gfr-he/co2 analysis using relap5/athena documents/marshall.pdfathena model: gfr specifications •...

25
GFR-He/CO 2 Analysis Using RELAP5/ATHENA Theron D. Marshall, PhD August 26, 2004

Upload: others

Post on 28-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • GFR-He/CO2 AnalysisUsing RELAP5/ATHENATheron D. Marshall, PhD

    August 26, 2004

  • Idaho National Engineering and Environmental Laboratory

    Slide 2

    Outline of Presentation

    • Gen-IV, Gas-cooled Fast Reactor concept– Looking beyond the Next Generation Nuclear

    Plant• Impetus for Safety Analysis

    – Is passive safety inherently safe?• The Large-Break LOCA

    – One of the most severe GFR challenges• RELAP5/ATHENA Input Model• Modeling Predictions

    – What the numbers imply• Conclusions

  • Idaho National Engineering and Environmental Laboratory

    Slide 3

    What is the Gen-IV GFR Reactor Concept?

    • Has design specifications of:– being inherently safe– using direct Brayton

    cycle energy conversion with the He option

    – featuring high outlet temperatures, which increase thermal efficiency and suggest H2 production

    Background

  • Idaho National Engineering and Environmental Laboratory

    Slide 4

    GFR – Looking beyond the NGNP

    • Anticipated deployment: 2025• Neutron flux of 1 x 1014 n/cm2-s• Power density of 55 MW/m3 to 100 MW/m3

    • Reference core configuration and fuel:– Plate/block, UC with SiC matrix

    • Optional core configuration and fuel:– pin, U-Zr CERMET

    • Reference core coolant:– He at 7 MPa [490 °C {in}, 842 °C {exit}]

    • Optional core coolant:– CO2 at 20 MPa [400 °C {in}, 550 °C {exit}]

    Background

  • Idaho National Engineering and Environmental Laboratory

    Slide 5

    GFR, NGNP – a difference in flow direction

    NGNP with concentric inlet/outletand downward flow through core

    GFR with concentric inlet/outletand upward flow through core

    Background

  • Idaho National Engineering and Environmental Laboratory

    Slide 6

    Impetus for Safety Analysis

    • Gen-IV reactor concepts have the directive of having enhanced safety systems

    • Ideally the reactors will circumvent an accident scenario with minimal operator intervention

    • The high power density of the GFR will effectively challenge any Decay Heat Removal System (DHRS)

    • A passively-safe GFR DHRS may require innovative components and engineering design

    • Safety analyses and experiments are necessary to validate any DHRS designs

    Define Research Task

  • Idaho National Engineering and Environmental Laboratory

    Slide 7

    Challenge of the Large-Break LOCA

    • A double guillotine break of the inlet and outlet legs• Decay Heat: 13% [SCRAM], 1.5% [1 hr], 1.2% [2 hr] of

    600 MW• Gen-IV Objective:

    – Complete decay heat removal with a passive DHRS

    – DHRS should maintain temperature limits for a minimum time period of three days

    • Maximum matrix temperature limit < 2000 °C

    Define Research Task

  • Idaho National Engineering and Environmental Laboratory

    Slide 8

    ATHENA Model: GFR Specifications

    • Coolants: He and S-CO2• Fuel: UC with SiC matrix• TiN radial reflector and BC neutron shield• Overview of system parameters:

    600 MWth20 MPa400 ºC550 ºC

    3260 kg/s8.35 m2

    6.42 m2

    GA-MHR

    600 MWth7 MPa490 ºC850 ºC

    330 kg/s8.35 m2

    6.42 m2

    GA-MHR

    Power LevelCoolant PressureInlet TemperatureOutlet TemperatureMass Flow RateInlet Flow AreaOutlet Flow AreaReactor Cavity Cooling System (RCCS)

    S-CO2HeSystem Parameter

    Bound Research Task

  • Idaho National Engineering and Environmental Laboratory

    Slide 9

    ATHENA Model: GFR Core Cross Section

    600 MWth50 MW/m3

    1.251.7 m127

    20 cm91

    40 %

    Thermal PowerAverage Power DensityAxial Power PeakingCore HeightFuel AssembliesWidth of Fuel AssemblyCoolant Holes/AssemblyCoolant Void Fraction

    ValueCore Parameter

    Bound Research Task

  • Idaho National Engineering and Environmental Laboratory

    Slide 10

    ATHENA Model: Unit Cell Heat Structure

    Bound Research Task

  • Idaho National Engineering and Environmental Laboratory

    Slide 11

    ATHENA Model: Hydraulic Nodalization

    Containment

    Dow

    ncom

    er

    Inlet Plenum

    ShldShld Shld

    Refl

    Shld Shld

    Refl Refl Refl Refl

    Cor

    e-1

    Cor

    e-2

    Cor

    e-3

    Ref

    lect

    or

    Shi

    eld

    Shld

    Refl

    Shld

    Refl

    Shld

    Refl

    Shld

    Refl

    Shld

    Refl

    Outlet Plenum

    Head Plenum

    RV Head

    RV

    Wal

    l

    Outlet

    Inlet

    Bound Research Task

  • Idaho National Engineering and Environmental Laboratory

    Slide 12

    ATHENA Model: Conduction Circuit

    Neutron Shield

    Reflector

    Core

    Core Support

    Outlet Plenum

    Inlet Plenum

    1002

    1003-01

    1000-01

    Reactor Head Dome

    Reactor Vessel

    Upper and Lower Head

    1401-01

    1401-02

    1401-03

    1401-04

    1401-05

    1401-06

    1401-07

    1401-08

    1401-09

    1401-10

    1401-11

    1401-12

    1401-13

    1401-14

    1401-15

    1401-16

    Core Barrel

    1001-01

    1001-02

    1001-03

    1001-04

    1001-05

    1001-06

    1001-07

    1001-08

    1001-09

    1001-10

    1001-11

    1001-12

    1001-13

    1001-14

    1001-15

    1001-16

    1001-17

    Reactor Vessel

    Cylindrical Wall

    Bound Research Task

  • Idaho National Engineering and Environmental Laboratory

    Slide 13

    ATHENA Model: Core Nodalization

    Core

    5000-21

    5000-22

    5000-23

    5000-24

    5000-25

    5000-16

    5000-17

    5000-18

    5000-19

    5000-20

    5000-11

    5000-12

    5000-13

    5000-14

    5000-15

    5000-06

    5000-07

    5000-08

    5000-09

    5000-10

    5000-01

    5000-02

    5000-03

    5000-04

    5000-05

    5002-21

    5002-22

    5002-23

    5002-24

    5002-25

    5002-16

    5002-17

    5002-18

    5002-19

    5002-20

    5002-11

    5002-12

    5002-13

    5002-14

    5002-15

    5002-06

    5002-07

    5002-08

    5002-09

    5002-10

    5002-01

    5002-02

    5002-03

    5002-04

    5002-05

    5004-21

    5004-22

    5004-23

    5004-24

    5004-25

    5004-16

    5004-17

    5004-18

    5004-19

    5004-20

    5004-11

    5004-12

    5004-13

    5004-14

    5004-15

    5004-06

    5004-07

    5004-08

    5004-09

    5004-10

    5004-01

    5004-02

    5004-03

    5004-04

    5004-05

    Reflect

    6000-01

    6000-02

    4000-01

    4000-02

    6002-01

    6002-02

    4002-01

    4002-02

    6004-01

    6004-02

    4004-01

    4004-02

    6006-01

    6006-02

    5006-09

    5006-10

    5006-07

    5006-08

    5006-05

    5006-06

    5006-03

    5006-04

    5006-01

    5006-02

    4006-01

    4006-02

    Shield

    7000-01

    7000-02

    3000-01

    3000-02

    7002-01

    7002-02

    3002-01

    3002-02

    7004-01

    7004-02

    3004-01

    3004-02

    7006-01

    7006-02

    3006-01

    3006-02

    7008-01

    7008-02

    6008-01

    6008-02

    5008-09

    5008-10

    5008-07

    5008-08

    5008-05

    5008-06

    5008-03

    5008-04

    5008-01

    5008-02

    4008-01

    4008-02

    3008-01

    3008-02

    Core Support

    2010-05

    2000-01

    2000-02

    2002-01

    2002-02

    2004-01

    2004-02

    2006-01

    2006-02

    2008-01

    2008-02

    2010-01

    2010-02

    2010-03

    2010-04

    Core Barrel

    1401-01

    1401-02

    1401-03

    1401-04

    1401-05

    1401-06

    1401-07

    1401-08

    1401-09

    1401-10

    1401-11

    1401-12

    1401-13

    1401-14

    1401-15

    1401-16

    1401-17

    1401-18

    1401-19

    1401-20

    1401-21

    1401-22

    1401-23

    1401-24

    1401-25

    1401-26

    1401-27

    Bound Research Task

  • Idaho National Engineering and Environmental Laboratory

    Slide 14

    ATHENA Model: Radiation Circuit

    Bound Research Task

  • Idaho National Engineering and Environmental Laboratory

    Slide 15

    ATHENA Model: Core, Containment, RCCS

    Bound Research Task

  • Idaho National Engineering and Environmental Laboratory

    Slide 16

    ATHENA Model: Input Deck Specifics

    • Heat Structures: 134• Mesh Points: 725• Hydrodynamic Volumes: 144• Volume:

    – Coolant (He/CO2): 6,608 m3

    – RCCS (air): 816 m3

    • Mass:– He Coolant: 9,348 kg– CO2 Coolant: 44,402 kg– RCCS 947 kg

    Bound Research Task

  • Idaho National Engineering and Environmental Laboratory

    Slide 17

    ATHENA Model: Boundary Conditions

    • Specified:– coolant inlet temperature [490°C, He] [400°C, CO2]– coolant outlet temperature [842°C, He] [550°C, CO2]

    • Calculated:– coolant flow rate calculated during steady state to

    provide desired outlet plenum temperature• Assumed:

    – SCRAM curve of PWR– No gamma/neutron heating in reflector/shield– Containment pressure maintained [~0.8 MPa, He]

    [~1.8 MPa, CO2]– RCCS is the DHRS (baseline case)

    Bound Research Task

  • Idaho National Engineering and Environmental Laboratory

    Slide 18

    • Steady-State Analysis– determined by constant containment temperature– volumetric heat capacity decreased by factor of 100– problem time of 4,200 s

    Overview of ATHENA Steady-State Analysis

    Perform Research Task

  • Idaho National Engineering and Environmental Laboratory

    Slide 19

    • LB-LOCA Transient– problem time reset to

    0 s– valves open coolant

    loop to containment at 10 s

    – SCRAM starts at 10 s and finishes at 14 s

    – Problem time: 180,000 s (50 hrs)

    Overview of ATHENA Transient Analysis

    Perform Research Task

  • Idaho National Engineering and Environmental Laboratory

    Slide 20

    He Case Approaches Matrix Temp. Limit*

    CO2 He

    *Containment pressure maintained

    Understanding the Results

  • Idaho National Engineering and Environmental Laboratory

    Slide 21

    Containment Pres. Enhances Heat Transfer

    Containment Volume: 6,063 m3

    PQ m C T

    m A Vρ

    = ⋅ ⋅

    = ⋅ ⋅

    Understanding the Results

  • Idaho National Engineering and Environmental Laboratory

    Slide 22

    Containment Temp. Means More Design Work

    Understanding the Results

  • Idaho National Engineering and Environmental Laboratory

    Slide 23

    Vessel Temperature Is A Design Challenge

    Understanding the Results

  • Idaho National Engineering and Environmental Laboratory

    Slide 24

    CO2 Downcomer Flow Shows Flow Reversal

    CO2 He

    Understanding the Results

  • Idaho National Engineering and Environmental Laboratory

    Slide 25

    Conclusions and Future Work

    • The RELAP5 results compare well with expected temperature and pressure trends

    • The temperature limit of the core matrix material may be reached when He is the coolant

    • The densities of the two coolants play an important part in the DHRS performance

    • Future work will include:– sensitivity studies on containment transient pressure– CO2 injection for the He DHRS– Analysis with CERMET fuel pins