 34.14 108.32 95.09 344.92 98.86 100.48 1382.22 83.09 109.73βso

βsc

Nlimit 34.14 108.32 95.09 344.92 98.86 100.48 1382.22 83.09 109.73Dry PeriodRz0m 37.29 96.99 102.04m 223.72 93.17 101.61 1376.25 78.78 98.08qe 37.29 97.98 100.62 1376.25 101.70 99.27αleaf

vis 37.29 102.02 97.89αleaf

nir 37.29 127.43 62.69 1376.25 96.17 96.54αstem

nir 37.29 103.90 95.94τ leafvis 37.29 101.21 98.76

τ leafnir 37.29 112.55 85.64 1376.25 98.69 100.34

τstemnir 37.29 102.51 97.42

χl 37.29 98.91 100.96 223.72 98.83 101.31 1376.25 101.89 98.23ra 37.29 98.66 100.66 1376.25 101.21 99.41rb 37.29 95.94 102.72 1376.25 105.43 96.24SLAsun 37.29 101.43 99.63 223.72 101.41 98.14dSLA/dLAICleaf /Nleaf 37.29 101.43 99.63 223.72 101.41 98.14NRubisco 223.72 96.89 101.07 1376.25 90.39 100.82βso 1376.25 98.16 101.43βsc 37.29 101.11 99.21 1376.25 96.94 102.13Nlimit 223.72 96.89 101.07 1376.25 90.39 100.82

82

Page 95: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT ParameterTable 4.13: Same as table 4.10 but for C4 grass.

FSH QV EGE QV EGTC4 Grass Mean DNeg DPos Mean DNeg DPos Mean DNeg DPosWet PeriodRz0m 33.61 96.12 102.94 1433.55 101.23 98.95m 33.61 112.00 93.18 346.72 97.82 100.54 1433.55 75.58 112.74qe 33.61 107.47 95.66 1433.55 86.16 107.78αleaf

vis 1433.55 101.53 98.36αleaf

nir 33.61 114.87 78.94 1433.55 115.73 75.48αstem

nir 33.61 102.11 97.81 1433.55 102.35 97.50τ leafvis

τ leafnir 33.61 106.83 92.08 1433.55 107.56 90.84

τstemnir 33.61 101.37 98.60 1433.55 101.55 98.38

χl 1433.55 101.54 98.52ra

rb

SLAsun 33.61 98.27 102.24 1433.55 103.52 95.50dSLA/dLAICleaf /Nleaf 33.61 98.27 102.24 1433.55 103.52 95.50NRubisco 33.61 103.38 98.63 1433.55 93.25 102.78βso

βsc

Nlimit 33.61 103.38 98.63 1433.55 93.25 102.78Dry PeriodRz0m 35.60 96.58 102.38m 35.60 102.48 102.26 224.38 92.80 101.93 1490.01 73.03 99.08qe 35.60 98.53 102.53 224.38 98.81 100.62 1490.01 98.02 97.62αleaf

vis 35.60 102.26 97.67αleaf

nir 35.60 128.88 63.01 1490.01 96.06 95.25αstem

nir 35.60 103.95 95.93τ leafvis 35.60 101.36 98.62

τ leafnir 35.60 112.87 85.62

τstemnir 35.60 102.55 97.40

χl 224.38 98.93 101.25 1490.01 101.44 98.65ra 35.60 98.94 100.43rb 35.60 94.88 103.68 1490.01 106.15 95.40SLAsun 35.60 96.78 101.63 1490.01 105.74 95.84dSLA/dLAICleaf /Nleaf 35.60 96.78 101.63 1490.01 105.74 95.84NRubisco 35.60 102.14 97.72 1490.01 94.02 104.18βso 1490.01 98.77 101.00βsc 35.60 101.54 98.97 1490.01 96.57 102.25Nlimit 35.60 102.14 97.72 1490.01 94.02 104.18

83

Page 96: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

4 Sensitivity of PFT Parameter4.5 Summary and on lusionIn this study, the inuen e of hanges in the vegetation stru ture, soil and plantfun tional type parameters on ertain output variables from the CLM model havebeen examined. Therefore, mean vegetation stru ture and soil parameters havebeen modied mainly by a fa tor of 2 (see table 4.1) and the parameters des ribingevergreen tropi al tree, shrub, C3 and C4 grass plant fun tional types have beenmodied by ±30 % from the standard values used within the CLM (see se tion4.4). Sin e the deviation of the output parameters also depends on the generalatmospheri onditions, the simulations en ompassed one wet and one dry period.In general, the inuen e of these parameters on the simulated monthly mean valuesof the 2m air temperature and humidity are negligible for most appli ations. Thedeviations resulting from modi ations of the input parameters for the vegetationstru ture and soil parameters are well below 1% ex ept for the stem area indexwhi h leads to a deviation of −2.20 % for shrubs under dry onditions. However onehas to keep in mind that for the 2m air temperature, su h deviations orrespondto absolute deviations of up to 0.5K. This ould lead to problems if the absoluteoutput values are of importan e and not the dieren es between several s enarioruns. Variations in the plant fun tional type parametrizations have no onsequen eon the omputed air temperatures and humidities.In ontrast to the air humidity, hydrologi al parameters like the evaporation andtranspiration from vegetation are stronger ae ted by hanges in the stru tural andPFT spe i parameters. In this ontext one has to mention the inuen e of hangesin the leaf area index on the evaporation whi h ould lead to deviations of around30% with peaks of around 60% for shrubs, C3 and C4 grass under dry onditions.At the same time, the evaporation is rather independent from hanges of the PFTparametrization whi h lead to deviations in the respe tive output values of generallyless than 2%.As for the evaporation the transpiration from vegetation shows a strong depen-den y on the leaf area index with similar deviations of the output values althoughthe maximum deviations are a little smaller. In addition, hanges of the stem areaindex lead to a varian e of the transpiration by −16 % to 33% for trees under dry onditions while for all other vegetation types and onditions the deviations are(well) below 5%. Another dieren e lays in the stronger inuen e espe ially ofthe plant fun tional type parametrizations dire tly relevant for photosynthesis andplant metabolism whi h ould indu e deviations of more than 50% for trees underdry onditions. Yet, the inuen e of the majority of PFT parameters that indu e a hange in the transpiration at all is restri ted to mu h less than 10%.Sin e water vapour uxes have feedba ks on the sensible heat ux, the latter is alsoae ted by hanges of the photosynthesis and metabolism ontrolling parameters.The resulting deviations however are generally smaller and do not ex eed −30 %to 15%. A stronger inuen e emanates from leaf and stem opti al properties that84

Page 97: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen es ould lead to hanges in the sensible heat ux between −40 % to 30%. Comparedto these gures, the inuen e of the leaf area index with maximum deviations ofabout 14% is rather small.All other morphologi al and plant fun tional type parameters that have not beenexpli itly mentioned in the paragraphs above have only minor inuen es on theresulting values of the evaporation, transpiration and sensible heat ux. Magni-tudes of deviations due to hanges in the soil omposition are omparable to oreven ex eed the maximum deviations presented above. However, the applied mod-i ations to the omposition parameters are mu h larger than the modi ations ofall other input parameters and rather extreme (en ompassing 100% sand, silt, and lay soils). Therefore the a tual error of area wide soil datasets e. g. generated bygeostatisti al te hniques and as a onsequen e the resulting deviations of the outputparameters an be assumed to be signi antly smaller than the modi ations of thesoil parameters in this sensitivity study.Considering these sensitivities one an on lude that the general la k of highlya urate morphologi al and plant physiologi al datasets in the framework of so ial(e onomi ) studies has no signi ant inuen e on the output values of interest (i. e.mainly the air temperature and humidity).A knowledgementsThis work was funded by the German Resear h Foundation (DFG) in the s ope of theResear h Unit FOR816 `Biodiversity and Sustainable Management of a MegadiverseMountain E osystem in South E uador', subproje t Z1.1 (NA 783/1-1).Referen esBarthlott, W., J. Mutke, M. D. Rafiqpoor, G. Kier & H. Kreft: (2005):Global entres of vas ular plant diversity, Nova A ta Leopoldina, NF 92, 6183.Bonan, G., K. Oleson,M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. Di k-inson & Z.-L. Yang: (2002): The land surfa e limatology of the ommunityland model oupled to the NCAR ommunity limate model, Journal of Climate,15, 31233149.Brummitt, N.& E. N. Lughadha: (2003): Biodiversity: Where's hot and where'snot, Conservation Biology, 17, 14421448.Foley, J. A., S. Levis, M. H. Costa, W. Cramer & D. Pollard: (2000):In orporating dynami vegetation over within global limate models, E ologi alAppli ations, 10, 16201632.85

Page 98: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esHartig, K. & E. Be k: (2003): The bra ken fern (Pteridium ara hnoideum(Kaulf.) Maxon) dilemma in the andes of southern e uador, E otropi a, 9, 313.Jørgensen, P. M. & C. Ulloa Ulloa: (1994): Seed plants of the high andes ofe uador a he klist, Te h. rep., Aarhus University Reports 34.Mosandl, R., S. Günter, B. Stimm & M. Weber: (2008): E uador suers thehighest deforestation rate in south ameri a, in Be k, E., J. Bendix, I. Kot-tke, F. Makes hin & R. Mosandl (eds.) Gradients in a Tropi al MountainE osystem of E uador, E ologi al Studies, vol. 198, hap. 4, Springer, Berlin.Oleson, K. W., Y. Dai, G. Bonan, M. Bosilovi h, R. Di kinson,P. Dirmeyer, F. Hoffman, P. Houser, S. Levis, G. Y. Niu, P. Thornton,M. Vertenstein, Z. L. Yang & X. Zeng: (2004): Te hni al des ription of the ommunity land model ( lm), Te h. Rep. NCAR/TN-461+STR, NCAR Te hni alNote.Oleson, K. W., G.-Y. Niu, Z.-L. Yang, D. M. Lawren e, P. E. Thornton,P. J. Lawren e, R. Stö kli, R. E. Di kinson, G. B. Bonan, S. Levis,A. Dai & T. Qian: (2008): Improvements to the ommunity land model andtheir impa t on the hydrologi al y le, Journal of Geophysi al Resear h, 113,G01021.Qian, T., A. Dai, K. E. Trenberth & K. W. Oleson: (2006): Simulationof global land surfa e onditions from 1948 to 2004. part i: For ing data andevaluations, Journal of Hydrometeorology, 7, 953975.Zeng, X.: (2001): Global vegetation root distribution for land modeling, Journalof Hydrometeorology, 2, 525530.

86

Page 99: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti alPropertiesThis hapter was printed in E ologi al Modelling, Vol. 222, Issue 3, 10 February2011, pp. 493502 . The manus ript was submitted 3 June 2010, in nal form 13September 2010.

87

Page 100: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al PropertiesOpti al Properties of Sele ted Plantsfrom a Tropi al Mountain E osystem Traits for Plant Fun tional Types toParametrize a Land Surfa e ModelDietri h Göttli her*, Janina Albert, Thomas Nauss and Jörg BendixFa ulty of Geography, Philipps-Universität Marburg, Deuts hhausstr. 10, 35037Marburg, GermanyFa ulty of Geography, University of Bayreuth, 95440 Bayreuth, GermanyThe opti al properties (ree tan e and transmittan e) of sele ted leaves from atropi al mountain rainforest in southern E uador are determined to parametrizeopti al traits of plant fun tional types (PFT) of a state of the art land model(Community Land Model, CLM). 46 spatially dominating spe ies are sele tedfrom 4 dierent forest types, the subpáramo and a su ession stage of pastureareas representing e ologi ally predened fun tional types within the studyarea. Measurements are ondu ted under a standardized experimental setupwith a eld spe trometer overing the radiation between 3051305 nm. Theresults of the opti al properties of all spe ies are he ked for similarity by lus-ter analysis and are ompared to the omposition of spe ies of the predenedPFTs. Furthermore the results are ompared to other studies, the default val-ues for the globally dened PFT of tropi al evergreen trees in the CLM andanother forest growth model operated in the same study area. The resultsshow that the lusters aggregated by the ree tan e, transmittan e or om-bined properties do not represent the predened PFTs. The values of the otherstudies suggests a reassessment of the experimental setup for the transmittan emeasurements. Nevertheless, new ree tan e values for the regionalized PFTs an be determined. The opti al values dier from the CLM-PFT of tropi alevergreen trees, and new values for the ree tan e are re ommended.Keywords: CLM, SVAT, ree tan e, transmittan e, E uador5.1 Introdu tionBiodiversity is threatened by human impa ts in various ways. Global limate hange(Sala et al., 2000) and pressure on existing natural e osystems by a growing human ommunity lead to a loss or shift of habitats (Colwell et al., 2008). A major task88

Page 101: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al Propertiesin order to se ure biodiversity for future generations will be to prote t areas, reinstalldestroyed e osystems and develop sustainable management systems.The high mountains of southern E uador represent not only a major hotspot ofplant biodiversity (Barthlott et al., 2007), but also an area in whi h the nat-ural e osystems are under extreme pressure, resulting in a major loss of naturalforests (Mosandl et al., 2008). The German resear h unit `Biodiversity and Sus-tainable Management of a Megadiverse Mountain E osystem in South E uador'(www.tropi almountainforest.org) investigates the pro esses and intera tions in thisarea from a biologi al, limatologi al and a so io-e onomi al point of view (Be ket al., 2008).To support the out ome of dierent landuse s enarios and to do ument the hangesin e o- limatologi al parameters, a soil-vegetation-atmosphere-transfer (SVAT) s hemeis implemented. The Community Land Model (CLM, Bonan et al., 2002b; Di k-inson et al., 2006; Oleson et al., 2008) is used to model energy and water uxesunder dierent landuse developments. This model is highly adapted to the studyarea and a major task is to provide suitable regionalized parameters, espe ially forthe hara terization of the vegetation. CLM des ribes the vegetation through plantfun tional types (PFT) rather than biomes (Bonan et al., 2002a).All PFTs are represented by their spatial delineation, their time and spa e variantvalue of leaf and stem area indi es (LAI, SAI), their top and bottom anopy height,and 48 invariant fun tional parameters on erning opti al, morphologi al and phys-iologi al spe i ations. A sensitivity study of these PFT-parameters (Göttli heret al., 2010) on ludes that the opti al properties of the PFT, in addition to the LAI,have a major inuen e on the modelling results and deserve a more sophisti atedassignment than other parameters.Spatial delineation in this rugged and di ult to a ess terrain is done with by lassifying satellite data (Göttli her et al., 2009). The endmembers and allo atedtraining sites used for this lassi ation are determined by botani al distin tion(Homeier et al., 2008). The results of the satellite lassi ation are proven to begood, a ording to the a ura y assessment al ulating a ontingen y matrix usingindependent ground truth sites. The overall a ura y is 87.3% and the Kappavalue is 0.86 (Göttli her et al., 2009). The vegetation units ould be determinedeven in a subpixel proportion using a modied linear spe tral unmixing te hnique(Zhu, 2005). The question remains if these botani ally derived vegetation unitsused in the satellite lassi ation are a tually fun tional groups in the sense of thePFT on ept (Lavorel et al., 2007; Smith et al., 1997). This paper examines thefollowing questions:1. Are the vegetation units from the satellite lassi ation analog to the lus-ters of similar behaviour in ree tan e and transmittan e, and an they beinterpreted as PFTs, at least in regard to spe tral properties?89

Page 102: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al Properties2. What are the mean ree tan e and transmittan e values of ea h PFT, and dothey vary signi antly that it is worthwhile to distinguish between them?3. What are the mean ree tan e and transmittan e values for all measured trop-i al trees, and how signi antly do they dier from the initial values of theglobal dataset provided by the CLM?The paper gives a short introdu tion to the study site (se tion 5.2.1), followedby a des ription of the measurement setup, the olle ted plants and the statisti alanalysis (see se tions 5.2.2, 5.2.3 and 5.2.4). The results of the eld observationsand the luster analysis are presented in se tion 5.3. In se tion 5.4 the results arehighlighted in omparison to the predened values. Se tion 5.5 summarizes thepotential use of the study.5.2 Methods and Material5.2.1 Study siteThe study site is lo ated in the Andes of South E uador. The mentioned resear hunit operates the Esta ión Cientí a San Fran is o (ECSF) between the two provin- ial apitals Loja and Zamora in ooperation with the foundation `Nature and Cul-ture International'. The at hment of the Rio San Fran is o omprises the entralinvestigation area (see g. 5.1). The valley rea hes from 1800m up to 3200m abovesea level (asl). The southern slopes are predominantly overed with indigenousmountain forest types in their typi al altitudinal belts. The northern slopes show theanthropogeni repla ement systems of pastures (dominated by Setaria spha elata),abandoned pasture areas overgrown by bra ken fern (Pteridium ara hnoideum) andreforested areas (mainly with the exoti pine Pinus patula). A detailed land over lassi ation (Göttli her et al., 2009) based on satellite data was ondu tedto determine the spatial distribution of the dominant vegetation units. A generaloverview of the e ologi al environment an be found in Be k et al. (2008).5.2.2 MeasurementsAll measurements of the leaf ree tan e and transmittan e are performed with aportable spe trometer from te 5 AG (Oberursel, Germany, www.te 5. om). The ustom made `HandySpe ® Field' onsists of two separate sensors to over a umu-lative spe tral range from 3051705 nm. The sun is used as the original light sour e,so that the devi e has two hannels, one measuring the in oming solar radiationfrom the hemisphere above (referen e hannel) and one dete ting the ree tan efrom underneath (sample hannel). To alibrate the two dierent sensors, as wellas the referen e and the sample hannels, a measurement with a lassied white90

Page 103: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al Properties

Figure 5.1: Lo ation of the study site and vegetation units from satellite lassi ation.91

Page 104: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al PropertiesTable 5.1: Te hni al spe i ations of the two sensors from the used spe trometer.Sensor 1 VIS Sensor 2 NIRspe tral range [nm 3051100 9601705pixel dispersion [nm 3.3 1.5type MMS 1 NIR enh. PGS NIR 1.7vendor Carl Zeiss Carl Zeissintegration time [ms 1.56000 1.56000radiometri resolution [bit 15 15standard (Spe tralon) is taken at xed intervals. The te hni al spe i ations of thespe trometer are shown in table 5.1. All nal measurements for the statisti al anal-ysis onsist of the mean of three onse utively exe uted exposures. The raw datafrom the referen e and sample hannel is pro essed on the y on a onne ted laptopusing the vendor software MultiSpe ®Pro and is saved in separate ASCII textles.The spe tral raw data is interpolated to steps of 1 nm. The ree tan e α as well asthe transmittan e τ are al ulated in % with the formula (te 5, 2005) as follows:α

100=

S/Rs

(C/W )/Rc

(5.1)where S is the raw ounts of the sample hannel, Rs is the raw ounts of the referen e hannel, C is the raw ounts of the sample hannel from the last white standard alibration, Rc is the orresponding raw ounts of the referen e hannel and W is thesensor spe i orre tion oe ient for the white standard provided by the vendor.Thus, the se ond half of the term (C/W )/Rc represents a alibration fa tor.The post pro essing in ludes the storage of all spe trums in a relational databasewith su ient metadata on the sampling and measuring ir umstan es (photo ofsample, timestamp of sampling and measurement, short noti es to the weather,spe ies or probe name and geographi oordinates of the sampling site).Ree tan eThe ree tan e measurements are ondu ted in a dened setup rather than in theeld to guarantee onsistent onditions. The sensor head is xed to a stand toprovide an invariant distan e to the sample of 33 m. The leaves are ut at the edgeif ne essary to prevent overlapping layers (i. e. a onstant leaf area index of 1 isguaranteed). A spe ial foil is used underneath the probe to minimize the ree tan efrom the base aused by unavoidable, minus ule gaps between the individual leavesand by the radiation transmitted by the leaves (see g. 5.2)92

Page 105: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al Properties

Figure 5.2: Experimental setup for measuring ree tan e.

Figure 5.3: Experimental setup for measuring transmittan e.Transmittan eThe transmission is also measured in a dened setup. The leaf is lipped with aspe ial devi e dire tly beneath the opening of the ree tion hannel at the sensorhead. The white standard is mounted underneath the opening, providing the lightto be transmitted through the leaf (see g. 5.3). This pro edure does not work if theleaves are very small, be ause the sample does not ompletely over the opening.5.2.3 Colle ted Plants and Vegetation UnitsAll 46 measured plants used in this study are olle ted in the immediate vi inityof the ECSF resear h station, where the measurements are performed. A sele tionof only some plant spe ies was ne essary due to the high biodiversity of the studyarea (more than 280 tree spe ies Homeier & Werner, 2007). The rst riteriais to sele t all dominant spe ies a ording to spatial rown overage in dierentvegetation units. Se ondly, all spe ies relevant for other working groups (espe iallythe forestry groups) are sele ted. All sele ted plants are kept in plasti bags and93

Page 106: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al Propertiesare watered until measuring. Under normal onditions, the measuring takes pla eimmediately, but at the latest 24 hours after the sele tion, to guarantee no hangein the opti al behaviour (Foley et al., 2006).The vegetation units (Homeier et al., 2008) distinguish between 4 forest types,the Subpáramo and a su ession stage from abandoned pastures. Forest type I(FTI) dominates the valley bottom and major ravines from 1800m up to 2200masl.Forest type II (FTII) is des ribed as forest along ridges and upper slopes from ap-proximately 1900m to 2100masl. Forest Type III (FTIII) ontinues on the ridgesand upper slopes from 2100m to 2250masl. Forest type IV (FTIV ) is monodomi-nated by Purdiaea nutans and stret hes from 2250m up to the timberline at around2700masl. The Subpáramo (SP ) is dominated by shrubs, also alled evergreeneln forest, and rises from the timberline up to approx. 3150masl. Initially, thesu essional stages (SC) are typi ally overed entirely by the bra ken fern and at alater stage repla ed by shrubs. This paper deals ex lusively with the appearan e ofshrubs, be ause the bra ken fern ould be lassied as a PFT of its own. Eukalyptusspe . and Pinus patula are hara terized as exoti sin e they were introdu ed asforestry plants. Table 5.2 gives an overview of all measured plant spe ies and thevegetation units the most losely belong to.5.2.4 Statisti sAll statisti al analyses are al ulated using the free software pa kage R (R De-velopment Core Team, 2009). Initially, the stability and reliability of the usedspe trometer is he ked. Three measured spe tra of the same plant are omparedwith the spe tra of all other plants. The spe tra of the same plant are meant to showsigni ant orrelation with ea h other and signi ant ontrast to all other plants.For all further al ulations, the mean of the three initial measurements for ea htaxa is used. Three dierent se tions are analysed: rst the ree tan e, se ondthe transmittan e and third the ombination of both. A hierar hi al agglomerative luster method is used to group the spe ies together. The dissimilarity between thevariables is al ulated by the Eu lidian distan e (Kaufman & Rousseeuw, 2005).The lustering algorithm is based on the Ward method (Ward, 1963). The lus-tering is performed with the agnes ommand of the R-pa kage luster (Mae hleret al., 2005).The resulting omposition of the lusters is ompared with the lassi ation ofspe ies into the botani ally derived vegetation units. It is examined whether theseunits mirror the opti al traits and an be interpreted as fun tional types. Thestatisti al mean for the visible (305699 nm) and the near infrared (7001305 nm)part of the spe trum is determined in order to ompare the results of the singlespe ies with the standard values of the predened PFTs of the CLM (Olesonet al., 2004, p. 23). Mean spe tra are al ulated for all spe ies belonging to thesingle lusters as well as the vegetation units. Aggregated values are al ulated for94

Page 107: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al PropertiesTable 5.2: List of spe ies, referring odes and dominate vegetation units.Spe ies Code Vegetation unitAlnus a uminata alna FTICe ropia andina e d FTICe ropia angustifolia e g FTICedrela montana edm FTIFi us itrifolia i FTIFi us uatre asana u FTIFi us spe . FTIHelio arpus ameri anus hela FTIInga spe . ing FTIIsertia laevis isel FTIPipto oma dis olor pipd FTITabebuia hrysantha tab FTITibou hina lepidota tibe FTIAlzatea verti illata alzv FTIIHyeronima moritziana hyem FTIIMi onia pun tata mi p FTIIVismia tomentosa vist FTIIAbarema killipii abak FTII and FTIIIAl hornea grandiora al g FTII and FTIIIClethra revoluta ler FTII and FTIIIGraenrieda emarginata grae FTII and FTIIIMi onia spe . 3 mi 3 FTII and FTIIIPodo arpus oleifolius podo FTII and FTIIIAniba spe . ani FTIIIClusia spe . 1 lu1 FTIIIDi tyo arium lamar kianum di l FTIIIHedyosmum spe . hed FTIIILi aria subsessils li s FTIIIMyr ia spe . my FTIIIO othea benthamiana o ob FTIIIPurdiaea nutans purn FTIII and FTIVClusia spe . 2 lu2 SPMi onia spe . 1 mi 1 SPMi onia spe . 2 mi 2 SPMyri a pubes ens myip SPS heera spe . s h SPAgeratina dendroides aged SCBa haris genistelloides ba g SCBa haris latifolia ba l SCBra hytotum spe . bra SCMono haetum lineatum monl SCRubus spe . rub SCSti herus spe . sti SCTibou hina laxa tiba SCEukalyptus spe . euk exoti Pinus patula pinp exoti

95

Page 108: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al Propertiesthe visible and near infrared se tion for the means of the lusters, the vegetationunits and all tree spe ies to use with the SVAT model.5.3 Results5.3.1 Plant Spe traThe initial three measurements of ea h of the same spe ies, whi h are averaged forfurther al ulations, always are more similar to ea h other than they are dierentfrom other spe ies. This veries the importan e of further statisti al analysis.All spe tra show the typi al shape of ree tan e and transmittan e urves basedon green vegetation. Figure 5.4 shows exemplarily the urves for spe tral ree tan eand transmittan e for three sele ted spe ies. The ree tan e urve starts with rela-tive low values between 57% in the visible se tor (blue light), followed by a smallpeak up to 1015% around the green light range (490560 nm). A signi ant steepin rease up to 4060% o urs at the hange-over from red light to the near infraredrange (red edge around 700 nm). The values for the near infrared se tion stay atthis high level but exhibit greater inter-spe ies variability than visible light.The urves for transmittan e also show a typi al shape, starting with even smallervalues (15%) in the visible se tion and abruptly rising up to 1525% at the rededge. The magnitude and shape of the urves also dier more signi antly in theinfrared se tion than in the visible se tion.5.3.2 Cluster AnalysisAll three agglomorative luster analyses using all single values in the spe tral rangefrom 3051305 nm (of the ree tan e (g. 5.5), of the transmittan e (g. 5.6) andof the ombined data (g. 5.7) show similar results. All dendrograms are groupedinto ve lusters. This number represents the amount of predened vegetationunits without onsidering forest type IV, be ause it is mono-dominated by only onespe ies. Within the transmittan e data, only one spe ies (Tabebuia hrysantha) iskept outside a luster due to the ex eptionally high transmittan e values in the nearinfrared se tion. Be ause there is no eviden e that this measurement is faulty, thevalue and the spe ies is not onsidered to be an outlier or reje ted from the ombineddata.The agglomerative oe ient AC, whi h is a dimensionless indi ator of the group-ing stru ture ranging between 0 and 1 (Kaufman & Rousseeuw, 2005), is 0.96for the ree tan e data, 0.97 for the transmittan e and 0.92 for the ombined data.High AC-values indi ate a lear stru ture where low values tends to represent onlyone large luster. These values do not show the quality of the lustering results be- ause they are dependent on the numbers of obje ts to be lustered (whi h are equal96

Page 109: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al Properties

400 600 800 1000 1200

020

4060

8010

0

Wavelength [nm]

Ref

lect

ance

[%]

100

8060

4020

0

Tra

nsm

ittan

ce [%

]Figure 5.4: Example of three single ree tan e (bla k) and transmittan e (grey) spe -tra. Solid Purdiaea nutans (FTIV , woody tree, maximum height 520m, veryslow growing), dashed Tabebuia hrysantha (FTI , woody tree), dotted Graf-fenrieda emarginata (FTII and FTIII , woody tree, maximum height 415m,slow growing).

Figure 5.5: Dendrogram of the luster analysis of the ree tan e data. The dimensionlessheight indi ates the distan e of the links between the spe ies97

Page 110: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al Properties

Figure 5.6: Dendrogram of the luster analysis of the transmittan e data. The dimension-less height indi ates the distan e of the of the links between the spe ies

Figure 5.7: Dendrogram of the luster analysis of the ombined ree tan e and trans-mittan e data. The dimensionless height indi ates the distan e of the linksbetween the spe ies98

Page 111: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al Propertiesin this ase). The olours underlying the spe ies' names in the gures 5.55.7 showtheir dominant related vegetation unit. Ea h luster has a minimum of 4 spe ies( luster 3 transmittan e), whereas the maximum is 18 ( luster 1 ree tan e). Themajority of the lusters are omprised of around 10 spe ies.5.3.3 Cluster versus Vegetation UnitA omparison of the results of the luster analysis with the omposition of the veg-etation units reveals that the lusters do not learly represent one of the vegetationunits. Table 5.3 summarizes the distribution of the single spe ies on the lusters.An examination of the ree tan e data reveals that FTI is mostly representedin luster C1 (46.2%) but this makes only 28.6% of the luster omposition. ForC1 FTII (40.0%), FTIII (50.0%) and SP (40.0%) show also a maximum of therelative frequen y. The overall maximum value of a luster frequen y is found in C2(41.7%) but only represents 38.5% of the PFT FTI . In the remaining lusters, thefrequen ies show lower values, with lo al maximums spread over 2 to 4 PFTs.The transmittan e data have a similar appearan e, with no distin t orrelationbetween lusters and PFTs. The highest frequen y values an be observed in FTSC(62.5%), representing 45.5% of C2. The same representation ratio of C2 is shownby FTI . C5 is omposed of 75.0% FTIII , but this is only 21.4% of this PFT. Themaximum representation ratios of C4 are equally spread over 4 PFTs. The maximumratio of C3 is 42.9% (FTIII) and of C1 is 41.7% (FTI).The highest PFT value in the ombined data an be found from SP (60.0%)representing half of luster 5. C2 is also des ribed as 50% of one PFT (38.5% ofFTI). C1, C3 and C4 are all dominated by one PFT (33.3% of FTI , 46.7% of FTIIIand 42.9% of FTIII respe tively). A lear mapping of the PFTs to the lusters isnot possible.5.4 Dis ussion5.4.1 Ree tan e and Transmittan e ValuesComparison of the measured ree tan e and transmittan e values of single spe iesto other examinations produ es divergent results. On the one hand, the ree tan evalues are very similar to the results of various studies (trees mostly in tropi al dryforest, Castro-Esau et al. (2006); trees from tropi al rain forest in Costa Ri a,Clark et al. (2005) and Poorter et al. (1995); tropi al trees from various sitesLee & Graham (1986)). The study of Poorter et al. (2000) ondu ted on treesin the loud forest of Venezuela allows a dire t omparison of the ombined valuefor photosyntheti ally a tive radiation (PAR, 400700 nm). Some of the trees evenbelong to the same genus. The mean per entage in the range between 400700 nm

99

Page 112: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al PropertiesTable 5.3: Number of spe ies of ea h botani ally derived PFT against the al ulated lus-ters and their relative frequen y in the lusters (rows) and the PFT ( olumns).PFT FTIV is not onsidered be ause of the domination of only 1 spe ies. Highertotal numbers of spe ies depend on the assignment of some spe ies to more thanone vegetation unit. One spe ies in the transmittan e se tion is not assignedto a luster. Maximum values of the frequen ies of ea h luster and PFT aremarked in bold.

FTI % FTII % FTIII % SP % SC % ΣRee - C1 6 46.2 4 40.0 7 50.0 2 40.0 2 25.0 21tan e % 28.6 19.0 33.3 9.5 9.5C2 5 38.5 2 20.0 2 14.3 0 0.0 3 37.5 12% 41.7 16.7 16.7 0.0 25.0C3 1 7.7 1 10.0 2 14.3 0 0.0 2 25.0 6% 16.7 16.7 33.3 0.0 33.3C4 0 0.0 1 10.0 1 7.1 1 20.0 1 12.5 4% 0.0 25.0 25.0 25.0 25.0C5 1 7.7 2 20.0 2 14.3 2 40.0 0 0.0 7% 14.3 28.6 28.6 28.6 0.0Σ 13 10 14 5 8 50Trans- C1 5 41.7 3 30.0 3 21.4 0 0.0 0 0.0 11mit- % 45.5 27.3 27.3 0.0 0.0tan e C2 5 41.7 1 10.0 0 0.0 0 0.0 5 62.5 11% 45.5 9.1 0.0 0.0 45.5C3 0 0.0 4 40.0 6 42.9 3 60.0 1 12.5 14% 0.0 28.6 42.9 21.4 7.1C4 2 16.7 2 20.0 2 14.3 1 20.0 2 25.0 9% 22.2 22.2 22.2 11.1 22.2C5 0 0.0 0 0.0 3 21.4 1 20.0 0 0.0 4% 0.0 0.0 75.0 25.0 0.0Σ 12 10 14 5 8 49Com- C1 4 30.8 2 20.0 2 14.3 1 20.0 3 37.5 12bined % 33.3 16.7 16.7 8.3 25.0C2 5 38.5 1 10.0 1 7.1 0 0.0 3 37.5 10% 50.0 10.0 10.0 0.0 30.0C3 3 23.1 4 40.0 7 50.0 0 0.0 1 12.5 15% 20.0 26.7 46.7 0.0 6.7C4 0 0.0 2 20.0 3 21.4 1 20.0 1 12.5 7% 0.0 28.6 42.9 14.3 14.3C5 1 7.7 1 10.0 1 7.1 3 60.0 0 0.0 6% 16.7 16.7 16.7 50.0 0.0Σ 13 10 14 5 8 50

100

Page 113: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al Propertiesis reported as 7.1 for shade leaves and 7.2 for sunlit leaves and is identi al with themean of 7.1% in PAR for all measured trees of this study.On the other hand, the transmittan e values in the near infrared area are mu htoo low ompared to the studies of Poorter et al. (1995) and Lee & Graham(1986). The study of Poorter et al. (2000) again allows a dire t omparison ofthe mean value for the transmittan e in the PAR. Shaded and sunlit leaves are re-ported with 3.0% and 1.9% respe tively, in ontrast to 0.5% from our study. Thelow transmittan e values in the near infrared se tion will produ e mu h too highabsorption rates and a resulting heating of the leaves. One reason for the low trans-mittan e values is most likely the experimental setup. Consequently, the presentedexperimental setup for the transmittan e measurements has to be reassessed, andthe values are onsidered only to be pra ti able for relative inter omparison withinthe samples of this study.5.4.2 Opti al Properties of the ClustersThe determination of the amount of groups in an agglomerative luster analysis isa subje tive task. In this study, the number of PFTs whi h are omposed of morethan 1 spe ies are onsidered as the number of lusters to allow omparisons betweenthem. The results of the omparison of the predened PFTs and the lusters do notmat h very well. This is may due to the fa t that the vegetation units onsist ofmultiple tree spe ies with all dierent physiologi al approa hes. This leads to the onsideration of whether the PFTs for the regional setup of the CLM in the studyarea have to be newly dened on behalf of the lustering results. On the other hand,it has to be kept in mind that the spatial delineation of the PFTs is an unavoidabletask to run the model. The spatial distribution of the PFTs is only a hieveableusing remote sensing data and will not work for the omposition of the lusters.Preexaminations (Albert, 2009) on the relationship of the ree tan e in thenear infrared and morphologi al traits (thi kness of leaves, relative thi kness ofspongy mesophyll, tri homes, thi kness of uti ule) of the plant leaves show no sig-ni ant orrelation, in ontrast with other investigations, whi h nd a relationshipbetween opti al and physiologi al/morphologi al properties (Billings & Morris,1951; Knapp & Carter, 1998; Slaton et al., 2001; Poorter et al., 2000). Bi- oloured leaves, however, tend to have higher ree tan e values. Other attemptedexplanations for the variation in opti al behaviour are stress (i.e. ompetition, in-fe tion with fungi, la k of nitrogen or water, in rease in arbon dioxide or ozone)and the a ompanying loss of hlorophyll (Carter & Knapp, 2001). But these arenot examined in this study and annot be taken into onsideration when explainingthe omposition of the lusters. Consequently, the true reason for opti al varian eand, onsequently, the omposition of the lusters are not dete ted and make a newdenition of regionalized PFTs impra ti able.101

Page 114: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al Properties

0 2 4 6 8 10

3540

4550

5560

VIS [%]

NIR

[%]

1

2

3

4

5

FT(I)FT(II)FT(III)

FT(IV)

SP

SC

Figure 5.8: Values of ree tan e in the visible (VIS) and near infrared (NIR) se tion for allsingle measurements (bla k symbols orresponding to the luster number), themean for the lusters (magenta symbols), the mean for the vegetation units(green rosses), the mean of all tree data (red triangle) and the standard valueof evergreen broadleaf tropi al trees from the CLM (blue rhombus).5.4.3 Opti al Properties of the CLMThe a tual values whi h are needed for the CLM are aggregated values of ree tan eand transmittan e over the wavelengths between 305699 nm (visible) and 7001305 nm (near infrared). Figure 5.8 and g. 5.9 illustrate the ree tan e and trans-mittan e values for the visible and near infrared se tion for all al ulated lusters,the mean of the PFTs, the mean of all measured tree data and the relevant valuesupplied with the CLM.Figure 5.8 shows that the standard ree tan e value of the CLM for evergreentropi al trees lies well within the range of the near infrared se tion but ex eeds thevalues in the visible se tion. Figure 5.9 also do uments the low values of transmit-tan e in both the near infrared and the visible se tion. Table 5.4 gives the relativeand absolute dieren es between the standard CLM-value for broadleaf evergreentrees (BET) and the measured tree data of this study. A weighted mean in relationto the abundan e of the spe ies within this vegetation type is not onsidered be ause102

Page 115: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al Properties

0 1 2 3 4 5

510

1520

25

VIS [%]

NIR

[%]

1

2

3

4

5

FT(I)

FT(II)

FT(III)FT(IV)

SP

SC

Figure 5.9: Values of transmittan e in the visible (VIS) and near infrared (NIR) se tion forall single measurements (bla k symbols orresponding to the luster number),the mean for the lusters (magenta symbols), the mean for the vegetation units(green rosses), the mean of all tree data (red triangle) and the standard valueof evergreen broadleaf tropi al trees from the CLM (blue rhombus).

103

Page 116: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al PropertiesTable 5.4: Cal ulated values (%) of ree tan e (α) and transmittan e (τ) in the visible(vis) and near infrared (nir) se tor for all trees (BETtropical) ompared to theCLM standard input value (CLMBETtrop) of broadleaf evergreen tropi al treeswith absolute (∆abs) and relative (∆rel) dieren e.PFT αvis αnir τvis τnir

CLMBETtrop10.0 45.0 5.0 25.0

BETtropical 6.6 49.4 0.4 14.4∆abs 3.4 −4.4 4.6 10.6∆rel 34.0 9.8 92.0 42.4most of the spatially dominating spe ies are onsidered.The highest dis repan y, both in relative and absolute values, are allo ated inthe transmittan e data due to the afore mentioned questionable experimental setupfor measuring. The minimum relative dieren e an be found at the ree tan e ofthe NIR se tion but still shows a value of approx. 10%. Variations of the opti alparameters within all standard CLM-PFTs (e.g. needleleaf trees, de iduous trees,grasses and rops in the range of 711% for αvis, 3558% for αnir, 57% for τvisand 1025% for τnir Oleson et al., 2004, table 3.1, p. 28) dier roughly in the sameamount as the data of the tropi al trees and shrubs presented in this paper.The original CLM data is taken from the work of Dorman & Sellers (1989) andwas ompiled from various sour es. Another reason for the higher dis repan y in theNIR se tion, independent of the experimental setup, ould be that the interval of thewavelength is not learly dened. The te hni al des ription of the CLM (Olesonet al., 2004) states only the split point of 700 nm between visible and near infraredlight. Dorman & Sellers (1989) denes the NIR se tion with 7004000 nm andSellers (1985) with 7003000 nm in ontrast to 7001305 nm used in this study.The sampling method of these data values ould be another ause for this dis rep-an y. Sellers et al. (1989) whi h is stated as one of the various sour es mentionedabove, refer to the initial dataset provided by Willmott & Klink (1986). Un-fortunately, in these onferen e pro eedings, neither a tual values for the opti alproperties nor any methods or spe ies are stated and it is assumed that all informa-tion was provided by personal ommuni ation. Furthermore, Sellers et al. (1989,p. 731) adjusted the original values (αnir from 0.40 to 0.45 and τnir from 0.55 to0.25) after an unexplained literature review and some eld observations. Finally,the authors of this arti le assume that in Sellers et al. (1989, table 2) the valuesfor transmittan e and ree tan e in the visible se tor are swit hed by a ident andare orre tly ited in Dorman & Sellers (1989, table 2) as they are used in theCLM.In general the pro edure to determine not only the opti al properties but most of104

Page 117: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al Properties

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

days

ch

an

ge

[%

]

Figure 5.10: Changes in % for the air temperature in 2m height (squares) and the sensibleheat from vegetation (triangles) using the original CLM ree tan e data forbroadleaf evergreen tropi al trees and the measured values presented in thisstudy for 24 days.the needed parameters of the PFT by averaging values from single spe ies is ques-tionable. Alternatively, parameters whi h an be measured for the whole vegetation an be used by inverse modelling to dete t the omposition of PFTs.A simplied setup to run the CLM is a omplished to investigate the inuen eof the modied ree tan e values for broadleaf evergreen tropi al trees (7% in theVIS and 49% in the NIR instead of 10% and 45% respe tively from the originaldata). Two modelruns are initialized using a spin-up time of one year under oineatmospheri for ing. Figure 5.10 shows the relative hanges for the air temperaturein 2m height (TSA) and the sensible heat from the vegetation (FSH_V) for 24 daysafter the spin-up time.The new ree tan e values show no or negligible inuen e in the TSA output. Ab-solute values dier only in the maximum range of 0.07K. Output variables whi h aremore onne ted to the inuen e of the vegetation parametrization like the FSH_Vshow a small inuen e in the range of 1.52.5% with a maximum absolute dieren eof approx. 20W/m2.105

Page 118: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al Properties5.4.4 Opti al Properties of FORMINDAnother working group within the resear h unit ompiles plant fun tional types fora dierent purpose, but is s ienti ally omparable be ause it worked at the samestudy site. Disli h et al. (2009) need PFTs to run the forest growth model FOR-MIND (Köhler, 2000). In their work, the grouping of 71 spe ies into 7 PFTs arebased on both the maximum diameter at breast height and the growth rate of thetrees. Due to the experimental setup, these PFTs are all lo ated in the lower foresttype along the ridges and upper slopes (FTII). The irradian e on a single leaf at aspe i height within the rown is al ulated using a light extin tion oe ient (k)and a leaf transmission oe ient (m). The transmission oe ient is not dividedinto visible and near infrared omponents, but orresponds to the presented trans-mittan e values in the PAR. Disli h et al. (2009, table 2) use m = 0.1 (whi h is10%) for all PFTs referring to Lar her (2001). A ombined transmittan e valuefrom the olle ted data of PAR for all trees of FTII produ es 0.4% and for all on-jointly listed trees (19 spe ies assembled of all trees from FTII and a few from FTIand FTIII) a value of 0.3%. This also orresponds to the low transmittan e valuesof this study.5.5 Con lusionsThe measurements of ree tan e and transmittan e of leaves of sele ted plants froma tropi al mountain rain forest reveal that the predened values for the globallyaligned plant fun tional type of tropi al evergreen trees of the CLM vary betweenapprox. 10 and 90%. Due to the high devian e of the transmittan e values to dataof earlier studies, only the ree ted radiation is onsidered for further use.Nevertheless, this study suggests that the standard input values of leaf ree tan ewithin the CLM should be modied. The PFT of broadleaf evergreen tropi al trees(BETtropical) might be set to a ree tan e per entage of 7% in the visible and 49%in the near-infrared se tion (see table 5.4). The transmittan e should be examinedusing a reassessed experimental setup. A veri ation of the opti al values for allother globally implemented PFTs of the CLM should be performed in further studies.The lustering of the opti al properties of the single spe ies does not mat h withthe omposition of PFTs using botani ally derived vegetation groups. Future in-vestigations on other plant traits (physiology) ould perhaps support the sele tedfun tional types. As long as remote sensing remains the only possibility to delineatethe spatial distribution of the regionalized PFTs, it is impra ti al to dene otherfun tional groups based on the luster analysis. Consequent, new values for theree tan e properties of the adapted PFTs are applied as stated in table 5.5 foruse in a regional setup of the CLM in prospe tive examinations. As long as thetransmittan e measurements are not veried, the standard values of the CLM are106

Page 119: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

5 Quanti ation of Opti al PropertiesTable 5.5: Cal ulated values (%) of ree tan e (α) in the visible (vis) and near infrared(nir) se tor for the botani ally derived PFTs.PFT αvis αnir

FTI 6.5 50.3FTII 6.7 49.6FTIII 6.6 49.0FTIV 6.2 41.7SP 5.5 50.9SC 6.2 47.2used.A re ent publi ation by Ustin & Gamon (2010) des ribes the use of remote sens-ing to distinguish plant fun tional types. It states that a modern interpretation ofPFTs (a ontinuous ow rather than dis rete lasses of vegetation) and the develop-ment of new remote sensing te hniques and instruments (hyperspe tral sensors, lightdete tion and ranging (LiDAR) methods to re eive data about the verti al stru -ture of the vegetation) are te hni ally feasible. The proposed new on ept of `opti altypes' veries in several experiments the link between observations of ba ks atter-ing of radiation and physiologi al, morphologi al and opti al plant traits, as wellas environmental onditions. The on ept needs further investigation, but `. . . oersthe potential to reate a universal solution'(Ustin & Gamon, 2010, p. 811) to dis-tinguish fun tional groups of vegetation viewed from spa e. This en ourages thepresented approa h to retain the PFTs re overed by satellite data. Possibly, the useof higher resolution satellite data, in ombination with data of the verti al stru tureof the vegetation - whi h will be ome available in the near future - may on lude innew or adapted plant fun tional types.A knowledgementsThis work was funded by the German Resear h Foundation (DFG) in the s ope of theResear h Unit FOR816 `Biodiversity and Sustainable Management of a MegadiverseMountain E osystem in South E uador', subproje t Z1.1 (NA 783/1-1). The authorsextend their thanks to Jürgen Homeier and FlorianWerner for help with the sele tionand determination of the measured plants and to two anonymous reviewers for onstru tive omments and suggestions on the manus ript.

107

Page 120: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen es5.6 AppendixRaw dataTable 5.6: Ree tan e and transmittan e values for all measured spe ies in the visible(VIS) and near infrared (NIR) se tion in %. Additional the used ode and thedominant vegetation unit is shown.Spe ies Code Vegetation unit Ree tan e Ree tan e Transmittan e Transmittan eVIS NIR VIS NIRAbarema killipii abak Type 2 and 3 5.72 48.26 0.23 14.68Ageratina dendroides aged su ession 7.01 52.40 0.72 17.34Al hornea grandiora al g Type 2 and 3 7.09 50.31 0.09 11.74Alnus a uminata alna Type 1 7.24 44.00 0.50 17.92Alzatea verti illata alzv Type 2 6.08 40.07 0.30 13.35Aniba spe . ani Type 3 6.84 43.80 0.15 11.11Ba haris genistelloides ba g su ession 6.81 45.26 0.63 16.49Ba haris latifolia ba l su ession 7.33 51.72 0.77 17.89Bra hytotum spe . bra su ession 4.48 47.56 0.58 15.34Ce ropia andina e d Type 1 5.93 52.87 0.63 16.78Ce ropia angustifolia e g Type 1 6.67 60.03 0.23 13.58Cedrela montana edm Type 1 6.27 52.84 1.02 18.60Clethra revoluta ler Type 2 and 3 7.87 52.38 0.58 15.08Clusia spe . 1 lu1 Type 3 6.23 49.52 0.05 7.68Clusia spe . 2 lu2 Páramo 5.59 55.26 0.08 10.56Di tyo arium lamar kianum di l Type 3 7.31 46.84 0.19 13.01Eukalyptus spe . euk exoti 6.95 44.11 0.21 13.78Fi us spe . Type 1 8.14 51.38 0.29 17.76Fi us itrifolia i Type 1 6.59 52.82 0.52 18.42Fi us uatre asana u Type 1 7.65 49.05 0.18 13.39Graenrieda emarginata grae Type 2 and 3 6.24 59.39 0.29 14.18Hedyosmum spe . hed Type 3 6.11 55.92 0.27 16.83Helio arpus ameri anus hela Type 1 6.07 49.15 0.68 18.34Hyeronima moritziana hyem Type 2 6.96 49.03 0.10 11.94Inga spe . ing Type 1 4.22 47.03 0.10 16.24Isertia laevis isel Type 1 7.14 51.82 0.38 13.65Li aria subsessils li s Type 3 4.95 46.13 0.10 9.85Mi onia spe . 1 mi 1 Páramo 5.72 54.05 0.28 11.40Mi onia spe . 2 mi 2 Páramo 2.72 39.90 0.20 11.02Mi onia spe . 3 mi 3 Type 2 and 3 6.68 49.40 0.26 11.98Mi onia pun tata mi p Type 2 6.41 47.21 0.59 15.87Mono haetum lineatum monl su ession 5.41 37.84 0.81 17.69Myr ia spe . my Type 3 8.23 52.24 0.30 12.61Myri a pubes ens myip Páramo 6.53 47.02 0.31 16.17O othea benthamiana o ob Type 3 6.71 46.51 0.04 9.10Pinus patula pinp exoti 4.49 38.95 2.16 11.14Pipto oma dis olor pipd Type 1 5.78 49.84 0.38 13.34Podo arpus oleifolius podo Type 2 and 3 6.76 43.32 0.66 11.73Purdiaea nutans purn Type 3 6.15 41.71 0.34 10.99Rubus spe . rub su ession 6.66 50.95 0.64 18.46S heera spe . s h Páramo 6.78 58.27 0.12 11.72Sti herus spe . sti su ession 6.41 47.59 0.30 11.76Tabebuia hrysantha tab Type 1 5.81 46.40 2.15 24.78Tibou hina laxa tiba su ession 5.12 43.87 0.88 17.41Tibou hina lepidota tibe Type 1 7.19 46.05 0.41 14.59Vismia tomentosa vist Type 2 6.75 56.41 0.27 17.19Referen esAlbert, J.: (2009): Classi ation of vegetation of a tropi al mountain rainforest insouth e udor using spe tral traits (klassikation der vegetation eines tropis henbergregenwaldes in süde uador anhand spektraler eigens haften), thesis at theUniversity of Cologne, Department of E ology. In German.

108

Page 121: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esBarthlott, W., A. Hostert, G. Kier, W. Küper, H. Kreft, J. Mutke,M. Rafiqpoor & J. H. Sommer: (2007): Geographi patterns of vas ularplant diversity at ontinental to global s ale, Erdkunde, 61, 305315.Be k, E., J. Bendix, I. Kottke, F. Makes hin & R. Mosandl (eds.): (2008):Gradients in a Tropi al Mountain E osystem of E uador, E ologi al Studies, vol.198, Springer, Berlin, Heidelberg.Billings, W. D. & R. J. Morris: (1951): Ree tion of visible and infraredradiation from leaves of dierent e ologi al groups, Ameri an Journal of Botany,38, 327331.Bonan, G., S. Levis, L. Kergoat&K. Oleson: (2002a): Lands apes as pat hesof plant fun tional types: An integrating on ept for limate and e osystem mod-els, Global Bio hemi al Cy les, 16 No.2, 51530.Bonan, G., K. Oleson,M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. Di k-inson & Z.-L. Yang: (2002b): The land surfa e limatology of the ommunityland model oupled to the NCAR ommunity limate model, Journal of Climate,15, 31233149.Carter, G. A. & A. K. Knapp: (2001): Leaf opti al properties in higher plants:linking spe tral hara teristi s to stress and hlorophyll on entration, Am. J.Bot., 88, 677684.Castro-Esau, K. L., G. A. Sán hez-Azofeifa, B. Rivard, S. J. Wright& M. Quesada: (2006): Variability in leaf opti al properties of mesoameri antrees and the potential for spe ies lassi ation, Ameri an Journal of Botany, 93,517530.Clark, M. L., D. A. Roberts & D. B. Clark: (2005): Hyperspe tral dis rimi-nation of tropi al rain forest tree spe ies at leaf to rown s ales, Remote Sensingof Environment, 96, 375398.Colwell, R. K., G. Brehm, C. L. Cardelus, A. C. Gilman & J. T. Longino:(2008): Global warming, elevational range shifts, and lowland bioti attrition inthe wet tropi s, S ien e, 322, 258261.Di kinson, R., K. Oleson, G. Bonan, F. Hoffman, P. Thornton,M. Vertenstein, Z. Yang & X. Zeng: (2006): The ommunity land modeland its limate statisti s as a omponent of the ommunity limate system model,Journal of Climate, 19, 23022324.Disli h, C., S. Günter, J. Homeier, B. S hröder & A. Huth: (2009): Sim-ulating forest dynami s of a tropi al montane forest in south e uador, Erdkunde,63, 347364. 109

Page 122: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esDorman, J. & P. Sellers: (1989): A global limatology of albedo, roughnesslength and stomatal resistan e for atmospheri general ir ulation models as rep-resented by the simple biosphere model (sib), J. Appl. Meteor., 28, 833855.Foley, S., B. Rivard, G. A. San hez-Azofeifa & J. Calvo: (2006): Fo-liar spe tral properties following leaf lipping and impli ations for handling te h-niques, Remote Sensing of Environment, 103, 265275.Göttli her, D., T. Nauss & J. Bendix: (2010): Sensitivity of the ommunityland model to plant and soil parameters for the predi tion of ommonly requiredparameters for applied e ologi and so io-e onomi studies, Computers & Geo-s ien es, submitted.Göttli her, D., A. Obregón, J. Homeier, R. Rollenbe k, T. Nauss &J. Bendix: (2009): Land over lassi ation in the Andes of southern E uadorusing Landsat ETM+ data as a basis for SVAT modeling, International Journalof Remote Sensing, 30, 18671886.Homeier, J. & F. Werner: (2007): Spermatophyta he klist of the reservabiológi a san fran is o (prov. zamora- hin hipe, s-e uador), E otropi al Mono-graphs, 4, 1558.Homeier, J., F. Werner, S. Gradstein, S.-W. Bre kle & M. Ri hter:(2008): Potential vegetation and oristi omposition of andean forests in southe uador, with a fo us on the rbsf, in Be k, E., J. Bendix, I. Kottke,F. Makes hin & R. Mosandl (eds.) Gradients in a Tropi al Mountain E osys-tem of E uador, E ologi al Studies, vol. 198, 87100, Springer, Berlin.Kaufman, L. & P. J. Rousseeuw: (2005): Finding Groups in Data - An In-trodu tion to Cluster Analysis, Wiley Series in Probability and Statisti s, Wiley-Inters ien e, New York.Knapp, A. K. & G. A. Carter: (1998): Variability in leaf opti al propertiesamong 26 spe ies from a broad range of habitats, Ameri an Journal of Botany,85, 940946.Köhler, P.: (2000): Modelling anthropogeni impa ts on the growth of tropi alrain forests using an individual-oriented forest growth model for the analysesof logging and fragmentation in three ase studies, Ph.D. thesis, Department ofPhysi s and the Center for Environmental Systems Resear h, University of Kassel,Der Andere Verlag, Osnabrü k, Germany.Lar her, W.: (2001): Ökophysiologie der Panzen, UTB für Wissens haft, vol.8074, 6th edn., Ulmer, Stuttgart.110

Page 123: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esLavorel, S., S. Díaz, J. H. C. Cornelissen, E. Garnier, S. P. Harrison,J. G. Pausas, N. Pérez-Harguindeguy, C. Roumet & C. Ur elay: (2007):Plant fun tional types: Are we getting any loser to the holy grail?, in Canadell,J. G., D. E. Pataki & L. F. Pitelka (eds.) Terrestrial E osystems in a Chang-ing World, hap. 13, 149164, Springer, Berlin, Heidelberg.Lee, D. W. & R. Graham: (1986): Leaf opti al properties of rainforest sun andextreme shade plants, Ameri an Journal of Botany, 73, 11001108.Mae hler, M., P. Rousseeuw, A. Struyf & M. Hu-bert: (2005): Cluster analysis basi s and extensions, URLhttp:// ran.r-proje t.org/web/pa kages/ luster/, 2010-06-10.Mosandl, R., S. Günter, B. Stimm & M. Weber: (2008): E uador suers thehighest deforestation rate in south ameri a, in Be k, E., J. Bendix, I. Kot-tke, F. Makes hin & R. Mosandl (eds.) Gradients in a Tropi al MountainE osystem of E uador, E ologi al Studies, vol. 198, hap. 4, Springer, Berlin.Oleson, K. W., Y. Dai, G. Bonan, M. Bosilovi h, R. Di kinson,P. Dirmeyer, F. Hoffman, P. Houser, S. Levis, G. Y. Niu, P. Thornton,M. Vertenstein, Z. L. Yang & X. Zeng: (2004): Te hni al des ription of the ommunity land model ( lm), Te h. Rep. NCAR/TN-461+STR, NCAR Te hni alNote.Oleson, K. W., G.-Y. Niu, Z.-L. Yang, D. M. Lawren e, P. E. Thornton,P. J. Lawren e, R. Stö kli, R. E. Di kinson, G. B. Bonan, S. Levis,A. Dai & T. Qian: (2008): Improvements to the ommunity land model andtheir impa t on the hydrologi al y le, Journal of Geophysi al Resear h, 113,G01021.Poorter, L., R. Kwant, R. Hernández, E. Medina & M. J. A. Werger:(2000): Leaf opti al properties in venezuelan loud forest trees, Tree Physiology,20, 519526.Poorter, L., S. F. Oberbauer & D. B. Clark: (1995): Leaf opti al propertiesalong a verti al gradient in a tropi al rain forest anopy in osta ri a, Ameri anJournal of Botany, 82, 12571263.R Development Core Team: (2009): R: A Language and Environment forStatisti al Computing, R Foundation for Statisti al Computing, Vienna, Austria,URL http://www.R-proje t.org, ISBN 3-900051-07-0.Sala, O. E., I. Chapin, F. Stuart, J. J. Armesto, E. Berlow, J. Bloom-field, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Ja kson,A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld,111

Page 124: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esN. L. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall:(2000): Global biodiversity s enarios for the year 2100, S ien e, 287, 17701774.Sellers, P.: (1985): Canopy ree tan e, photosynthesis and transpiration, Inter-national Journal of Remote Sensing, 6, 13351372.Sellers, P. J., W. J. Shuttleworth, J. L. Dorman, A. Dal her & J. M.Roberts: (1989): Calibrating the simple biosphere model for amazonian tropi alforest using eld and remote sensing data. part i: Average alibration with elddata, Journal of Applied Meteorology, 28, 727759.Slaton, M. R., J. Hunt, E. Raymond&W. K. Smith: (2001): Estimating near-infrared leaf ree tan e from leaf stru tural hara teristi s, Ameri an Journal ofBotany, 88, 278284.Smith, T. M., H. H. Shugart & F. I. Woodward (eds.): (1997): Plant fun -tional types their relevan e to e osystem properties and global hange, Interna-tional Geosphere-Biosphere Programme Book Series, vol. 1, Cambridge UniversityPress, New York.te 5: (2005): HandySpe Field - Systemdes ription and Do umentation, te 5 AG,Oberursel, Germany, in german.Ustin, S. L. & J. A. Gamon: (2010): Remote sensing of plant fun tional types,New Phytologist, 186, 795816.Ward, J. H. J.: (1963): Hierar hi al grouping to optimize an obje tive fun tion,Journal of the Ameri an Statisti al Asso iation, 58, 236244.Willmott, C. J. & K. M. Klink: (1986): A representation of the terrestrial bio-sphere for use in global limate studies, in Pro eedings of the ISLSCP Conferen e,ESA SP-248, 109112, Rome Italy.Zhu, H.: (2005): Linear spe tral unmixing assisted by probability guided and min-imum residual exhaustive sear h for subpixel lassi ation, International Journalof Remote Sensing, 26, 55855601.

112

Page 125: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

6 Summary and Outlook6.1 SummaryGlobal biodiversity is threatened by limate and land over hange. The resear hunit `Biodiversity and Sustainable Management of a Megadiverse Mountain E osys-tem in South E uador' (FOR816) funded by the German resear h oun il (Deuts heFors hungsgemeins haft, DFG) is working in one of the hottest hotspots of biodi-versity of the world. In this region the pressure from the lo al population on theenvironment is severe resulting in a high deforestation rate. Sustainable manage-ment systems have to be developed on a regional s ale to ountera t the loss oflivelihood of the lo al population.Numeri al models are apable to investigate the hanges of the mentioned fu-ture land over hanges and its response to limati and hydrologi variability. The han e to test numerously land use s enarios without interfering into the real envi-ronment oers the possibility to investigate and to evaluate the proposed manage-ment strategies.The presented work targets at an analysis of the impa t of the predi ted land over hanges in respe t of the e osystem servi es of limate and water regulation. There-fore a state-of-the-art land surfa e model alled Community Land Model (CLM) issetup in a regional s ale. The parametrization of the vegetation is implementedusing plant fun tional types (PFT). The PFTs are dened a priori with vegetation lasses based on e ologi al eld surveys. Three entral hypotheses are formulated tosupport the parametrization of the model. A ordingly, three work pa kages (WP)are established to test the hypotheses. In detail the results of the WPs and thereview of the hypotheses are as follows:

113

Page 126: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

6 Summary and OutlookHypothesis 1 WP 1H1 A ontinuous spatial delineation of land use lasses based on e ologi al-fun tional eld studies an be mapped in a subpixel a ura y frommedium spa e-resolved satellite data.WP1 The spatial delineation of the PFTs is a hieved by the use of lassi-ed Landsat ETM+ satellite data. Besides a hard lassi ation using amaximum-likelihood algorithm, a soft lassi ation method is ondu ted.The modied linear spe tral unmixing approa h oers per entage over-age of the PFTs in a subpixel resolution. The results of both lassi ations hemes are good and the probability guided spe tral unmixing is hosenfor the determination of plant fun tional types for the land model. Asimilar model run done with a spatial distribution of land over fromboth the hard and the soft lassi ation learly points to more realisti model results by using the land surfa e based on the probability guidedspe tral unmixing te hnique ( hapter 3).The hypothesis an be veried.Hypothesis 2 WP 2H2 Gradual hanges in the omposition of vegetation, its morphologi al, op-ti al and physiologi al behavior do not have inuen e on the energy andwater uxes estimated in a SVAT model.WP2 A sensitivity study on all PFT parameters of the CLM is ondu ted.The experimental setup is hara terized by numerous model runs with hanging one spe i parameter while all others are kept onstant. Theresults are used to de ide whi h parameters must be gathered in the eldwith priority in order to parametrize properly the model with region-alized PFTs. With respe t to temperature and humidity, the variationof most investigated parameters of ±30% appeared to ause only negli-gible variations (< 1 %). Other output variables like transpiration andevaporation from the vegetation show mu h higher deviations espe iallyby variations of the stru tural parameter (leaf area index > 30 %). Astronger inuen e also emanates from leaf and stem opti al propertiesthat ould lead to hanges in the sensible heat ux between −40 % to30% ( hapter 4).This hypothesis is true for most of the PFT parameters on erning theoutput variables of temperature and humidity. Only the input values ofLAI have a signi ant inuen e in many output variables and the opti altraits in some variables.114

Page 127: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

6 Summary and OutlookHypothesis 3 WP 3H3 Clusters of spe ies with similar plant opti al properties ree t e ologi allyderived vegetation types.WP3 Opti al properties (ree tan e and transmittan e) of leaves from relevantspe ies of the predened PFTs are measured using a new eld spe trom-eter. The gathered spe tra are lustered by the means of similarity and ompared to the omposition of the predened PFTs. The results showthat the lusters aggregated by the ree tan e, transmittan e or om-bined properties do not represent the predened PFTs. The values ofthe other studies suggest a reassessment of the experimental setup forthe transmittan e measurements. Nevertheless, new ree tan e valuesfor the regionalized PFTs an be determined. The opti al values dierfrom the CLM-PFT of tropi al evergreen trees, and new values for theree tan e in the visible and near-infrared are re ommended ( hapter 5).The hypothesis has to be falsied. However, the regional setup is runwith the PFTs dened from the vegetation units be ause of their distin tspatial delineation. The new means of ree tan e data are used for thesingle PFTs a ordingly.The ompleted work oers a regionalized model setup to analyze dierent land over developments in referen e to energy and water uxes between the soil, thevegetation and the atmosphere under hanging limati onditions. Besides theappraisal of the stated hypotheses other innovative ontributions are made. Thenew values for the pre-installed CLM-PFT of tropi al evergreen trees add to the urrent improvements made to the CLM as mentioned in Lawren e et al. (2010)for the new opti al values of grass and rop.6.2 Outlook6.2.1 Preliminary Model RunsPreliminary model runs are presented to demonstrate the potential of the regional-ized land model. The rst model runs in a preliminary setup are already presentedin hapter 3. They in lude only oarse atmospheri for ing, no regionalized soilproperties and no regionalized PFT parameters ex ept their spatial distribution (es-pe ially no spatially dierentiated LAI values). Therein, the dieren es between thetwo lassi ation s hemes are analyzed. Now the model runs represent the dier-ent output values due to hange in land over and hange in atmospheri for ing.Therefore the following hypotheti al alterations are taken pla e: S enario 1: The areas with bra ken fern and shrubs are onverted to forests(reforestation of abandoned pastures)115

Page 128: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

6 Summary and Outlook

Subparamo forest type IV forest type III

−3°57’42’’

−3°59’14’’

−79°4

’4’’

−79°2

’32’’

100

90

80

70

60

50

40

30

20

10

0

PFT cover [%]Figure 6.1: Distribution of PFT over whi h are stable in the preliminary model runs. S enario 2: The lower forest areas are onverted to pastures (intensi ationof pasture farming) S enario 3: The air temperature of the atmospheri for ing is in reased by3K ( limate hange s enario)Additionally, a ontrol run with the estimated distribution of PFTs from thesatellite data is ondu ted. The distribution of the PFTs whi h are stable throughoutthe model runs are presented in gure 6.1. The distribution of the hanging PFTsare visualized in gure 6.2.Atmospheri for ing is implemented from NCAR/NCEP reanalysis data (Qianet al., 2006; Kalnay et al., 1996). The in rease in temperature in the latter modelrun is based on the highest values from the most likely (A1B) s enario of the In-tergovernmental Panel on Climate Change (IPCC) / Spe ial report on EmissionsS enarios (SRES2) simulations by the year 2100 (Christensen et al., 2007; Naki- enovi & Swart, 2000). The model is run with a spin-up time of one year. Theoutput results are the daily mean of the last day of the rst month after spin-uptime. The soil is not regionalized and taken from the global data set supplied withthe CLM. The results of a soft lassi ation is used to determine the per entage andspatial distribution of the PFTs. For s enarios 1 and 2 to the new distribution ofPFTs are simple al ulated from the values of the ontrol run.Exemplarily, the results for the anopy transpiration are shown in gure 6.3. It isobviously that the higher temperatures in the atmospheri for ing (s enario 3) auseshigher transpiration rates espe ially in the forest areas. The shift in land over fromforest to grasses (s enario 2) show a signi ant de rease in the transpiration rate inthe ae ted areas. In the ontrary to this, the transpiration rate rises in the areas116

Page 129: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

6 Summary and Outlookforest type II

forest type I

shrubs

bracken fern

pasture

bare soil

control 2001 forest to grassfern & shrubs

to forest + 3 K

−3°57’42’’

−3°59’14’’

−79°4

’4’’

−79°2

’32’’

100

90

80

70

60

50

40

30

20

10

0

PFT cover [%]Figure 6.2: Distribution of PFT over in the preliminary model runs.117

Page 130: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

6 Summary and Outlookwhi h are subje t to the hange from su essional stadiums to forest again (s enario1).The model demonstrate in these very simplied onditions its possibilities for thefuture work.6.2.2 Future WorkAdditional work has to be ondu ted to nish the spatial parametrization of themodel in the future. Following steps are suggested by the author: Liess et al. (2009) are presenting a regionalization of soil types. For thesesoil types adequate values for the per entage of sand and lay have to bedetermined. This an be done dire tly over the soil type if appropriate or withthe use of transfer fun tions in luding additional topographi features like theslope or altitude. Furthermore a soil olor lass has to be identied. The values of the LAI have to be determined for ea h PFT in spatial and tem-poral dependen y. Therefore transfer fun tions from in situ LAI measurementsand spatial orresponding values of vegetation indi es from satellite data ouldbe used. The experimental setup for the transmittan e measurements of the leaves hasto be redesigned and new values should be al ulated. A major task is the preparation of a weather regionalization tool or at leastthe interpolation of stati datasets from the station data within the study areato regionalize the atmospheri for ing to real onditions. First steps towardsthis a hievement are presented by Fries et al. (2009) regarding the thermalstru ture. The responsible subprograms of the resear h unit have to spe ify in whi hway real ase s enarios look like and should be implemented in the model andanalyzed under dierent limati onditions. Finally, the land model should be oupled to a mesos ale atmospheri modellike the Weather Resear h and Fore asting Model (WRF) to analyze the feed-ba ks between land over hange and limate hange.

118

Page 131: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

6 Summary and Outlook

0.0

0

1.7

0

1.5

3

1.3

6

1.1

9

1.0

2

0.8

5

0.6

8

0.5

1

0.3

4

0.1

7

Canopy transpiration [mm/day]

+ 3 K

−3°57’42’’

−3°59’14’’

−7

9°4

’4’’

−7

9°2

’32

’’

control 2001

forest to grass fern & shrubsto forest

Figure 6.3: Results of the preliminary model runs for anopy transpiration.119

Page 132: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Referen esReferen esChristensen, J., B. Hewitson, A. Busuio , A. Chen, X. Gao, I. Held,R. Jones, R. Kolli, W.-T. Kwon, R. Laprise, V. M. na Rueda,L. Mearns, C. Menéndez, J. Räisänen, A. Rinke, A. Sarr & P. Whet-ton: (2007): Regional limate proje tions, in Solomon, S., D. Qin, M. Man-ning, Z. Chen,M. Marquis, K. Averyt,M. Tignor & H. Miller (eds.) Cli-mate Change 2007: The Physi al S ien e Basis. Contribution of Working GroupI to the Fourth Assessment Report of the Intergovernmental Panel on ClimateChange, hap. 11, 847940, Cambridge University Press, Cambridge and NewYork, NY.Fries, A., R. Rollenbe k, D. Göttli her, T. Nauss, J. Homeier, T. Pe-ters & J. Bendix: (2009): Thermal stru ture of a megadiverse andean mountaine osystem in southern e uador and its regionalization, Erdkunde, 63, 321335.Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven,L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu,A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins,J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Jenne & D. Joseph:(1996): The n ep/n ar 40-year reanalysis proje t, Bulletin of the Ameri an Me-teorologi al So iety, 77, 437471.Lawren e, D., K. W. Oleson, M. G. Flanner, P. E. Thornton, S. C.Swenson, P. J. Lawren e, X. Zeng, Z.-L. Yang, S. Levis, K. Sakagu hi,G. B. Bonan & A. G. Slater: (2010): Parameterization improvements andfun tional and stru tural advan es in version 4 of the ommunity land model,Journal of Advan es in Modeling Earth Systems, Submitted, on Dis ussion.Liess, M., B. Glaser & B. Huwe: (2009): Digital soil mapping in southerne uador, Erdkunde, 63, 309319.Naki enovi , N. & R. Swart (eds.): (2000): Spe ial Report on Emissions S e-narios: A Spe ial Report of Working Group III of the Intergovernmental Panel onClimate Change, Cambridge University Press, Cambridge.Qian, T., A. Dai, K. E. Trenberth & K. W. Oleson: (2006): Simulationof global land surfa e onditions from 1948 to 2004. part i: For ing data andevaluations, Journal of Hydrometeorology, 7, 953975.120

Page 133: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

7 ZusammenfassungKlima- und Landnutzungsveränderungen bedrohen die globale Biodiversität. Ineinem der artenrei hsten Gebiete der Welt arbeitet die von der Deuts hen Fors hungs-gemeins haft (DFG) nanzierte Fors hergruppe `Biodiversity and Sustainable Man-agement of a Megadiverse Mountain E osystem in South E uador'(FOR816). Vonder lokalen Bevölkerung geht ein enormer Dru k auf die Umwelt aus und resul-tiert in einer sehr hohen Entwaldungsrate. Um die Lebensgrundlage der örtli henBevölkerung zu wahren, müssen na hhaltige Bewirts haftungssysteme entwi keltwerden.Zukünftige Landnutzungsveränderungen und ihre Auswirkungen auf klimatis heund hydrologis he Faktoren können mit numeris hen Modellen untersu ht werden.Entwi kelte Managementstrategien können dur h die Modellen untersu ht und be-wertet werden, ohne real in das Lands haftsgefüge einzugreifen.Ziel der präsentierten Arbeit ist es, das Ausmaÿder vorhergesagten Landnutzungsän-derungen und ihre Auswirkungen auf die Ökosystemleistungen hinsi htli h der Reg-ulation von Wasserüssen und Klimaparameter zu analysieren. Um dieses zu er-rei hen, wird ein spezis hes, ho hmodernes Austaus hmodell der Energie- undWasserüsse (Community Land Model, CLM) zwis hen Boden, Vegetation und derAtmosphäre in einer regionalen Auösung aufgesetzt (au h SVAT-Modell genannt).Die Parametrisierung der Vegetation erfolgt über sogenannte Panzenfunktionstypen(PFT). Die PFT werden im vorhinein mit Hilfe von Vegetationseinheiten deniert,die auf ökologis hen Felduntersu hungen beruhen. Die Parametrisierung des Modelswird dur h die Formulierung von 3 Hypothesen unterstützt. Um die Hypothesen zutesten, werden dementspre hend 3 Arbeitspakete (AP) etabliert. Die Ergebnisse derAP und die Bewertung der Hypothesen sind im Einzelnen:

121

Page 134: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

7 ZusammenfassungHypothese 1 AP 1H1 Eine ä hende kende Abgrenzung von Landnutzungsklassen, basierendauf ökologis h-funktionalen Felduntersu hungen, aus mittel aufgelöstenSatellitendaten ist mit einer Genauigkeit im Subpixelberei h mögli h.AP1 Die räumli he Abgrenzung der PFT wird dur h eine Klassikation vonLandsat ETM+ Satellitendaten errei ht. Neben einer harten Maximum-Likelihood Abs hätzung wird eine wei he Klassikation dur hgeführt.Eine modizierte lineare spektrale Entmis hung erre hnet prozentuale An-teile der PFT im Subpixelberei h. Die Ergebnisse beider Klassikation-salgorithmen sind gut. Die Ergebnisse der wei hen Klassikation werdenletztendli h zur Bestimmung der räumli hen Verteilung der PFT in demModell benutzt. Identis he Simulationsläufe des Models mit beiden un-ters hiedli hen Klassizierungsergebnissen zeigen, dass die Landnutzungder spektralen Entmis hung ein klar realitätsnäheres Bild widerspiegeln(Kapitel 3).Die Hypothese kann veriziert werden.Hypothese 2 AP 2H2 Allmähli he Veränderungen in der Vegetationszusammensetzung undihrem morphologis hen, optis hen und physiologis hen Verhalten habenkeinen Einuss auf die bere hneten Energie-und Wasserüsse eines SVAT-Modells.AP2 Für alle PFT wurde eine Sensitivitätsstudie dur hgeführt. Zahlrei heModellläufe mit Veränderungen von einem Parameter, während alle an-deren konstant gehalten werden, kennzei hnen den experimentellen Auf-bau. Die Ergebnisse geben darüber Aufs hluss, wel he Parameter in Fel-duntersu hungen im besonderen Maÿe beguta htet werden müssen, umdas Modell mit den regionalen PFT zu parametrisieren. Hinsi htli h derTemperatur und der Luftfeu htigkeit haben Abwei hungen von ±30% inden untersu hten Parametern eine nur geringfügige Auswirkung (< 1 %).Sehr viel höhere Abwei hungen werden bei anderen Ausgabevariablenwie Transpiration und Evaporation der Vegetation festgestellt. Beson-ders strukturelle Parameter wie der Blattä henindex zeigen groÿe Verän-derungen (> 30 %). Weiterhin zeigen die optis hen Eigens haften derBlätter und Stämme einen groÿen Einuss und können Abwei hungen imsensiblen Wärmestrom zwis hen −40 % und 30% ausma hen (Kapitel 4).Die Hypothese kann für die meisten PFT-Parameter im Hinbli k aufdie Ausgangsvariablen von Temperatur und Luftfeu htigkeit angenommenwerden. Auf viele Ausgabegröÿen hat nur der Blattä henindex einen sig-nikanten Einuss, die optis hen Eigens haften beeinussen no h wenigeVariablen. 122

Page 135: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

7 ZusammenfassungHypothese 3 AP 3H3 Ökologis h denierte Vegetationseinheiten spiegeln si h in Cluster wieder,die auf ähnli hen, optis hen Eigens haften der Panzen beruhen.AP3 Blätter relevanter Arten der denierten PFT werden mit einem Feldspek-trometer hinsi htli h ihrer optis hen Eigens haften (Reexion und Trans-mission) untersu ht. Auf Grund der Ähnli hkeit der gemessenen Spek-tren werden Cluster gebildet und mit der Zusammensetzung der PFTvergli hen. Die Ergebnisse zeigen, dass die Cluster der Reexion, Trans-mission und au h der kombinierten Daten ni ht den PFT entspre hen. Einneues Design der Transmissionsmessungen wird dur h einen Verglei h mitanderen Studien nahe gelegt. Denno h können neue Reexionswerte fürdie regionalisierten PFT bestimmt werden. Die gemessenen Werte we-i hen von den Werten für immergrüne tropis he Bäume des CLM ab undes werden für die Reexion im si htbaren und nahen infraroten Berei hneue Werte vorges hlagen (Kapitel 5).Die Hypothese muss abgelehnt werden. Allerdings wird die regionalisierteVersion des Models auf Grund der genauen räumli hen Dierenzierungmit den auf den Vegetationseinheiten beruhenden PFT dur hgeführt. Dieneuen Mittelwerte für die Reexion werden den entspre henden PFTzugewiesen.Die gesamte Arbeit bietet eine regionalisierte Modelumgebung, um vers hiedeneLandnutzungsänderungen im Hinbli k auf ihre Auswirkungen auf die Energie- undWasserströme zwis hen Boden, Vegetation und Atmosphäre unter veränderli hen,klimatis hen Verhältnissen zu analysieren. Neben der Bewertung der einzelnen Hy-pothesen hat die Arbeit andere innovative Beiträge geleistet. Die neuen Werte fürden vorinstallierten CLM-PFT der immergrünen tropis hen Bäume tragen zu denaktuellen Verbesserungen des CLM bei.

123

Page 136: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

ErklärungI h versi here, dass i h meine DissertationPlant Fun tional Types for Land Surfa e Modelling in South E uador -Spatial Delineation, Sensitivity and Parameter Determinationselbständig, ohne unerlaubte Hilfe angefertigt und mi h dabei keiner anderen alsder von mir ausdrü kli h bezei hneten Quellen und Hilfen bedient habe. Alle voll-ständigen oder sinngemäÿen Zitate sind als sol he gekennzei hnet.Die Dissertation wurde in der jetzigen oder einer ähnli hen Form no h bei keineranderen Ho hs hule eingerei ht und hat no h keinen sonstigen Prüfungszwe k gedi-ent.Eine frühere Promotion wurde von mir ni ht versu ht.

Ort / Datum Unters hrift

Page 137: Geographie - archiv.ub.uni-marburg.dearchiv.ub.uni-marburg.de/diss/z2011/0061/pdf/ddg.pdf · helaf, Meik e Kühnlein, V era P etrik at, Johannes Sc h w er and Nora Sc hmid. I am v

Curri ulum vitae13.09.1971 geboren in Marl (Westfalen)19781982 Gemeins haftsgrunds hule an der Emslandstraÿe, Marl19821991 Albert-S hweitzer-Gymnasium, Marl19881989 Gisborne Boys' High S hool, Gisborne, New Zealand1991 Abitur19911993 Zivildienst, Naturs hutzgesells haft S hutzstation Wattenmeere.V., Wyk auf Föhr19932001 StudiumGeographie (Diplom), S hwerpunkt physis he Geographie,Nebenfä her Geologie, Botanik und wiss. Naturs hutz, Philipps-Universität Marburg2001 Diplomabs hluss Geographie19982003 Gründer und Gesells hafter ApisOrbi, Dippel Göttli her HimmelSeul GbR für geographis he Informationssysteme20032007 Te hnis her Angestellter, DFG Fors hergruppe 402, FB Geogra-phie, Philipps-Universität Marburg20072010 Wissens haftli her Angestellter, DFG Fors hergruppe 816, FB Geo-graphie, Philipps-Universität Marburgseit 2010 Wissens haftli her Angestellter, Wissens haftsverwaltung, FB Geo-graphie, Philipps-Universität Marburg