geometry and physics of spatial random systems...

12
Geometry and Physics of Spatial Random Systems Project 6: Image Analysis & Spatial Statistics Eva B. Vedel Jensen, Markus Kiderlen Norbert Henze, Daniel Hug, Klaus Mecke December 16, 2010 CENTRE FOR STOCHASTIC GEOMETRY AND ADVANCED BIOIMAGING

Upload: others

Post on 01-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Geometry and Physics of Spatial Random Systems …pure.au.dk/portal/files/34300410/imageAnalysisStat.pdfGeometry and Physics of Spatial Random Systems Project 6: Image Analysis & Spatial

Geometry and Physics of SpatialRandom Systems

Project 6: Image Analysis & Spatial Statistics

Eva B. Vedel Jensen, Markus Kiderlen

Norbert Henze, Daniel Hug, Klaus Mecke

December 16, 2010

CENTRE FOR STOCHASTIC GEOMETRYAND ADVANCED BIOIMAGING

Page 2: Geometry and Physics of Spatial Random Systems …pure.au.dk/portal/files/34300410/imageAnalysisStat.pdfGeometry and Physics of Spatial Random Systems Project 6: Image Analysis & Spatial

Overall goal

To develop methods of extracting geometric characteristics andfeatures from physical data in a quantitative, robust andefficient manner.

Model-free inference• Minkowski functionals and tensor valuations

from digital images• Tensor valuation estimation from lower dim. sections• Shape-from-tensor problem

(−→ Project 1: Tensor valuations)

Model-based inference• non-parametric estimation of radius distribution

(−→ Project 3: Boolean models)• H.E.S.S. skymap deviations from background models

(−→ Project 4: Random fields)

Eva B. Vedel Jensen · Markus Kiderlen Project 6: Image Analysis & spatial Statistics

Page 3: Geometry and Physics of Spatial Random Systems …pure.au.dk/portal/files/34300410/imageAnalysisStat.pdfGeometry and Physics of Spatial Random Systems Project 6: Image Analysis & Spatial

Motivation: A naive digital algorithm

K KGauss−→digitization

↓ ↓

2V1(K ) = 14.5 2V1(K ) ≈ 18.0

Φ0,21 (K ) =

(48 3131 20

)Φ0,2

1 (K ) =

(8 00 10

).

Bias persists asymptotically: No multigrid convergence.No known local algorithm is multigrid convergent.

Eva B. Vedel Jensen · Markus Kiderlen Project 6: Image Analysis & spatial Statistics

Page 4: Geometry and Physics of Spatial Random Systems …pure.au.dk/portal/files/34300410/imageAnalysisStat.pdfGeometry and Physics of Spatial Random Systems Project 6: Image Analysis & Spatial

Digital algorithms for tensor valuation determination

Objectives:

Investigate asymptotic worst case errors for existing localdigital algorithms for Minkowski functionals and tensorvaluations.

Give a formal proof of the conjecture [Kenmochi, Klette(2000)] that no local algorithm is multigrid convergent.

Design and apply global or semi-local digital algorithms fortensor valuations.

→ 3 years PostDoc (financed by the Villum Foundation)→ full-time programmer position (Erlangen)

Eva B. Vedel Jensen · Markus Kiderlen Project 6: Image Analysis & spatial Statistics

Page 5: Geometry and Physics of Spatial Random Systems …pure.au.dk/portal/files/34300410/imageAnalysisStat.pdfGeometry and Physics of Spatial Random Systems Project 6: Image Analysis & Spatial

Classical Miles formulas.

Let Z be a stationaryBoolean model of random balls.

Method of moments in R3:

V 3(Z ) = 1− e−V 3

V 2(Z ) = e−V 3V 2

V 1(Z ) = e−V 3

(πV 1 −

π2

8V

22

)V 0(Z ) = e−V 3

(γ − 1

2V 1V 2 +

π

48V

32

).

Eva B. Vedel Jensen · Markus Kiderlen Project 6: Image Analysis & spatial Statistics

Page 6: Geometry and Physics of Spatial Random Systems …pure.au.dk/portal/files/34300410/imageAnalysisStat.pdfGeometry and Physics of Spatial Random Systems Project 6: Image Analysis & Spatial

Digital Miles-type formulas.

Digitized Boolean model Z ∩ tZ3

Vj = local digital algorithm.

Conjectured asymptotic digital Miles-type formula

EV3(Z ∩ tZ3) = 1− e−V 3

EV2(Z ∩ tZ3) = e−V 3V 2 + o(1)

EV1(Z ∩ tZ3) = e−V 3(

V 1 − c1V 2

)+ o(1)

EV0(Z ∩ tZ3) = e−V 3(c2

tV

22 + γ + c3V 1V 2 + c4V

32

)+ o(1),

as t → 0 + (increasing resolution).

cf. Katja Schladitz (ITWM, cooperating researcher) et al.

Eva B. Vedel Jensen · Markus Kiderlen Project 6: Image Analysis & spatial Statistics

Page 7: Geometry and Physics of Spatial Random Systems …pure.au.dk/portal/files/34300410/imageAnalysisStat.pdfGeometry and Physics of Spatial Random Systems Project 6: Image Analysis & Spatial

Digital Miles-type formulas for Boolean models

Objectives:

Develop asymptotic digital versions of Miles-type formulasfor stationary Boolean models of random balls.

Extension to medium-large but finite resolution, and totensor valuations.

Laurent expansions for large parallel volumes offinte/compact sets.

(−→ Project 3: Boolean models)

Eva B. Vedel Jensen · Markus Kiderlen Project 6: Image Analysis & spatial Statistics

Page 8: Geometry and Physics of Spatial Random Systems …pure.au.dk/portal/files/34300410/imageAnalysisStat.pdfGeometry and Physics of Spatial Random Systems Project 6: Image Analysis & Spatial

Tensor estimation from central sections

Estimate the moment tensor of K ⊂ Rd

Ψr (K ) =1r !

∫K

x r dx

from central sections of K :

Eva B. Vedel Jensen · Markus Kiderlen Project 6: Image Analysis & spatial Statistics

Page 9: Geometry and Physics of Spatial Random Systems …pure.au.dk/portal/files/34300410/imageAnalysisStat.pdfGeometry and Physics of Spatial Random Systems Project 6: Image Analysis & Spatial

Tensor estimation from central sections

Rotational integral geometry: Find a functional αr such that∫G(d ,q)

αr (K ∩ L) νq(dL) = Ψr (K ).

���Grassmannian of q-dim.

linear subspaces.

Haar measure@@I

A solution (Blaschke-Petkantschin formula):

αr (K ∩ L) = const ·∫

K∩Lx r‖x‖d−q dx .

⇒ for isotropic L, αr (K ∩ L) estimates Ψr (K ) unbiasedly.

Eva B. Vedel Jensen · Markus Kiderlen Project 6: Image Analysis & spatial Statistics

Page 10: Geometry and Physics of Spatial Random Systems …pure.au.dk/portal/files/34300410/imageAnalysisStat.pdfGeometry and Physics of Spatial Random Systems Project 6: Image Analysis & Spatial

Tensor valuation inference from planar sections

Objectives:

Construct improved unbiased estimates of moment tensorsfrom lower dimensional central sections in R3.k = 1 (line probes) k = 2 (plane probes)

use ortrip use pair of perpendic. planes.

Find (unbiased) estimates for tensor related scalars.

Extend the results to partially isotropic cases and to higherdimensions.

Eva B. Vedel Jensen · Markus Kiderlen Project 6: Image Analysis & spatial Statistics

Page 11: Geometry and Physics of Spatial Random Systems …pure.au.dk/portal/files/34300410/imageAnalysisStat.pdfGeometry and Physics of Spatial Random Systems Project 6: Image Analysis & Spatial

Examples for global estimators (surface area)

DSS/DPS estimators (digital straight/planar segment)[Dorst & Smeulders ’91], . . .

MLP estimators (minimum length polygon/polytope)2D: [Bulow & Klette ’00],3D: [Montanari ’70], [Slanski et al. ’72],. . .

Variant: RCH methods (relative convex hull), same in 2D,different in 3D.

Tangent based methods (3D: NOR methods)[Feschet & Tougne ’99], 3D: [Ellis et al. ’79]

Eva B. Vedel Jensen · Markus Kiderlen Project 6: Image Analysis & spatial Statistics

Page 12: Geometry and Physics of Spatial Random Systems …pure.au.dk/portal/files/34300410/imageAnalysisStat.pdfGeometry and Physics of Spatial Random Systems Project 6: Image Analysis & Spatial

Examples for local estimators

Marching cubes/ wrapper based algorithmsfor k < n, in particular k = n − 1(without merging or simplification)

digital geometry approaches (polygonal approach)[Bieri ’87], [K. Mecke ’94], . . .

Discretization of Crofton’s formula[Serra ’82], [Nagel, Ohser, Schladitz ’02,’03,. . .]Approximation of V0 in section planes using adjacencysystems.

Eva B. Vedel Jensen · Markus Kiderlen Project 6: Image Analysis & spatial Statistics