geometry of tangential and configuration chain complexes

27
Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 52(2)(2020) pp. 29-55 Geometry of Tangential and Configuration Chain Complexes for Higher Weights M. Khalid a,* , Mariam Sultana b , Javed Khan c and Azhar Iqbal d a,b,c Department of Mathematical Sciences, Federal Urdu University of Arts, Sciences & Technology, Karachi-75300, Pakistan, d Department of Basic Sciences, Dawood University of Engineering & Technology, Karachi-75800, Pakistan. Corresponding author Email: a,* [email protected], Received: 24 July, 2019 / Accepted: 31 December, 2019 / Published online: 01 February, 2020 Abstract. In this study, the geometry of a first order tangent group and of configuration chain complexes is proposed. First, the morphisms are introduced to define the geometry for weight n =4, and then this geom- etry is extended for higher weight n =5. All associated commutative diagrams are presented. AMS Subject Classification Codes: 11G55; 14F42; 19E15; 14R10 Key Words: Polylogarithms, Configuration Complexes, Tangent Complexes, Affine Space. 1. I NTRODUCTION Researchers have often used configuration spaces and its chain complex as a tool in active areas of pure mathematics. In the Grassmannian configuration chain complex, for example, free abelian groups are connected through two types of differential boundary maps d and p [22]. Configuration spaces are naturally related to polylogarithmic groups and its chain complexes; that is why many researchers have tried to find the relationship between configurations and polylogarithmic group chain complexes. Bloch [1] defined polylogarithmic group B(F ) for weight 1; it is a quotient of Z-module Z [F .. ] and Abel’s five terms relation. For weight 2, Bloch [1] defined a group denoted by B 2 (F ), generated by the cross ratio of four points, and introduced a chain complex called Bloch-Suslin complex. B 2 (F ) δ // 2 F × Goncharov introduced the concept of triple cross ratio to define the group B 3 (F ) for weight 3. He further generalized the Bloch group as B n (F ) creating a generalized version of the 29

Upload: others

Post on 11-May-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Geometry of Tangential and Configuration Chain Complexes

Punjab UniversityJournal of Mathematics (ISSN 1016-2526)Vol. 52(2)(2020) pp. 29-55

Geometry of Tangential and Configuration Chain Complexes for HigherWeights

M. Khalida,∗, Mariam Sultanab, Javed Khanc and Azhar Iqbald

a,b,cDepartment of Mathematical Sciences,Federal Urdu University of Arts, Sciences & Technology, Karachi-75300, Pakistan,

dDepartment of Basic Sciences,Dawood University of Engineering & Technology, Karachi-75800, Pakistan.

Corresponding author Email:a,∗[email protected],

Received: 24 July, 2019 / Accepted: 31 December, 2019 / Published online: 01 February,2020

Abstract. In this study, the geometry of a first order tangent group andof configuration chain complexes is proposed. First, the morphisms areintroduced to define the geometry for weightn = 4, and then this geom-etry is extended for higher weightn = 5. All associated commutativediagrams are presented.

AMS Subject Classification Codes: 11G55; 14F42; 19E15; 14R10Key Words: Polylogarithms, Configuration Complexes, Tangent Complexes, Affine Space.

1. INTRODUCTION

Researchers have often used configuration spaces and its chain complex as a tool inactive areas of pure mathematics. In the Grassmannian configuration chain complex, forexample, free abelian groups are connected through two types of differential boundarymapsd andp [22]. Configuration spaces are naturally related to polylogarithmic groupsand its chain complexes; that is why many researchers have tried to find the relationshipbetween configurations and polylogarithmic group chain complexes.Bloch [1] defined polylogarithmic groupB(F ) for weight 1; it is a quotient of Z-moduleZ[F ..] and Abel’s five terms relation. For weight 2, Bloch [1] defined a group denoted byB2(F ), generated by the cross ratio of four points, and introduced a chain complex calledBloch-Suslin complex.

B2(F ) δ // ∧2F×

Goncharov introduced the concept of triple cross ratio to define the groupB3(F ) for weight3. He further generalized the Bloch group asBn(F ) creating a generalized version of the

29

Page 2: Geometry of Tangential and Configuration Chain Complexes

30 M. Khalid, Mariam Sultana, Javed Khan and Azhar Iqbal

Bloch-Suslin complex that was called the Goncharov Complex

Bn(F ) δn−−→ Bn−1(F )⊗ F×δn−1−−−−→ . . .

δ2−−→ B2(F )⊗ ∧n−2(F ) δ1−−→ ∧n(F×)

First, Goncharov found geometry between configuration and Bloch-Suslin polylogarithmicchain complex through homomorphisms for weight 2 and proved the commutativity of theassociated diagram [7]. Goncharov also extended his work to define the geometry of con-figuration and the generalized polylogarithmic chain complex called Goncharov complexfor weight 3 [7]. On the other hand, Khalid et al. [12–15,17–19] introduced the generalizedgeometry between Goncharov polylogarithmic complex and configuration chain complexfor any weight n.Later, Cathelineau introduced variant of Goncharov complex called Cathelineau complexin two different ways: one was infinitesimal while other was in a tangential setting [2, 3].βn(F ) was the group for infinitesimal chain complex andTBn(F ) for tangential complex.Cathelineau first introduced the Tangent to Bloch-Suslin complexTB2(F ) → F ⊗ F× ⊕∧2F× and then generalized the former.

TBn(F )δn,ε−−−−−−→ · · · δ1,ε−−−−−−→ TB2(F )⊗∧n−2F×

⊕F⊗B2(F )⊗∧n−3F×

δε−−−−−→ (F ⊗ ∧n−1F×)⊕ (∧nF )

Siddiqui introduced both the cross ratio of four points and the famous Siegel’s cross-ratioproperties in tangential form and also showed that the Goncharovs projected five term rela-tion can also be defined for tangent groupTB2(F ) [20]. With the help these constructions,Siddiqui [20] defined the morphisms to connect the configuration sub complex and firstorder tangential chain complex for both weight 2 and 3, in order to come up with commu-tative diagrams [20].Hussain [11] introduced second and third order tangent groups denoted byTB2

2(F ) andTB2

3(F ) for weight 2 and 3. Hussain [11] also found the relation of these groups withconfiguration chain complexes through morphisms and proved the commutativity of theassociated diagrams.Here in this article, some interesting morphisms are introduced to define the new geome-try of configuration and tangential chain complexes for higher weights 4 and 5. Section 2describes the basic concepts of configuration chain complexes, truncated polynomial ring,cross ratio in dual numbers, classical polylogarithmic groups complexes, first order tangentgroup and generalized tangential groups chain complex, geometry between configuration,and the tangential complexes for weight 2 and 3. Section 3 provides the geometry andcommutative diagrams of the configuration and tangential complexes for weight 4 and 5.The last section concludes the entire research work.

2. PRELIMINARIES AND BASIC CONCEPTS

2.1. Grassmannian Configuration Chain Complex. Let us haveGLn(F ) be a generallinear group of ordern, acting diagonally on a setV n. The elements of group actionGLn(F ) ∗ V n = V n are(v0, ..., vn) called configurations ofn vectors inn-dimensionalvector spaceV defined some arbitrary field F.Consider a free abelian groupGn(V ) generated by all possible projective configuration of

Page 3: Geometry of Tangential and Configuration Chain Complexes

Geometry of Tangential and Configuration Chain Complexes for Higher Weights 31

n points(v1, ..., vn) ∈ V n. Let d be a differential boundary morphism, defined as

d : (v0, ..., vn) =n∑

i=0

(−1)i(v0, ..., vi, ..., vn) (2.1)

Another differential mapp is defined as

p : (v0, . . . , vn) =n∑

i=0

(−1)i(vi|v0, . . . , vi, . . . , vn) (2.2)

Suslin [22] connected above free abelian groups using above two differential morphisms infollowing way to define Grassmannian configuration chain complex

...

p

²²

...

p

²²

...

p

²²· · · d // Gm(n) d //

p

²²

Gm−1(n) d //

p

²²

Gm−2(n)

p

²²· · · d // Gm−1(n− 1) d //

p

²²

Gm−2(n− 1) d //

p

²²

Gm−3(n− 1)

p

²²· · · d // Gm−2(n− 2) d // Gm−3(n− 2) d // Gm−4(n− 2)

(A)

The above diagram is bi-complex and each square is commutative (see [16,22]).

2.2. Tangential Configuration Spaces.Assume that F be a field with 0 characteristic,we define the ring ofkth truncated polynomial byF [ε]k := F [ε]/εk, k ≥ 1. Nowdefine an affine spaceAn

F [ε]ndefined over truncated polynomialF [ε]n. Assumev =

(a1, a2, a3, ..., an)t ∈ AnF \(0, 0, 0, ..., 0)t andvε = (a1,ε, a2,ε, a3,ε, ..., an,ε)t ∈ An

F alsovεn = (a1,εk−1 , a2,εk−1 , a3,εk−1 , ..., an,εk−1)t ∈ An

F [11].LetGm(An

F [ε]k) be a free abelian group generated by(v∗1 , v∗2 , v∗3 , ..., v∗m) m vectors in affine

space(AnF [ε]k

) [11], where the elementv∗ = v + vεε + ... + vεk−1εk−1. Now define the aboundary map

d : Gm(AnF [ε]k

) → Gm−1(AnF [ε]k

)

and another differential map

p : Gm(AnF [ε]k

) → Gm−1(An−1F [ε]k

)

with the help of these maps following is Grassmannian tangential configuration chain com-plex

Gm(AnF [ε]k

) d //

p

²²

Gm−1(AnF [ε]k

) d //

p

²²

Gm−2(AnF [ε]k

)

p

²²Gm−1(An−1

F [ε]k) d // Gm−2(An−1

F [ε]k) d // Gm−3(An−1

F [ε]k)

(B)

Page 4: Geometry of Tangential and Configuration Chain Complexes

32 M. Khalid, Mariam Sultana, Javed Khan and Azhar Iqbal

2.3. Cross Ratio. Let us define the cross ratio of4 points as

r(v0, v1, v2, v3) =4(v0, v3)4(v1, v2)4(v0, v2)4(v1, v3)

where(v0, v1, v2, v3) ∈ A2F or P1

F . Siegel [21] defined the following most importantproperty of ratio

1 =4(v0, v3)4(v1, v2)4(v0, v2)4(v1, v3)

+4(v0, v1)4(v2, v3)4(v0, v2)4(v1, v3)

. (2.3)

Or4(v0, v2)4(v1, v3)−4(v0, v3)4(v1, v2)

4(v0, v2)4(v1, v3)=4(v0, v1)4(v2, v3)4(v0, v2)4(v1, v3)

. (2.4)

2.3.1. Cross Ratio inF [ε]k. First we consider the following cases

a : For n=2 and k=1,

4(v∗1 , v∗2) = 4(v∗1 , v∗2)ε0 = 4(v1, v2)

b : For n=2 and k=2,

4(v∗1 , v∗2) = 4(v∗1 , v∗2)ε0 +4(v∗1 , v∗2)ε1ε

where4(v∗1 , v∗2)ε1 = 4(v1, v2,ε) +4(v1,ε, v2)

c : For n=2 and k=3,

4(v∗1 , v∗2) = 4(v∗1 , v∗2)ε0 +4(v∗1 , v∗2)ε1ε +4(v∗1 , v∗2)ε2ε2

where4(v∗1 , v∗2)ε2 = 4(v1, v2,ε2) +4(v1,ε, v2,ε) +4(v1,ε2 , v2).Following is cross ratios inF [ε]k [11]

r(v∗0 , v∗1 , v∗2 , v∗3) = (rε0 + rε1ε + ... + rεk−1εk−1)(v∗0 , v∗1 , v∗2 , v∗3)

Where

rε0(v∗0 , v∗1 , v∗2 , v∗3) = r(v0, v1, v2, v3) =4(v0, v3)4(v1, v2)4(v0, v2)4(v1, v3)

, (2.5)

rε1(v∗0 , v∗1 , v∗2 , v∗3) ={4(v∗0 , v∗3)4(v∗1 , v∗2)}ε

4(v0, v2)4(v1, v3)− r(v0, v1, v2, v3)

{4(v∗0 , v∗2)4(v∗1 , v∗3)}ε

4(v0, v2)4(v1, v3)(2.6)

rε2(v∗0 , v∗1 , v∗2 , v∗3) ={4(v∗0 , v∗3)4(v∗1 , v∗2)}ε

4(v0, v2)4(v1, v3)− r(v∗0 , v∗1 , v∗2 , v∗3)

{4(v∗0 , v∗2)4(v∗1 , v∗3)}ε

4(v0, v2)4(v1, v3)

− r(v0, v1, v2, v3){4(v∗0 , v∗2)4(v∗1 , v∗3)}ε

4(v0, v2)4(v1, v3)(2.7)

and so on

Page 5: Geometry of Tangential and Configuration Chain Complexes

Geometry of Tangential and Configuration Chain Complexes for Higher Weights 33

2.4. Classical Polylog Chain Complexes.The p-logarithm function is a series defined

asLip(z) =∞∑

n=0

zn

np, z ≤ 1, with propertylog (a) + log (b) − log (ab) = 0. Assume

thatZ[P1F /{0, 1,∞}] is a free abelian group generated by a symbol [x] where symbol[x]

means logarithms ofx [5].

Definition 2.5. B(F ) is a Scissor congruence group defined asZ[P1F /{0, 1,∞}] is quo-

tient by expression called Abel five terms relation[x]−[y]+[y

x

]−

[1− y−1

1− x−1

]+

[1− y

1− x

], x 6=

y andx, y 6= 0, 1

2.5.1. Bloch Group for Weight-1.Bloch [1] definedR1(F ) ⊂ Z[P1F /{0, 1,∞}], gener-

ated by the relation{xy} − {x} − {y}, (x, y ∈ F×). ThenB1(F ) ⊂ Z[P1F /{0, 1,∞}] is

called Bloch group for weight1 defined asB1(F ) = Z[P1F /{0, 1,∞}]/

⟨R1(F )

⟩. He de-

fined a mapδ1 : B1(F ) → F×, defined asδ1 : [x] → x. This map is also an isomorphism.So,B1(F ) ∼= F×.

2.5.2. Bloch-Suslin Chain Complex.Let R2(F ) ⊂ Z[P1F /{0, 1,∞}] is a sub group gener-

ated by the relation4∑

i=0

(−1)ir(v0, ..., vi, ..., v4), define a morphismδ2 : Z[P1F /{0, 1,∞}

] → ∧2F×, whereδ2 : [x] → (1 − x) ∧ x. This helped to defined a dilogarithm Blochgroup for weight2 asB2(F ) = Z[P1

F /{0, 1,∞}]/〈R2(F )〉 which connectedB2(F ) with∧2F× to form a chain complex called the Bloch-Suslin complex [1,10].

B2(F ) δ // ∧2F×

whereδ is an induced map defined as

δ : [v]2 → (1− v) ∧ v

2.5.3. Goncharov Chain Complex for Weight-3.Goncharov [6,7] definedR3(F ) ⊂ Z[P1F /{0,

1,∞}], such that

R3(F ) =6∑

i=0

(−1)iAlt6

[ (v0, v1, v3)(v1, v2, v4)(v0, v2, v5)(v0, v1, v4)(v1, v2, v5)(v0, v2, v3)

](2.8)

For weight 3 Goncharov [7–9] introduced a groupB3(F ) = Z[P1F /{0, 1,∞}]/〈R3(F )〉.

Chain complex for weight3 is given by

B3(F ) δ // B2(F )⊗ F× δ // ∧3F×

where

δ : [v]3 → [v]2 ⊗ v

Lemma 2.6. δ ◦ δ = 0 (see [7])

Page 6: Geometry of Tangential and Configuration Chain Complexes

34 M. Khalid, Mariam Sultana, Javed Khan and Azhar Iqbal

2.6.1. Weight-n.Goncharov [7] generalizedB(F ) asBn(F ) = Z[P1F /{0, 1,∞}]/ <

Rn(F ) >, whereRn(F ) ⊂ Z[P1F ] is the kernel of the mapδn : Z[P1

F /{0, 1,∞}] →Bn−1(F ) ⊗ F×. Then Goncharov generalized Bloch-Suslin complex for any weightn,called Goncharov complex

Bn(F )δn−−→ Bn−1(F )⊗F×

δn−1−−−−→ Bn−2(F )⊗∧2(F )δn−2−−−−→ . . .

δ2−−→ B2(F )⊗∧n−2(F )δ1−−→ ∧n(F×)

(2.9)

Lemma 2.7. δn−1 ◦ δn = 0 (see [7,17])

2.8. Tangent Groups and Generalized Tangent Complexes.

2.8.1. First Order Tangent Group.For any elementsx, x′ ∈ F and

⟨x;x

′]2

= [x+x′ε]−

[x] ∈ Z[F [ε]2, Cathelineau [4] introducedTB2(F ) as a first order tangent group. It is a Z-

module generated by the elements⟨x; x

′]2∈ Z[F [ε]2 an quotient by the five term relation

⟨x; x

′]−⟨y; y

′]+

⟨y

x;(y

x

)′]−

⟨1− y

1− x;(1− y

1− x

)′]+

⟨x(1− y)y(1− x)

;(x(1− y)

y(1− x)

)′]

wherex, y 6= 0, 1 andx 6= y [4,11].

2.8.2. Tangent Complex to Bloch-Suslin Chain Complex for Weight 2.Cathelineau [4] in-troduced following Tangent complex to Bloch-Suslin complex

TB2(F )δε // F ⊗ F× ⊕ ∧2F×

where

δε :⟨x, y

]2

=(y

x⊗ (1− x) +

y

(1− x)⊗ x

)+

( y

(1− x)∧ y

x

)

see [4,20].

2.8.3. Tangent Complex to Goncharov Chain Complex for Weight 3.Cathelineau [4] in-troduced following Tangent complex to Goncharov chain complex for weight 3

TB3(F )δε // (TB2(F )⊗ F×)⊕ (F ⊗ B2(F ))

δε // F ⊗ ∧2F× ⊕ ∧3F×

2.8.4. Generalized Tangent Complex for any Tangent GroupTBn(F). Cathelineau [4]generalized following Tangent complex to Goncharov chain complex for any weightn

TBn(F )δn,ε−−→TBn−1(F )⊗F×

⊕F⊗Bn−1(F )

δ(n−1),ε−−−−−→· · · δ1,ε−−→ TB2(F )⊗∧n−2F×⊕

F⊗B2(F )⊗∧n−3F×δε−→ (F⊗∧n−1F×)⊕(∧nF )

2.9. Geometry of Tangent and Configuration Chain Complexes up to Weight 3.

Page 7: Geometry of Tangential and Configuration Chain Complexes

Geometry of Tangential and Configuration Chain Complexes for Higher Weights 35

2.9.1. Geometry for Weight 2.As defined in [20], the geometry of Grassmannian configu-ration and Goncharov motivic in weight-2 is represented as

G5(3)p //

d

²²

G4(2)g21,ε //

d

²²

TB2(F )

δε

²²G4(3)

p // G3(2)g20,ε // F ⊗ F× ⊕ ∧2F×

(C)

Lemma 2.10. The diagramB is bi-complex and commutative[20].

2.10.1. Geometry for Weight 3.The geometry of Grassmannian and Goncharov motivicfor weight-3 is presented in [20] as follows:

G7(3) d //

p

²²

G6(3)

p

²²G6(2) d //

p

²²

G5(2)g31,ε //

p

²²

TB2(F )⊗ F× ⊕ F ⊗ B2(F )

δε

²²G5(1) d // G4(1)

g30,ε // F ⊗ ∧2F× ⊕ ∧3F×

(D)

Lemma 2.11. The diagramC is bi-complex and commutative[20].

3. GEOMETRY OFTANGENT GROUPS ANDCONFIGURATION CHAIN COMPLEXES FOR

WEIGHT 4 & 5

3.1. Geometry for Weight 4. Geometry for weight 4 is defined as follows

G7(A5F [ε]r

) p //

d

²²

G6(A4F [ε]2

)g41,ε //

d

²²

TB2(F )⊗ ∧2F× ⊕ F ⊗ B2(F )⊗ F×

δε

²²G6(A5

F [ε]r) p // G5(A4

F [ε]2)

g40,ε // F ⊗ ∧3F× ⊕ ∧4F×

(E)

where,g40ε(v

∗0 , ..., v∗4) = g4

01(v∗0 , ..., v∗4) + g4

02(v∗0 , ..., v∗4)

g401

(v∗0 , ..., v∗4) =4∑

i=j+1

(−1)i+14(v∗0 , ..., v∗i, ..., v∗4)ε

4(v0, ..., vi, ..., v4)⊗ 4(v0, ..., vi+1, ..., v4)4(v0, ..., vi+2, ..., v4)

4(v0, ..., vi+2, ..., v4)4(v0, ..., vi+3, ..., v4)

∧ 4(v0, ..., vi+3, ..., v4)4(v0, ..., vi+4, ..., v4)

(i mod 5),

(3.10)

g402

(v∗0 , ..., v∗4) =4∑

j=0

(−1)j+14∧

j 6=ij=0

4(v∗0 , ..., v∗j , ..., v∗4)ε

4(v0, ..., vj , ..., v4)(i mod 5) (3.11)

Page 8: Geometry of Tangential and Configuration Chain Complexes

36 M. Khalid, Mariam Sultana, Javed Khan and Azhar Iqbal

and

g41ε(v

∗0 , ..., v∗5) = − 1

10

5∑

i 6=j

(−1)i(⟨

r(vi, vj |v0, ..., vi, vj , ..., v5); rε(v∗i , v∗j |v∗0 ,

..., v∗i, v∗j , ..., v∗5)

]2⊗

5∏

i 6=r

4(v0, ..., vi, vr, ..., v5)∧

5∏

j 6=r

4(v0, ..., vj , vr, ..., v5) +5∑

i 6=ri=0

4(v∗0 , ..., v∗i, v∗r, ..., v∗5)ε

4(v0, ..., vi, vr, ..., v5)⊗

[r(vi, vj |v0, ..., vi, vj , ..., v5)]2⊗5∏

j 6=r

4(v0, ..., vj , vr, ..., v5) +5∑

j 6=rj=0

4(v∗0 , ..., v∗j , v∗r, ..., v∗5)ε

4(v0, ..., vj , vr, ..., v5)⊗

[r(vi, vj |v0, ..., vi, vj , ..., v5)]2 ⊗5∏

i 6=r

4(v0, ..., vi, vr, ..., v5))

(mod 6).

(3.12)

Lemma 3.2. The right square of diagramE is commutative.

G6(A4F [ε]2

) d //

g41,ε

²²

G5(A4F [ε]2

)

g40.ε

²²TB2(F )⊗ F× ⊕ F ⊗ B2(F )⊗ F×

δε // F ⊗ ∧3F× ⊕ ∧4F×

Proof. Let us assume(v∗0 , ..., v∗5) ∈ G6(A4F [ε]r

) and apply morphismd

d(v∗0 , ..., v∗5) =5∑

i=0

(−1)j(v∗0 , ..., v∗i, ..., v∗5)

= (v∗1 , v∗2 , v∗3 , v∗4 , v∗5)− (v∗0 , v∗2 , v∗3 , v∗4 , v∗5) + (v∗0 , v∗1 , v∗3 , v∗4 , v∗5)

− (v∗0 , v∗1 , v∗2 , v∗4 , v∗5) + (v∗0 , v∗1 , v∗2 , v∗3 , v∗5)− (v∗0 , v∗1 , v∗2 , v∗3 , v∗4) (3.13)

now first apply mapg401, we get,

g401 ◦ d(v∗0 , ..., v∗5) =g4

01(v∗1 , v∗2 , v∗3 , v∗4 , v∗5)− g4

01(v∗0 , v∗2 , v∗3 , v∗4 , v∗5)+

g401(v

∗0 , v∗1 , v∗3 , v∗4 , v∗5)− g4

01(v∗0 , v∗1 , v∗2 , v∗4 , v∗5)+

g401(v

∗0 , v∗1 , v∗2 , v∗3 , v∗5)− g4

01(v∗0 , v∗1 , v∗2 , v∗3 , v∗4) (3.14)

Expand by applying mapg401

g401 ◦ d(v∗0 , ..., v∗5) =

5∑

i 6=0i=1

(−1)i+14(v∗1 , ..., v∗i, ..., v∗5)ε

4(v1, ..., vi, ..., v5)⊗ 4(v1, ..., vi+1, ..., v5)4(v1, ..., vi+2, ..., v5)

Page 9: Geometry of Tangential and Configuration Chain Complexes

Geometry of Tangential and Configuration Chain Complexes for Higher Weights 37

4(v1, ..., vi+2, ..., v5)4(v1, ..., vi+3, ..., v5)

∧ 4(v1, ..., vi+3, ..., v5)4(v1, ..., vi+4, ..., v5)

+

5∑

i 6=1i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)⊗ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

5∑

i 6=2i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v1, ..., vi, ..., v5)⊗ 4(v1, ..., vi+1, ..., v5)4(v1, ..., vi+2, ..., v5)

4(v1, ..., vi+2, ..., v5)4(v1, ..., vi+3, ..., v5)

∧ 4(v1, ..., vi+3, ..., v5)4(v1, ..., vi+4, ..., v5)

+

5∑

i 6=3i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)⊗ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

5∑

i 6=4i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)⊗ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

5∑

i 6=5i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)⊗ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

.

(3.15)

now compose mapg402 with d(v∗0 , ..., v∗5), we get,

g402 ◦ d(v∗0 , ..., v∗5) =g4

02(v∗1 , v∗2 , v∗3 , v∗4 , v∗5)− g4

02(v∗0 , v∗2 , v∗3 , v∗4 , v∗5)+

g402(v

∗0 , v∗1 , v∗3 , v∗4 , v∗5)− g4

02(v∗0 , v∗1 , v∗2 , v∗4 , v∗5)+

g402(v

∗0 , v∗1 , v∗2 , v∗3 , v∗5)− g4

02(v∗0 , v∗1 , v∗2 , v∗3 , v∗4) (3.16)

Expand by applying mapg402

g402 ◦ d(v∗0 , ..., v∗5) =

5∑

i6=0i=1

(−1)i+14(v∗1 , ..., v∗i, ..., v∗5)ε

4(v1, ..., vi, ..., v5)∧ 4(v1, ..., vi+1, ..., v5)4(v1, ..., vi+2, ..., v5)

4(v1, ..., vi+2, ..., v5)4(v1, ..., vi+3, ..., v5)

∧ 4(v1, ..., vi+3, ..., v5)4(v1, ..., vi+4, ..., v5)

+

Page 10: Geometry of Tangential and Configuration Chain Complexes

38 M. Khalid, Mariam Sultana, Javed Khan and Azhar Iqbal

5∑

i6=1i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)∧ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

5∑

i6=2i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v1, ..., vi, ..., v5)∧ 4(v1, ..., vi+1, ..., v5)4(v1, ..., vi+2, ..., v5)

4(v1, ..., vi+2, ..., v5)4(v1, ..., vi+3, ..., v5)

∧ 4(v1, ..., vi+3, ..., v5)4(v1, ..., vi+4, ..., v5)

+

5∑

i6=3i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)∧ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

5∑

i6=4i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)∧ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

4∑

i6=5i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗4)ε

4(v0, ..., vi, ..., v4)∧ 4(v0, ..., vi+1, ..., v4)4(v0, ..., vi+2, ..., v4)

4(v0, ..., vi+2, ..., v4)4(v0, ..., vi+3, ..., v4)

∧ 4(v0, ..., vi+3, ..., v4)4(v0, ..., vi+4, ..., v4)

.

(3.17)

Combine Eq.(3.15) and Eq.(3.17), then

g40ε ◦ d(v0, ..., 54) =

5∑

i 6=0i=1

(−1)i+14(v∗1 , ..., v∗i, ..., v∗5)ε

4(v1, ..., vi, ..., v5)⊗ 4(v1, ..., vi+1, ..., v5)4(v1, ..., vi+2, ..., v5)

4(v1, ..., vi+2, ..., v5)4(v1, ..., vi+3, ..., v5)

∧ 4(v1, ..., vi+3, ..., v5)4(v1, ..., vi+4, ..., v5)

+

5∑

i 6=1i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)⊗ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

Page 11: Geometry of Tangential and Configuration Chain Complexes

Geometry of Tangential and Configuration Chain Complexes for Higher Weights 39

5∑

i 6=2i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v1, ..., vi, ..., v5)⊗ 4(v1, ..., vi+1, ..., v5)4(v1, ..., vi+2, ..., v5)

4(v1, ..., vi+2, ..., v5)4(v1, ..., vi+3, ..., v5)

∧ 4(v1, ..., vi+3, ..., v5)4(v1, ..., vi+4, ..., v5)

+

5∑

i 6=3i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)⊗ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

5∑

i 6=4i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)⊗ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

4∑

i 6=5i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗4)ε

4(v0, ..., vi, ..., v4)⊗ 4(v0, ..., vi+1, ..., v4)4(v0, ..., vi+2, ..., v4)

4(v0, ..., vi+2, ..., v4)4(v0, ..., vi+3, ..., v4)

∧ 4(v0, ..., vi+3, ..., v4)4(v0, ..., vi+4, ..., v4)

+

5∑

i 6=0i=1

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)∧ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

5∑

i 6=1i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)∧ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

5∑

i 6=2i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v1, ..., vi, ..., v5)∧ 4(v1, ..., vi+1, ..., v5)4(v1, ..., vi+2, ..., v5)

4(v1, ..., vi+2, ..., v5)4(v1, ..., vi+3, ..., v5)

∧ 4(v1, ..., vi+3, ..., v5)4(v1, ..., vi+4, ..., v5)

+

5∑

i 6=3i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)∧ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

Page 12: Geometry of Tangential and Configuration Chain Complexes

40 M. Khalid, Mariam Sultana, Javed Khan and Azhar Iqbal

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

5∑

i 6=4i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)∧ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

4∑

i 6=5i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗4)ε

4(v0, ..., vi, ..., v4)∧ 4(v0, ..., vi+1, ..., v4)4(v0, ..., vi+2, ..., v4)

4(v0, ..., vi+2, ..., v4)4(v0, ..., vi+3, ..., v4)

∧ 4(v0, ..., vi+3, ..., v4)4(v0, ..., vi+4, ..., v4)

. (3.18)

Take(v∗0 , ..., v∗5) ∈ G6(A4F [ε]r

) again and apply morphismg41ε

g41ε(v

∗0 , ..., v∗5) =− 1

10

5∑

i6=j

(−1)i(⟨

r(vi, vj |v0, ..., vi, vj , ..., v5); rε(v∗i , v∗j |v∗0 ,

..., v∗i, v∗j , ..., v∗5)

]2⊗

5∏

i 6=r

4(v0, ..., vi, vr, ..., v5) ∧5∏

j 6=r

4(v0, ..., vj , vr, ..., v5)+

5∑

i6=ri=0

4(v∗0 , ..., v∗i, v∗r, ..., v∗5)ε

4(v0, ..., vi, vr, ..., v5)⊗ [r(vi, vj |v0, ..., vi, vj , ..., v5)]2⊗

5∏

j 6=r

4(v0, ..., vj , vr, ..., v5) +5∑

j 6=rj=0

4(v∗0 , ..., v∗j , v∗r, ..., v∗5)ε

4(v0, ..., vj , vr, ..., v5)⊗

[r(vi, vj |v0, ..., vi, vj , ..., v5)]2 ⊗5∏

i 6=r

4(v0, ..., vi, vr, ..., v5))

(3.19)

now apply morphismδvarepsilon, then

δε ◦ g41ε(v

∗0 , ..., v∗5) =− 1

10

5∑

i 6=j

(−1)i(⟨

r(vi, vj |v0, ..., vi, vj , ..., v5); rε(v∗i , v∗j |v∗0 ,

..., v∗i, v∗j , ..., v∗5)

]2⊗

5∏

i 6=r

4(v0, ..., vi, vr, ..., v5) ∧5∏

j 6=r

4(v0, ..., vj , vr, ..., v5)+

Page 13: Geometry of Tangential and Configuration Chain Complexes

Geometry of Tangential and Configuration Chain Complexes for Higher Weights 41

5∑

i 6=ri=0

4(v∗0 , ..., v∗i, v∗r, ..., v∗5)ε

4(v0, ..., vi, vr, ..., v5)⊗ [r(vi, vj |v0, ..., vi, vj , ..., v5)]2⊗

5∏

j 6=r

4(v0, ..., vj , vr, ..., v5) +5∑

j 6=rj=0

4(v∗0 , ..., v∗j , v∗r, ..., v∗5)ε

4(v0, ..., vj , vr, ..., v5)⊗

[r(vi, vj |v0, ..., vi, vj , ..., v5)]2 ⊗5∏

i 6=r

4(v0, ..., vi, vr, ..., v5)).

(3.20)

Using wedge and Siegel cross ratio properties [21], then above Eq.(3.20) becomes

δε ◦ g41ε(v

∗0 , ..., v∗5) =

5∑

i 6=0i=1

(−1)i+14(v∗1 , ..., v∗i, ..., v∗5)ε

4(v1, ..., vi, ..., v5)⊗ 4(v1, ..., vi+1, ..., v5)4(v1, ..., vi+2, ..., v5)

4(v1, ..., vi+2, ..., v5)4(v1, ..., vi+3, ..., v5)

∧ 4(v1, ..., vi+3, ..., v5)4(v1, ..., vi+4, ..., v5)

+

5∑

i 6=1i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)⊗ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

5∑

i 6=2i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v1, ..., vi, ..., v5)⊗ 4(v1, ..., vi+1, ..., v5)4(v1, ..., vi+2, ..., v5)

4(v1, ..., vi+2, ..., v5)4(v1, ..., vi+3, ..., v5)

∧ 4(v1, ..., vi+3, ..., v5)4(v1, ..., vi+4, ..., v5)

+

5∑

i 6=3i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)⊗ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

5∑

i 6=4i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)⊗ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

4∑

i 6=5i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗4)ε

4(v0, ..., vi, ..., v4)⊗ 4(v0, ..., vi+1, ..., v4)4(v0, ..., vi+2, ..., v4)

Page 14: Geometry of Tangential and Configuration Chain Complexes

42 M. Khalid, Mariam Sultana, Javed Khan and Azhar Iqbal

4(v0, ..., vi+2, ..., v4)4(v0, ..., vi+3, ..., v4)

∧ 4(v0, ..., vi+3, ..., v4)4(v0, ..., vi+4, ..., v4)

+

5∑

i 6=0i=1

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)∧ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

5∑

i 6=1i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)∧ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

5∑

i 6=2i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v1, ..., vi, ..., v5)∧ 4(v1, ..., vi+1, ..., v5)4(v1, ..., vi+2, ..., v5)

4(v1, ..., vi+2, ..., v5)4(v1, ..., vi+3, ..., v5)

∧ 4(v1, ..., vi+3, ..., v5)4(v1, ..., vi+4, ..., v5)

+

5∑

i 6=3i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)∧ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

5∑

i 6=4i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)∧ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

+

4∑

i 6=5i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗4)ε

4(v0, ..., vi, ..., v4)∧ 4(v0, ..., vi+1, ..., v4)4(v0, ..., vi+2, ..., v4)

4(v0, ..., vi+2, ..., v4)4(v0, ..., vi+3, ..., v4)

∧ 4(v0, ..., vi+3, ..., v4)4(v0, ..., vi+4, ..., v4)

.

(3.21)

So from Eq.(3.15) and Eq.(3.21), it is proved that the above diagram is commutative.¤

Page 15: Geometry of Tangential and Configuration Chain Complexes

Geometry of Tangential and Configuration Chain Complexes for Higher Weights 43

3.3. Geometry for Weight 5. For weight 5 we have following commutative diagram

G8(A6F [ε]2

) p //

d

²²

G7(A5F [ε]2

)g51,ε //

d

²²

TB2(F )⊗ ∧3F× ⊕ F ⊗ B2(F )⊗ ∧2F×

δε

²²G7(A6

F [ε]2) p // G6(A5

F [ε]2)

g50,ε // F ⊗ ∧4F× ⊕ ∧5F×

(F)

where,g50ε(v

∗0 , ..., v∗5) = g5

01(v∗0 , ..., v∗5) + g5

02(v∗0 , ..., v∗5)

g501

(v∗0 , ..., v∗5) =5∑

i=j+1

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)⊗ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

∧4(v0, ..., vi+4, ..., v5)4(v0, ..., vi+5, ..., v5)

(i mod 6), (3.22)

g502

(v∗0 , ..., v∗5) =5∑

j=0

(−1)j+15∧

j 6=ij=0

4(v∗0 , ..., v∗j , ..., v∗5)ε

4(v0, ..., vj , ..., v5)(i mod 6) (3.23)

and

g51ε(v

∗0 , ..., v∗6) =

115

6∑

i 6=j

(−1)i(⟨

r(vi, vj , vj |v0, ..., vi, vj , vk, ..., v6); rε(v∗i , v∗j , v∗k|v∗0 , ...,

v∗i, v∗j , v∗k, ..., v∗6)]2⊗

6∏

i 6=r 6=s

4(v0, ..., vi, vr, vs, ..., v6)∧

6∏

j 6=r 6=s

4(v0, ..., vj , vr, vs, ..., v6) ∧6∏

k 6=r 6=s

4(v0, ..., vk, vr, vs, ..., v6)

+6∑

i 6=r 6=si=0

4(v∗0 , ..., v∗i, v∗r, v∗s, ..., v∗6)ε

4(v0, ..., vi, vr, vs, ..., v6)⊗ [r(vi, vj , vk|v0, ..., vi, vj , vk,

..., v6)]2 ⊗6∏

j 6=r 6=s

4(v0, ..., vj , vr, vs, ..., v6) ∧6∏

k 6=r 6=s

4(v0, ..., vk, vr, vs,

..., v6) +6∑

j 6=r 6=sj=0

4(v∗0 , ..., v∗j , v∗r, v∗s, ..., v∗6)ε

4(v0, ..., vj , vr, vs, ..., v6)⊗ [r(vi, vj , vk|v0, ..., vi,

vj , vk, ..., v6)]2 ⊗6∏

k 6=r 6=s

4(v0, ..., vk, vr, vs, ..., v6) ∧6∏

i 6=r 6=s

4(v0, ..., vi,

Page 16: Geometry of Tangential and Configuration Chain Complexes

44 M. Khalid, Mariam Sultana, Javed Khan and Azhar Iqbal

vr, vs, ..., v6) +6∑

k 6=r 6=sk=0

4(v∗0 , ..., v∗k, v∗r, v∗s, ..., v∗6)ε

4(v0, ..., vk, vr, vs, ..., v6)⊗ [r(vi, vj , vk|v0,

..., vi, vj , vk, ..., v6)]2 ⊗5∏

i6=r 6=s

4(v0, ..., vi, vr, vs, ..., v6) ∧6∏

j 6=r 6=s

4(v0,

..., vj , vr, vs, ..., v6) (mod 6). (3.24)

Lemma 3.4. The right square of diagramF is commutative.

G7(A5F [ε]2

)g51,ε //

d

²²

TB2(F )⊗ ∧3F× ⊕ F ⊗ B2(F )⊗ ∧2F×

δε

²²G6(A5

F [ε]2)

g50,ε // F ⊗ ∧4F× ⊕ ∧5F×

Proof. Let us assume(v∗0 , ..., v∗6) ∈ G7(A5F [ε]r

) and apply morphismd

d(v∗0 , ..., v∗6) =6∑

i=0

(−1)j(v∗0 , ..., v∗i, ..., v∗6)

=⇒d(v∗0 , ..., v∗6) =(v∗1 , v∗2 , v∗3 , v∗4 , v∗5 , v∗6)− (v∗0 , v∗2 , v∗3 , v∗4 , v∗5 , v∗6)+

(v∗0 , v∗1 , v∗3 , v∗4 , v∗5 , v∗6)− (v∗0 , v∗1 , v∗2 , v∗4 , v∗5 , v∗6)+

(v∗0 , v∗1 , v∗2 , v∗3 , v∗5 , v∗6)− (v∗0 , v∗1 , v∗2 , v∗3 , v∗4 , v∗6)+

(v∗0 , v∗1 , v∗2 , v∗3 , v∗4 , v∗5) (3.25)

now first apply mapg501, we get,

g501 ◦ d(v∗0 , ..., v∗6) =g5

01(v∗1 , v∗2 , v∗3 , v∗4 , v∗5 , v∗6)− g5

01(v∗0 , v∗2 , v∗3 , v∗4 , v∗5 , v∗6)+

g501(v

∗0 , v∗1 , v∗3 , v∗4 , v∗5 , v∗6)− g5

01(v∗0 , v∗1 , v∗2 , v∗4 , v∗5 , v∗6)+

g501(v

∗0 , v∗1 , v∗2 , v∗3 , v∗5 , v∗6)− g5

01(v∗0 , v∗1 , v∗2 , v∗3 , v∗4 , v∗6)+

g501(v

∗0 , v∗1 , v∗2 , v∗3 , v∗4 , v∗5) (3.26)

Expand by applying mapg501

g501 ◦ d(v∗0 , ..., v∗6) =

6∑

i 6=0i=1

(−1)i+14(v∗1 , ..., v∗i, ..., v∗6)ε

4(v1, ..., vi, ..., v6)⊗ 4(v1, ..., vi+1, ..., v6)4(v1, ..., vi+2, ..., v6)

4(v1, ..., vi+2, ..., v6)4(v1, ..., vi+3, ..., v6)

∧ 4(v1, ..., vi+3, ..., v6)4(v1, ..., vi+4, ..., v6)

∧4(v1, ..., vi+4, ..., v6)4(v1, ..., vi+5, ..., v6)

+

Page 17: Geometry of Tangential and Configuration Chain Complexes

Geometry of Tangential and Configuration Chain Complexes for Higher Weights 45

6∑

i 6=1i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)⊗ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=2i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)⊗ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=3i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)⊗ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=4i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)⊗ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=5i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)⊗ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

5∑

i 6=6i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)⊗ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

Page 18: Geometry of Tangential and Configuration Chain Complexes

46 M. Khalid, Mariam Sultana, Javed Khan and Azhar Iqbal

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

∧4(v0, ..., vi+4, ..., v5)4(v0, ..., vi+5, ..., v5)

. (3.27)

now compose mapg502 with d(v∗0 , ..., v∗6), we get,

g502 ◦ d(v∗0 , ..., v∗6) =g5

02(v∗1 , v∗2 , v∗3 , v∗4 , v∗5 , v∗6)− g5

02(v∗0 , v∗2 , v∗3 , v∗4 , v∗5 , v∗6)+

g502(v

∗0 , v∗1 , v∗3 , v∗4 , v∗5 , v∗6)− g5

02(v∗0 , v∗1 , v∗2 , v∗4 , v∗5 , v∗6)+

g502(v

∗0 , v∗1 , v∗2 , v∗3 , v∗5 , v∗6)− g5

02(v∗0 , v∗1 , v∗2 , v∗3 , v∗4 , v∗5). (3.28)

Expand by applying mapg502

g502 ◦ d(v∗0 , ..., v∗6) =

6∑

i 6=0i=1

(−1)i+14(v∗1 , ..., v∗i, ..., v∗6)ε

4(v1, ..., vi, ..., v6)∧ 4(v1, ..., vi+1, ..., v6)4(v1, ..., vi+2, ..., v6)

4(v1, ..., vi+2, ..., v6)4(v1, ..., vi+3, ..., v6)

∧ 4(v1, ..., vi+3, ..., v6)4(v1, ..., vi+4, ..., v6)

∧4(v1, ..., vi+4, ..., v6)4(v1, ..., vi+5, ..., v6)

+

6∑

i 6=1i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)∧ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=2i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)∧ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=3i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)∧ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

Page 19: Geometry of Tangential and Configuration Chain Complexes

Geometry of Tangential and Configuration Chain Complexes for Higher Weights 47

6∑

i 6=4i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)∧ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=5i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)∧ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

5∑

i 6=6i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)∧ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

∧4(v0, ..., vi+4, ..., v5)4(v0, ..., vi+5, ..., v5)

. (3.29)

Add Eq.(3.27) and Eq.(3.29), then,

g50,ε ◦ d(v∗0 , ..., v∗6) =

6∑

i 6=0i=1

(−1)i+14(v∗1 , ..., v∗i, ..., v∗6)ε

4(v1, ..., vi, ..., v6)⊗ 4(v1, ..., vi+1, ..., v6)4(v1, ..., vi+2, ..., v6)

4(v1, ..., vi+2, ..., v6)4(v1, ..., vi+3, ..., v6)

∧ 4(v1, ..., vi+3, ..., v6)4(v1, ..., vi+4, ..., v6)

∧4(v1, ..., vi+4, ..., v6)4(v1, ..., vi+5, ..., v6)

+

6∑

i 6=1i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)⊗ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=2i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)⊗ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

Page 20: Geometry of Tangential and Configuration Chain Complexes

48 M. Khalid, Mariam Sultana, Javed Khan and Azhar Iqbal

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=3i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)⊗ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=4i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)⊗ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=5i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)⊗ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

5∑

i 6=5i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)⊗ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

∧4(v0, ..., vi+4, ..., v5)4(v0, ..., vi+5, ..., v5)

+

6∑

i 6=0i=1

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v1, ..., vi, ..., v6)∧ 4(v1, ..., vi+1, ..., v6)4(v1, ..., vi+2, ..., v6)

4(v1, ..., vi+2, ..., v6)4(v1, ..., vi+3, ..., v6)

∧ 4(v1, ..., vi+3, ..., v6)4(v1, ..., vi+4, ..., v6)

∧4(v1, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

Page 21: Geometry of Tangential and Configuration Chain Complexes

Geometry of Tangential and Configuration Chain Complexes for Higher Weights 49

6∑

i 6=1i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)∧ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=2i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)∧ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=3i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)∧ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=4i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)∧ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=5i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)∧ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

5∑

i 6=5i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)∧ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

Page 22: Geometry of Tangential and Configuration Chain Complexes

50 M. Khalid, Mariam Sultana, Javed Khan and Azhar Iqbal

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

∧4(v0, ..., vi+4, ..., v5)4(v0, ..., vi+5, ..., v5)

. (3.30)

Take(v∗0 , ..., v∗6) ∈ G7(A5F [ε]r

) again and compose with morphismg51,ε, then

g51,ε(v

∗0 , ..., v∗6) =

115

6∑

i6=j

(−1)i(⟨

r(vi, vj , vj |v0, ..., vi, vj , vk, ..., v6); rε(v∗i , v∗j , v∗k|v∗0 ,

..., v∗i, v∗j , v∗k, ..., v∗6)]2⊗

6∏

i 6=r 6=s

4(v0, ..., vi, vr, vs, ..., v6)∧

6∏

j 6=r 6=s

4(v0, ..., vj , vr, vs, ..., v6) ∧6∏

k 6=r 6=s

4(v0, ..., vk, vr, vs, ..., v6)+

6∑

i 6=r 6=si=0

4(v∗0 , ..., v∗i, v∗r, v∗s, ..., v∗6)ε

4(v0, ..., vi, vr, vs, ..., v6)⊗ [r(vi, vj , vk|v0, ..., vi, vj , vk, ...,

v6)]2 ⊗6∏

j 6=r 6=s

4(v0, ..., vj , vr, vs, ..., v6) ∧6∏

k 6=r 6=s

4(v0, ..., vk, vr, vs, ...,

v6) +6∑

j 6=r 6=sj=0

4(v∗0 , ..., v∗j , v∗r, v∗s, ..., v∗6)ε

4(v0, ..., vj , vr, vs, ..., v6)⊗ [r(vi, vj , vk|v0, ..., vi, vj ,

vk, ..., v6)]2 ⊗6∏

k 6=r 6=s

4(v0, ..., vk, vr, vs, ..., v6) ∧6∏

i 6=r 6=s

4(v0, ..., vi, vr,

vs, ..., v6) +6∑

k 6=r 6=sk=0

4(v∗0 , ..., v∗k, v∗r, v∗s, ..., v∗6)ε

4(v0, ..., vk, vr, vs, ..., v6)⊗ [r(vi, vj , vk|v0, ...,

vi, vj , vk, ..., v6)]2 ⊗6∏

i 6=r 6=s

4(v0, ..., vi, vr, vs, ..., v6) ∧6∏

j 6=r 6=s

4(v0, ...,

vj , vr, vs, ..., v6) (3.31)

now apply morphismδε, then

δε ◦ g51,ε(v

∗0 , ..., v∗6) =

115

6∑

i 6=j

(−1)i(⟨

r(vi, vj , vj |v0, ..., vi, vj , vk, ..., v6); rε(v∗i , v∗j ,

v∗k|v∗0 , ..., v∗i, v∗j , v∗k, ..., v∗6)]2⊗

6∏

i 6=r 6=s

4(v0, ..., vi, vr, vs, ...,

Page 23: Geometry of Tangential and Configuration Chain Complexes

Geometry of Tangential and Configuration Chain Complexes for Higher Weights 51

v6) ∧6∏

j 6=r 6=s

4(v0, ..., vj , vr, vs, ..., v6) ∧6∏

k 6=r 6=s

4(v0, ..., vk, vr,

vs, ..., v6) +6∑

i 6=r 6=si=0

4(v∗0 , ..., v∗i, v∗r, v∗s, ..., v∗6)ε

4(v0, ..., vi, vr, vs, ..., v6)⊗ [r(vi, vj ,

vk|v0, ..., vi, vj , vk, ..., v6)]2 ⊗6∏

j 6=r 6=s

4(v0, ..., vj , vr, vs, ..., v6)∧

6∏

k 6=r 6=s

4(v0, ..., vk, vr, vs, ..., v6)+

6∑

j 6=r 6=sj=0

4(v∗0 , ..., v∗j , v∗r, v∗s, ..., v∗6)ε

4(v0, ..., vj , vr, vs, ..., v6)⊗ [r(vi, vj , vk|v0, ..., vi,

vj , vk, ..., v6)]2 ⊗6∏

k 6=r 6=s

4(v0, ..., vk, vr, vs, ..., v6) ∧6∏

i6=r 6=s

4(v0,

..., vi, vr, vs, ..., v6) +6∑

k 6=r 6=sk=0

4(v∗0 , ..., v∗k, v∗r, v∗s, ..., v∗6)ε

4(v0, ..., vk, vr, vs, ..., v6)⊗

[r(vi, vj , vk|v0, ..., vi, vj , vk, ..., v6)]2 ⊗6∏

i 6=r 6=s

4(v0, ..., vi, vr, vs,

..., v6) ∧6∏

j 6=r 6=s

4(v0, ..., vj , vr, vs, ..., v6) (3.32)

Using wedge and Siegel cross ratio properties [21], then above Eq.(3.32) becomes

δε ◦ g51,ε(v

∗0 , ..., v∗6) =

6∑

i 6=0i=1

(−1)i+14(v∗1 , ..., v∗i, ..., v∗6)ε

4(v1, ..., vi, ..., v6)⊗ 4(v1, ..., vi+1, ..., v6)4(v1, ..., vi+2, ..., v6)

4(v1, ..., vi+2, ..., v6)4(v1, ..., vi+3, ..., v6)

∧ 4(v1, ..., vi+3, ..., v6)4(v1, ..., vi+4, ..., v6)

∧4(v1, ..., vi+4, ..., v6)4(v1, ..., vi+5, ..., v6)

+

6∑

i 6=1i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)⊗ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

Page 24: Geometry of Tangential and Configuration Chain Complexes

52 M. Khalid, Mariam Sultana, Javed Khan and Azhar Iqbal

4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=2i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)⊗ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=3i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)⊗ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=4i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)⊗ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=5i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)⊗ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

5∑

i 6=5i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)⊗ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

∧4(v0, ..., vi+4, ..., v5)4(v0, ..., vi+5, ..., v5)

+

Page 25: Geometry of Tangential and Configuration Chain Complexes

Geometry of Tangential and Configuration Chain Complexes for Higher Weights 53

6∑

i 6=0i=1

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v1, ..., vi, ..., v6)∧ 4(v1, ..., vi+1, ..., v6)4(v1, ..., vi+2, ..., v6)

4(v1, ..., vi+2, ..., v6)4(v1, ..., vi+3, ..., v6)

∧ 4(v1, ..., vi+3, ..., v6)4(v1, ..., vi+4, ..., v6)

∧4(v1, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=1i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)∧ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=2i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)∧ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=3i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)∧ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=4i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)∧ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

6∑

i 6=5i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗6)ε

4(v0, ..., vi, ..., v6)∧ 4(v0, ..., vi+1, ..., v6)4(v0, ..., vi+2, ..., v6)

Page 26: Geometry of Tangential and Configuration Chain Complexes

54 M. Khalid, Mariam Sultana, Javed Khan and Azhar Iqbal

4(v0, ..., vi+2, ..., v6)4(v0, ..., vi+3, ..., v6)

∧ 4(v0, ..., vi+3, ..., v6)4(v0, ..., vi+4, ..., v6)

∧4(v0, ..., vi+4, ..., v6)4(v0, ..., vi+5, ..., v6)

+

5∑

i 6=5i=0

(−1)i+14(v∗0 , ..., v∗i, ..., v∗5)ε

4(v0, ..., vi, ..., v5)∧ 4(v0, ..., vi+1, ..., v5)4(v0, ..., vi+2, ..., v5)

4(v0, ..., vi+2, ..., v5)4(v0, ..., vi+3, ..., v5)

∧ 4(v0, ..., vi+3, ..., v5)4(v0, ..., vi+4, ..., v5)

∧4(v0, ..., vi+4, ..., v5)4(v0, ..., vi+5, ..., v5)

. (3.33)

¤

From Eq.(3.30) and Eq.(3.33), it can be seen that the map of morphism between thetangential and configuration chain complex for weight 5 is commutative.

4. CONCLUSION

In this research work, new morphisms have been presented for 4 and 5 dimensionalaffine space to define the geometry between tangential and configuration chain complexes.The composite maps for weight 4 and 5 are found to be commutative. In a similar tech-nique, the tangential groupTBn(F ) for any weight “n” can be defined by relating themwith suitable complex.

ACKNOWLEDGMENTS

The authors would like to acknowledge the efforts of their reviewers who provided theirsupport and constructive criticism in order to improve the quality of the research work.

REFERENCES

[1] S. Bloch,Applications of the dilogarithm function in algebraic K-theory and algebraic geometry, Proc. int.Symp. on Algebraic Geometry (Kyoto Univ., Kyoto, Japan), pp. 103114 1978.

[2] J.L. Cathelineau,Remarques sur les differentielles des polylogarithmes uniformes, Ann. Inst. Fourier, Greno-ble,46(5) (1996) 1327-1347. doi:10.5802/aif.1551

[3] J.L. Cathelineau,Infinitesimal polylogarithms, multiplicative presentation of Kahler Differential andGonchrove complexes, Talk at the workshop on polylogarthms, Essen, Germany, May 1-4, 1997.

[4] J.L. Cathelineau,Infinitesimal polylogarithms, The Tangent complex to Bloch-Suslin complex, Bull. Soc.math. France,135(4) (2007) 565-597.

[5] J.L. Dupont and C.H. Sah,Homology of Euclidean groups of motion made discrete and Euclidean scissorscongruences, Acta Math.,164(1990) 1-24.

[6] A.B. Goncharov,The classical trilogarithm, algebraic K-theory of field and Dedekind zeta functions, Bull.of AMS., 24(1) (1991) 155-162.

[7] A.B. Goncharov,Geometry of configuration, polylogarithms and motivic cohomology, Adv. Math.,114(2)(1995) 197-318. doi:10.1006/aima.1995.1045.

[8] A.B. Goncharov,Geometry of the trilogarithm and the motivic Lie algebra of a field, Regulators in Analysis,Geometry and Number Theory,171(2000) 127-165.

[9] A.B. Goncharov and J. Zhao,Grassmannian trilogarithm, Compositio Mathematica,127(1) (2001) 93-108.doi:10.1023/A:1017504115184.

Page 27: Geometry of Tangential and Configuration Chain Complexes

Geometry of Tangential and Configuration Chain Complexes for Higher Weights 55

[10] A.B. Goncharov,Euclidean scissor congruence groups and mixed Tate motives over dual numbers, Mathe-matical Research Letters,11(6) (2004) 771-784. doi:10.4310/MRL.2004.v11.n6.a5.

[11] S. Hussain and R. Siddiqui,Grassmannian complex and second order tangent complex, Punjab Uni. J. ofmath.,48(2) (2016) 91-111.

[12] M. Khalid, J. Khan and A. Iqbal,New homomorphism between Grassmannian and infinitesimal complexes,International Journal of Algebra,10(3) (2016) 97-112. doi:10.12988/ija.2016.6213.

[13] M. Khalid, J. Khan and A. Iqbal,Generalization of Grassmannian and polylogarithmic groups complexes,International Journal of Algebra,10(5) (2016) 221-237. doi:10.12988/ija.2016.6323.

[14] M. Khalid, J. Khan and A. Iqbal,Higher order Grassmannian complexes, International Journal of Algebra,10(9) (2016) 405-413. doi:10.12988/ija.2016.6640

[15] M. Khalid, J. Khan and A. Iqbal,Generalization of higher order homomorphism in configuration complexes,Punjab Univ. j. math.,49(2) (2017) 37-49.

[16] M. Khalid, A. Iqbal and J. Khan,Generalization of the geometry of Cathelineau infinitesimal and Grass-mannian chain complexes, Preprint, 2017, doi10.20944/preprints201703.0098.v1

[17] M. Khalid, J. Khan and A. Iqbal,Generalized geometry of Goncharov and configuration complexes, Turk. J.Math.,42(3) (2018) 1509-1527. doi:10.3906/mat-1702-25

[18] M. Khalid, J. Khan and A. Iqbal,Extension of morphisms in geometry of chain complexes, Punjab Univ. J.Math.,51(1) (2019) 29-49.

[19] M. Khalid and A. Iqbal,Generalized extension of morphisms in geometry of configuration and infinitesimalpolylogarithmic groups complexes, Punjab Univ. J. Math.,51(8) (2019) 111-127.

[20] R. Siddiqui,Configuration complexes and tangential and infinitesimal version of polylogarithmic complexes,Doctoral thesis, Durham University, 2010.

[21] C.L. Siegel,Approximation algebraischer zahlen, Mathem.Ze/tschr,10 (1921) 173-213. (in German)[22] A.A. Suslin,Homology ofGLn, characteristic classes and Milnor’s K-theory, In Proceedings of the Steklov

Institute of Mathematics 1985, Lecture Notes in Mathematics (1046), New York, USA, Springer-Verlag1989; pp. 207-226.