gical sur geological survey of finland current research...

102
Geological Survey of Finland Current Research 2003-2004 Geological SurveyofFinland Espoo 2005 Geological Survey of Finland, Special Paper 38 Edited by Sini Autio

Upload: others

Post on 25-Jun-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of FinlandCurrent Research 2003-2004

Geological Survey of FinlandEspoo 2005

Geological Survey of Finland, Special Paper 38

Edited by Sini Autio

Tätä julkaisua myy Denna publikation säljes av This publication can be obtained from

GEOLOGIAN GEOLOGISKA GEOLOGICAL SURVEYTUTKIMUSKESKUS (GTK) FORSKNINGSCENTRALEN (GTK) OF FINLAND (GTK)Julkaisumyynti Publikationsförsäljning Publication salesPL 96 PB 96 P.O. Box 9602151 Espoo 02151 Esbo FI-02151 Espoo, Finland( 020 550 11 ( 020 550 11 ( +358 20 550 11Telekopio: 020 550 12 Telefax: 020 550 12 Telefax: +358 20 550 12

GTK, Kuopion yksikkö GTK, Kuopio enhet GTK, Kuopio UnitKirjasto Biblioteket LibraryPL 1237 PB 1237 P.O. Box 123770211 Kuopio 70211 Kuopio FI-70211 Kuopio, Finland( 020 550 11 ( 020 550 11 ( +358 20 550 11Telekopio: 020 550 13 Telefax: 020 550 13 Telefax: +358 20 550 13

GTK, Rovaniemen yksikkö GTK, Rovaniemi enhet GTK, Rovaniemi UnitKirjasto Biblioteket LibraryPL 77 PB 77 P.O. Box 7796101 Rovaniemi 96101 Rovaniemi FI-96101 Rovaniemi, Finland( 020 550 11 ( 020 550 11 ( +358 20 550 11Telekopio: 020 550 14 Telefax: 020 550 14 Telefax: +358 20 550 14

E-mail: [email protected] ISBN 951-690-916-7WWW-address: www.gtk.fi ISSN 0782-8535

Geolo gical Sur ve y of F

inland, Curr ent R

esear ch 2003 – 2004S

ini A

utio (ed.)

selkä 7,5 mm

9 789516 909168

Page 2: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland

Geological Survey of Finland, Special Paper 38

Geological Survey of FinlandCurrent Research 2003-2004

edited by SiniAutio

Espoo 2005

Page 3: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Autio, Sini 2005.Geological Survey of Finland,Current Research 2003–2004. Geological Survey of Finland, Special Paper 38, 100 pages, 72 figures and 6tables.The publication contains 9 articles outlining the current research at the Geo-

logical Survey of Finland (GTK). The articles are divided into four categories. Petrological investigations, economicgeology and mineral exploration, Envi-ronmental studies,Geophysical applications andAnalyticalmethods. At the endof the publication there is a list of publications by GTK staff in 2003 and 2004. From now on the current research of the GTK will be published in electronicform at the GTK’s internet pages, so this issue will be the last printed versionon this subject so far.An article in alvikite vein-dykes presents a new carbonatite in southwestern

Finland. The vein-dykes intrude Palaeoproterozoic (1.88. Ga) pyroxene tona-Ga) pyroxene tona-lite. The Svecofennian orogeny in Finland produced a series of 1.9 Ga nickelThe Svecofennian orogeny in Finland produced a series of 1.9 Ga nickelbearing mafic and ultramafic intrusions mainly found within migmatitic micagneisses.An intrusionmodel ispresented for these indifferent tectonicconditions produced intrusions with pronounced variation in size, shape and lithology. Anarticle on gold prospectivity of highlymetamorphosed gneisses andmigmatites in southwestern Finland is presented. The mineralization is characterized byrusty, strongly foliated sillimanite-cordierite gneisses and mica schists. Oreprospecting in the ribbedmoraine area ofMisi, northern Finland has carried out as a part of the detailed investigation of the iron oxide-copper-gold deposits. Observations made have shown the area to be potential for ore prospecting. Inthe search for abundant and high quality kaolin resources more than 20 kaolindeposits has been investigated in northern Finland. This research has focussedon Palaeoproterozoic metasedimentary rocks using a variety of airborne andground geophysical techniques supplemented by drilling. In theOstrobothnian region ofwesternFinland extensive parts are covered by

sulphide rich clay and silt sediments which alter to harmful sulphate soils whenexposed to the air.A geophysical characterizing of the fine-grained sedimentshas beenmade and the results gathered are not directly applicable to another areawithout new referencedrilling, samplingandchemicalanalysis. The preliminaryresults of a project to test and develop geophysical techniques for mappingsulphide tailings impundments. The study site Hammaslahti Cu-Zn mine has a tailings area of 30 hectares with average height of 9 metres. Four different field-based portable fluorescence (OXRF) instruments for the determination ofheavy-metal contents in contaminated soils were evaluated. The results werecomparedwith results obtained by inductively coupled plasma-atomic emissionspectrometry (ICP-AES) and X-ray fluorescence spectrometry (XRF).

Key words (GeoRef Thesaurus, AGI): Geological Survey of Finland, current research, programs, bibliography, Finland

Sini AutioGeological Survey of FinlandP.O. Box 96FI-02151 ESPOO, FINLAND

ISBN 951-690-916-7ISSN 0782-8535

Vammalan Kirjapaino Oy 2005

Page 4: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

CONTENTS

Petrological investigations, economic geology andmineral explorationThe Naantali alvikite vein-dykes: a new carbonatite in southwestern Finland,JeremyWoodard and Pentti Hölttä ............................................................................ 5

Intrusion model for Svecofennian (1.9 Ga) mafic-ultramafic intrusions in Finland,Hannu V. Makkonen .................................................................................................. 11

The Halikko Kultanummi prospect - a new type of gold mineralization in thehigh-grade gneiss terrain of southwestern Finland, Sari Grönholm, Niilo Kärkkäinenand Jonas Wiik ........................................................................................................... 15

Ore prospecting in the ribbed moraine area ofMisi, northern Finland, Pertti Saralaand Jari Nenonen ........................................................................................................ 25

Exploration results and mineralogical studies on the Lumikangas apatite-ilmenitegabbro, Kauhajoki, western Finland, Olli Sarapää, Niilo Kärkkäinen, Tegist Chernet,Jaana Lohva and TimoAhtola .................................................................................... 31

Vittajänkä kaolin deposit, Salla, Finnish Lapland, Panu Lintinen and Thair Al-Ani 40

Environmental studiesGeophysical characterizing of tailings impoundment – a case from the closedHammaslahti Cu-Zn mine, eastern Finland, Heikki Vanhala,Marja Liisa Räisänen,Ilkka Suppala, Tarja Huotari, Tuire Valjus and Jukka Lehtimäki .............................. 49

Geophysical applicationsGeophysical characterising of sulphide rich fine-grained sediments in Seinäjoki area,western Finland, Ilkka Suppala, Petri Lintinen and Heikki Vanhala ......................... 61

Analytical methodsEvaluation of portable X-ray fluorescence (PXRF) sample preparation methods,Jussi V-P. Laiho and Paavo PerämäkiLaiho and Paavo Perämäki ........................................................................ 73

PublicationsPapers published by Geological Survey staff in 2003–2004 ..................................... 83

Geological Survey of Finland, Current Research 2003–2004Edited by Sini AutioGeological Survey of Finland, Special Paper 38, 3, 2005

Page 5: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio
Page 6: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

5

Geological Survey of Finland, Current Research 2003–2004,Edited by SiniAutio.Geological Survey of Finland, Special Paper 38, 5– , 2005.

ThE NAANTAliAlvikiTE vEiN-dykES:ANEw CARbONATiTE iN SOuThwESTERNFiNlANd

introduction

A small swarm of carbonate vein-dykes has beenidentified in the town of Naantali in southwestFinland. The vein-dykes range in width from 1-60centimetres,with themajority between 3-20 cm. Thevein-dykes intrude Svecofennian pyroxene tonalite. The vein-dykes are surrounded by a narrow band offeniticalterationcharacterisedchemicallyby removalof silicon and addition of potassium. In a wide areaaround the vein-dykes, the host rocks show signs ofhydrothermal alteration, including widespread ran-domlyoriented calcite + epidote + prehniteveinlets as well as pervasive staining from iron oxides. Chemicaland textural evidence suggest that the carbonate vein-dykes are of magmatic origin.

Geological setting

The study area is extending for approximately twokilometres in length and one kilometre in width inthe town centre area of Naantali. Themajority of thevein-dykes follow the same general NW-SE trendand dip to the northeast at an average angle of 45º. The vein-dykes cut the existing schistosity of thesurrounding rocks, the difference in strike being 60-90º and in dip 45–50º. Figure 1 is a map of the studyarea, showing the zones of alteration. Good qualityoutcrops are found along the steep western slopes oftheKuparivuori hill and along shorelines. Elsewhere,

outcrops are limited to occasional roadcuts. Extremesensitivity toweathering, soil or water cover, and thepresence of man-made structures inhibits the searchfor additional vein-dykes.Carbonate rocks are light grey to pink in colour,

and often show a banded or layered texture. The vein-dykesarecomposedofmedium tofinegrainedcalcite,with repetitions of grain size variation parallel to themargins. Accordingly, the rock type could be calledalvikite. Iron oxides are common as an interstitialdusting in streaks also parallel to the strike. Similar texture from theWasaki complex of Kenya is takenas evidence by Le Bas (1977) of flow parallel to themargins and crystallisation from molten magma. Figure 2 shows the appearance of the vein-dykes inoutcrop. Inaddition to the ironoxides, dark red-brownapatite is also easily visible in hand specimen. Other accessorymineralsoccasionallyvisible includequartz,allanite, and chlorite. Andersen (1984) describes asimilar paragenesis from the Rødberg portion of theFen complex. In one outcrop, fragments of the wallrock appear within the vein-dyke and appear to havebeen plucked from the sides. Given the low viscosityofcarbonatemelts (e.g.Dobsonetal.1996), thiswouldrequire a forceful intrusion and rapid cooling.The vein-dykes intrude dark grey Palaeoprotero-

zoic (1.88 Ga, Väisänen et al. 2002) Svecofennianpyroxene tonalite. A petrography of these rocks is given by Helenius (2003). Alteration surroundingthe vein-dykes can be divided into three zones. Zone

1) Department of Geology, University of Turku, FI-20014 Turku, Finland2) Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland

[email protected], [email protected]

Key words (GeoRef Thesaurus,AGI): carbonatites, alvikite, dikes, geochemistry, host rocks, alteration, fenite, Naantali, Finland

10

byJeremyWoodard1) and Pentti Hölttä2)

Page 7: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38JeremyWoodard and Pentti Hölttä

6

I is in immediate contact with the vein-dykes andrarely exceeds 30 cm inwidth. It is a potassic contact fenite, dark red in colour, with a normative syenitecomposition.Zones IIand IIIareaureole fenites showingagrada-

tion inalteration intensity.Randomlyorientedcalcite+ epidote+prehniteveinletsareabundant inbothzones. Zone II is approximately 200–300 metres in width,pink to red in colour, andhas anormativegranodioritecomposition. Zone III extends an additional 200–300metres from thevein-dykes, and is a pyroxenebearinggrey granodiorite,with narrow bands (≤1cm) of ZoneII type alterations around the veinlets. The border between Zones II and III is arbitrarily placed at thelimit of grey rocks. The original foliation of the rocks is preserved in Zone III, but is no longer evident inZone II. Grain size is noticeably increased to 3–5mmin theZone I contact fenites, compared to0.5–1.5mmin the aureole fenites, Zones II and III.

Petrography

Thin section study reveals that the texture of thecarbonate rock (alvikite) is hypidiomorphic. Calciteis subhedral and comprises approximately 90% of therock.Quartzoccurs asfine-grainedaggregatesandap-pears limited to areas near the contact. Fine grains ofapatite, allanite, chlorite, fluorite, and titaniteoccur as

Fig. 1. Map of the study area showing zones of alteration.

Fig. 2. Field photograph of a vein-dyke and contact fenite. Diameter ofcoin 2,5 cm.

Page 8: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

7

Geological Survey of Finland, Special Paper 38The Naantali alvikite vein-dykes: a new carbonatite in southwestern Finland

accessoryminerals. In some samples calcite has beenaltered to prehnite at the contact. Opaque minerals occur generally in bands, and some mineral grains,particularly apatite, are stainedwith ironoxides. SEMexamination has revealed monazite and members ofthe bastnäsite series as inclusions in apatite. Allanite is non-metamict, strongly pleochroic, and

commonly forms haloes around aggregates of apatiteand quartz. Woolley et al. (1991) describe this textureWoolley et al. (1991) describe this texture(1991) describe this texturefrom extrusive carbonatites in the Uyaynah area ofthe United Arab Emirates. Allanite is not a commonmineral in carbonatites, but it has been reported fromvarious locations includingBayanObo,China (Yang&LeBas2004),MountainPass,CaliforniaandUyaynah,UAE (Woolley et al. 1991). Zone I altered rocks one I contain K-feldspar,

plagioclase, chlorite, and actinolite. Some samples have a thin (>5mm) band of actinolite + diopside at the contact. Silica in the form of free quartz has beenalmost completely removed from the rock. Feldspars are heavily altered and pervasively stained with ironoxides.Chessboardalbite,asdescribedbyKrestenandMorogan (1986) from the Fen complex also occurs.Calcite, apatite, clinopyroxene, epidote and opaqueminerals occur as accessory phases.Zone II rocks are similar, however, plagioclase is

more abundant than K-feldspar. Zone II rocks alsocontain more quartz and less actinolite than Zone I. Alteration is less pronounced in feldspars, but ironoxide staining is still present throughout. Epidote,clinopyroxene and opaque minerals also occur as accessories. Apatite is no longer an important phase,and calcite only occurs in the calcite + epidote + prehnite veinlets.InZone III, alteration of the same type as inZone II

occurs only in bands (≤1cm) around veinlets. Biotitecan be seen reacting to chlorite in the outer areas ofthese bands. Outside of these bands, the rock contains plagioclase, quartz, K-feldspar, biotite, and orthopy-roxene. It should be noted that although the grey rocks of this zone appear unaltered, K-feldspar is present,while it is not present in the unaltered rocks examinedbyHelenius (2003).Microscopic-scalequartzveinlets also occur in this zone.

Geochemistry

Whole-rockgeochemicalanalysiswasconductedat the Geological Survey of Finland (GTK). Major andtrace elementswere determined using X-ray Fluores-cence (XRF) and rare earth elementswere determinedusing ICP-MS. Table 1 shows the analytical results as average concentrations of selected elements for thevein-dykes and each of the alteration zones. Average

continental alvikite values are from Le Bas (1999). Pyroxene tonalite analyses represent unaltered host rocks and are taken from Helenius (2003).Samples fromNaantali plot on theCaO-MgO-FeO

diagram of Le Maitre et al. (1989) in the calciocar-bonatite field (Fig. 3). Both sövite and alvikite arecalciocarbonatites, sövite being coarse grained andalvikite medium to fine grained. The Naantali car-bonatites fall into the latter category. Le Bas (1999) proposed a chemical distinction between sövite andalvikitebasedon traceelementchemistry.Onaverage,alvikites are less enriched in Sr andmore enriched inREE than sövites. The Naantali alvikite is enrichedin Sr, REE andY. Trace element concentrations fromNaantali are very close to the average for alvikite. Thecarbonatitemagmawas enriched inK,Sr,Ba,P,

REE, and to some extent Na andY. Rollinson (1993) describes elements including K, Sr, Rb, and Ba as mobile, while P, REE, V, Y, Ti and Zr are immobileduring hydrothermal alteration. Mobile element en-richment, particularly Sr, is disseminated throughout all the alteration zones. Immobile elements from thecarbonatite magma, such as Y and REE, were onlyable toenter theZone I fenites. Immobileelements not present in the magma, but present in the host rocks,includingV,Ti, andZr, remain at constant levels in allthe alteration zones. This shows that Zone I fenites arethe product of contact metasomatism while the ZoneII and III aureole fenitizationwas causedby ahydrous fluid. Whether the fluid source was degassing of thecarbonatite or a later event is not known.Figure 4 shows chondrite normalized REE abun-

dances for the Naantali rocks. LREE is heavily en-riched relative toHREE, a pattern common to partial

Fig. 3. Naantali alvikites plotted on the CaO-MgO-FeO diagram of LeMaitre et al. (1989).

Page 9: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38JeremyWoodard and Pentti Hölttä

8

Table 1. Whole rock chemical analyses of selected samples in the study area. XRF detection limits (ppm) for trace elements: S and Cl = 60; V, Cr,and Pb = 30; Ni, Cu, Zn, Ga, and Ba = 20; Rb, Sr, Zr and Nb = 10. ICP-MS detection limits (ppm): Sc and Th = 0.5; Sm, Nd and U = 0.2; Gd and Er= 0.15; Ce, Eu, La, Lu, Pr, Tb, Dy, Ho, Tm and Y = 0.1. x = below detection; - = no data.Average continental alvikite from Le Bas (1999). Pyroxenetonalite is from Helenius (2003).

Averagecontinentalalvikite

JW0407alvikite

JW0427alvikite

JW0432alvikite

JW0406Zone I

JW0436Zone I

JW0401Zone II

JW0422Zone II

JW0402Zone III

Naantalipyroxenetonalite

SiO2 1.5 4.35 7.06 15.1 56.8 60.5 67.7 67.4 66.2 63.36TiO2 0.07 <0.005 0.028 <0.005 0.452 0.597 0.505 0.48 0.502 0.62Al2O3 0.18 0.38 1.31 3.83 14.2 15 15.1 15.7 15.7 15.8Fe2O3 2.7 0.58 0.6 1.21 3.31 3.99 3.98 4.05 3.76 6.3MnO 0.57 0.102 0.05 0.051 0.101 0.071 0.064 0.051 0.056 0.09MgO 0.58 0.27 0.52 2.04 3.47 4.06 2.34 2.66 2.46 3.15CaO 49.4 53.9 51.5 41.9 7.68 4.72 1.77 1.42 3.6 4.58Na2O 0.13 <0.067 0.12 <0.067 1.54 2.25 5.42 6.05 4.88 3.94K2O 0.08 0.007 0.046 0.501 6.84 7.29 2.55 1.57 2.31 1.58P2O5 0.66 1.03 0.362 2.7 0.392 0.29 0.208 0.206 0.198 0.22CO2 39.85 39.94 38.47 29.13 - - - - - -Total 95.72 100.56 100.07 96.46 94.79 98.77 99.64 99.59 99.67 99.64

S 6509 80 x 250 x x x x x -Cl - 160 70 400 100 130 90 130 80 -Sc 3 x x x 7.29 7.5 6.55 5.92 6.84 13V 56 x x x 90 93 82 69 71 72Cr 2 x x x 65 77 80 76 73 81Ni 8 x x x 51 35 43 59 46 50Cu 15 x x x x 197 30 x x 35Zn 112 x x 21 86 61 67 79 60 94.5Ga 2 x x x 29 21 x 27 27 22Rb 5 x x 15 243 173 91 80 60 74Sr 2642 2422 2111 1653 3535 916 746 955 990 587Y 108 60.7 35.1 74.5 22.5 12.9 9.43 6.93 9.56 8.9Zr 3 x x x 80 160 142 129 133 138Nb 86 x x x 11 x x x x 7.65Ba 5366 x 20 131 4940 896 411 270 458 292Pb 11 x x 30 32 x x x x 8La 773 772 498 1180 203 68.4 18.9 12.6 23.2 30.6Ce 1578 1810 1120 2550 521 159 43.1 26.7 49.9 60.6Pr - 229 135 310 65.1 19 5.37 3.44 5.78 6.52Nd 550 929 544 1250 265 80.1 23.2 13.5 25.2 23.9Sm - 100 53.8 129 30.3 10.5 3.87 2.38 4.39 4.03Eu - 23.5 15.3 32.3 7.17 3.51 1.15 0.87 1.24 1.65Gd - 62.1 34.6 80.3 19.2 7.89 3.61 2.32 3.64 3.11Tb - 5.7 3.33 7.48 1.9 0.8 0.4 0.31 0.45 0.37Dy - 13.8 7.83 18.9 5.26 2.98 1.89 1.42 1.88 1.89Ho - 1.99 1.16 2.51 0.79 0.43 0.35 0.25 0.3 0.35Er - 4.24 2.39 5.32 1.76 1.02 0.85 0.54 0.96 0.91Tm - 0.44 0.26 0.57 0.22 0.13 0.11 x 0.11 0.12Lu - 0.37 0.24 0.44 0.17 0.11 0.1 x 0.11 0.11Th 66 15.7 4.52 31.4 4.79 2.1 2.52 2.24 3 1.7U 20 1.18 0.69 5.32 1 1.21 0.76 1.29 0.46 0.45

Page 10: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

9

Geological Survey of Finland, Special Paper 38The Naantali alvikite vein-dykes: a new carbonatite in southwestern Finland

melting in mantle sources (e.g. Rollinson 1993). AhighLREE/HREE ratio is typical to carbonatites (e.g. Woolley et al. 1991), while Ekambaram et al. (1986)have shown that hydrothermal carbonates will havelow LREE concentrations and relative enrichment inMREE and HREE.Three samples were analysed for stable carbon and

oxygen isotopes. Sample JW0404 is alvikite andwas analysed at the University of Helsinki; samples PSH-04–01.1 (alvikite) and PSH-04–01.2 (Zone II calcite+ epidote + prehnite veinlet) were analysed at theGeological Survey of Finland. Results are given inTable 2. δ18O values from alvikite samples fallwithinthenormal range forcarbonatites,while thevalue fromthe veinlet is only slightly heavier. Combined withthe δ13C values, the alvikite samples fall just below(lighter C) the field for carbonatites given by DeinesandGold (1973) whereas values from the veinlets fallto the right (heavier O).

discussion

Carbonatitesare igneous rockscomprisedofgreater than 50% carbonate minerals (e.g. Le Bas 1977). Many different criteria have been proposed for theidentification of carbonatites, unfortunately no singlepiece of evidence is truly diagnostic. Evidence frommultiple sources including textures, mineral assem-blages, geochemistry, alteration, and stable isotopes must be considered. Carbonatites are characterised by high levels of

Sr, Ba, REE and Y (e.g. Puustinen & Karhu 1999). The vein-dykes in Naantali are enriched in Sr,Y, andREE, particularly LREE. Ba, though virtually absent in the vein-dykes, is highly enriched in altered rocks,

particularly in Zone I. Although carbonatitemelts aretypically high inK andNa, this is not universally true. For example, Barker and Nixon (1989) report K- andNa-poor carbonatite magma at Fort Portal, Uganda. The Naantali vein-dykes lack alkalis, but the enrich-ment pattern in the fenites suggests that thecarbonatitemagma was rich in K but relatively poor in Na. Fenitization is a metasomatic process occurring

aroundcarbonatiteandalkaline igneous intrusions typi-cally involving the removal of silica and the additionof alkali elements (e.g. Le Bas 1977). Fenites show agreat deal of variation in chemical composition, basedon variations in the compositions of the fenitizingfluid, degree of fenitization, and original compositionof the rock.Vartiainen andWoolley (1976) distinguishbetween sodicand potassic fenitization,whileKresten(1988) makes divisions of contact, aureole, and vein-type fenites. InNaantali, addition ofK and removal ofSicorresponds topotassic fenitization.Zone Ialterationin Naantali represents contact fenitization; Zones IIand III are aureole fenites of decreasing intensity.A δ13C–δ18O isotope comparison is often used to

trace the origins of limestones. Isotope values arewithin the range of -2 to –12δ13CPDB and +10 to +26δ18O SMOW given by Barker and Nixon (1989) for the Fort Portal carbonatite inUganda. Values are alsoclose to those given by Puustinen and Karhu (1999) for theHalpanen carbonatite in southeastern Finland. The δ13C values also differ markedly from the rangeof -3 to 3 δ13C given byKarhu (1993) for sedimentarycarbonates in the Svecofennian domain.Carbonate vein-dykes in Naantali show magmatic

textures including flow banding and incorporation ofwall-rock fragments on an outcrop scale. Chemicalevidence is consistent with established normal values for carbonatite. Isotopic evidence is also consistent with other carbonatites. Chemical and isotopic dataalsodiffer fromnormal sedimentaryandhydrothermalcarbonates. The combined body of evidence shows that the carbonate vein-dykes in Naantali formed bythe intrusion of carbonatite magma.

JW0404 PSH-04-01.1 PSH-04-01.2δ13C PDB -11,48 -11,29 -5,99δ18O SMOW 9,96 11,76 17,11

Table 2. Carbon and Oxygen isotope ratios. Samples aredescribed in text.

Fig. 4. Chondrite normalized REE abundances for the Naantali rocks. Symbols are as follows: filled squares = Alvikite vein-dykes; filled cir-cles = Zone I; open circles = Zone II; open squares = Zone III; crosses= Pyroxene tonalite.

Page 11: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38JeremyWoodard and Pentti Hölttä

10

REFERENCES

Andersen,T. 1984. Secondary processes in carbonatites: petrol-ogy of “rødberg” (hematite-calcite-dolomite carbonatite) inthe Fen central complex, Telemark (South Norway). Lithos 17, 227–245.

barker,d.S.&Nixon,P.h.1989.High-Ca, lowalkalicarbonatitevolcanism at Fort Portal,Uganda. Contributions toMineralogyand Petrology 103, 166–177.

deines, P. & Gold, d.P. 1973. The isotopic composition ofcarbonatite and kimberlite carbonates and their bearing on theisotopic composition of deep-seated carbon. Geochimica et CosmochemicaActa 37, 1709–1733.

dobson, d.P., Jones, A.P., Rabe, R., Sekine, T., kurita, k.,Taniguchi, T., kondo, T., kato, T., Shimomura, O. & Sa-toruurakawa, S. 1996. In-situmeasurement of viscosity andIn-situmeasurement of viscosity anddensityof carbonatemelts at high pressure. Earth andPlanetaryScience Letters 143, 207–215.

Ekambaram,v.,brookins,d.G.,Rosenberg,P.E.,&Emanuel,k.M. 1986. Rare-earth element geochemistry of fluorite-car-bonatedeposits inwesternMontana,U.S.A.ChemicalGeology54, 319–331.

helenius, E.M. 2003. Turun alueen charnockiittien petrogen-esis. Unpublished master’s thesis, University of Turku. (InFinnish) 72 p.

karhu, J.A. 1993. Paleoproterozoic evolution of the carbonisotope ratios of sedimentary carbonates in the FennoscandianShield. Geological Survey of Finland, Bulletin 371. 87 p.87 p.

kresten, P. 1988. The chemistry of fenitization: Examples fromFen, Norway. Chemical Geology 68, 329–349.

kresten,P.&Morogan,v.1986.Fenitizationat theFencomplex,southern Norway. Lithos 19, 27–42.

le bas,M.J. 1977. Carbonatite-NepheliniteVolcanism. Bristol:JohnWiley & Sons, Ltd. 347 p.

le bas,M.J. 1999. Sövite and alvikite: two chemically distinct calciocarbonatites C1 and C2. SouthAfrican Journal of Geol-ogy 102, 109–121.

le Maitre, R.w., bateman, P., dudek, A., keller, J., lam-eyre, J., le bas,M.J., Sabine, P.A., Schmid, R., Sorensen,h., Streckeisen, A., woolley, A.R. & Zanettin, b. 1989. AClassification of the Igneous Rocks and Glossary of Terms:Recommendations of the International Union of GeologicalSciences Subcomission on the Systematics of Igneous Rocks. Oxford: Blackwell Scientific Publications. 193 p.

Puustinen, k. & karhu, J. 1999. Halpanen calcite carbonatitedike, Southeastern Finland. Geological Survey of Finland,Special Paper 27, 39-41.

Rollinson, h. 1993. Using Geochemical Data: evaluation, pres-entation, interpretation. Harlow: Pearson Education Limited. 352 p.

väisänen, M., Mänttäri, i. & hölttä, P. 2002. Svecofennianmagmatic andmetamorphic evolution in southwestern Finlandas revealed byU-Pb zircon SIMS geochronology. PrecambrianResearch 116, 111–127.

vartiainen,h. &woolley,A.R. 1976. The petrography,mineral-ogyandchemistryof the fenitesof theSoklicarbonatite intrusion,Finland. Geological Survey of Finland, Bulletin 280. 87 p.

woolley, A.R., barr, M.w.C., din, v.k., Jones, G.C., wall,F., & williams, C.T. 1991. Extrusive Carbonatites from theUyaynah Area, United Arab Emirates. Journal of Petrology32, 1143–1167.

yang, X.M. & le bas, M.J. 2004. Chemical compositions ofcarbonate minerals from Bayan Obo, Inner Mongolia, China:implications for petrogenesis. Lithos 72, 97–116.

Page 12: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

11

Geological Survey of Finland, Current Research 2003–2004,Edited by SiniAutio.Geological Survey of Finland, Special Paper 38, 11– , 2005.

iNTRuSiONMOdEl FOR SvECOFENNiAN (1.9 GA) MAFiC-ulTRAMAFiC iNTRuSiONSiN FiNlANd

byHannu V. Makkonen

Geological Survey of Finland, P.O. Box 1237, FI-70211 Kuopio, FinlandE-mail: [email protected]

introduction

The Svecofennian orogeny in Finland produced aseries of 1.9 Gamafic-ultramafic intrusions inwhich,according to Nironen (1997) and Peltonen (2005),the mafic magma intruded in tensional structuresabove the subduction zone. Most of thenickelbearingintrusions occur within the Kotalahti and VammalaNickel Belts around the Central Finland GranitoidComplex (Fig. 1). The country rocks surroundingthe intrusions were in most cases extensively meta-morphosed and deformed during the early stage ofthe Svecofennian orogeny (Gaál 1980, Kilpeläinen1998,Koistinen 1981,Mäkinen&Makkonen 2004). Metamorphic conditions reached upper amphibolitefacies, and overthrusting and faulting resulted infragmentation of both the intrusions and the countryrocks. Different tectonic conditions produced intru-sions with pronounced variations in size, shape andlithology (cf. Papunen& Gorbunov 1985). Owing tothe synorogenic timing of themagmatism the relatedintrusions have very complicated tectonomagmatichistory. This makes theSvecofennian intrusions quitedifferentwhencompared toanorogenicnickelsulphidebearing intrusions like Sudbury, Voisey’s Bay andNorilsk (Mäkinen &Makkonen 2004).The Svecofennian nickel bearing mafic and ultra-

mafic intrusions are mainly found within migmatiticmica gneisses, although in the Kotalahti Nickel Belt

14

Key words (GeoRef Thesaurus,AGI): intrusions, models, magmatism, shear zones, Paleoproterozoic, Svecofennian, Finland

Fig. 1. Location of the Kotalahti and Vammala Nickel Belts (modifiedafter Mäkinen and Makkonen 2004). Bedrock geology simplified afterKorsman et al. (1997).

Page 13: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

12

Geological Survey of Finland, Special Paper 38Hannu V. Makkonen

some occur within or at the contact of the Archaeangneisses. In the surface section they often form ovalshaped bodies of varying dimensions, the largest ones up to10km.The intrusionbodies includegabbro-only,peridotite-only and gabbro-peridotite types. Accord-ing to Mäkinen (1987), two types can be separatedmineralogically: 1) Vammala type with abundant clinopyroxene and 2) Kotalahti type with abundant orthopyroxene, the former occurring mainly in theVammala Nickel Belt and the latter in the KotalahtiNickelBelt. Themineralogicaldifferences are largelydue to differences in country rock contamination(Makkonen 1996).In Finnish nickel mining history the Svecofennian

deposits have played a major role. Altogether ninedepositshavebeenminedbeginning in1941atMakola(Puustinenetal.1995)andminingstillatHitura,whichhas become the largest nickel mine in Finland (12.4Mt at 0.60% Ni and 0.22% Cu, Isomäki 2004). Thetotal production of the Svecofennian nickel mines is at present about 41 Mt at 0.6 % Ni.

intrusionModel

The 1.9 Ga tholeiitic magma has been describedforming both extrusions and intrusions in Finland. In the Juva area extrusions are represented by themafic and ultramafic volcanics (Makkonen 1996) andin the Tampere-Vammala area by the Takamaa-typemafic volcanics (Kilpeläinen 1998). In both areas itis proposed that intrusion bodies were formed at dif-ferent levels duringmagma ascent, as also suggestedby Peltonen (1995) in the Vammala area.Some important facts for an intrusion model are

available: 1) intrusion took place near the maximumintensity of D2 and peak of the metamorphism (Kil-peläinen 1998, Koistinen et al. 1996, Mäkinen &Makkonen 2004,Marshall et al. 1995,Peltonen 1995,2005), 2) most of the intrusions occur within a highlydeformed/highmetamorphic zone but there are intru-sions also at higher levels within lower metamorphicgrade rocks, and 3) comagmatic volcanics usuallyoccur within lower metamorphic grade areas relativeto the intrusions,but in some places they are in contact with an intrusion.D2deformationphase ischaracterisedby recumbent

foldsandoverthrustingdue tocompression from southto north (Koistinen 1981, Koistinen et al. 1996). Thisis indicatedby theProterozoic sequencesoverthrustedonto theArchaean craton. Overthrusting also causedfragmentation of theArchaean/Proterozoic boundaryand thusblocksofArchaeangneissareenclosedwithinProterozoic supracrustals. D2 tectonic activity gener-ated variable migmatite structures in supracrustals

including stromatic, schollen, schlieren and nebuliticstructures. Theneosome composition is tonalitic and awide rangeofmafic-ultramaficrockfragments is foundwithinmigmatites (Mäkinen&Makkonen2004). Theoccurrence of thesemigmatite zones together with theintrusion bodies and fragments has been describedby many researchers (e.g. Gaál & Rauhamäki 1971,Gaál 1972,Gaál 1985,Grundström 1980,Häkli et al. 1979,Mäkinen 1987, Papunen 1980), but the geneticlink between the migmatite zones and the intrusions has remained inmany cases indistinct. Korsman et al.Korsman et al. (1999),however,proposed that the low-P/high-Tmeta-morphism and thegenerationof tonalite-trondhjemitemigmatites in the Svecofennian crust were caused byextensivemagma under/intraplating during and soonafter subduction and crustal thickening (1885 Ma). Mafic magmatic underplating after tectonic thicken-ing of the Svecofennian crust has also been proposedby Korja et al. (1993), Lahtinen (1994) and Lahtinen(1993), Lahtinen (1994) and Lahtinenand Huhma (1997).Figure 2 shows amodel, inwhichmagma is intrud-

ing duringD2within the Svecofennian collisionzone. The basic idea in the model is the generation of ahigh temperature shear zone (HTSZ) between a largemidcrustalmantlemagma reservoirandan imbricationzone of thrust folds, probably above the subduction(after rifting in a collision zone). The shear zone de-veloped at the level of 15 – 20 km as indicated by thePT–calculations from spinel-bearing symplectitesandreaction rims formed between cumulus olivine andintercumulus plagioclase during cooling of the intru-sion (Tuisku&Makkonen 1999). Similar shear zones have been described, e.g., in the southernAlps (Ivrea-Verbano zone, Snoke et al. 1999). HTSZ corresponds to the Svecofennian nickel belt migmatites describedearlier (especially to the schollen migmatites). Whenthe mafic magma intruded the mobile shear zone, itformed bodies of various shape and size. The bodies were not deformed strongly and only in rare cases S2schistosity was formed within. Because many intru-sion bodies are found in F2 folds, magma possiblyfavoured such an extensional place in the shorter limbof a sheared F2 fold (Mäkinen & Makkonen 2004). After crystallisation, the competent intrusion bodies also controlled fold formation (1 in Fig. 2a). Some ofthe bodies were overturned after crystallisation due tocontinuous thrusting and many of them fragmented. In larger intrusion bodies thrusting is represented byfaults separating the intrusion body into blocks (3 inFig. 2a). More sill-like bodies were folded.Most of the magma intruded into the HTSZ, but

because of local extension caused by the uplift ofimbrication blocks, as described similarly e.g. in theeasternAlps by Ratschbacher (1989), some intrusion

Page 14: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

13

Geological Survey of Finland, Special Paper 38Intrusion model for svecofennian (1.9 ga) mafic-ultramafic intrusions in Finland

bodies (2 in Fig. 2a) were formed above the HTSZwithin the lowermetamorphicgrade rocks (e.g.metat-urbidites showing primary structures). The heat of the mafic magma, together with the

latent heat produced by the crystallisation of themagma, enabled migmatite neosome formation. Inextensional places neosome formationwas promotedby pressure release and the melt concentrated as to-nalitic bodies.The true thickness of the HTSZ is difficult to esti-

mate. Probably it varied along the zone being largest in places wheremagmatic activity was strong. In theKotalahtiNickelBelt schollenmigmatitezones areup to 2 kmwide (Gaál 1985), although the totalwidth ofthemigmatite zone is wider. The Ivrea-Verbano zonewith stromatic migmatites in the southern Alps is 1to 1.5 km thick (Snoke et al. 1999). From above, it can be assumed that the thickness of the HTSZ was less than 5 km.The mafic magma probably reached the surface

slightlybefore themain intrusion event. This volcanicevent thus took place during the rifting stage in thecollisionzone.Thevolcanic rocksarenow represented

within the Finnish Svecofennian by the 1.9 Ga am-phibolites and picrites (cf. Gaál & Rauhamäki 1971,Häkli et al. 1979, Kousa 1985, Lahtinen 1996 andreferences therein, Makkonen 1996, Peltonen 1990,Schreurs etal. 1986).Becauseof thesubsequent thrustfolding the volcanic rocks were buried down to thesame levels where comagmatic intrusion took place. This, together with the possibility that the intrusionbodies are liftedup during thrusting (3 inFig. 2a),mayexplain the close spatial association of the volcanicand comagmatic intrusive rocks seen in places withinthe Svecofennian. In addition, later, during the D3phase (Fig. 2b) the earlier sub-horizontal rock units were folded in many places sub-vertical to vertical,which brought rock units to the present erosion levelfrom various levels (Gaál 1980, Koistinen et al. 1996,Kilpeläinen 1998,Makkonen 2002,Mäkinen&Mak-konen 2004). It is important to note that, accordingto the model the volcanics do not necessarily occur just above their plutonic counterparts. Rather, it is more probable that there is always a degree of lateralmovement between them. This makes the correlationdifficult at a local scale.

Fig. 2. Intrusion of Svecofennian 1.9 Gamafic magma and related structural history.A) Intrusion took placeduring themaximumintensity of D2 when the high temperatureshear zone (HTSZ, marked by broken line) was active. Above the HTSZ continuous thrusting formed an imbrication zone inwhich theprimarystratigraphywasobscured. B) DuringD3 sub horizontal rock units werefolded vertical to sub-vertical. For moreexplanation see text.

Page 15: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

14

Geological Survey of Finland, Special Paper 38Hannu V. Makkonen

REFERENCES

Gaál,G.1972.TectoniccontrolofsomeNi-Cudeposits inFinland. In:Gill, J. E. (ed.) InternationalGeologicalCongress, 24th ses-sion,Montreal 1972: Section 4,Mineral deposits, 215–224.

Gaál, G. 1980. Geological setting and intrusion tectonics ofthe Kotalahti nickel-copper deposit, Finland, Bulletin of theGeological Society of Finland 52 (1), 101–128.

Gaál, G. 1985. Nickel metallogeny related to tectonics. In: Pa-punen, H. & Gorbunov, G. I. (eds.) Nickel-copper deposits ofthe Baltic Shield and Scandinavian Caledonides. GeologicalSurvey of Finland, Bulletin 333, 143–155.Bulletin 333, 143–155.

Gaál, G. & Rauhamäki, E. 1971. Petrological and structuralanalysis of the Haukivesi area between Varkaus and Savon-linna, Finland. Bulletin of the Geological Society of Finland43 (2), 265–337.

Grundström, l. 1980. The Laukunkangas nickel-copper oc-currence in southeastern Finland. Bulletin of the GeologicalSociety of Finland 52 (1), 23–53.

häkli, T. A., vormisto, k. & hänninen, E. 1979. Vammala,Vammala,a nickel deposit in layered ultramafite, Southwest Finland.Economic Geology 74 (5), 1166–1182.

isomäki,O.P. 2004. Nivalan Hituran nikkelikaivoksen malmin-Nivalan Hituran nikkelikaivoksen malmin-nosto ylitti 12 miljoonaa tonnia – esiintymän löytämisestä 40vuotta.Summary: In40yearsafter thediscoveryover12millionSummary: In40yearsafter thediscoveryover12milliontons of nickel ore has been hoisted from Hitura mine, westernFinland. Geologi 56 (3), 76–79.Geologi 56 (3), 76–79.

kilpeläinen, T. 1998. Evolution and 3D modelling of structuralEvolution and 3D modelling of structuralandmetamorphic patterns of the Palaeoproterozoic crust in theTampere-Vammala area, southern Finland. Geological Surveyof Finland, Bulletin 397. 124 p. + 2 app.124 p. + 2 app.

koistinen,T. J. 1981. Structural evolutionof an earlyProterozoicstrataboundCu-Co-Zn deposit,Outokumpu, Finland. Transac-tions of the Royal Society of Edinburgh: earth sciences 72 (2),115–158.

koistinen,T.,klein,v.,koppelmaa,h.,korsman,k.,lahtinen,R.,Nironen,M., Puura,v., Saltykova,T.,Tikhomirov, S. &yanovskiy,A. 1996. Paleoproterozoic Svecofennian orogenicPaleoproterozoic Svecofennian orogenicbelt in the surroundings of the Gulf of Finland. In: Koistinen,In: Koistinen,T. J. (ed.) Explanation to themap of Precambrian basement ofExplanation to themap of Precambrian basement oftheGulf of Finland and surrounding area 1 : 1 mill. GeologicalSurvey of Finland, Special Paper 21, 21–57.

korja,A.,korja,T.,luosto,u. &heikkinen,P. 1993. Seismicand geoelectric evidence for collisional and extensional events in the Fennoscandian Shield – implications for Precambriancrustal evolution. Tectonophysics 219 (1–3), 129–152.

korsman, k. (ed.), koistinen, T. (ed.), kohonen, J. (ed.),, koistinen, T. (ed.), kohonen, J. (ed.),,wennerström, M. (ed.), Ekdahl, E. (ed.), honkamo, M. (ed.), idman,h. (ed.)& Pekkala,y. (ed.) 1997., idman,h. (ed.) & Pekkala,y. (ed.) 1997.& Pekkala,y. (ed.) 1997. Suomen kal-Suomen kal-lioperäkartta=BerggrundskartaöverFinland=BedrockmapofFinland 1:1 000 000. Espoo: Geologian tutkimuskeskus.Espoo: Geologian tutkimuskeskus.

korsman,k.,korja,T.,Pajunen,M.&virransalo,P.1999.TheTheGGT/SVEKAtransect:structureandevolutionof thecontinentalcrust in the Paleoproterozoic Svecofennian orogen in Finland. International Geology Review 41 (4), 287–333.

kousa,J.1985.Rantasalmen tholeiittisista jakomatiittisistavulka-niiteista.Summary:The tholeiiticandkomatiiticmetavolcanicsSummary:The tholeiiticandkomatiiticmetavolcanics in Rantasalmi, Southeastern Finland. Geologi 37 (2), 17–22.Geologi 37 (2), 17–22.

lahtinen, R. 1994. Crustal evolution of the Svecofennian andCrustal evolution of the Svecofennian andKarelian domains during 2.1 – 1.79Ga,with special emphasis on the geochemistry and origin of 1.93 – 1.91 Ga gneissictonalites and associated supracrustal rocks in the Rautalampiarea, central Finland. Geological Survey of Finland. BulletinBulletin378. 128 p.

lahtinen,R.1996.GeochemistryofPalaeoproterozoicsupracrus-GeochemistryofPalaeoproterozoicsupracrus-talandplutonic rocks in theTampere-Hämeenlinnaarea,southernFinland. Geological Survey of Finland, Bulletin 389. 113 p.113 p.

lahtinen, R. & huhma, h. 1997. Isotopic and geochemicalconstraints on the evolution of the 1.93–1.79 Ga Svecofen-nian crust and mantle in Finland. Precambrian Research 82(1–2), 13–34.

Mäkinen,J. 1987.Geochemicalcharacteristics ofSvecokarelidicmafic-ultramaficintrusionsassociatedwithNi-Cuoccurrences inFinland. Geological Survey of Finland, Bulletin 342. 109 p.109 p.

Mäkinen, J. &Makkonen, h. v. 2004. Petrology and structurePetrology and structureof thePalaeoproterozoic (1.9 Ga)Rytkynickel sulphidedeposit,CentralFinland:acomparisonwith theKotalahtinickeldeposit. Mineralium Deposita 39, 405–421.

Makkonen,h. v. 1996. 1.9Ga tholeiiticmagmatism and related1.9Ga tholeiiticmagmatism and relatedNi-Cudeposition in theJuvaarea,SEFinland.GeologicalSurveyof Finland, Bulletin 386. 101 p. + 3 app., 1 app. map.Bulletin 386. 101 p. + 3 app., 1 app. map.

Makkonen, h. v. 2002. Raahe-Laatokka –vyöhykkeen nikkeli-malmien kehityksestä. In:Korsman,Kalevi& Lestinen, Pekka(eds.) Raahe-Laatokka – symposio. Kuopio 20.–21.3.2001. Laajat abstraktit. Geological Survey of Finland, unpublishedreport K 21.42/2002/1. 121 p.

Marshall,b.,Smith,J. v. &Mancini,F. 1995.Emplacement andimplications of peridotite-hosted leucocratic dykes, VammalaMine, Finland. GFF 117 (4), 199–205.

Nironen,M. 1997. The Svecofennian Orogen: a tectonicmodel. Precambrian Research 86 (1–2), 21–44.

Papunen, h. 1980. The Kylmäkoski nickel-copper deposit insouth-western Finland. Bulletin of the Geological Society ofFinland 52 (1), 129–145.

Papunen,h. (ed.) &Gorbunov,G. i. (ed.) 1985&Gorbunov,G. i. (ed.) 1985. Nickel-copper deposits of the Baltic Shield and Scandinavian Caledonides. Geological Survey of Finland. Bulletin 333. 394 p. + 2 app. maps.

Peltonen,P. 1990.Metamorphic olivine in picriticmetavolcanics from southern Finland. Bulletin of the Geological Society ofFinland 62 (2), 99–114.

Peltonen,P.1995.Petrogenesisofultramaficrocks in theVammalaNickelBelt : implications for crustal evolution of the early Pro-terozoic Svecofennian arc terrane. Lithos 34 (4), 253–274.Lithos 34 (4), 253–274.

Peltonen,P.2005.Mafic-UltramaficIntrusionsof theSvecofennianMafic-UltramaficIntrusionsof theSvecofennianOrogen. In: Lehtinen, M., Nurmi, P.A. & Rämö, O.T. (eds.).In: Lehtinen, M., Nurmi, P.A. & Rämö, O.T. (eds.). Precambrian of Finland – aKey to the Evolution of the Fenno-scandian Shield . Amsterdam: Elsevier, 413 – 447. (in press)

Puustinen,k., Saltikoff,b. &Tontti,M. 1995.Distribution andDistribution andmetallogenic types of nickel deposits in Finland. GeologicalSurvey of Finland, Report of Investigation 132. 38 p.38 p.

Ratschbacher, l., Frisch,w., Neubauer, F., Schmid, S.M. &Neugebauer, J. 1989. Extension in compressional orogenicExtension in compressional orogenicbelts: The easternAlps. Geology 17, 404–407.

Schreurs, J., kooperen, P. van&westra, l. 1986. UltramaficUltramaficmetavolcanic rocks of early Proterozoic age inWest-Uusimaa,SW Finland. Neues Jahrbuch fr Mineralogie.AbhandlungenNeues Jahrbuch fr Mineralogie. AbhandlungenAbhandlungen155 (2), 185–201.

Snoke, A. w., kalakay, T. J. & Quick, J. E. & Sinigoi, S. 1999. Development of a deep-crustal shear zone in responseto syntectonic intrusion of mafic magma into the lower crust,Ivrea–Verbano zone, Italy. Earth and Planetary Science Letters 166, 31–45.

Tuisku, P. & Makkonen, h. v. 1999. Spinel-bearing symplec-Spinel-bearing symplec-tites in Palaeoproterozoic ultramafic rocks from two differentgeological settings in Finland: thermobarometric and tectonicimplications. GFF 121 (4), 293–300.

Page 16: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

15

Geological Survey of Finland, Current Research 2003–2004,Edited by SiniAutio.Geological Survey of Finland, Special Paper 38, 15– , 2005.

ThE hAlikkO kulTANuMMi PROSPECT –ANEw TyPE OF GOldMiNERAliZATiON iNThE hiGh-GRAdE GNEiSS TERRAiN OF SOuThwESTERN FiNlANd

finally drilled; the results of these investigations arereported below.

Geological setting

ThebedrockatKultanummiconsistsofupperamphi-bolite faciesmicagneissesandmetavolcanics, intrudedby granitic veins. The Korveanala-Kaleva prospect,which was studied earlier by GTK, is situated some10 km west of Kultanummi (Fig. 1). Interpretations based on both bedrock maps and airborne magneticdata indicate that both prospects lie within a discretestructural domain bounded by shear zones and grani-toids (Fig. 3). Regional structural trends tend to benearlyE-W,with tight folding. Kultanummi is locatedwithin a magnetic anomaly zone that is stronger inthe southern part. The area immediately to the northof Kultanummi is reminiscent of the structural blockdefined at Paimio. The Korvenala-Kaleva prospect atPaimiowas located by heavymineral studies follow-ing discovery of a mineralized boulder, and it is alsowell expressed in till geochemistry and has a distinct IP response (Rosenberg 2000). Drill cores analyzedfrom the from Korvenala-Kaleva show anomalous gold values over a relatively wide area, with a meanof 310 ppb for 252 samples. However, in the most anomalous intervals, grades are usually 0.1–1 ppm,

bySari Grönholm1), Niilo Kärkkäinen1) and Jonas Wiik2)

1) Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland2) Boliden MineralAB, S-93681 Boliden, Sverige

E-mail: [email protected]

Key words (GeoRef Thesaurus,AGI): mineral exploration, gold ores, gneisses, sulfides, hydrothermal alteration, Proterozoic, Kulta-nummi, Halikko, Finland

In this articlewe consider the gold prospectivity ofthe highly metamorphosed gneisses and migmatites of southwestern Finland, using the Kultanummi oc-currence at Halikko as a potentially representativeexample of the type ofmineralization to expect in this terrain. In recent years a number of gold occurrences have been found in the region between Paimio andHalikko in southwestern Finland, largely due to theefforts of amateur prospectors, who have submittedboth outcrop samples and mineralized glacial boul-ders to the Geological Survey of Finland (GTK) for further evaluation. The first discovery was the Kor-venala-Kaleva occurrence near Paimio but further incentive was given in 2001 when Veli-Matti Koi-vula recovered gold while panning oxidized regolithmaterial at Kultanummi, near Halikko. Three short holes were drilled at this site, with the best intercept yielding gold grades of 0.5–6 ppm over intervals of1–6 m. Follow-up exploration during the next fieldseason delineated a gold-critical sulfide-bearing zoneover a distance of 600m, andwith a maximumwidthof 150 m, to the south of Isorahkaneva mineralizedzone (Figs. 1 and 2). The anomalous area was thensampled for heavy mineral fractions, and systemati-cally covered by groundmagnetic and IP surveys, and

introduction

23

Page 17: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

16

Geological Survey of Finland, Special Paper 38Sari Grönholm, Niilo Kärkkäinen and Jonas Wiik

with only a few exceptional intersections of 5.4 ppmover 1 meter and 1 ppm over 5.45 m (Rosenberg2000). Arsenopyrite is also present, but there is thedegree of correlation betweenAu andAs is not high(Rosenberg 2000).

Geological setting at kultanummi

Mica schists and gneisses intruded by granitic andpegmatitic veins predominate at Kultanummi, withminor intercalations of amphibolites and plagioclaseporphyry. However, the most prospective lithologyappears to be a relatively quartz-rich gneiss, occur-ring as discrete units 10–30 m thick within the moretypicalmicagneisses. They typically containdissemi-nated sulfides and are characterized by aggregates ofsillimanite and sporadic cordierite, alternating withbands of calc-silicate rock.Mica schists locally display distinct banding, as a

result of systematic variations in mica abundance as well as concentrations of presumably metamorphic,idioblasticmagnetite grains (Figs. 4 and 5). Principalminerals are quartz, plagioclase, potassium feldspar and biotite, with smaller amounts of red garnet, apa-tite, zircon, carbonate and tourmaline. Mica schists occasionally grade into coarser-grained gneisses and may even display a more granitic appearanceor show extensive epidote alteration. Occasional

quartzo-feldspathic intercalations also occur, withdistinctly less biotite, forming discrete aggregates,and correspondingly more potassium feldspar thanin the mica schists.Quartz-rich sillimanite gneisses and sillimanite-

cordieritegneisses tend topalegreenishgrayonweath-ered surfaces and are somewhat rusty,with complex,tightly folded quartz veins (Fig. 6). These rocks arealso readily distinguishable in drill core because oftheirpalecolourand texturalheterogeneity.Sillimaniteis fibrous, indeed fibrolitic (Fig. 7), while cordieriteoccurs as pale blebs 1–5 mm in size; microscopicinspection shows that they are extensively pinitized. In addition to sillimanite and cordierite, the gneisses consist principally of quartz, plagioclase, potassiumfeldspar andbiotite. Compositionalvariationbetweenlayers is defined by variations in the proportions ofsillimaniteandcordierite. Accessoryminerals includemuscovite, garnet, tourmaline and a range of sulfides,notably chalcopyrite, pyrite, pyrrhotite; arsenopyriteis also present, and galena has been found in fracturefillings.During drilling, a dark green plagioclase porphyry

unit about 10 m thick was intersected. The rock is foliated, with some silicification and alteration ofhornblende to biotite and also contains angular frag-ments of mafic composition several cm in diameter.Reddishor greypegmatitedykes,usually less than5m

Fig. 1. Locations of theKorvenala-Kaleva andKultanummi gold occurrences on the bedrock geologicalmap sheets 2021 (Lehijärvi,1955) and 2022 (Huhma, 1957).

Page 18: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

17

Geological Survey of Finland, Special Paper 38The Halikko Kultanummi prospect – a new type of gold mineralization in the high-grade gneiss terrain of southwestern Finland

Fig. 2. Detailed map of the Kultanummi prospect (Wiik, 2004), showing drill hole locations. Area of map is approximately 8 km2. Gold-critical rusty outcrops are indicated with pale brown colour.

Fig. 3. Korvenala-Kaleva (Paimio) andKultanummi (Halikko) occurrences shown on airbornemagnetic image. Tapio Ruotoistenmäki(2004) has indicated inferred tight fold hinges with E-W trending axial surfaces by yellow crosses. Yellow lines indicate trends ofproposedAu-critical zones, subparallel to fold limbs.

Page 19: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

18

Geological Survey of Finland, Special Paper 38Sari Grönholm, Niilo Kärkkäinen and Jonas Wiik

thick, are common and contain, in addition to quartz,feldspar and mica, black tourmaline, magnetite andoccasionally sillimanite. Medium-grained reddishgranitic dykes are also present, sometimes containinggarnet and magnetite.

Gold mineralization

Pyrite is themost typical sulfidephaseatKultanum-mi, impartinga rustyaspect tooutcrops,andoccurringas disseminations, as solitary grains and aggregates

Fig. 4. Banding in mica schists defined by magnetite. Photo: Sari Grönholm

Fig. 5. Photomicrograph of magnetite-bearing mica schist. Mgt = magnetite, Bt = biotite, Qz = quartz, Pl = plagi-oclase. Photo: Jari VäätäinenPhoto: Jari Väätäinen

Page 20: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

19

Geological Survey of Finland, Special Paper 38The Halikko Kultanummi prospect – a new type of gold mineralization in the high-grade gneiss terrain of southwestern Finland

and along joint planes. Disseminated chalcopyriteand pyrrhotite also occur, and isolated arsenopyritegrainsorgrainaggregatesarepresent,particularlynear quartz vein margins. Galena has also been found in afew narrow veins. Tourmaline is also a characteristic

phase in mineralized rock. Chemical data reveal areasonable correlation betweenAu and S, but only aweak relation betweenAu andAs (Fig. 8).Gold at Kultanummi appears to be closely associ-

atedwith the relatively silicic, or silicified sillimanite

Fig. 6. Rusty sillimanite-cordiertie gneiss; light-coloured, elongate knobbly aggregates of both sillimanite andRusty sillimanite-cordiertie gneiss; light-coloured, elongate knobbly aggregates of both sillimanite andcordierite stand out in relief on weathered surfaces. Note also intense folding of reddish feldspathic quartz vein. Photo: Sari Grönholm

Fig. 7. Photomicrograph of sillimanite gneiss. Si = sillimanite, Qz = quartz. Photo: Jari VäätäinenSi = sillimanite, Qz = quartz. Photo: Jari Väätäinen

Page 21: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

20

Geological Survey of Finland, Special Paper 38Sari Grönholm, Niilo Kärkkäinen and Jonas Wiik

gneisses, the highest abundances of 6490 ppb and2100 ppb having been recorded from sillimanitemicagneiss and sillimanite-cordierite gneiss respectively. However, this correlation is not so obvious from thegeochemical data, in that results appear to indicatethat other lithologies can be anomalous with respect toAu. It is likely however, that the gold in the moretypical mica gneisses is associated principally withquartzofeldspathic veins. Altered lithologies (Groups 2 and 3 in Fig. 9) also contain relatively high S, com-pared of the generally low background values in other rock types at Kultanummi.

Alteration

Hydrothermalalteration in thegold-anomalouszoneat Kultanummi is typically evident from increasedsulfide abundances (pyrite, pyrrhotite, chalcopyriteand more rarely arsenopyrite), presence of silliman-ite-cordierite rocks, silicification and locally fromabundantmagnetite inadjacentmicaschists.Silicifiedrock almost invariably contains black, fine-grainedtourmaline, accompanied by sillimanite, cordierite,sulfidesandgold.Carbonatemineralsareoccasionallypresent inAu-enriched rocks. Intensely foliated lay-

Fig. 8. Correlation diagrams forAu and S andAu andAs; data from the first three holes drilled at Kultanummi (R379-R381)are not included.

Fig. 9. Variation in Au (left) and S (right) for different rock types at Kultanummi: 1 = mica schist and gneiss, 2 = sillimanite-quartz rock, 3 = sillimanite-cordierite gneiss, 4 = pegmatite, 5 = plagioclase porphyry, 6 = amphibolite, 7 = quartzofeldspathicschist. Lithologies determined from drill core logging.

Page 22: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

21

Geological Survey of Finland, Special Paper 38The Halikko Kultanummi prospect – a new type of gold mineralization in the high-grade gneiss terrain of southwestern Finland

ers also display latemetamorphic retrogrademineralassemblages, notably biotite replacement of other minerals, inparticularhornblende,biotite replacement bychloriteand sericitizationofplagioclase.Within thezone of hydrothermal alteration, even the plagioclaseporphyry contains more elevated gold concentrations (106ppbover 1m) compared tovalues of below5ppbwhen it is associated with unaltered amphibolites.Major element abundances in altered rocks broadly

mirror those of mica schists and mica gneisses;mag-nesium, aluminium, potassium and iron contents inparticular suggest that the sillimanite and cordieritegneisses were originally typical pelitic gneisses incomposition (Fig. 10).Magnetite is a characteristic accessory mineral

throughout the study area. Nevertheless, theAu-min-eralized sillimanite-cordierite gneisses are generallyonly weakly magnetic. Susceptibilities are higher inassociated mica schist intercalations. Magnetite alsooccurs as large discrete crystals at themargins of thesillimanite-cordierite gneiss layers, andwithin cross-cutting granitic and pegmatitic dykes, particularlywithin thehydrothermallyalteredzone.Magnetitecanalsobe found in themica schists as isolated idioblasticgrains, or forming narrow bands.Susceptibilitymeasurements indicate some system-

atic relationshipsbetweenmagnetite,sulfidesandgold,and these correlationmay be related tomineralizationprocess. For example, in drill core from R391 andR394,Au and S abundances correlate well (Fig. 11).

Fig. 10. Selected major element abundances for various rock types at Kultanummi: 1= mica schist and gneiss, 2= silliman-ite-quartz rock and sillimanite-cordierite gneiss, 3= plagioclase porphyry, 4= amphibolite 5= quartzofedspathic schist 6=pegmatite. Rock types defined from drill core logging.

Page 23: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

22

Geological Survey of Finland, Special Paper 38Sari Grönholm, Niilo Kärkkäinen and Jonas Wiik

Fig. 11. Variations in gold concentration (red), susceptibility (black) ja sulfur (blue) for selected drill core intervals from Kultanummi. Note the strong positive correlation betweenAu and S and high susceptibility values, due to the presence of magnetite, at the margins ofthe mineralized zone.

Page 24: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

23

Geological Survey of Finland, Special Paper 38The Halikko Kultanummi prospect – a new type of gold mineralization in the high-grade gneiss terrain of southwestern Finland

Whilst in generalAu and S abundances fallmarkedlyas magnetite content – and hence susceptibility – in-crease, in some cases (R388), a positive associationbetween S abundance and susceptibility is observed,related to the presence of pyrrhotite.

discussion

GTK has been studying the Paimio Korvenala-Kaleva and Halikko Kultanummi gold occurrences sporadically since 1995. The geological environment of these prospects differs from that of the Tampereand Häme schist belts, which are at lower metamor-phic grade and have been the main focus of GTKactivity for many years (Kärkkäinen et al. 2003). TheKorvenala-Kaleva and Halikko prospects both occur within similar rock types, within a distinct structuralzone bounded by shear zones and relatively late oro-genic granitoids. The mineralization at the HalikkoKultanummi occurrence is characterized by rusty,strongly foliated sillimanite-cordierite gneisses andmica schists. This Au-critical association of sillimanite- and

cordierite-bearing gneisses is considered to repre-sent hydrothermal alteration accompanying the goldmineralization, and the sillimanite and cordierite is attributed to a younger prograde metamorphic event superimposed on pre-existing sericitic and chloriteschists. On the basis of currently available data it is however, difficult to determine whether or not thesericitic/chloritic alteration would have been formedwithin a shear zone developed during early stages ofthe regionalmetamorphic event, rather than predatingthemetamorphism. Geochemicaldata suggest that theprotoliths to the altered rocks were mica schists andthe unaltered mica gneisses adjacent to the mineral-ized zone also appear to represent the more stronglyrecrystallized derivatives of mica schists.The Kultanummi goldmineralization is character-

ized by strong geochemical correlation between goldandsulfur, the relatively lowAsandaprominentenrich-ment ofmagnetite inwall rocks. Sulfidation reactionsare suggested as amechanism for gold precipitation,because the highly sulfidized zone and elevated Auabundances occur withina restricted part of thehydro-thermalalterationzone,while thecordierite-sillimaniterocks in thewestern part of theKultanummi zone areless mineralized when compared to the main zone. The altered rocks and accompanying quartz veins arealso tightly folded, indicated that goldmineralizationpredates at least some of the deformation.According to Rosenberg (2000), the predomi-

nant rock type at the Korvenala-Kaleva prospect is

plagioclase porphyry, which has somewhat higher As abundances than at Halikko. At both prospects however, free goldmust be present, as deduced fromgoldgrains inheavymineral separates recovered fromtill and weathered bedrock. A thirdAu occurrence inrelativelyhighgrade terrain is at Stenmo,near Kemiö,where gold is present in sillimanite gneisses within ametavolcanic sequence (Nordbäck 2003).

Summary

Recent studies in the relatively high grade meta-morphic terrain of southwestern Finland have deline-ated several gold occurrences, including the HalikkoKultanummi prospect. Mineralization at Halikko is associatedwithsilicicalteration insillimanite-cordier-ite gneisses and a strong association between silicifi-cation, sulfidation and gold has been recognized. Inaddition, rockssurrounding themineralizedzoneshowa prominent enrichment in magnetite. The alterationzone and associated quartz veins carrying anomalous gold values (>10 ppb) are also strongly folded. Thedistribution of gold is relatively well constrained bydrillingwithin the alteration zone and correlates wellwith sulfide abundance.Both the Halikko Kultanummi prospect and the

PaimioKorvenala-Kaleva occurrence previously dis-covered byGTK attest to themineralization potentialof this previously neglected metamorphic terrain insouthwestern Finland.

REFERENCES

huhma, A. 1957. Marttila. Geological Map of Finland 1 :Geological Map of Finland 1 :100 000, Pre-Quaternary Rocks, Sheet 2022. Geological Sur-vey of Finland.

kärkkäinen, N. , lehto, T., Tiainen,M., Jokinen T., NironenM., Peltonen, P. & valli, T. 2003. Etelä- ja Länsi-Suomenkaarikompleksi, kullan ja nikkelin etsintä vuosina 1998– 2002. Geological Survey of Finland, unpublished reportGeological Survey of Finland, unpublished report M19/21,12/2003/1/10. 118 p. + 4 app.

lehijärvi,M. 1955. Salo. GeologicalMapofFinland1 :100 000,GeologicalMap ofFinland1 :100 000,Pre-Quaternary Rocks, Sheet 2021. Geological Survey ofFinland.

Nordbäck,N. 2003. Malmgeologiska studier över en guldminer-alisering i Stenmo,Kimito, SV-Finland. Unpublishedmaster´s thesis, ÅboAkademi. 62 p.62 p.

Rosenberg, P. 2000. Paimion Korvenalan alueella vuosina 1996Korvenalan alueella vuosina 1996– 1998 suoritetut kultatutkimukset. Geological Survey of Fin-Geological Survey of Fin-land, unpublished report M19/2021/2000/1/10. 9 p. + 18 app.

Ruotoistenmäki, T. 2004. Kultanummi ja Korvenala-Kaleva-alueen geofysiikan kartoista, rakennetulkintaa ja niiden asso-sioitumisesta kultakriittisiin kohteisiin. Geological Survey ofGeological Survey ofFinland, unpublished report. 4 p.

wiik, J. 2004. Beskrivning av en guldmineralisering i Kulta-nummi,HalikkoSV-Finland.Unpublishedmaster´s thesis,ÅboAkademi. 50 p. + 21 app.

Page 25: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

24

Geological Survey of Finland, Special Paper 38Sari Grönholm, Niilo Kärkkäinen and Jonas Wiik

Page 26: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

25

Geological Survey of Finland, Current Research 2003–2004,Edited by SiniAutio.Geological Survey of Finland, Special Paper 38, 25– , 2005.

introduction carried out in 2004, the transport distances and themost potential source areas of the boulders have beenestimated. Themethodswe have used have been fieldstudies and tractor excavations together with interpre-tation of glacial morphology. Glacial flow directions,till structuresand stratigraphy,pebble lithology,heavymineral composition and geochemical features havebeen studied in the 23 test pits, of which the meandepth was about 3.5 m. Till samples have been left at the GTK’s laboratory in Rovaniemi for chemicalanalysis (ICP-AES method).

Geological setting

Bedrockof thestudyarea iscomposedof the rocksofthePeräpohjaSchist Belt (2.0-2.3Ga) and theCentralLaplandGranites (1.8Ga) (Fig. 2). The southern part of the area consists of mica gneiss while the centralarea consists of the large NW-SE-oriented zone ofarkosic gneiss. A narrow zone of mafic tuffites andmica schists cuts thewhole area in the same directionas the arkosic gneiss. By contrast, the assemblageof mafic metalavas and basalt magmas (gabbros) isdominant on the eastern side of the village of Misi. The schist belt is bordered by granites in the north. Themassive Fe-ore occurrences are closely related tothedolomite-skarn rock-serpentiniteassemblage in theeast. The schists with hydrothermal alteration in the

1)Geological Survey of Finland, P.O. Box 77, FI-96101 Rovaniemi, Finland2) Geological Survey of Finland, P.O. Box 1237, FI-70211 Kuopio, Finland

E-mail: [email protected]

Key words (GeoRef Thesaurus,AGI): mineral exploration, moraines, ribbed moraines, till, boulders, glacial transport,Misi, Kemi-järvi, Finland

Geological Survey of Finland (GTK) has carriedout intensive ore prospecting in the area ofMisi sincethe 1990s. The studies have been a part of the detailedinvestigationof the ironoxide-copper-golddeposits innorthernFinland. At the same time, bedrockmappinghas been undertaken in the area and the map sheet of Vikajärvi (map sheet 3614) at a scale 1:100 000was published at the end of 2002 (Hanski 2002). Thearea is known for its iron formations, of which theoccurrences ofKärväsvaara,RaajärviandLeveäselkäwere mined during 1959-1975. The total volume ofthe quarried ore is over 8 million tons, of which 3.5million tons is Fe concentrate. Observations madeby local people and geologists during mapping haveshown the Misi area to be once again potential for ore prospecting.The village ofMisi is situated about 50 km NE of

the city of Rovaniemi, in the direction of Kemijärvi(Fig. 1). The area lies in the middle of the ribbedmoraine area of Peräpohjola, northern Finland. Oreboulder observations made of the different landformtypes have focused on the areas ofKöyry,TuorevaaraandVenejärvi (Fig. 2). The boulders aremainly com-posed of hydrothermally altered amphibolites withanomalous contents of Zn (ca. 5% in Köyry and ca. 3% in other areas), Cu andAu. In the present study,

29

byPertti Sarala1) and Jari Nenonen2)

ORE PROSPECTiNG iN ThE RibbEdMORAiNEAREAOFMiSi, NORThERN FiNlANd

Page 27: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

26

Geological Survey of Finland, Special Paper 38Pertti Sarala and Jari Nenonen

Fig. 1. A location of the study area in the village ofMisi,NE of the city of Rovaniemi. The area is located in the middle of the ribbed moraine area in Peräpohjola, southernLapland.

Fig. 2. Generalized bedrock map of the study area and the location of the most potential ore boulders in the case study areas.

Page 28: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

27

Geological Survey of Finland, Special Paper 38Ore prospecting in the ribbed moraine area ofMisi, northern Finland

volcanic environment seem to be themost critical for a new type of ore occurrences in the central area.Theproportionofbedrockoutcrops isestimated tobe

only 1 % of the land area. The outcrops occur mainlyas groups near the high hill areas. The surface of thebedrock ismostlycoveredby theglaciogenicdeposits,which include different types of active-ice formations and one esker-system (Fig. 3). In topographic expres-sion and lowland areas, ribbedmoraines are themost common formation type.The ribbedmoraine isagroup ofmoraine formations that have the samekindofmor-phologyand similar subglacialorigin (cf.Hätterstrand1997). They are formed of ridges perpendicular to themost recentglacialflowdirection,which is, accordingto striae and fabric analyses from the direction about 270°-290° in theMisi area. The transition to the lon-gitudinal formations is seen as a streamline element related to the unique ribbed moraine ridges and as atransitional series from ribbed moraines to drumlins and flutings (cf. Aario 1990). For that reason, thesemoraine ridges can also be called Rogen moraines,according to Lundqvist (1969).The ridges are composed of two till units represent-

ing different glacial phases (Fig. 4). The lower unit is compact andhomogenous in its structure and sandy in

itsmatrix. It formed subglaciallyduring theadvancingstageof theglacierunder lodgementprocesses.Glacialflow direction was from NW to SE. By contrast, theupper till unit consists partly of re-depositedmaterialdue to the quarrying activity during the formationof the ridges and also melt-out till deposited at thelatest stage of deglaciation, while the edge of theglacier melted away after themovement stopped. Thestructures are sandy lenses and layers together withfine-grain laminae in the former case and homogene-ity and occasional flow or consolidation structures inthe latter case. The uppermost part of the ridges was washed during the later stages of the Ancylus Lake,after which the water level decreased due to isostaticuplift of the ground.The ribbedmoraine ridges in theMisi area are char-

acteristically strewnwith boulders. The abundance ofbouldersat thesurface ismainlydue to thedepositionalprocessesoccurringduring the formationof ridges,but partly inconsequenceof thepost-glacialwashing.Therock types of the boulders correlatewellwith the rocktypes found in the underlying bedrock, and this is atypical feature for the ribbedmoraines inother parts ofthePeräpohjolaarea, too (cf.Aario&Peuraniemi1992,Sarala & Rossi 1998, 2000). The transport distances

Fig. 3. A relief map based on the elevation model and glacial morphology of the study area.

Page 29: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

28

Geological Survey of Finland, Special Paper 38Pertti Sarala and Jari Nenonen

are estimated to be only from some tens ofmetres toa few hundreds of metres for local rock material but several kilometres for granites. The same feature is also reflected in the geochemistry of the upper till(cf. Sarala & Rossi 1998). Field observations haveproven this phenomenon is of use in prospecting. Inthe case of drumlins and flutings, transport distancesaremany times greater and the direct control betweentill material or surficial boulders and bedrock is hardto determine.

Conclusion

The ore potentiality of theMisi area, northern Fin-land seems to be high, because of the great number ofore boulders found at the surface of different moraineformations in the area. The transitional series of ac-tive-ice moraine formations from transversal ribbedmoraines to longitudinal drumlins and flutings havebeen observed. Ribbedmoraine ridges are composedof Rogen moraine and hummocky ribbed morainetypes in the area. Formation of the ridges seems to bea result of a two-step process (Fig. 5), where frozensubglacial sediments were fragmented and movedunder compressive glacial flow in the first stage.Secondly, the dominant freezing conditions causedthe freeze-thaw process to prevail under the movingice leading to the quarrying activity that reached thebedrock surfacebetween thenewlyborn ridges.These

kinds of conditions seem to have existed under the icesheet in the transitionzonebetween frozenand thawedbeds during deglaciation (cf. Hättesstrand 1997).Ribbed moraines are ideal for prospecting work,

because of the short transport distance of rock mate-rial in the uppermost till. Particularly, boulders withinthe till and at the surface reflect the variation of localbedrock composition. This phenomenon is com-mon for all ribbed moraine types if the pre-existingsediments have been thin enough for the quarryingto have reached the bedrock surface. Due to forma-tion processes, prospecting work differs quite a lot in the areas of ribbed moraines compared to areas ofdrumlins and flutings. For example, the boulders inthe uppermost parts of ridges must be taken account when choosing the equipment for geochemical sam-pling. The observations and the results presented herewill be clarified in the near future when the chemicalanalyses of till samples and some planned deep drill-ings have been done.

Acknowledgements

We thank Jorma Isomaa for discussions and AnttiPakonen and JormaValkama for assistance during thefieldworks.Dr KeijoNenonen ofGTKgave valuablecomments andMr Christopher Cunliffe checked theEnglish of the manuscript.

Fig. 4. Generalized stratigraphy of ribbed moraines and drumlins in theMisi area.

Page 30: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

29

Geological Survey of Finland, Special Paper 38Ore prospecting in the ribbed moraine area ofMisi, northern Finland

REFERENCES

Aario, R. (ed.) 1990. Glacial heritage of northern Finland; anexcursion guide. Nordia tiedonantoja, SarjaA: 1. 96 p.Nordia tiedonantoja, SarjaA: 1. 96 p.

Aario, R. & Peuraniemi, v. 1992. Glacial dispersal of till con-Glacial dispersal of till con-stituents in morainic landforms of different types. In:Aario,R.In:Aario,R. & Heikkinen, O. (eds.) Proceedings of the third internationalProceedings of the third internationaldrumlin symposium. Geomorphology 6 (1), 9-25.

hanski, E. 2002. Vikajärvi. Geological Map of Finland 1:100000, Pre-Quaternary Rocks, Sheet 3614. Geological Surveyof Finland.

hättestrand,C. 1997. Ribbedmoraines inSweden – distributionpattern and paleoglaciological implications. In: Piotrowski, J. A. (ed.) Subglacial environments. Sedimentary geology 111,41-56.

Fig. 5. Difference between the transportation of till material and till geochemistry in ribbed moraineridges and drumlins. A formation of ribbedmoraines is two-step process, where fragmented subglacialsediments are moved under compressive glacial flow in the first stage and the following freeze-thawconditions lead up to the quarrying of bedrock surface between the ridges during the second stage.

lundqvist, J. 1969. Problems of the so-called Rogen moraine. Sveriges Geologiska Undersökning C 648, 1-32.riges Geologiska Undersökning C 648, 1-32.

Sarala, P. & Rossi, S. 1998. Kupari- ja kultapitoisen hiertovyö-hykkeen paikantaminen moreenigeokemiallisin tutkimuksinPeräpohjan liuskealueelta Pohjois-Suomessa. Summary:Summary:Discovery of a copper- and gold-bearing shear zone as a result of research into the geochemistry of Peräpohja Schist Belt,northern Finland. Geological Survey of Finland, Report ofInvestigations 119. 44 p.44 p.

Sarala, P. &Rossi, S. 2000.The application of till geochemistryThe application of till geochemistryinexploration in theRogenmoraineareaatPetäjävaara,northernFinland. Journal of Geochemical Exploration 68, 87-104.

Page 31: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

30

Geological Survey of Finland, Special Paper 36Matti Tyni, Kauko Puustinen, Juha Karhu and Matti Vaasjoki

Page 32: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

31

Geological Survey of Finland, Current Research 2003–2004,Edited by SiniAutio.Geological Survey of Finland, Special Paper 38, 31– , 2005.

EXPlORATiON RESulTSANdMiNERAlOGiCAl STudiES ON ThE luMikANGASAPA-TiTE-ilMENiTE GAbbRO, kAuhAJOki,wESTERN FiNlANd

byOlli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and TimoAhtola

introduction

Geological Survey of Finland (GTK) has exploredthe Lumikangas gabbro since 2002 as a potentialsource for titanium and phosphorous. Lumikangas is situated 15km south of the town of Kauhajoki inSouth Pohjanmaa (Fig. 1). The landscape is a flat di-vide area, 170m above sea level, consisting of eskers bordered by marshes. According to previous seismicmeasurements, theoverburden is30-70m thick.Recent drillings intersected a 35-50 m soil cover composedof sand-silt-gravel layers with a till interbed.The Lumikangas area was selected as a target for

exploration on the basis of an outstanding regionalgeophysical anomaly (Fig. 2). There aremagnetic andgravityhighs on the low-altitude aeromagnetic andonthe regionalgravitymaps, respectively. Theeconomicinterest of Lumikangas is in titanium and phospho-rous because this geophysical anomaly belongs tothe Kauhajoki gabbro province, which is generallycharacterised by high content of ilmenite, magnetiteand apatite (Kärkkäinen et al. 1997). The first exploration stage, carried out in 2002,was

related toGTK’sbedrockmappingandoreexplorationat Pohjanmaa. The first drill hole (R396)was focusedon themagnetic and gravitymaxima,where the over-burdenis thelowest, according toseismicprofileacrossthe Lumikangas regional anomaly (Lehtimäki 1984). This drill hole penetrated a layered gabbro containing

15-20wt% ofmagnetite, apatite and ilmenite in total. The Lumikangas gabbro was found to be a potentialexploration target on the basis of chemical analyses and mineralogical studies. In the second stage, carried out in 2004, systematic

groundmagneticandgravitymeasurementsweremadefor the area of 5 km2. After geophysical interpretationfive drill holes in two profiles were drilled, totalling1308m(R396-401), andgeophysically logged.Mate-rial for this study includes 446 XRF-analyses, masssusceptibilitymeasurements (magnetite wt %) alongthe drill core samples, microprobe analyses frompolished thin sections and ICP-MS analysis fromapatite concentrate. This paper presents the results ofpreliminary exploration andmineralogical studies onthe Lumikangas apatite-ilmenite gabbro.

Regional geology

The Kauhajoki gabbro province is situated in thewestern part of Central Finland Granitoid Complex(1870-1890Ma), between the synorogenic granitoids and the lateorogenicLauhanvuorigranite (Fig.1).Themafic-ultramafic intrusions atHonkajoki (Pääkkönen1962, Pakarinen 1984, Rämö 1986), Kauhajärvi(Kärkkäinen&Appelqvist1999),Hyyppä (Huuskonen& Kärkkäinen 1994) and Lumikangas are layered,mainly gabbroic in composition, and are variablydifferentiated from peridotite to anorthosite. They all

41

Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, FinlandE-mail: [email protected]

Key words (GeoRef Thesaurus,AGI): mineral exploration, titanium ores, ilmenite, magnetite, apatite, gabbros, geochemistry, Prot-erozoic, Lumikangas, Finland

Page 33: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Olli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and Timo Ahtola

32

Fig. 1. Location of Lumikangas at Kauhajoki on a road map and a generalised geological map.

Fig. 2. Aeromagnetic and residual gravity high (curves) indicating potential ilmenite targets.

Page 34: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Exploraton results and mineralogical studies on the lumikangas apatite-ilmenite gabbro ...

33

contain considerable amounts of ilmenite, apatite andmagnetite, averaging 18–22 wt% together.

Exploration geophysics

All known ilmenite gabbros of the Kauhajokiprovince are visible as magnetic and gravity highs on the predicted map compiled from aeromagneticand residual gravity data (4-6 points /km2, Fig. 2.) TheLumikangas gabbro is situated in an areal gravitygradient, where the regional level increases 3 mGalover a distance of 1.5 km. The maximum gravityanomaly caused by the Lumikangas intrusion is 3.5mGal as measured from the estimated base level ofthe regional gravity field.The area of 5 km2 was studied by using magnetic,

gravity and horizontal loop EM measurements over the Lumikangas gabbro. According to the seismic

profile, the overburden is 30-70m thick over the intru-sion. The magnetic anomaly, at its highest 4 000 nT,is caused bymagnetite and remanent magnetism (Fig. 3). Magnetic and gravity interpretations indicate that the deposit extends to a depth of 300–500 m.

lumikangas apatite-ilmenite gabbro

General description, stratigraphy and resources

This study focuses on the southern part of theLumi-kangas positivemagnetic anomaly,where, accordingto the ground geophysics, the gabbro body is 1.5 kmlong and a half kilometrewide,while the total lengthof the magnetic anomaly is five kilometres (Figs. 2and 3). Drilling results show that the apatite-ilmenitegabbro dips to the east at an angle of 30 degrees (Fig. 4). Based on the drilling, the thickness of this oxide

Fig. 3. Ground magnetic map of the southern part of the Lumikangas intrusion.

Page 35: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Olli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and Timo Ahtola

34

gabbro, with a total amount of ilmenite and magnet-ite over10 %, is at least 200 m and, according to thegeophysics, reaches 500 m. The gabbro is dissectedinto two blocks by reverse faulting, so that the west-ern block (hanging wall) (R396 and R401) has beenupliftedand theeasternblock (footwall) (R400,R399) has descended (Fig. 4). As a result of this movement,theoxidecontent decreases downwards in thewesternblock and increases in the eastern block.The structure of the intrusion is clearly layered and

the compositional variation ranges from Fe-Ti-richdark gabbros to apatite-rich leucogabbros. The intru-sion can be divided into two main sections. The basalpart is composed of dark medium-grained gabbro or gabbronorite, hornblende gabbro and olivine gabbro,and the upper part is medium to coarse-grained leu-cogabbro or monzogabbro within a few metres thicklayers of gabbro-pegmatoid and metadiabase dikes. The inferred and possible resources based on geo-

physics and two drilling sections include 230milliontons of oxide gabbro, which are 1200 m long, 300m wide and 200 m thick. Almost the whole drillingsection is composed of oxide gabbro,which contains

an average of 19 % ore minerals: 8.7 % (max. 21 %) ilmenite, 4.8 % (max. 17 %) magnetite and 5.4 % (max. 17 %) apatite (Table 1).

Petrography

The alternate layering of the various rock types in drill hole R400 is as follows: subhedral medium-grained monzogabbro, olivine monzogabbro, gab-bronorite, hornblende gabbro, olivine gabbronoriteand gabbro. The primary texture of the rock generallyis subophitic,which is still preserved. The rock-form-ing minerals are pyroxenes, uralite and hornblende,cummingtonite, albite and K-feldspar, plagioclase,biotite, Fe-Ti oxides, apatite, olivine, chlorite, quartzand rarely sphene. Silicateminerals constitute 75–95vol% of the rock.Igneous clinopyroxene, orthopyroxene and olivine

are partiallymetamorphosed and replacedmainly byuralites and biotite (Fig. 5a). Prismatic to granular plagioclase and alkali feldspar are the major rock-forming minerals (Fig. 5b, 6f) up to 2 mm in lengthand commonly affected by sericitization. Plagioclase

Fig. 4. A drilling section of the Lumikangas gabbro.

Page 36: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Exploraton results and mineralogical studies on the lumikangas apatite-ilmenite gabbro ...

35

composition is mainly labradorite (Table 2) and oc-casionally ranges from oligoclase to labradorite. Inplaces, plagioclase is partially transformed into albite(analysis no.7,Table 2). Alkali feldspar is representedby the typical textureofmicroperthiteexsolution inter-growth of sodium-rich and potassium rich feldspar,andantiperthite intergrowthofpotassium-richfeldspar

in sodium-rich (albite) matrix. Equal proportions ofalbite andK-feldspar intergrowth (mesoperthite) andmicrocline feldspar with crossed hatched twinningstructure are also observed. Biotite (both primary andsecondary) is another common silicate mineral that together with uralite often rim ilmenite andmagnetite(Fig. 5a).

1 2 3 4 5 6 7SiO2 40.34 42.45 38.64 40.40 36.90 38.70 45.60TiO2 4.36 4.25 4.61 4.70 5.18 5.56 2.63Al2O3 12.39 12.27 12.6 11.60 10.20 11.40 16.20Fe2O3 21.96 19.77 22.92 21.46 21.75 26.73 15.16MnO 0.28 0.29 0.27 0.31 0.28 0.29 0.20MgO 5.40 4.60 5.82 4.85 6.37 5.08 4.29CaO 9.32 9.39 9.6 9.94 11.75 7.415 9.57Na2O 2.38 2.52 2.28 2.34 2.00 2.31 3.16K2O 0.76 1.27 0.54 0.98 0.71 0.50 0.75P2O5 2.12 2.53 2.11 2.87 4.26 1.42 1.06S 0.232 0.219 0.29 0.233 0.423 0.277 0.229V 0.041 0.028 0.052 0.029 0.038 0.069 0.034Cr 0.004 0.003 0.004 0.003 0.003 0.011 0.006Ni 0.003 0.002 0.004 0.002 0.003 0.002 0.003Cu 0.006 0.006 0.009 0.0068 0.011 0.007 0.008magnetite% 4.86 3.36 5.35 3.83 3.39 8.65 1.59Valid N 313 34 23 1 1 1 1

Table 1. Chemical compositions of Lumikangas gabbro ; 1. Average oxide-gabbro (ilmenite+magnetite>10 %), 2. Oxide-monzogabbro (R400, 50–120 m), 3. Oxide-gabbronorite (R400, 132–178), 4. Oxide-mon-zogabbro (R400, 63.3-65.3), 5. Ilmenite-apatitegabbro (R400, 138–140), 6. Ilmenite-magnetitegabbro (R400,148–150), 7. Gabbro (R400 190–192).Gabbro (R400 190–192).

1 2 3 4 5 6 7 8 9 10 11 12 13SiO2 0.01 0.02 0.17 0.09 0.14 0.14 67.65 64.48 59.64 62.67 54.92 50.92 53.43TiO2 50.05 50.77 0.06 1.28 0.00 0.00 0.04 0.02 0.03 0.00 0.05 0.65 0.06Al2O3 0.00 0.00 0.47 0.59 0.01 0.01 19.93 18.41 19.45 22.48 27.92 1.94 0.72Cr2O3 0.01 0.01 0.14 0.15 0.00 0.03 0.00 0.02 0.03 0.02 0.01V2O3 0.03 0.01 1.25 1.09FeO 47.10 46.64 90.93 90.79 0.09 0.09 0.00 0.04 0.04 0.09 0.16 14.42 24.06MnO 1.02 1.06 0.02 0.04 0.05 0.05 0.01 0.00 0.00 0.03 0.04 0.34 0.89MgO 0.04 0.24 0.02 0.02 0.00 0.00 0.02 0.01 0.00 0.00 0.01 11.77 17.38CaO 0.00 0.00 0.01 0.01 54.66 54.03 0.74 0.02 0.03 3.81 10.06 18.30 0.57Na2O 0.00 0.00 0.00 0.00 0.00 0.00 10.28 0.75 1.03 8.63 5.28 0.22 0.05K2O 0.01 0.01 0.00 0.01 0.01 0.00 0.21 15.24 12.77 0.12 0.08 0.01 0.06P2O5 40.46 41.88BaO 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.32 5.74 0.04 0.15 0.05 0.03SrO 0.06 0.06 0.04 0.02 0.09 0.30 0.18 0.05 0.05NiO 0.01 0.01 0.01 0.02 0.02 0.04 0.03 0.02 0.01 0.02 0.02ZnO 0.03 0.03 0.03 0.03F 3.60 2.61 0.02 0.00 0.00 0.00 0.00 0.00 0.00Cl 0.00 0.00 0.00 0.00 0.05 0.12 0.02 0.01 0.01 0.00 0.00 0.01 0.03SO2 0.01 0.01Total 98.31 98.80 93.11 94.12 99.14 99.00 99.06 99.39 98.85 98.21 98.87 98.71 97.37

Note: Ilmenite (1,2), magnetite (3,4), apatite (5,6), albite (7), k-feldspar (8), Ba-feldspar (9), plagioclase (10,11), augite (12), cummingtonite (13)

Table 2. Selected electron microprobe (Cameca Camebax SX100) analyses of ilmenite, magnetite, apatite and some silicate miner-als (operating conditions: 15-20KeV, 10-15nA, 1-10μm beam diameter; analysed by Bo Johanson and Lassi Pakkanen)

Page 37: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Olli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and Timo Ahtola

36

Geochemistry

The mafic rocks of the Lumikangas intrusion arecharacterisedbyuniformlyhighP2O5andTiO2contents,rather high K2O, variable but usually high Fe2O3 andrather low Cr content (Table 1). There is very small

variation in the Fe/Mg ratio as shown in the AFMdiagram (Fig. 7), and the distribution falls within thetholeiticfield.BecauseofhighFe-Tioxideandapatitecontents theLumikangas gabbroic rocks are not clas-sified in the subalkaline field. In fact, many samplesfromLumikangas show increased alumina saturation

Fig 5f. Magnified exsolved structure of fine ilmenite and spinel inmagnetite (R398/57,5m)

Fig 5b. Alkali-feldspar and plagioclase as major rock formingminer-als (R400/81m).

Fig 5 c. Free ilmenite grain; large pyrrhotite grain associated withilmenite and magnetite (R400/149,2m).

Fig 5d. Ilmenite commonly occurs as a separate anhedral to subherdalgrains (R400/192m)

Fig 5e. Ilmenite lamellae inmagnetite, up to 40microns thick and 300microns long; note spinel granules along the border of the lamellae(R400/149,2m)

Fig 5a. Pyroxene, uralite and mica; Ilmenite rimmed by biotite anduralite (R398/57,5m)

Page 38: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Exploraton results and mineralogical studies on the lumikangas apatite-ilmenite gabbro ...

37

Fig 6a. Myrmekitic intergrowth of ilmenite and magnetite with py-roxene, uralite and biotite (R400/149,2m)

Fig 6b.Apatite inclusions in the ore minerals.

Fig 6c. Coarse grained apatite associated uralites and pyroxene; noteapatite is euhedral, up to 3mm long (R400/63,9m).

Fig 6d. Coarse grained apatite associated with iron ore, uralites andbiotite note apatite is subhedral (R400/149,2m).

Fig 6e.Apatite up to 5mm in length, and clusters of subrounded grainsof apatite (R400/138,7m) ^PLev. 7,7 cm

Fig 6f.Apatite as major mineral and reaches up to 4mm in size; fine-grained and needle like apatite mainly embedded in alkali feldspar (R400/141,6m)

and thewhole rockwas metaluminous (Al2O3>Na2O+ K2O < CaO + Na2O + K2O) (Table 1). This is partlyrelated to the highK2O (> 1 %) content of the gabbro. Based on chemical analyses the normative orthoclasecontent is 5 – 10 %, and may be up to 25% in gab-bropegmatoids. In the Streckeisen-type triangular

classification diagrammost samples groupwithin themonzogabbro field,which means that they contain atleast 10 % alkali feldspar component (Fig. 8).The special feature of the Lumikangas gabbro is

that Ti, P andMg correlate very closely as shown indrill hole R400 (Fig. 9). This could be explained by

Page 39: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Olli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and Timo Ahtola

38

Fig. 8. Lumikangas samples in normative (quartz-orthoclase-plagioclase) triangular diagram. Most samples contain more than 10 % normativeorthoclase and have the composition of monzogabbro.

Fig 7. Distribution of Lumikangas gabbro inAFM-diagram.Distribution of Lumikangas gabbro inAFM-diagram.

Fig. 9. Variation of magnesium, titanium and phosphorous in two drill holes R400 and R399 from Lumikangas.

a simultaneous crystallisation of iron-oxide, apatiteand Mg-rich silicates (see Fig. 5 and Fig. 6).

Ore mineralogy

Ilmenite and magnetite

Based onmicroscope observation the rocks containabout 3–20 vol% ilmenite andmagnetite. They occur

as separatecrystals,anhedral to subhedralgranularag-gregatesand range in size from0.1 to1.5mm. Ilmeniteoccursaswell-developed singlecrystals (Figs.5c,5d),and as latticed oxyexsolution textures in and alongthe boundaries of magnetite grains (Fig. 5e), wherethe boundaries are often delinated by spinel granules. The ilmenite grains are commonly monomineralic,except for occasional magnetite lamellae, rare rutileinclusions and spinel needles.

Page 40: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Exploraton results and mineralogical studies on the lumikangas apatite-ilmenite gabbro ...

39

Magnetite contains both ilmenite and spinel as ex-solved inclusions (Figs. 5e, 5f), where the magnetiteherecanbe referred toas ilmenomagnetite.The ilmen-ite exsolution might represent two generations, withoriented long lamellae and fine needle like structuresranging fromsubmicroscopic to100μmacross, andupto1.2mmin length.Thefine oriented ilmenite needlesaredistributedevenly throughout themagnetitegrains along with very fine spinel microcrystals (Fig. 5f).Ilmenite andmagnetite showmyrmekitic intergrowthwith silicate minerals, mainly pyroxene, uralite andapatite (Fig. 6a), which indicate simultaneous crys-tallisation of the ore and the silicate minerals. Pyriteand pyrrhotite are the common sulphides observed,occurringmainlyasseparategrainsassociatedwith theore and gangueminerals. Fine grains of chalcopyriteoccur often associated with pyrrhotite and pyrite as inclusions. Inclusions of pentlandite in pyrrhotite andsecondary hematite with pyrrhotite were observed. Magnetite is less common within the sections wherepyrrhotite is abundant.

Apatite

The Lumikangas gabbroic rock consists of about 1–6 vol% of apatite (Figs. 6b–6f). Locally elevatedamounts of apatite covering nearly 25 vol% the rockare observed in R400/141.6m, which correspondsto the highest phosphorous content (5.5% P2O5,R400/140–142m). The apatite crystals occur either as single crystals or in small clusters associated withfeldspars, pyroxene and Fe-Ti oxides (Figs. 6e, 6f).Inclusions of apatite in the ore minerals (Fig. 6b) andin silicates (Figs. 6e, 6f) are themost typical textures.Apatite occurs in various forms: euhedral (Fig. 6c),subhedral (Fig.6d)andranges insizefromabout50μmto 4–5mm long. Apatite chadacrysts (inclusions inoikocrysts)occurringasfinesubroundedandelongatedstructure are enclosed by feldspar oikocrysts, which

is typical of poikilophitic texture (Fig. 6f).Pure apatite concentrate was made using heavy

liquid separations. The concentrate was analysed byICP-MS for rare elements. The chondrite normalisedREE-array of apatite is rather plain and only gentlydecreasing (Fig. 10). A special feature of the Lu-mikangas apatite is that there is no Eu minimum as compared to neighbouring elements,which is typicalforapatite in theKauhajärvigabbro.This indicates that plagioclase has not been extracted during magmaticdifferentiation.The similar shapeof theREE-arraysofbothLumikangasandKauhajärviapatitemay indicatethe same magmatic source for both gabbros.

Electron microprobe analyses

The TiO2 content of ilmenite (49.3–51.2) is very close to the theoretical ilmenite composition(TiO2=52.65 %) indicating no significant alteration(Table 2).The MgO and Cr2O3 contents of ilmeniteare low as is V2O3 that hardly exceeds 0.15 % inLumikangas ilmenite. The MnO content of bothilmenite grains and lamellae in magnetite is constant but relatively high (0.8–1.3 %). TheTiO2content in themagnetite lattice isconsider-

ably low (0.0–1.8 wt%) having been taken up by thetwo generations of exsolved ilmenite lamellae. Themagnetite lamellae in ilmenite, however, contains up to 3.2 wt% TiO2. Interestingly, the Cr2O3 content of magnetite is insignificant, ranging from 0.03 to0.22wt%.Vanadium inmagnetite,on theotherhand, is relativelyhigh (V2O3=0.5–2.35wt%),andvaries fromsample to sample, 0.95–1.4 % V2O3 in R398/57.5mand2.1–2.35wt%V2O3inR400/63.9m.Thevanadiumcontent in the Lumikangas magnetite (0.34–1.6 wt%V) is within the range of Koivusaarenneva (0.7 wt% V;Kärkkäinen et al. 2003), Mustavaara (0.83 wt%V;Juopperi1977)andOtanmäki(0.64wt%V;Kerkkonen1979) but relatively higher than that of Kauhajärvi(0.1–0.4 wt%V; Kärkkäinen &Appelqvist 1999).Inspiteofgrainmorphologyandsizedifferences, the

apatite composition is relatively uniform but contains small amounts of SiO2,MnO, FeO and SrO, as theseminerals are known to substitute Ca in apatite (Table2). The fluorine content of apatite (2.0–4.3 wt%) isindicative of fluor-apatite composition.Potassium feldspar is occasionally found to contain

extremely high barium content giving a compositionof Ba-feldspar (Table 2). The clinopyroxene has aferro-augite composition, characterised by lowAl2O3and TiO2 contents. The clinopyroxene is associatedwith primary plagioclase, and according to chemicalanalyses and microscope observation, plagioclase is in part transformed into albite . Fig. 10. Apatite REE arrays of Lumikangas and Kauhajärvi. ^P

Page 41: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Olli Sarapää , Niilo Kärkkäinen, Tegist Chernet, Jaana Lohva and Timo Ahtola

40

discussion

In almost all igneous rocks, apatite is known as anaccessorymineral. However, apatite enrichment withilmenite and magnetite are recorded in a number ofdeposits, for example in mafic intrusions as in Bush-veld (Von Gruenewaldt 1993), in Sept-Iles (Nabilet al. 2003), Kauhajärvi (Kärkkäinen 1999), andin anorthosite complexes as in Bjerkreim-Sokndal(Duchesne 1972, Kornelliussen et al. 2000) and LacMirepoix (Morisset 2003). Apatite-bearing ilmenite-magnetite deposits and

prospects generally contain ilmenite with low MgOand Cr2O3and ilmenite poor in hematite (Schiellerup et al. 2003). One interesting feature at Lumikangas is the early crystallisation of apatite and coeval crystal-lisation of apatite, Fe-Ti oxides and mafic silicates(Fig. 9). In practice this means that the parent maficmagma was abnormally rich in P and also Fe andTi. This kind of Ti-P enriched mafic rocks in crustalenvironments are often called jotunites (Norway),oxide apatite gabbronorites (Canada) or ferrogabbros (USA) and they aremore or less closely related to theanorthosite massifs or rapakivi granite-anorthositesuite. These kinds of rocks have lately been studied as a possible source of Ti and P, for instance in Norway(Kornelliussen et al. 2000).

Conclusion

Lumikangas area was selected as a target for Ti-P-exploration on the basis of a high magnetic andgravity anomaly and its location in the Kauhajokiapatite-ilmenite gabbro province. The Lumikangas apatite ilmenitemonzogabbro may be a potential oreresource in the future, containing an average of 19 % oreminerals:8.7 % (max. 21 %) ilmenite,4.8 % (max. 17%)magnetiteand5.4%(max.17%)apatite.Apatite,ilmenite and magnetite were crystallised at the sametime at a very early stage ofmagmatic differentiation,because theyhaveagoodcorrelationwithmagnesium. The drilling profiles did not intersect pyroxenites, inwhich the highest ore contents could be hiding.

REFERENCES

duchesne, J. C. 1972. Fe-Ti oxideminerals in Bjerkreim-Sokn-dal massifs, southwestern Norway. Journal of Petrology 13,57–81.

huuskonen,M. &kärkkäinen, N. 1994. TiP-gabrojen etsintä-ohjelmaLauhavuorengraniitinympäristössä:korkealentomag-neettiset häiriöt ja Kauhajoen Hyypän intruusion tutkimukset. Geologian tutkimuskeskus,arkistoraporttiM19/1234/94/1/10. 13 p. + 9 apps.

Juopperi, A. 1977. The magnetite gabbro and related Mus-tavaara vanadium ore deposit in Porttivaara layered intrusionnortheastern Finland. Geological Survey of Finland, Bulletin288. 68 p. + 2 apps.

kärkkäinen,N.,Sarapää,O.,huuskonen,M.,koistinen,E. &lehtimäki, J. 1997. Ilmenite exploration in western Finland,and themineral resourcesof theKälviädeposit. In:Autio,S. (ed.) Geological Survey of Finland, Current Research 1995–1996.Geological Survey of Finland, Special Paper 23, 15–24.

kärkkäinen,k. &Appelqvist,h. 1999.Genesis of a low-gradeGenesis of a low-gradeapatite-ilmenite-magnetite deposit in the Kauhajärvi gabbro,western Finland. Mineralium Deposita 34, 754–769.

kärkkäinen, k. & bornhorst, T.J. 2003. the Svecofenniangabbro-hosted Koivusaarenneva magmatic ilmenite deposit. Kälviä, Finland. Mineralium Deposita 38, 169–184.

kerkkonen, O. 1979. The magnetite-ilmenite of the Otanmäkititanium iron ore, interpretation of the source and development (in Finnish). PhLic thesis, University of Oulu, Finland.

korneliussen, A., McEnroe, S., Nilsson, l.P., Schiellerup,h., Gautneb, h., Meyer, G.b. & Storseth, l.R. 2000. Anoverview of titanium deposits in Norway. Norges geologiskeNorges geologiskeundersokelse, Bulletin 436, 27–38.

lehtimäki, J. 1984.Honkajoen jaKauhajoen alueiden seismiset luotaukset 1982 ja 1983. Geologian tutkimuskeskus, arkistora-portti, Q19/1234/84/1/23. 8 p. + 17 apps.8 p. + 17 apps.

Morisset, C-E. 2003. A study of mineral compositions of LacMirepoix layered complex, Lac St-Jean anorthosite complex,Quebec, Canada. In: Ilmenite deposits and their geologicalenvironment, NGU, Special Pubication 9, 84–85.

Nabil,h., barnes, S. &higgins,M. 2003.Genesis of phospho-rous and titaniumdeposits in Sept-Iles mafic intrusion.Miningindustry conference and exhibition, Abstract, Montreal May4–7, 2003.

Pääkkönen ,v. 1962. TutkimuksetKauhajoella 1961.Geologiantutkimuskeskus, arkistoraportti, M17/Khj-61/1. 2 s. + 1 app.

Pakarinen,J.1984.RaporttiHonkajoella,Kauhajoella jaKarvialla15.4.1983 -29.2.1984 suoritetuista fosfori-titaani-rauta-malmi-tutkimuksista (Kemira Oy:n ja Geologian tutkimuskeskuksenyhteistyöprojekti). Geologian tutkimuskeskus, arkistoraporttiM19/1234/84/1/10. 49 p. + 103 apps.

Rämö, T. 1986. Honkajoen Perämaan emäksinen intruusio - eri-tyisesti sen gabro-osien petrografia, mineralogia ja petrologia,104 p.

Schiellerup, h., korneliussen, A., heldal, T., Marker, M.,bjerkgård, T. & Nilsson, l. P. 2003. Mineral resources inRogalandAnorthositeProvince,SouthNorway:Origins,historyand recentdevelopments. In: Ilmenitedepositsand theirgeologi-cal environment. NGU, Special Publication 9, 116–133.

vonGruenewalt,G.1993. Ilmenite-apatiteenrichment in theUp-perZoneofBushveldComplex:amajor titanium rockphosphateresource. International Geological Review 35, 987–1000.

Page 42: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

41

Geological Survey of Finland, Current Research 2003–2004,Edited by SiniAutio.Geological Survey of Finland, Special Paper 38, 41– , 2005.

while the Suolakaarko deposit was discovered morerecently, in 1998 (Lintinen 2000). The first investiga-tions in the Salla regionwere undertaken in 1999, as aresult ofwhichwhite kaolinwas found at Vittajänkä. By the end of 2004 three separate drilling programs had been carried out at Vittajänkä,with a total lengthof 2000m. At the same time, exploratory drilling has been undertaken in surrounding terrain, in the searchfor analogous occurrences.Assessmentof thequalityofkaolinatVittajänkähas

also been carried out concurrentlywith delineation ofreserves,with particular emphasis on its suitability as a paper pigment. Preliminary enrichment tests simu-lating industrial processing have been conducted at GTK and also at the former VTTmineral processinglaboratories (now GTK Mineral Processing Labora-tories) and results of studies completed prior to 2004have been reported byAl-Ani et al. (2004).

Geological setting

TheVittajänkä kaolin deposit is located within thesoutheasternextensionof thePaleoproterozoicCentralLaplandgreenstonebelt (Fig. 1). In this areahowever,quartz-rich metasediments dominate, bounded tothe east by the extensive metavolcanics of the Sallagreenstone area, which continues across the national

47

ThE viTTAJÄNkÄ kAOliN dEPOSiT, SAllA, FiNNiSh lAPlANd

byPanu Lintinen1) and Thair Al-Ani2)

1) P.O. Box 77, FI-96101 Rovaniemi, Finland2) Kallentie 36 B 4, FI-45130 Kouvola, Finland

E-mail: [email protected]

Key words (GeoRef Thesaurus,AGI): kaolin deposits, mineral exploration, geophysical methods, weathering, mineral composition,chemical composition, beneficiation, Vittajänkä, Salla, Finland

introduction

In the search for abundant and high quality kaolinresources to satisfy the growing demands of the Finn-ish paper industry, the Geological Survey of Finland(GTK) has, over the period 1998–2004, investigatedmore than20kaolindeposits in thepre-glacial regolithof northern Finland. Research has focussed on Paleo-proterozoicmetasedimentary rocks incentralLapland,particularly in areas of relatively low metamorphicgrade,usingavarietyofairborneandgroundgeophysi-cal techniques, supplemented by drilling. Airbornegeophysical data are particularly useful in identifyingweatheredbedrock,whiledrillingorexcavationduringearlier bedrock exploration activities has commonlyprovided direct confirmation of the presence of kaolinand deeply weathered regolith beneath Quaternarytill. In contrast, there is a paucity of prior indications of kaolin from terrain dominated by granitoids andgneisses of higher metamorphic grade. During the course of investigations, research has

gradually focussed on two specific regiona, namelythe eastern parts of the Sodankylä municipality andthe areas to the east and northeast of the tonwhsip ofSalla. The presenceofkaolin in theSodankylädistrict,at Siurunmaa, has been known since 1976

(Rask& Lintinen 2001, Pekkala & Sarapää 1989),

Page 43: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

42

Geological Survey of Finland, Special Paper 38Panu Lintinen and Thair Al-Ani

border into adjacent Russia. The central Laplandgranitic complex occurs to the south and southwest ofVittajänkä,whereasArcheangraniticand supracrustalterrain lies to the north. Regionalgeological investigationshavebeencarried

out during the Lapland Volcanite Project (LVP), byManninen (1991), on the basis ofwhich themetasedi-mentaryMatovaara Formation is considered to be theprotolithfromwhich theVittajänkäkaolinwasderived. Although the area is covered by extensive wetlands,with very few bedrock exposures, themetasediments appear to have been calcareous siltstones, with calc-silicate and laminated orthoquartzite intercalations.

Geophysical investigations

TheVittajänkäkaolindepositcanbedistinguished inregional airborne geophysical data as an electromag-netic anomaly with an intense imaginary component and a considerably reduced real component. TheMatovaara Formation metasedimentary host rocks are non-magnetic, although they are surrounded bya narrow, conspicuously magnetic zone of tholeiiticvolcanics belonging to the Tahkoselkä Formation.

The area delineated by the airborne EM anomalywas surveyed on the ground as well, firstly alongwidely spaced profiles and then on a systematic gridcovering 3.6 km2 . Both EM VLF-R measurements andgravity surveys weremade. In addition, a regionalscale gravimetric survey was carried out over 300km2 in the Salla district during 2000–2001,with a sitedensity of 8 measurements per km2. On the basis ofthese gravity surveys, the Vittajänkä kaolin deposit appears to coincidewith anortherly trending elongate2 mGal gravity minimum, approximately 1.75 km2

(2.5x0.8km) inextent (Fig.2).Theshapeof thegravityanomaly is controlled by both degree of weatheringand the structurally defined bedrock geology, withmafic volcanics surrounding the metasediments.

Sampling strategy

The Vittajänkä deposit was drilled in three stages in 1999, 2001 and 2003, using different equipment and core recovery techniques. Drilling has been bothtechnicallychallengingand requiredcareful samplingin order to maximize the research value of recoveredmaterial.

Fig. 1. Geological map showing the location of the Vittajänkä deposit.

Page 44: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

43

Geological Survey of Finland, Special Paper 38The Vittajänkä kaolin deposit, Salla, Finnish Lapland

The gravity anomaly has been drilled along twoE-W profiles 700 m apart (Figs. 2 and 3). The morenortherlyprofile intersectedwhiteoryellowishkaolinover a distance of 300m, while the total width of theweathered zone was about 400 m. In the southernprofile the weathered zone was about 150 m across,with 75mof light-colouredkaolin. White toyellowishkaolin tend tooccur in thecentralpartsof theweatheredzone,whilemarginal parts were considerably darker.

Overburden thickness varied from 10–25 m, with amean depth of 15m. The thickest kaolin intersections were nearly 30 m although the average was around20 m. Sporadic quartz-rich horizons, or weatheredaccumulations of quartz sandwere sporadically foundwithin the kaolin.Some diamond drill core was recovered from the

quartz-rich intercalations, and from the bedrock be-neath the kaolin deposit, despite their being intensely

Fig. 2. Bouguer anomlaymap of the Vittajänkä kaolin deposit, showing locations of drilling profiles and the distribu-tion of white and coloured kaolin.

Fig. 3. Simplified cross sections of drilling profilesA and B. For locations, see Figure 2.

Page 45: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

44

Geological Survey of Finland, Special Paper 38Panu Lintinen and Thair Al-Ani

weathered. Thus, significantly weathered regolithoccurs at depths considerably greater than the mainkaolin deposit.

laboratory analyses and enrichment trials

Methods

A total of 96 samples of kaolin, both white andcoloured,were taken for systematic analysis at GTK,with an average sample lengthof3.8m. Samples wereclassified according to grain size distributions using acombinationofsievingandsedigraphanalysis.Samplefractions <20 µm were separated and measured for whitenessandyellownesswithanL&WElrepho-spec-trophotometer, according to ISO 2496 specifications.In addition, the mineralogy and chemical composi-tions of the original samples, prior to sieving, as wellas the <20 µm fractions were analyzed by XRD andXRF respectively.The best samples of white kaolin were then evalu-

ated with a trial industrial enrichment process at theVTT (now GTK) Mineral Processing Laboratories at Outokumpu. The process consisted of sieving andcentrifuging, followed by magnetic separation andchemical bleaching with sodium dithionite. The cen-

trifugingwas intended torecover thesize fractionfinerthan 2 µm. Magnetic separation was performed witha Sala HGMS (High Gradient Magnetic Separation) separator.After bleaching, the samples were filtered,driedandagainmeasured forwhitenessandyellowness according to ISOR457-specificationswith anElrepho2000-colour meter. The final purified samples werethen analyzed with both XRD and XRF at the GTKlaboratories.

Whiteness and yellowness

Kaolin samples were classified according to theISO brightness index, for which ’white’ refers to abrightness >60%and coloured to values <60%.Thisapproach to classification was also used by Sarapää(1996) for the kaolin deposits at Virtasalmi, wherethe 20 µm size fraction was also used as a cut-offthreshold; therefore, results from the two studies arein principle comparable.Brightness values for kaolin from the <20µm size

fraction were, for the samples classified as white, ashigh as 80–85 %. Such a result can be consideredparticularlygood for kaolin thathas notbeen treated tomagnetic or chemical purification. The yellowness ofThe yellowness ofthesewhitest samples was onaverage 7–8 %. Paleyel-Paleyel-

RAwkAOliN <20 microns <2microns white coloured white coloured whiteN=59 N=37 N=59 N=37 N=10

Brightness % - - 72.2 50.1 79.5Min - - 60 21.7 74.0Max - - 84.6 59.9 84.1

Yellowness - - 13.4 29.9 5.9

Kaolinite 30 30 66 56 92Min 7 0 15 5 85Max 70 80 90 95 95Quartz 49 35 9 11 6Feldspar 6 16 10 15 0Muscovite 8 4 13 6 4

SiO2 76.23 69.95 51.66 52.19 52.35Al2O3 13.47 14.72 27.89 25.60 31.40TiO2 0.32 0.52 0.57 0.64 0.40Fe2O3 2.00 4.43 2.95 4.15 1.51MgO 1.18 3.59 1.86 3.72 0.84CaO 0.03 0.23 0.01 0.10 0.03Na2O 0.07 1.84 0.18 1.41 -K2O 3.26 1.78 6.22 3.14 2.62

Table 1. Mean brightness and yellowness values and respective mineralogical and chemical composi-tions for different size fractions from the Vittajänkä kaolin deposit. N = number of analyses.

Page 46: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

45

Geological Survey of Finland, Special Paper 38The Vittajänkä kaolin deposit, Salla, Finnish Lapland

low samples had brightness values between 70–78 % and corresponding yellowness values of 15–10 %. Magnetically and chemically refined processed

kaolin in the <2 µm size range had brightness values only a few percent higher. For example, thebrightness index for the <20µm fraction increased from 80 % toaround 83 %. On the other hand, yellowness values fell significantly by about half, to values around 3.5–5 %. Because kaolin products suitable for paper pig-ment require a brightness index of at least 87 % andyellowness below 3 %, these results indicate that theVittajänkä kaolin would be suitable as a filler only.

Mineralogical composition

Table 1 shows mineralogical and chemical data for selected elements for white and coloured kaolin at various size fractions. Originaluntreatedwhitekaolinsamples contain, on the basis of XRD analyses, anaverage of 30 % kaolinite, 49 % quartz, 8 % musco-vite, 6% feldspar and trace amounts of hematite andpyroxene. The abundance of kaolin increases to anaverage of 66%for the <20µm size fractions, but stillcontains significant amounts of quartz andmuscovite.The refined <2µm kaolin product contains 85–95 %kaolinite, the remainder comprising from 5–10 % quartz and 0–5 % muscovite. Coloured kaolin contains similar proportions of, or

slightly less kaolinite thanwhite kaolin. On the other hand, quartz contents are comparatively lower andfeldspar abundances somewhat greater. The easternparts of the drilling profiles tend to contain moreplagioclase, up to 40 % in untreated primary samples and as much as 55 % in the <20µm size fraction. Inthe central parts of the profiles, inclusions or inter-calations of coloured kaolin within the white kaolincontain significant amounts of hematite, in places upto 20 %.The refined kaolin products were studied under

the scanning electron microscope (SEM), as a result of which illite was identified amongst kaolinite andmuscovite. XRD analysis of the settled clay fractionsof white kaolin samples also showed a characteristicillite peak,whilecolouredkaolinite samples werealsofound to contain mixed layer illite-smectite phyllo-silicates. XRD datawere used to determine Hinckleycrystallinity indices (Hinckley1963,Aparicio&Galan1999), with values in the range 0.59–0.88 indicatinga relatively high degree of crystallinity for the kaolinlattice, in places moderately crystalline. The SEMimages (Fig. 4) also revealed that kaolin crystals were nearly euhedral,with a rather uniform grain sizedistribution and a tendency for small flaky particlesto remain in isolation from one another, rather thanaggregate into larger phyllosilicate booklets.

Fig. 4. SEM-image of refined Vittajänkä kaolin. Kaolinite occurs as euhedral flaky particles.

Page 47: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

46

Geological Survey of Finland, Special Paper 38Panu Lintinen and Thair Al-Ani

Chemical composition

White Vittajänkä kaolin tends to have relativelyhigh SiO2- and K2O- abundances and low Al2O3 ir-respective of grain size.After refining, the <2µm sizefraction contained on average 51.6 % SiO2, 27.9 % Al2O3 and 2.9 % K2O. The abundance of silica andlow alumina can be understood in terms of residualquartz,while the retention ofmuscovite and illite canexplain the high potassium and Fe2O3, which attains 1.5 % in some samples. By way of comparison, theideal theoretical kaolinite composition is 46.5%SiO2and 39.5 % Al2O3. As a general rule, kaolin products of commercial quality are very close to this idealcomposition, although K2O abundances may com-monly exceed 2 %, providing that Fe2O3-abundances remain below 1 %.Coloured kaolin in the eastern parts of the profiles

show elevated Na2O abundances (mean = 1,5–2 %,maximum = 9,7 %), which corresponds to relativelyhigh amounts of albitic plagioclase. In the <20µmsize fraction both Na2O abundances and plagioclasecontents determined by XRD are even higher, whichindicates further that the albite is particularly fine-grained. It is thereforepossible that theprotoliths for theregolith in theeasternpartof theprofilewere tholeiiticvolcanics of the Tahkoselkä Formation. However, tothe west of the volcanic contact, the coloured kaolinhas a chemical composition consistent with deriva-tion from metapelitic rocks or even calc-silicates ofthe Matovaara Formation, given the relatively highabundances ofMg,Fe andK, and locally highMg+Fewith lowK andNa. Locally dark pigmentationwithinthewhite kaolin is usually caused by hematite,whichis clearly reflected in Fe2O3 concentrations.

Conclusions

Protoliths for the kaolin

Thewhitekaolin is evidentlyderived fromweather-ing of sericitic quartzites and sericitic schists. Localintercalationsofquartzitehaveweathered tokaoliniticquartz sand. Thin section studies show that the host rocks were exceedingly fine-grained, massive toweakly laminated and generally onlyweakly foliated,withquartzoccurringamongstfine-grainedphyllosili-cates. Accessoryminerals include albitic plagioclase,potassium feldspar, tourmaline and porphyroblasts of scapolite.The most likely protoliths for the coloured kaolin

are phyllitic metasediments and mafic metavolcan-ics. Weathered volcanics in the eastern part of thedrilling profiles contain abundant albitic plagioclase

and exhibit relatively high Na2O, Fe2O3- and MgO-abundances. In contrast, weatheredmetapelites havehigher K2O abundances, with very low Na2O. Thinsection studies reveal that the mafic volcanics arefine-grainedandmassive,withmineralogydominatedby albite and actinolite, the latter locally replaced bytalc. Phyllitic rocks resemble sericite schists, exceptPhyllitic rocks resemble sericite schists, except that in addition they contain biotite.

The kaolinization process

The mineralogical and chemical attributes of theVittajänkä kaolin deposit, together with its overallgeometry indicate that the kaolin formed by in situweathering of silicate minerals. The high degree ofcrystallinity and euhedral habit of the kaolin is alsoconsistent with a primary weathering origin. Thepresence of muscovite and illite indicate that theprocess had not proceeded to completion, at least at the present erosion level. It is probably that most ofthe kaolin formed during decomposition of feldspar and muscovite.

Preservation of kaolin

At least the lower part of the regolith profile atVit-tajänkä has survived, despite repeated glaciation anddeglaciation events. In general, pre-glacial regolith is moreextensivelypreserved ineasternandnortheasternLapland than elsewhere in the country. At Vittajänkäthe following factors contributed to the preservationof kaolin:1) Primarycompositionalvariations in theprotoliths to

thekaolinoccurrences, in particular more resistant quartz-rich intercalations have protected adjacent weathered material from the effects of erosion

2) The general topographic depression in the area,inherited from bedrock geology, with highlyweatheredmetasediments surrounded by a ring ofmore resistant, massive and fine-grained tholeiiticmetavolcanics (Fig. 1).

Beneficiation and exploitation of kaolin

At present it is only possible to provide a provi-sional and speculative estimate of the potential kaolinresource at Vittajänkä, using the dimensions of thegravity anomaly and information from the drillingprofiles. Given that the gravity minimum is nearly 2km in length and that the mean width and depth oftheweathered zone are 275m and 20m respectively,and assuming a regolith density of 2000 kg/m3, a totalmass ofaround22million tonnes is obtained. Samples

Page 48: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

47

Geological Survey of Finland, Special Paper 38The Vittajänkä kaolin deposit, Salla, Finnish Lapland

analyzed to date have on average 60 %white kaolin,of which the average proportion of kaolinite is about 30 %. Accordingly, the deposit would contain about 13Mt ofwhitekaolin,which couldyield about 4Mt ofkaolinconcentrate. It shouldalsobenoted thatalthoughthe mean depth of the kaolin regolith is only 20 m,kaolinization is extensive to much greater depths. After refinement, theVittajänkä kaolin product still

containedconsiderable amounts of quartz andmusco-vite, which is reflected in the higher SiO2- and lower Al2O3- abundances than in commercially availablekaolin products. Despite all of the refining processesused, the brightness remained below the acceptablelevels for kaolin pigment. One of themain reasons for this is the fine grain size of the protoliths, particularlyquartz and muscovite, as a result of which mechani-cal purification is difficult. Further processing usingflotation is planned,whichwill hopefully be effectivein removing not only quartz, but also at least someof the mica, resulting in a product with improvedbrightness values.

REFERENCES

Al-Ani, T., lintinen, P. & karhunen, J. 2004. MineralogicalMineralogicalDescription and Preliminary Processing of the VittajänkäKaolin Deposit, Salla, Northeastern Finland. Geological Sur-vey of Finland, unpublished report M19/4621/2004/1/82, 33p. + 36 app.

Aparicio, P. & Galan, E. 1999. Mineralogical interference onkaolinite crystallinity index measurements. Clays and ClayMinerals 47 (1), 12–27.

hinckley,d.N. 1963.Variability in “crystallinity” values amongthe kaolin deposits of the coastal plain of Georgia and SouthCarolina. Clays and ClayMinerals 11, 229–235.

lintinen, P. 2000. Kaoliinitutkimukset Sodankylän Suolakaar-kossa 1998–1999. Geological Survey of Finland, unpublishedGeological Survey of Finland, unpublishedreport M19/3732/2000/1/82, 9 p. + 7 app.

Manninen, T. 1991. Sallan alueen vulkaniitit : Lapin vulka-niittiprojektin raportti. Summary: Volcanic rocks in the SallaSummary: Volcanic rocks in the Sallaarea, northeastern Finland: A report of the Lapland VolcaniteProject. Geological Survey of Finland,Report of Investigation104. 97 p. + 5 app.

Pekkala,y.& Sarapää,O. 1989.Kaolin exploration in Finland.Kaolin exploration in Finland. In: Autio, S. (ed.) Geological Survey of Finland, Current Research 1988. Geological Survey of Finland. Special PaperSpecial Paper 10, 113–118.

Rask,M. & lintinen, P. 2001.Kaoliinitutkimukset SodankylänSiurunmaallavuosina1978–1988.GeologicalSurveyofFinland,GeologicalSurveyofFinland,unpublished reportM19/3713/2001/1/82, 12 p. + 6 app.

Sarapää, O. 1996. Proterozoic primary kaolin deposits at Vir-tasalmi, southeastern Finland. Espoo: Geological Survey ofFinland. 152 p. + 6 app.

Page 49: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

48

Geological Survey of Finland, Special Paper 36Matti Tyni, Kauko Puustinen, Juha Karhu and Matti Vaasjoki

Page 50: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

49

Geological Survey of Finland, Current Research 2003–2004,Edited by SiniAutio.Geological Survey of Finland, Special Paper 38, 49– , 2005. 60

GEOPhySiCAlChARACTERiZiNG OFTAiliNGS iMPOuNdMENT –ACASE FROM ThEClOSEd hAMMASlAhTi Cu-ZNMiNE, EASTERN FiNlANd

byHeikki Vanhala1),Marja Liisa Räisänen2), Ilkka Suppala1), Taija Huotari1), Tuire Valjus1) and

Jukka Lehtimäki1)

1) Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland2) Geological Survey of Finland, P.O. Box 1237, FI-70211 Kuopio, Finland

E-mail: [email protected]

Key words (GeoRef Thesaurus,AGI): geophysicalmethods, environmental geology, abandonedmines, tailings ponds, tailings, sedi-ments, chemical composition, Hammaslahti, Finland

introduction

We present here preliminary results of a project inwhich we test and develop geophysical techniques for mapping sulphide tailings impoundments. Our study site, the small Hammaslahti Cu-Zn mine,worked in1973–1986.The tailings impoundmenthav-ing an area of 30 hectares and an average height of9 metres, has been established on a bog. The interest in developing geophysical techniques for studyingtailings impoundments arises from the need of high-resolution 3D structural, chemical and hydrologicaldata for modelling and understanding the tailings impoundment systems. Rehabilitation of tailings impoundment for final

closure, as well as assessing the risk of old impound-ments require relevant data about the structure andcomposition of the tailings material and the water table and its temporal and spatial variation inside theimpoundment. In Finland, tailings impoundments ofseveral metal sulphide mines have been engineeredin bog basins or the depressions of small lakes. Inboth cases, the substrata are organic rich sediments underlying glaciolacustrine silt sediments,which arecompressing under load (Sipilä & Salminen 1995,Räisänen 2003). In general, the stratigraphy andcharacteristics of the impoundment are investigated

by drilling, including the profile sampling throughoutthe tailings and underlying parent sediments. The fact that dense drilling, needed for detailed characterisingand 3D modelling of an impoundment, is expensive,ledus to start a project to test anddevelop geophysicaltechniques for mapping tailings impoundments. Our test site is the closed Hammaslahti mine (Fig. 1). Themine tailings typically exhibit a low electrical

resistivity (i.e., high electrical conductivity). There-fore, electrical and electromagnetic (EM) methods are the most commonly used in mine tailings studies (Campbell et al. 1999, Campbell & Fitterman 2000,Watson et al. 2001). At the Geological Survey ofFinland, airborne geophysics has been for few years successfully applied to mapping both regional andsite-scale environmental impacts ofmining in differ-ent kind of geological environments. Beamish andKurimo (2000) used airborne electrical conductiv-ity data to detect acid leaks from active and closedcoalmines in the United Kingdom, while Lahti et al. (2000) used airborne radiometric, magnetic and EM(electromagnetic) and ground geophysical data for mapping environmental issues related to uraniummining activities in eastern Germany. Vanhala et al.Vanhala et al. (2002) studied the environmental, hydrogeologicaland geological issues around an oil shalemining areain northeast Estonia. Electrical resistivity sounding

Page 51: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.

50

results from the Hitura Ni mine tailings have beenpresented by Heikkinen et al. (2002). Thefirstgeophysical testsat theclosedHammaslahti

Cu-Znmineweremade in 2000when a few electricalresistivity soundings (ERT), aimed at locating sub-surface leakage pathways through the impoundment dam, were measured (Vanhala & Lahti 2001). MoreERT data were collected in 2001 – 2004, but most ofthe geophysical measurements (refraction seismic,gravity, EM and ERT) are from 2003. Drillings andsampling for chemical analysis were made in 2000,2003 and 2004. Petrophysical results are from 2004(Table 1). The general objective of the ongoing study is to de-

velopgroundgeophysicalmethods,gravity, refractionseismic, EM and ERT, for mapping and monitoringtailings impoundment and dam constructions andbedrock and sediment structures under and aroundthe impoundment.Petrophysicalproperties (electricalconductivity and induced polarization (IP), seismicvelocity and density) of the tailing material havebeen only poorly known and one of the key tasks is to define them. Especially the relationship betweenthe electrical conductivity and IP and the properties of the tailings material is of great importance. Thestructural features presumed to be suitable for geo-physical mapping are the follows(a)water table and the oxidised zone,(b)variation of grain size,mineralogy and chemistry

inside the impoundment(c) thickness of the tailings bed and the underlying

sediments,(d)bedrock relief and fracture zones (e) internal structures (dams, cavities)In this paper we present the preliminary results of

the geophysical studies. Furthermore, we discuss onthe relationship between the geochemistry and thegeophysicaldataof tailings andunderlying sediments at some reference sites.

description of the study site

TheHammaslahtiCudeposit is locatedat theeasternmarginof theEarlyProterozoicSvecofennianOrogen(2.0–1.75 Ga), 12 km west of the exposedArchaean-Proterozoic boundary (Fig. 1). The country rocks arecomposed of low-grade metamorphosed epiclasticsediments dominated by graded-bedded feldspathicgraywackes intercalated with black schist layers andphyllites. Three orebodies (S, N and Z) are locatedin hydrothermally altered rocks. Major sulphides arepyrrhotite, chalcopyrite and pyrite in the S and Norebodies, and sphalerite in the zinc ore body.The Hammaslahti Cu-Zn Mine operated in 1973–

1986.OutokumpuOymined7million tonsoforegrad-ing 1.16% Cu and minor amounts of Zn andAu.The tailings impoundment is situated north of the

flotation plant. Its surface area is about 30 hectares.

Fig. 1. Location and geology of the study area (Loukola-Ruskeeniemi et al. 1992).

Page 52: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Geophysical characterizing of tailings impoundment ...

51

The tailings impoundment is dammed on the bog (Fig2). The tailings embankment consists of local glacialtill strengthened by country rock stones from the openpits (Pelkonen et al. 1973). The average height of theheap is 9 metres above the surface of the bog. Theimpoundment is recovered by a thin basalmeltout tilllayer (10–60 cm).At present, plants typical for wildmeadows (mainly wild grass), and young birches andplanted pines growmore or less successfully (Fig. 3,Räisänen et al. 2003).

investigation methods of the tailingsimpoundment

Profile drilling and sampling

Thebasement and layer structureof the facility, andits hydrological conditions were studied by drillingwith a non-rotated percussion drill equipped with asoil core sampler at 22 sites (Fig. 4). Drilling workwas done firstly inNovember 2000, then inMay 2003

Fig. 2. Topographic map of Hammaslahti before mining (upper left); aerial photograph of the tailings impoundment from 1974 (upper right); map ofQuaternary deposits (brown=peat, yellow=sand and fine sand, red=bedrock, grey=till, magenta=tailings, (lower left); airborne electrical conductivitymap (AEM), out-of-phase, 3.1 kHz, 1991 (lower right). Map area is 1.4 x 1.4 km2 (Pohjakartta ©Maanmittauslaitos, lupa nro 13/MYY105).

Page 53: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.

52

andMay 2004. In 2000, profile samples from tailingsmaterials and underlyingQuaternary sediments werecontinuously collected into non-contaminated plastic(high dense polyethene, HDPE) tubes with a pistonand in 2003 with a special soil core sampler duringthe drilling. The sampling technique is developed bythe GTK. In 2004, the tube sampling was used, sinceit allows the making of petrophysical core samplemeasurements. The sampling was done in a set of 1m sample per tube. After the measurements, sampletubeswerehalfopened,andsample layers forchemicalanalysis were separated on the basis of the oxidationdegree of the tailings and physical characteristics of the underlying sediments. In all cases, samples for chemical analysis were frozen in the field or im-mediately after transporting to the Geolaboratory ofthe GTK.For chemical analysis tailings and underlying peat

and silt sediment samples were freeze-dried and thensieved to<2.0mm fraction. Ammonium acetate (1M) solution buffered to pH 4.5 for chemically adsorbedelements (exchangeable, surface complexes) and hot (90 oC) aqua regia for mica and claymineral fraction(including sulphides) (Niskavaara 1995, Räisänen&Carlson 2003, Räisänen et al. 2003). In contrast tomineral sediment samples, the nitric acid leach as-sisted withmicrowave (EPA 3051) was used for peat samples (Niskavaara 1995). The ICP-AES techniquewas used for measurements of the element concentra-tions in the above extracts.

The total sulphur was determined using with theLeco-S technique and total concentration of carbonand nitrogenwith aCN analyser. The extractions andICP-AES,S,C andNdeterminations weremade at theFINAS accredited Geolaboratory of the GeologicalSurvey of Finland (GTK) in Kuopio.

Geophysical measurements and interpretation tools

The geophysical data used in this study is presentedin Table 1. Location of the ground geophysical lines and profile sampling sites are in Figure 4.Two refraction seismic profiles were measured

across the impoundment. The seismicmeasurements enable the interpretation of dry overburden (tailings + natural sediments), saturated overburden and thedepth to bedrock. The method also gave informationabout the type of overburden and the bedrock. Thefracture zones in the bedrock can be detected fromthe low seismic velocity of broken rock. In certaincircumstances, layers cannot be detected by seismicrefraction. This is usually due to the insufficientthickness or velocity contrast between the layers. Ifthe “hidden” layer is not taken into account in theinterpretation the calculated total thickness of theoverburden is too small. In Hammaslahti, the thickpile of dry and saturated tailings covers underlyingQuaternary sediments. The underlying natural sedi-ment layer is inmost cases undetectable by refraction

Fig. 3. Vegetation cover of the tailings in spring 2003 in the old Hammaslahti Cu-Zn mine area, eastern Finland.

Page 54: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Geophysical characterizing of tailings impoundment ...

53

seismic survey. It can only be seen in the middle ofupper seismic line (Fig. 4). The second problem inrefraction interpretation is called the “reversal veloc-ity case” – the velocity in a layer is lower than in theoverlying layer. The low velocity cannot be detectedby refraction survey. If there is no information ofthe low velocity layer the calculated total thickness of overburden is overestimated. A typical reversalvelocity case is a sand layer under gravel.Six gravity profiles were measured across the

impoundment. Seismic results and the water tableinterpreted from the seismic data were used as refer-ence data in gravity interpretation. The interpretationof thegravitydatawas madeusinga three-layer model– bedrock, saturated sediment layer and dry sediment layer. For the sediment material, densities of 1500kg/m3 (dry) and 1950 kg/m3 (saturated) were used. Possible sources of error were the density variationof bedrock and the water table. Ground slingram measurements were carried out

using a multi-frequency horizontal loop EM method(HLEM), (APEX MaxMin I+8S system). Eight fre-quencies (440, 880, 1760, 3520, 7040, 14080, 28160and 56320 Hz) were measured.1D inversionwasused to interpret theEMdata.First

the quality of the HLEM data was assessed with 1Dmulti-layer inversion using a few layers with vary-ing thickness and conductivity, in order to examinethe effects caused by 3D conductivity structures and

misalignment of the loops. Then the layered-earthinterpretationwasmadewithmodelnorm-based inver-sion. In the 1Dmodel, the earth is composed of a stackof layers, each having a uniform conductivity. The 1Dconductivity structure, i.e., the conductivities of eachlayer, issoughtby the regularised inversion.Thegoal is tofindforeverymeasuringpointaminimum-structuremodel,whichcanfit themeasurementdatasufficientlywell. Theminimisationof theobjective function (datamisfit + βx model norm) has been carried out with adamped Gauss-Newton algorithm.In HLEM measurements 20 metre and 40 metre

coil spacing were used. The wider coil spacingmeans deeper effective depth of investigation. TheEM systemwith the shorter coil spacing has a higher spatial resolution. Because here the conductivity ofthe tailings bed is high enough the multi-frequencyslingram system has frequency-dependent sensitivityto the conductivity variations in that layer. Inversionresults of HLEM data measured with coil separationof 20m and 40m delineate similar conductivity struc-tures. However in the results measuredwithwider coilseparation more 3D effects could be seen, probablycaused by the bedrock conductors. Inaccuracy in loop spacing and alignment of the

loops are likely to be the largest sources of error inthe horizontal loop EM measurements. A referencecable connects the transmitter and receiver loops and with the help of the cable the keeping of the coil

METhOd Time SpecificationsAirborne data 1991 radiometric, magnetic & EM (3.1 kHz), 200 m line spacing, 30 m

nominal flight altitudeGravity 2003, June 6 linesRefraction seismic 2003, June 2 lines (& one short line across PP72)HLEM 2003, June slingram (horizontal loop EM) (8 frequencies, 440, 880, 1760, 3520, 7040,

14080 and 28160, 56320 Hz), 10m/reading: 4 lines, coil spacing 20 m2 lines, coil spacing 20 m & 40 m

TEM 2003, July single loop (50x50 m2), 7 soundingsERT 2000 – 2004 wenner & dipole-dipole, a=1,2,3 or 5 m, automatic multielectrode system,ipole, a=1,2,3 or 5 m, automatic multielectrode system,

28,42 or 56 electrode groundings, most of the drilling sites.IP 2001 1D wenner, a=2 m, 6 soundingsLaboratory resistivity and IP 2004,May Drilling sites N17, N18, N19, N20, N21, N22 (240 samples)

Table 1. Hammaslahti geophysical data.

Page 55: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.

54

separation is attempted at the constant value (in this study 20 or 40m). The error in coil separation is most evidently seen in the in-phase component caused bythe incompletelycompensatedprimarymagneticfield(e.g. Frischnecht et al. 1991). Wehavealsoconsideredthe true coil spacing as an unknown parameter andestimated it carefully from the field data. At least inthe case of 1D conductivity structure the usedmodelfor the layered ground and for measuring systemworks better than the inversion assuming constant coil spacing. The first resistivity soundings (ERT, electrical

resistivity tomography) at Hammaslahti were madein 2000 (Vanhala & Lahti 2000) and continued an-nually until 2004. All the soundings have been madeusing AGI/Sting multielectrode system, Wenner or dipole-dipole configuration and electrode spacingsof 1, 2, 3 or 5 metres. 2D inversion of the 2D fielddatahas beenmadeusingRES2DINV software (Loke& Parker 1996). Presumably because of the dry andhigh-resistivity top-layer and a low-resistivity deeper sub-surface, the resistivity datawere partly too noisyfor reliable interpretation. 240 samples for laboratory resistivity and IPmeas-

urements werecollected inMay2004 from sixdrillingsites (N17,N18,N19,N20,N21,N22).The laboratorymeasurements weremadewithin a few hours after thedrilling, directly from theoriginal (nearlyundisturbed

samples) in one-metre long plastic sample tubes by aspectral IP system described byVanhala andSoininen(1995). Small holes were drilled for platinum stickelectrodes at both ends and in the middle of the tubeso that (for each sample) three resistivity-IP spectracould be measured.

Chemical analysis

For chemical analysis tailings and underlying peat and silt sediment samples were freeze-dried and thensieved to <2.0mm fraction. The hot (90 oC) aqua re-gia digestion method was used to determine element concentrations in sulphides andmica andclaymineralfractions of the tailings (Niskavaara 1995, Räisänen& Carlson 2003, Räisänen et al. 2003). Peat samples were digested with the concentrated nitric acid inthe microwave (EPA 3051, Niskavaara 1995). TheICP-AES technique was used for measurements ofthe element concentrations in both extracts. In this context, chemical data is only presented from thereference profiles at site N19 and N20.Total sulphurwasdeterminedusingwith theLeco-S

technique and total concentration of carbon and nitro-genwithaCNanalyser.Theextractionsand ICP-AES,S, C and N determinations were made at the FINASaccredited Geolaboratory of the Geological Surveyof Finland in Kuopio.

Fig. 4. Geophysical sounding lines and drilling sites (Pohjakartta ©Maanmittauslaitos, lupa nro 13/MYY105).

Page 56: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Geophysical characterizing of tailings impoundment ...

55

Results and discussion

The structure of the tailings impoundment

Originally, the tailings impoundment was dividedinto two ponds by a dam, which cannot be visuallydistinguished from the surface topography (Fig. 2,aerial photo on the right). The shallow depression is mainly located in the central part of the eastern pond. There the elevation of the surface increases about 2mtowards the dike in the north and northeast,whereas it does not change much toward the south. By contrast,the surface elevation of the western pond varies a lot. The difference in the surface topography between thesouthern and central parts is about 4.5m and betweenthe central and northern parts about 1.5 m. Similarly,thebaseof theeasternpond ismoreor lessflat,whereasin the western pond it descends about 6m from southto north (Räisänen et al. 2003). According to the drilling data, tailings in both ponds

can be divided into dry oxidised and weakly oxidisedlayers,andunderlyingwater-saturatedandnon-oxidisedlayer. In theeasternpond, thewater table (water-satura-tion zone)has stayedquite close to the surface,varyingat the depthof0.1–3metres from the surface (lowest at the edges). In spring and rainy autumns, thedepressionof the eastern pond is water covered. In the westernpond, the base gradient slants toward the north, andtherefore the water table is more changeable than inthe eastern pond. The water table dropped in the mid1990s when the northern dike was fractured. In 2000,thewater-saturation zonewas at a depth of 5m belowthe surfaceand inMay2004,atabout3m from surface. Similarly to the easternpond, the thicknessofoxidisedlayer is thin, being about 0.7 cm thick.Fortunately, theaccident had only minor consequences. Only a smallamount of tailings flowed out to the bog. Presumably,thewater leakagewasmoderate, sincenodeteriorationwas detected downstream in the Iiksejoki River.

The variation in the base gradient between thewest-ern and eastern ponds results from the compressioncapacity of bottom sediments and underlying bedrocktopography. The basement close to the southern dikeof the western pond lies partially on outcrops of crys-tallineArchean bedrock and partially on the sandy tilloverlain by a thin peat layer. The central and northernparts of the western pond lie on thick peat sediments,which are underlain by silt and clayey silt sediments. The eastern pond lies entirely on peat and silt sedi-ments. According to drilling data, the peat layer andpartially the underlying silt have been compressed. The groundwater table in the bottom sediments lies variably 0.5–1.5 m below the tailings. This indicates that the basement of the tailings is watertight.

Geophysical results

The airborne data is from 1991. The tailings im-poundment canbe seenas a low-resistivityanomaly inthe quadrature (out-of-phase) component map. TodaytheGTK’s airborne system has a dual-frequency (3.1kHz and 14.4 kHz) EM-data acquisition and a highaccuracyGPS positioning, giving rise to inversion ofsubsurface conductivity distribution (see for exampleSuppala et al. 2003, Lintinen et al. 2003). The 1991EM, radiometric and magnetic data can be used for regional scale mapping of rock units, major fracturezones, overburden thickness and quality estimates,but not for detailedmapping of targets like the Ham-maslahti tailings impoundment. Refraction seismic interpretation from line 1 is

illustrated in Figure 5 (see also Fig. 4). Dry and satu-rated overburden as well as the bedrockwith fracturezones can be detected from themodel. Themeasuredseismic velocity for the dry tailings in the profilewas300–480 m/s (Fig. 5). For natural sand and gravelformations the seismic velocity is typically 400 – 800m/sdependingon thegrainsize. Themeasuredseismic

Fig. 5. Seismic interpretation, line L_1.

Page 57: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.

56

Fig. 6. 3D bedrock relief model under the tailings inpoundmennt. The model is based on gravity nad seismicdata.

velocity of water-saturated tailings was 800 – 1100m/s. It is clearly lower than the seismic velocity ofnatural sediments of 1400 – 1700m/s. Themeasuredseismic velocities of the bedrock under the tailingbed showed that the rock is commonly more or less fractured (< 4500m/s). The seismic velocity for freshrock is typically > 5000 m/s.The interpretation results of the six gravity lines

together with the seismic results were integrated to a3D bedrock relief model shown in Figure 6. Togetherwith the seismic results, which indicate the fracturezones, the 3D bedrock relief model (or the depth-to-bedrockmap) is of great importance in modelling thehydrogeology of the area. Figure 7,which present EM interpretation from line

5, shows that the inverted results are in agreement with the drill core resistivity data. Constraining withthe minimum structure model, i.e., minimal spatial

derivatives with respect to conductivity, can makethe inverted conductivity sections also too smooth. Results from multi-layer inversion using 4 or 5 lay-ers are for the most part equally useful. The smoothinversion is just more robust if we do not know thenumber of layers.Figure 9 shows two examples of resistivity sections

(ERT) and their relationship to thedrilling results. Theupper section also includes a comparison betweenlaboratory and ground resistivity (2004). The electri-cal layering seen in the sections reflect the structureand composition of the tailings material and thewater table. Figure10 shows the relationships between the elec-

trical conductivity and chemistry of tailings profilesat drilling site N6 (eastern pond). The chemical datais from samples taken in November 2000 and theelectrical resistivity measurement from field data in

Fig. 7. Line 5, drill core resistivity data (N19 and N20) embedded to electrical resistivity section based on HLEM, i.e., multi-frequency slingramdata (1D inversion, 20m coil spacing). Here slingram measurements with the wider coil spacing bring more frequency-dependent information fromthe conductivity of the formation. Possibly due the bedrock conductors, the 1D model explains slightly better the results with coil spacing of 20 mthan with the coil spacing of 40 m. Since the inversion results with both coil separations seem to be consistent with each other, the resolution of theinverted results could be improved using join inversion of both measurements.

Page 58: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Geophysical characterizing of tailings impoundment ...

57

Fig. 8. Line 5, electrical resistivity (HLEM, 1D inversion, 20m coil spacing), embedded to gravity, seismic and drilling results. The tailings bed can be seen as a low-resistivity layer. The higher-resistivity top-layer refers to dry tailings. Note that the eleva-tion is exaggerated.

Fig. 9. Electrical resistivity (ERT) sections from drilling sites N6 and N20. Note the different distance and depth scales. In bothsections resistivity reflects the structure of tailings. In the upper section core resistivity data (N20) is also presented. It is verysimilar to the ERT result.

July 2001. Thewhole resistivity section (July 2001) is presented inFigure9. Thedistributions show similari-ties, especially above thewater tables. Obviously, theactualwater tablewasdeeperduring themeasurements in July 2001 than during drilling in November 2000. Figure 11 reveals a significant relationship betweenthe electrical conductivity and distribution of Cu andZn concentrations at drilling sites N19 (western pond) and N20 (eastern pond). A similar trend can also beseen for sulphur. The IPdatadonot show as detectablea relationship as the conductivity.

The electrical resistivity values measured for thetailings in the laboratory and inverted from the fielddata, 5–20Ohmm (200–50mS/m), are lower than theresistivity values of the natural soils and sediments in Finland. In earlier papers (Campbell et al. 1998,Campbell & Fitterman 2000, Campbell & Beanland2001, Campbell 2001, Anderson et al. 2001) IP has been found tobea promisingmethodofcharacterisingthe tailings. The first results in this study (Fig. 11) arenot,however, promising. The IPvalues are low andnoevident relationship to the chemistry is visible.

Page 59: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.

58

Fig. 10. (upper) Comparison between electrical resistivity soundings (ERT, red line) andthe distribution of Zn, S and Fe in the tailings and underlying peat and silt sediments at drilling site N6 (Vanhala et al. 2004).

discussion and conclusions

Up to present the geophysical results have seemedpromising. Although the tailings impoundment is avery complicated target consisting of material not having a natural origin, the conventional techniques,gravity and seismic, provided accurate results of thebedrock relief and fracture zones. Seismic velocities differ from those of natural sediments andmoreworkhas to done to connect the data to the properties ofthe tailings material. Electricalconductivityseems toprovide information

not only on the thickness of the tailings bed and themoisture content andwater table in the impoundment,but also on the chemical composition (metal sulphidecontent) of the tailings as seen in Figure 11. The fact that the field conductivity data (both the ERT and EMresults) are very similar to that of the core sampleconductivities, suggests that geophysics will be aneffective tool for versatile characterising of tailings impoundments.In general, the geophysical methods provided rel-

evant information on themain structural elements ofthe tailings impoundment – relief and structure zones of the underlying bedrock, thickness of the tailings bed, internal embankments and water table. Electri-cal conductivity and refraction seismic data refer tolateral and vertical variation in the properties and/or composition of the tailings. Comparison between thechemical and electrical data suggests that at least part

of the electrical conductivity variations can be relatedto the chemical composition of the tailings, especiallyto variation of metal sulphide content.

REFERENCES

Anderson,A.l.,Campbell,d.l. &beanland, S. 2001.Labora-tory measurements of electrical properties of composite minedumpsamples fromColoradoandNewMexico.U.S.GeologicalSurvey, Open-File Report 01–158. 11 p. + app.11 p. + app.

beamish,d.&kurimo,M.2000.Trialairborne surveys toassessTrialairborne surveys toassess minewater pollution in the UK. In: 62ndEAGEConference andTechnicalExhibition,Glasgow, 29May-2 June 2000ExtendedAbstracts. Houten: European Association of Geoscientists &Engineers. 4 p.

Campbell,d.l.2001.Spectral inducedpolarizationmeasurements at the main iron incline mine dump near Leadville, Colorado. U.S. Geological Survey, Open-File Report 01–315, 9 p.

Campbell, d.l., Fitterman, d.v., hein, A.S., & Jones, d.P. 1998. Spectral induced polarization studies ofminedumps near Silverton,Colorado. Proceedings of SAGEEP (Symposiumontheapplicationof geophysics toengineeringandenvironmentalproblems), March 22–26, 1998, Chicago, Illinois, 761–769.

Campbell,d.l.,horton,R.J.,bisdorf,R.J.,Fey,d.l.,Powers,M.h., & Fitterman, d.v. 1999. Some geophysical methods tailings/mine waste work. Tailings and mine waste ’99. Pro-ceedings of the sixth international conference, Fort Collins,Colorado, January, 24–27, 1999.

Campbell,d.l.&Fitterman,d.v.2000.GeoelectricalMethods for InvestigatingMine Dumps. In: Internation Conference onAdicRockDrainage (ICARD2000),May21–24,2000,Denver,Colorado. Proceedings from theFifth InternationalConferenceonAcid Rock Drainage 2. Colorado: The Society for Mining,Metallurgy, and Exploration Inc., 1513–1523.

Page 60: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Geophysical characterizing of tailings impoundment ...

59

Fig. 11. Comparison between drill-core electrical conductivity and IPwith chemical data ofthe tailings (Zn, Cu and S), N19 (11a) and N20 (11b). Figure 11b also shows a resistivitysounding (ERT) result from Figure 9.

(a)

(b)

Campbell,d. l. & beanland, S. 2001. Spectral induced polari-zation measurements at the Carlislemine dump,NewMexico. U.S. Geological Survey, Open-File Report 01–363, 11 p.

Frischknecht, F. C., labson, v. F., Spies, b. R. & Anderson,w. 1991.Profilingmethodsusing small sources. In:Nabighian,M. N. (ed.) Electromagnetic Methods in Applied Geophysics 2, Applications, Part A. Tulsa: Society of Exploration Geo-physicists, 105–270.

heikkinen, P. M., korkka-Niemi, k., lahti, M. & Salonen,v.-P.2002.Groundwaterand surfacewatercontamination in theGroundwaterand surfacewatercontamination in thearea of theHitura nickelmine,westernFinland. EnvironmentalEnvironmentalGeology 42 (4), 313–329.

lahti, M., kurimo, M. & vanhala, h. 2000. Assessment ofAssessment ofenvironmental risks by airborne geophysical techniques. 62ndEAGE Conference& Exhibition SECC, Glasgow, 29May – 2

June 2000. ExtendedAbstracts,Volume 1,D20. Houten:Euro-peanAssociation of Geoscientists & Engineers. 4 p.

lintinen,P.,Suppala,i.,vanhala,h.&Eklund,M.2003.SurveySurveyof a buried ice-marginal deposit by airborneEMmeasurements – a case from Kyrönjoki valley plain in southern Ostroboth-nia, Finland. In:Autio, S. (ed.) Geological Survey of Finland,Current Research 2001–2002. Geological Survey of Finland,Special Paper 36, 67–75.

loke,M.h&barker,R.d.1996.Rapid least squares inversionofapparent resistivity pseudosections by a quasi-Newtonmethod. Geophysical Prospecting 44, 131–152.

loukola-Ruskeeniemi, k. 1992. Geochemistry of ProterozoicGeochemistry of Proterozoicmetamorphosed black shales in eastern Finland, with impli-cations for exploration and environmental studies. Espoo:Espoo:Geologian tutkimuskeskus. 86 p. (dissertation)

Page 61: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Heikki Vanhala, Marja Liisa Räisänen, Ilkka Suppala et al.

60

Niskavaara, h. 1995. A comprehensive scheme of analysis forA comprehensive scheme of analysis for soils, sediments, humus and plant samples using inductivelycoupled plasma atomic emission spectrometry (ICP-AES). In:Autio,S. (ed.) GeologicalSurvey ofFinland,Current Research1993–1994. Geological Survey of Finland. Special Paper 20,Special Paper 20,167–175.

Pelkonen,k.,Alopaeus,E.,Penttilä, S. &korhonen,O. 1973.Outokumpu Oy:n Hammaslahden kaivos. Vuoriteollisuus 2,90–96.

Räisänen,M.l.&Carlson,l.2003.SelectiveextractionmethodsSelectiveextractionmethods applied for secondary precipitates in themining environment. Nordic Society for Clay Research, Newsletter 14, February2003, 6–7. (Extended abstracts)(Extended abstracts)

Räisänen,M. l.,Niemelä,k. &Saarelainen,J. 2003. Rautasul-fidipitoisen rikastushiekan läjitysalueen rakenne ja ympäristönpintavesien nykytila. Vuosien 2000 ja 2001 seurantatulokset,Hammaslahden vanha kuparikaivos. Geological Survey ofGeological Survey ofFinland, unpublished report S/44/0000/1/2003, 27 p. (InFinnish)

Räisänen,M.l.2003.Rehabilitationoptions for tailings impound-Rehabilitationoptions for tailings impound-ments – case studies of ”wet” cover andwetland treatment. In:Hebestreit C., Kudełko J. & Kulczycka J. (eds.) Mine Wastemanagement Best Available Techniques. Kraków: CBPMCuprum,Wroclaw andMEERI PAS, 141–150.

Sipilä, P. & Salminen, R. 1995. Environmental impact of threeEnvironmental impact of threesulphidemine tailings in Finland. In:Autio, S. (ed) GeologicalSurvey of Finland, Current Research 1993–1994, GeologicalSurvey of Finland, Special Paper 20, 107–114.

Suppala, i., vanhala, h. & lintinen, P. 2003. Comparison be-Comparison be-tween ground and airborne EM data in mapping acid sulphatesoils and sulphide bearing clays in the river Kyrönjoki valley,westernFinland. In:Mares,S. &Pospísil,L. (eds.) 9thMeetingofEnvironmental andEngineeringGeophysics,Prague,Czech

Republic, August 31st – September 4th 2003: proceedings. Prague: CzechAssociation of theApplied Geophysicists. 4 p.4 p.

vanhala,h. &lahti,M. 2001.Test of resistivity and IPmethodsTest of resistivity and IPmethods formappingmine tailings –Results fromHammaslahti,aclosedCumine in easternFinland. Proceedings of 7thEEGS-ESMeet-ing, Birmingham, England, September 2nd-6th,2001. 2p.2p.

vanhala,h,All,T.,huotari,T.,kattai,v. &lintinen,P. 2002.Test of airborne geophysics for mapping oil shalemining areain Kohtla-Järve, NE Estonia. 64th EAGE Conference & Ex-hibition, Florence, Italy, 27–30May, 2002. Houten: EuropeanAssociation of Geoscientists & Engineers. 4 p.4 p.

vanhala,h.,Räisänen,M.l.,huotari,T.,valjus,T.,lehtimäki,J. &Suppala, i. 2004.Characterising tailings impoundment atCharacterising tailings impoundment at the closedHammaslahtiCu-Znmine, Finland. In:Near surface2004:10thEuropeanMeetingofEnvironmentalandEngineeringGeophysics, Utrecht, The Netherlands, 6–9 September 2004:Extended abstracts book. Houten: EAGE. 4 p.

vanhala, h. & lahti, M. 2000. Sähköisten luotausten käyttökaivosympäristötutkimuksissa – tuloksia Hiturasta, Hammas-lahdesta ja Otravaarasta. In: Carlson, L., Kuula-Väisänen, P. & Loukola-Ruskeeniemi, K. (eds.) Ympäristö, terveys ja tur-vallisuuskaivannaisteollisuudessa: seminaari31.10–1.11.2000Haikon kartanossa: esitysten lyhennelmät. Vuorimiesyhdistys. Sarja B 76, 86–88.

vanhala, h. & Soininen, h. 1995. Laboratory technique forLaboratory technique for measurement of spectral induced polarization response of soilsamples. Geophysical Prospecting 43 (5), 655–676.

watson, M. i., locke, C. A. & Cassidy, J. 2001. Imaging ofmine tailings leachate using ground penetrating radar andelectromagnetic methods at Tui mine, New Zealand. In: 63rdConference and Technical Exhibition,Amsterdam, The Neth-erlands, 11–15 June. 2001. Houten: European Association ofGeoscientists & Engineers. 4 p.

Page 62: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

61

Geological Survey of Finland, Current Research 2003–2004,Edited by SiniAutio.Geological Survey of Finland, Special Paper 38, 61– 71, 2005.

GEOPhySiCAlChARACTERiSiNG OF SulPhidE RiCh FiNE-GRAiNEd SEdiMENTS iNSEiNÄJOkiAREA,wESTERN FiNlANd

byIlkka Suppala, Petri Lintinen and Heikki Vanhala

Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, FinlandE-mail: [email protected]

Key words (GeoRef Thesaurus,AGI): sediments, acid sulphate soils, geophysicalmethods, airbornemethods, groundmethods, elec-tromagnetic methods, resistivity, electrical conductivity, Seinäjoki, Finland

introduction

In the Ostrobothnian region of western Finlandextensive parts are covered by sulphide rich clay andsilt sediments, which were deposited during a moreextensive phase of the Baltic Sea, mainly during theLitorina Sea period 7500–1500 years BC. Duringthe deposition of organic rich Litorina sediments inshallow sea anoxic conditions prevailed resulting insulphate reduction to sulphide. The sulphide-bearingsedimentsalter toharmfulsulphatesoilswhenexposedto the air. In central Ostrobothnia the present rate ofland uplift is 8–9 mm / year (Donner 1995) leadingto continuous exposure of new dry land. In additionto natural processes, human activities related to cul-tivation increase the natural oxidation process. Soils developed on sulphide rich sediments are character-ised by pH values as low as 3–4 and they are oftencalled acid sulphate soils (ASS). Steady oxidation ofsulphides annually releases significant amounts ofAland other harmful elements, such as Ni and Cd, intoriver water (Palko &Weppling 1994). Palko (1994) has estimated that in coastal areas of

Finland the total extent ofASS is some 3300 km2. In

Sweden the total extent ofASS is approximately 1400km2 (Öborn 1994). Previous studies related to ASSsoils have mainly focused on the surficial soil layersto some 3 m in depth, where oxidising and leachingprocess operates. The sulphide clays are characterised by an excep-

tionally high electric conductivity (100–500 mS/m(10–2 Ωm)) compared to other glacial sediments,whichmakes themespeciallysuitable forEMmethods. Peltoniemi (1982) made the first tests of usingAEMmeasurements for themappingofconductiveoverbur-den in the Kyrönjoki river valley. He used apparent resistivities and depths and conductive horizontalthin-layer (1D)modelscalculated fromone-frequency(3 kHz) AEM data. These results were comparedwithground geophysics and ground truth. Åström (1996)used AEM maps (the amplitude of response and theratioof in-phase toquadraturecomponent) todelineatethe fine-grained sulphidic sediments in the Petalax åcatchment area. Puranen et al. (1999a, b) demonstrated how one-(1999a, b) demonstrated how one-

frequency airborne EM data can be used for mappingthe thickness and lateral distribution of the westernFinland sulphide clays. These papers also presentednew in-situconductivityprobingmeasurements,whichwere made in different fine-grained sediment areas

Page 63: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Ilkka Suppala, Petri Lintinen and Heikki Vanhala

62

in Finland. Puranen et al. (1999a, b) also pointed outPuranen et al. (1999a, b) also pointed out(1999a, b) also pointed out that AEM data should be combinedwith ground-truthdata to get a reliable tool for overburden mapping. In interpretation they used AEM maps of apparent resistivities and the in-phase/quadrature values. Pu-Pu-ranen et al. (1999a, 1999b) emphasised the role of(1999a, 1999b) emphasised the role ofsoluble chloride as an important component causingthe high electrical conductivity of sulphide-bearingfine-grained sediments.InAustraliaBell (2003) testedgroundEM to predict

acidification risk, but found only poor correlation be-tween the sulphide content and the inverted electricalconductivity. In that test area saline porewaters areprobably the main factor controlling the electricalconductivity. His conclusion was that EM is not aneffective tool fordirectlymapping theacidsulphatesoilhazard of saline (and conducting) Australian soils.Thepresent studystarted in2002and themainobjec-

tivewas to develop airborneEMmethod for mappingand delineating the sulphide clay – sulphate soil areas (Lintinen et al. 2003, Suppala et al. 2003, Vanhala et al. 2004). As reference data and for detailed studies anddevelopmentof integrated interpretation,airbornemagnetic and radiometric, groundEM and resistivity,gravityand refractionseismicmeasurementswerealsomade. Results are compared to chemical and physi-cal properties analysed from reference profile drilledthrough clay and silt sediments.

Geology of the study area

Thestudyarea issituated in theKyrönjoki-Seinäjokirivervalleyplain in themunicipalitiesofSeinäjokiand

Ilmajoki (Fig.1). The landscape is typical of southernOstrobothnianwith low-lying rivervalleys filledwithclay and silt sediments often reaching thickness of 20m. Bedrock outcrops, partly covered by till, delineatethe river valleys. Fine-grained sediments in the river valleys are manly cultivated and they are situated at an altitude of 40m a.s.l, whereas the adjacent gentlyundulating hills often reach an altitude of 60–90 ma.s.l. The surface relief of Kyrönjoki river valley is relatively flat with minor topographical differencesmainly caused by recent human activities related toditching and the prevention of spring flooding. Thebedrock in the study area is mostly composed ofmicaschists (Mäkitie & Lahti 1991,Mäkitie et al. 1991). Previousdrilling results show that theglacioaquatic

and postglacial organic rich clay and silt sediments inthe Kyrönjoki river valley are typically about 20 min total thickness (Kukkonen 1990a,b) and they weredeposited during the earlier,more extensive stages ofthe Baltic Sea. According to Kukkonen (1983), thelowermost 1–2 m of fine-grained sediment was de-posited during theYoldia Sea period, themiddle part during the Ancylus Lake period and the upper part during the Litorina Sea period. The highest shorelineof the Litorina Sea lies at 60 m a.s.l. The uppermostsedimentary unit, usually less than 1 m in thickness,is only found near the Kyrönjoki river, where annualspring flooding has maintained wetland areas.Based on 30 studied soil profiles Österholm (1998)

estimated that two-thirds of the soils in the Rintalareclamation area, situated within the survey area ofthis study, are very acid, having aminimum pH valuein the oxidised layer of around 3.5. In soils with very

Fig. 1. Locationmap of the survey area in theSeinäjoki regionofOstrobothnia,westernFinland. Thehighest shoreline,which delineates subaquatic and supraquatic land (3), the isobases (4) of the highest shoreline, and the shoreline ofLitorina Sea (2) and the present coast line (1) is marked (after Alalammi 1992).

Page 64: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Geophysical characterising of sulphide rich fine-grained sediments...

63

low pH values the sulphur concentration was typi-cally 0.25–0.8 % in the reduced layer and the carboncontent 1–3% in the oxidised layer. Whereas in therest of the soil profiles the minimum pH was seldomless than 5, the sulphur content in the reduced layer was typically <0.1 % and the carbon content in theoxidised layer >4 %.

Sampling and laboratory analyses

Drilling was conducted by GM 100 drilling rigapplying a piston sampler with a sampling tube 2 min length and a 45 mm inner diameter. The drillinglocations are shown in Figure 4. Standard sedimen-tological procedures were applied for the logging ofdrilled samples. Continuous piston core samples ofsoft sediments, i.e., clay, silt or fine sandwere openedin the laboratory. Coarse-grained sediments difficultto penetrate with the piston corer were sampled byflow-through-bit and only studied in 1 m intervals orin intervals related to the changes of the penetrationrate indicating consistency differences of the sedi-ment. Flow-through-bit samples were studied in thefield and they reveal only scattered information onmajor sediment units.Resistivity and pH values of core samples were

immediately performed after piston cores have beenopened in the laboratory. The measurements wereperformed through the surface as quickly as possiblein order to obtainmeasurement from unoxidised sedi-ment. The laboratory system consists of HP 35665ASignal Analyser and a Wenner-type electrode arraywith 1 cm long steel electrodes and 1 cm electrodespacing. Measurements were conducted at an intervalof 10 cm in drilled cores. The pH of the samples was determined by a portable analyser.After logging, resistivity and pH measurements

piston cores were sampled at approximately 0.5–1 mintervals. Samples consisted of about 0.1m sequenceof piston core. In all, 75 soil samples were chemicallyanalysedat theGeolaboratoryofGTK. Prior chemicalanalyses the soil samples were lyophilised. Fluoride,chloride,bromide,nitrateand sulphateconcentrations were determined from the water leached samples byion chromatography (Dionex DX120). Total sulphurconcentration was analysed with LECO equipment.

Geophysical data and interpretation

The airborne data was acquired using the GTK’s (Geological Survey of Finland) Twin Otter aircraft equipped with magnetic (horizontal gradiometer

Fig. 2. Map of Quaternary deposits in Senäjoki-Ilmajoki region. The ground geophysical lines and sampling/drilling sites are marked. Soil samplinglocations of Österholm (1998) are markedwith stars (pH ≤ 4) and triangles (pH > 4) indicating minimum pH value for individual soil profiles of about3 m deep (Pohjakartta ©Maanmittauslaitos, lupa nro 13/MYY105).

Page 65: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Ilkka Suppala, Petri Lintinen and Heikki Vanhala

64

– two magnetometers at the wingtips), radiometric(earth’s gamma radiation – total count, Th, K, Uchannels), and dual-frequency EM system (3125 Hzand 14368 Hz). The vertical coplanar coils, mountedon the wingtips, have a separation of 21.36 metres.A detailed description of the EM system is given byPoikonen etal. (1998).Thenominal flight altitudewas30m and the line spacing 100m. Altogether, 89 lines were measured.Ground EM measurements were carried out using

themulti-frequency horizontal loop slingrammethod(APEXMaxMin I+8S system). Six frequencies (880,

Fig. 3. Airborne geophysical maps of the Seinäjoki study area – magnetic map (upper left), Total radiation (upper right), Electromagnetic in-phasecomponent, 3.1 kHz (lower left) and the apparent depth, 14.4 kHz (lower right).

1760, 3520, 7040, 14080 and 28160 Hz) were meas-ured. Nominal coil spacing of 40 m was used in allground EM profiles.Also measurements with terrainconductivitymetres (EM-31&GEM-300) have beenmade along the slingram profiles.Airbornemagnetics ismostuseful formappingbed-

rockgeology (Fig.3,upper left).Anomaliesarecausedby magnetic remanence and magnetic susceptibility. Magnetic susceptibility affects theEM responses, but in this study are there are no signs of that. Conduc-tive overburden dampens the possible contribution ofanomalous susceptibility of bedrock.

Page 66: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Geophysical characterising of sulphide rich fine-grained sediments...

65

The Earth’s measured gamma radiation, throughairborne radiometrics, is highlighted in theuppermost surfacematerial. Values ofK,U andTh channels andtheir ratios have also been used to assist mapping soildeposits in Finland (Hyvönen et al. 2003). Radiomet-rics gives ameasureof the radioactivemineralcontent of the surface, but the intensity of radiation is also af-fectedby themoisture/water content of theuppermost part of the surface. Figure 3 (upper right) shows themap of the total count channel. The strongest signalreflects the exposed bedrock. The lowest values showthewetlands andmires. Variation inwater or moisturecontent of surface soils is also observable in areas offine-grained sediments.AEM and EM expose the sub-surface conductiv-

ity structure. Here we are interested in conductiveoverburden and that conductivity which is relatedto sulphide-bearing fine-grained sediments. Someof the magnetic anomaly zones are also conductive(Fig. 3 left, magnetic and EM in-phase at 3125 Hz). In AEM interpretation the contribution these zones make could only be seen in areas without conductiveoverburden. Variation in moisture and water content of surface soils has an effect on the conductivity ofthe uppermost part of the sediments. This could beseen in ground EM measurement, e.g. in the results of the terrain conductivity metres.The maps of apparent resistivity and depth are

useful for first-pass interpretation. These maps areprovided together with the measuring quantities. Apparent resistivity and apparent distancemean that the resistivity of a homogeneous half-space and that distance of that half-space from the sensor system,which explain measured in-phase and quadratureresponses (Fraser 1978; Peltoniemi 1982). Appar-ent depth is then apparent distance minus measuredflight altitude. This transformation is the simplest 1Dinterpretation method. Resistivitymapping is a proper displaymethod for

AEM data, at least in these low resistive clay areas. Here the conducting homogeneous half-space can bequiteavalidmodel toexplain themeasured responses. The skin depth is one measure of electrical attenua-tion (e.g. Peltoniemi 1982). Assuming a resistivityof 7 Ωm, the skin depths are 23.8 and 11.1 m for thelow and high frequency, respectively. In the deeper parts of this clay area the apparent resistivities (at high frequency at least) are near the spatial averageresistivity of these fine-grained sediments.In this study, 1D layered-earth interpretation of the

EMdatawas madewithmodelnorm -based inversion. In the 1D model, the earth is composed of a stack oflayers, each having a uniform conductivity. The 1Dconductivity structure, i.e., the conductivities of each

layer, issoughtby the regularized inversion.Thegoal is tofindforeverymeasuringpointaminimum-structuremodel,whichcanfit themeasurementdatasufficientlywell. The 1D responses and sensitivitymatrices havebeencalculatedby theAirbeoprogram (Chen&Raiche1998). The minimization of objective function (datamisfit + βx model norm) has been carried out withHaber’s (1997) damped Gauss-Newton algorithm.The EM system of Twin Otter (at 3125 and 14368

Hz) is most sensitive to the conductivity of a half-space in conductivity aperture of ~ 0.02 – 1 S/m (50– 1Ωm). A change in conductivity will cause clearlynoticeable changes in at least 3 measured responses (inboth in-phase components and at least inone quad-rature component). Sowith two-frequencyAEM datawe can also get reasonable results, and the interpretedvariations in conductivity and thickness of the overly-ing conducting sediments depict the true conductivitystructure of the sediments.Thevolumeof theearthcontributing to the response

of anAEM system is said to be the illumination foot-print of the system. There are different definitionsof the footprint; originally Liu and Becker (1990)defined it as a side length of a square surface, centreddirectly below the transmitter coil that contains theinduced currents which accounts for 90% of the ob-served secondary field. Beamish (2003) has defineda transmitter footprint using only induced current. We have visualized the illumination footprints ofused EM systems by using 3D sensitivity functions (distributions) of these coil systems (Suppala et al. 2003). Considering the footprint of the ground EMsystems the electromagnetic coupling between theinduced current system and the receiver should betaken intoaccount,as in theLiu-Becker footprint (Reid&Vrbancich 2004) or in the 3D sensitivity functions approach. The footprint of the EM system is onlyone qualitative measure of its lateral resolution, andusually these estimates have been calculated using ahomogeneous half-space. For the AEM system of the Twin Otter the most

sensitive region is below the coil system and elongatedperpendicular to theflightdirection.Verticalcoilswhoseaxes are orientedparallel to theflight linemeans a goodspatial resolution along the flight line and an adequatelateral coverage perpendicular to the flight line. Forthe ground horizontal loop system, the most sensitiveregion is elongated along the profile between the coils.For theAEM system the footprint is larger than for theAPEXMaxMin groundEMsystemwith the coil spac-ing of 40 m. The footprint of the terrain conductivitymetres EM-31 with the coil separations of 3.66 m isless than 10m.

Page 67: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Ilkka Suppala, Petri Lintinen and Heikki Vanhala

66

Results

Figure 3 (lower right) shows the map of apparent depthandFigure4 shows themap ofapparent resistiv-ity, transformedfrom theAEMmeasurementsat14368kHz. With the apparent depths the validity of the 1Dhomogeneous half-space model can be assessed. Inareas where the apparent depth is negative, the causeof theAEM response is most probably a thin low re-sistive overburden and the apparent resistivity valueoverestimates theaverage resistivityof theoverburden. In Figure 3 these negative apparent depths are shownthe bluish colours. The apparent resistivity and depth maps show that

the main part of the low resistive clay and silt sedi-ment area seems to be thick enough for this kind ofinterpretationwhen theAEMdataat14368Hz isused.There the apparent resistivities are spatial averages of true resistivity of these sediments. Small positiveapparent depths indicate that the uppermost part ofthe sediment is more resistive than the deeper part.

Fig. 4. Airborne electrical conductivity map (apparent resistivity, 14.4 kHz), the ground geophysical lines and drilling sites (D-1, D-2). The lines L2and L5 andAEM lines 42, 43 and 44 are discussed in Figures 5, 6 and 8.

The apparent depth map delineates the Kyrönjokiriverbank (see the topography in Figure 5), so that there the uppermost more resistive layer seems to bethicker than elsewhere in the cultivated area. One 4 km long gravity profile (L-5) and three short

refraction seismic lines (on L-5) were measured inorder to get reference data (i.e., the thickness of theQuaternary sediments) for EM interpretation (Fig. 5). Seismics provides information also on thewater tableas well as the quality of the sediments.Figure 6 shows the inversion result from the profile

L-2 (shown in Fig. 4). The slingram profile runs overthe low-resistivity sediments and the buried ice-mar-ginal deposits (at D-2) (Lintinen et al. 2003). D-1 andD-2 are drilling sites. In Figure 6 resistivity data fromthe drilling site D-1 is presented in the separate box. Also shown is the measured and modeled slingramdata. Excluding the 3D effect caused by the buriedice-marginal deposits, the 1D model explains themeasurements well. In the 1D interpretation also thetrue coil spacing has been considered as an unknown

Page 68: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Geophysical characterising of sulphide rich fine-grained sediments...

67

parameter. It has been estimated carefully from thefield data. The inverted andmeasured resistivities areconsistent with each other.Figure 7 shows the electrical conductivity of drill-

core samples from the drilling siteD-1 (the same dataas in thebox inFigure6) and the inversion results fromtheAEM data and from electrical resistivity tomogra-phy (ERT). The ERT data is 80m to SE of the drillingsite (along the line L-2). The inversion results are in

good agreement with the drill-core samples, as wellas the results in Figure 6. According to the invertedERT results, the resistivity of the uppermost surfaceis lower when moving to SE along the line L-2. This resistivity decrease in the uppermost layer could beseen approximately in Figure 6 and from the invertedAEM results. Figure 8 shows a comparison between airborne and

groundEM inversion results. Thegroundgeophysical

Fig. 5. 2D bedrock reliefmodel based on gravity and refraction seismic data, lineL-5. Groundwater table is interpretedfrom the refraction seismic data.

Fig. 6.An example of 1D inversion of ground EM data, resistivitymodel (lower) and measured and fitted data.Drill-core resistivity data from drilling site D-1 is presented in the separate box.

Page 69: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Ilkka Suppala, Petri Lintinen and Heikki Vanhala

68

measurements along the line L-5 were carried out in2003 and the flight in 2002. TheAEM lines 42, 43 and44 (Fig. 4) cross thegroundEM lineL-5. The slingraminversion results are fairly consistent with the gravityand seismic interpretationbutalso show“higher-resis-tivity” layers between the low-resistivityfine-grainedsediments and the high-resistivity bedrock. TheAEMsystem cannot detect the contact between the possiblecoarse (high-resistivity) sediments and the bedrock,but resolves only the biggest resistivity contrast (i.e.,between the low-resistivity fine-grained sedimentsand the material below it).The inversion results of theAEM and slingram data

(e.g. from Figs. 6,8,10) show that here the slingramsystem operating at 6 frequencies has a better depthresolutionwith a slightlydeeper explorationdepth thantheAEM dual-frequency system.Drilling at D-1 terminated at adepthof20.1m. Nei-

ther bedrock nor till was detected. The whole drilledsequenceconsists of soft clay, silt and sand-sized sedi-ments,which are divided into three lithostratigraphi-cal units. The lowermost unit from a depth of 20.1 mto 17 m is composed of laminated clay and silt/finesand. In each rhythmite coarser layers are from 2 to10 cm in thickness and finer layers are from 0.3 to1.0 cm in thickness. Dropstone structures with peb-ble-size clasts were observed in this unit. This unit is also characterised by low sulphate, total sulphur and

chloride concentration (Fig. 9). The lamina thickness gradually decreases and dark sulphide rich laminatedclay and silt with 1–3 mm lamina thickness overlies the lowermost unit. In this unit chloride concentrationis distinctively elevated compared to the unit below. At a depth of 12–11 m the laminated sediment unit

Fig.7.Comparisonbetween theelectricalconductivityofdrill-coresamples and the inversion results of theAEM data and ground resistivity data. Theground resistivity data is 80 m to SE from the drilling site.

Fig. 8. Comparison betweenAEM and ground EM inversion results (see Figure 4). Note that AEM lines 42, 43 and 44 crosses line L-5 and the gravityand seismic data (the inverted bedrock surface) is from line 5.

Page 70: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Geophysical characterising of sulphide rich fine-grained sediments...

69

gradually changes to the upper weakly laminated or massive sulphide clay and silt unit. This unit is char-acterised by total sulphur concentrations of 0.3–1.0%. The Cl2 concentrations do not correlate with thetotalSconcentrations.The resultwasexpectedbecauseboth results indicate different geochemical regime ina water body. The overall decrease of chloride fromdeeper layers to the surficial layers possibly indicatesthenaturaldecreaseof salinityduring theLitorinaSeaperiod. Subaerial leachingcannot totallybeexcluded,but its effect may beminimal. This view is supportedby the fact that theRintala areawas artificiallydrainedfor agricultural purposes by ditching and pumpingonly few decades ago. Also the low permeability offine-grainedsediment, and thegroundwater tableat thedepth of about 2m support the view that the leachingeffect has had aminimal effect on the chloride content of the profile studied.

discussion and concluding remarks

Peltoniemi (1982)validatedone-frequency lowalti-tudeAEMdata,whichwas measuredbyDC-3 aircraft with a vertical coaxial coils system and showed theusefulness of the simple 1D models in area of low-resistivity fine-grained sediments. He made his testat a distance of less than 10 km from the Rintala areaalong the lower course of the Kyrönjoki river. Thetypical layer-structure of the overburden is, accord-ing to the results of Peltoniemi (1982): organic soilin the surface (45–120Ωm), sulphide clay and gyttja(7–21Ωm), and till (> 340Ωm). A similar resistivity

Fig. 9. Chemical data from drilling site D-1 (a), Comparison between the electrical conductivity of drill-core samples and chemistry. Note the similarity of the conductivity-depth curve and the sum of the water-soluble chloride and sulphate.

structure is obtained in the Rintala area, where theresistivity of the fine-grained sediment can be stillless than 5 Ωm. Puranenetal. (1999a,b) andÅström(1996) showed(1999a,b) andÅström(1996) showed

that byusingone-frequency airborneEMdata, theoc-currenceof low-resistivitysulphide-bearingsediments can be delineated. With two-frequencyAEM datawecan also interpret variations in the resistivity and thick-ness of the overlying low resistive sediments.The slingram system operating at 6 frequencies has

a better depth resolution with slightly deeper explora-tion depth than theAEM dual-frequency system. ThegroundEMhasabetterspatialresolution too.To increasethe depth resolution of the AEM system it should beupgraded to operate at more than two frequencies. Afrequency higher than 14368Hz would help to resolvesubtle resistivity variations near the surface, whilea frequency lower than 3125 Hz would increase theexploration depth. To gain the best possible resolutionfromanEMsystem thecalibrationand levelling shouldbe done properly.The thicknesses of the fine-grained deposit, in-

verted from the AEM data, were in good agreement with other available data. Furthermore, the resistivitydistributions based onAEM datawere very similar tothe drill-core, resistivity soundings and ground EMresults.Thehighelectricalconductivityof thesulphideclay arises from the salinity and sulphate of the porewater. However, the salinity originates from the samedepositional environment as the sulphides, and theresults strongly suggest that theAEM data can be aneconomic tool for regional scale sulphide clay maps

Page 71: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Ilkka Suppala, Petri Lintinen and Heikki Vanhala

70

and acidification predictions. The other geophysicaldata played invaluable role not only as reference andcalibration data for AEM interpretation, but also incharacterisation of soil types.The need to resolve conductivity variation near the

surface and at depth over a large area suggested anairborne EM system as most appropriate. Here wehaveusedAEMdata tocomplement other information(with higher resolution), ground EM measurements and in-situconductivities, todelineate theconductivitystructure in the area (Fig. 10). Wehavenot constrainedone inversion using in-situ or inverted conductivities from other data sets. By comparing the different re-sults we can validate e.g. the calibration of theAEMmeasurement.Due to topographycontrolleddepositionanderosion

processes, as well as differences in redox conditions prevailing in thewater body and sediment, the results gathered from one area are not directly applicable toanother research area without new reference drilling,sampling and chemical analyses. However, whenthe basin-related relationship between chemistryand EM-results are carefully worked out the appliedintegrated methodology shows great potential char-acterising potentially problematic sulphur-rich clayand silt deposits.

REFERENCES

Alalammi,P. (ed.)1992.AtlasofFinland,Folio123–126.Geology.5 thedition. Helsinki:NationalBoardofSurveyandGeographi-cal Society of Finland. 58 p. 3 app. maps, 29 app. pages.

Åström,M. 1996. Geochmistry, chemical reactivity and extent of

Fig. 10. 3DModel of the electrical resistivity based on 1D inversion ofAEM and ground EM data.

leachingofsulphide-bearingfine-grainedsediments insouthernOstrobothnia, Western Finland. Åbo Akademi University. 44p. (dissertation)

beamish, d. 2003. Airborne EM footprints. Geophysical Pros-pecting, 51, 49–60.

bell, b. 2003. Can electromagnetics directly map the acid sul-phate soil hazard inAustralia? Preview,Australian Society ofExploration Geophysicists 107, 29–31.

Chen, J. & Raiche, A. 1998. Inverting AEM data using adamped eigenparameter method. Exploration Geophysics 29,128–132.

donner, J. 1995. TheQuaternaryHistory of Scandinavia:Worldand Regional Geology 7: Cambridge, United Kingdom: Cam-bridge University Press. 199 p.

Fraser,d.C.,1978.Resistivitymappingwith an airbornemulticoilelectromagnetic system: Geophysics, 43, 144–172.

haber, E. 1997. Numerical strategies for the solution of inverseproblems. Ph.D. thesis, The University of British Columbia.

hyvönen, E., lerssi, J. & väänänen, T. 2003. Airborne geo-Airborne geo-physical surveys assessing the general scale Quaternary map-ping project in Finland. In: 9thEEGSMeeting, Prague, CzechRepublic, August 31st – September 4th 2003: proceedings. Prague: CzechAssociation of theApplied Geophysicists. 4 p.4 p.

kukkonen, M. 1990a.1990a. Könni. Geological Map of Finland1:20 000, Quaternary Deposits, Sheet 2222 02. GeologicalSurvey of Finland.

kukkonen, M. 1990b. Jouppila. Geological Map of FinlandJouppila. Geological Map of Finland1:20 000, Quaternary Deposits, Sheet 2222 05. GeologicalSurvey of Finland.

kukkonen, E., kokko, J. & herola, E. 1983.1983. Seinäjoki, Geo-logicalMap of Finland 1:20 000, Quaternary Deposits, Sheet 2222 08. Geological Survey of Finland.

lintinen,P.,Suppala,i.,vanhala,h.&Eklund,M.2003.SurveySurveyof a buried ice-marginal deposit by airborneEMmeasurements – a case from Kyrönjoki valley plain in southern Ostroboth-nia, Finland. In:Autio, S. (ed.) Geological Survey of Finland,Current Research 2001–2002. Geological Survey of Finland,Special Paper 36, 67–75.

liu, G. & becker, A.1990. Two-dimensional mapping of sea-ice keels with airborne electromagnetics. Geophysics 55,Geophysics 55,239–248.

Page 72: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Geophysical characterising of sulphide rich fine-grained sediments...

71

Mäkitie, h., lahti, S., i.,Alviola, R. & huuskonen,M. 1991.Seinäjoki.GeologicalMapofFinland1:100000,Pre-QuaternaryRocks, Sheet 2222, Geological Survey of Finland.

Mäkitie,h.&lahti,S.i.1991.Seinäjoenkartta-alueenkallioperä. Summary: Pre-Quaternary rocks of the Seinäjoki map-sheet area. Geological Map of Finland 1:100 000, Explanation tothe Maps of Pre-Quaternary Rocks, Sheet 2222. GeologicalSurvey of Finland. 60 p.60 p.

Öborn, i. 1994. Morphology, chemistry,mineralogy and fertilityof some acid sulfate soils inSweden. Reports andDissertations 18, Swedish University of Agrocultural Sciences, Uppsala,Sweden.

Österholm,P. 1998.Geokemisk studieav svavelhaltiga sediment IRintala torrläggningsområde iSyd-Österbotten.ÅboAkademiUniversity. Unpublished master’s thesis, 57 p. (In Swedish)

Palko, J. 1994.1994.Acid sulphate soils and their agricultural and en-vironmental problems inFinland. ActaUniversitatisOuluensisActaUniversitatis Ouluensis C 75. 58 p.58 p.

Palko, J. &weppling, k. 1994. Lime requirement experiment in acid sulphate soils. Acta Agriculturae Scandinavica 44,149–156.

Peltoniemi, M. 1982. Characteristics and results of an airborneelectromagnetic method of geophysical surveying: GeologicalSurvey of Finland, Bulletin 321. 229 p.229 p.

Poikonen, A., Sulkanen, k., Oksama, M. & Suppala, i. 1998.1998.Novel dual frequency fixed wing airborne EM system of Geo-

logical Survey of Finland (GTK). Exploration Geophysics 29(1–2), 46–51.

Puranen, R., Sahala, l., Säävuori, h. & Suppala, i. 1999a. Airborne electromagnetic surveys of clay areas in Finland. In: Autio, S. (ed.) Geological Survey of Finland, Current Research,1997–1998. Geological Survey of Finland, SpecialPaper 27, 159–171.

Puranen, R., Säävuori, h., Sahala, l., Suppala, i., Mäkilä,M. & lerssi, J. 1999b. Airborne electromagneticmapping ofAirborne electromagneticmapping ofsurficial deposits in Finland. First Break 17 (5), 145–154.

Reid, J., E. & vrbancich, J. 2004.A comparison of the induc-tive-limit footprintsofairborneelectromagneticconfigurations.Geophysics 69, 1229–1239.

Suppala, i., vanhala, h. & lintinen, P. 2003. Comparison be-tween ground and airborne EM data in mapping acid sulphatesoils and sulphide bearing clays in the Kyrönjoki river valley,westernFinland. In:9thEEGSMeeting,Prague,CzechRepublic,August 31st –September 4th2003: proceedings. Prague:CzechAssociation of theApplied Geophysicists. 4 p.4 p.

vanhala, h., Suppala, i. & lintinen, P. 2004. IntegratedIntegratedgeophysical study of acid sulphate soil area near Seinäjoki,southern Finland [Electronic resource]. In: Sharing the Earth:EAGE 66th Conference & Exhibition, Paris, France, 7–10June 2004E: extended abstracts. Houten: EAGE. 4 p. Opticaldisc (CD-ROM)

Page 73: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

72

Geological Survey of Finland, Special Paper 36Matti Tyni, Kauko Puustinen, Juha Karhu and Matti Vaasjoki

Page 74: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

73

Geological Survey of Finland, Current Research 2003–2004,Edited by SiniAutio.Geological Survey of Finland, Special Paper 38, 73– 82, 2005.

EvAluATiON OF PORTAblE X-RAy FluORESCENCE (PXRF) SAMPlE PREPARATiONMEThOdS

byJussi V-P. LaihoLaiho1) and Paavo Perämäki2)

1) Geological Survey of Finland (GTK), Geolaboratory, PO Box 96 FIN-02151 Espoo, FinlandPresent address:AEL, Kaarnatie 4, FI-00410 Helsinki, Finland

2) University of Oulu, Department of Chemistry, PO Box 3000 FIN-90014 Oulu, FinlandE-mail: [email protected]

Key words (GeoRef Thesaurus, AGI): environmental geology, soils, pollution, heavy metals, X-ray fluorescence, in situ, measure-ment, sample preparation

introduction

The performance of four different field-based port-able X-ray fluorescence (PXRF) instruments for thedeterminationofheavy-metalcontents incontaminatedsoils were evaluated. Instead of inter-comparison ofthe instruments, this investigation focused on testingof several different sample preparation methods for the assessment of contaminated soil. The results ob-tained by PXRFmethodswere comparedwith resultsobtainedby inductivelycoupled plasma-atomicemis-sion spectrometry (ICP-AES) andX-rayfluorescencespectrometry (XRF).In this study, the soilmoisture and the particle size

of the samples were the two factors, which mostlyaffected the trueness of the results. These effects wereobserved with all of the tested PXRF instruments.The work highlighted the importance of sample

preparation when analysing soil samples at contami-nated sites by PXRF instruments.As a conclusion ofthe study, a list of recommendations was producedfor sampling and measurement of contaminated soilsamples by PXRF.It is desirable for the PXRF measuring method to

be simple, inexpensive and fast, but at the same timecapable of producing analytical data of low detectionlimits and high reliability. This puts several demands

on qualitycontroland sample preparation procedures. On the other hand, the greater the requirement for ac-curacy and precision required, the more difficult theprocedure will be to run.Field-based portable X-ray fluorescence analysers

operate on the principle of energy dispersive X-rayfluorescencespectrometry,whereby thecharacteristicX-ray excited spectra are analyseddirectly taking intoaccount their energy proportional response in an X-ray detector. Traditionally PXRF analysers have usedsealed radioisotope sources to excite samples withgamma rays and X-rays of the appropriate energy.During the last two years, however, a few manufac-turers have introduced analysers that utilise a ruggedX-ray tube instead of radioactive isotopes.In situations where the precision, accuracy, and

detection limits of the XRF technology are consistentwith thedataqualityobjectivesofasitecharacterisationproject, PXRFprovides a fast, powerful, non-destruc-tive, and cost effective technology for multielementalanalysis. Inrecentyears, thePXRFanalysershavebeenapplied increasingly toenvironmentalcharacterisationand remediation measurements, particularly in theanalysis of heavy metal contaminants in soils. In1995, theU.S. EnvironmentalProtectionAgency

(EPA) supported a study of innovative PXRF tech-nology at two Superfund sites to characterise the

Page 75: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Jussi V-P. Laiho and Paavo PerämäkiLaiho and Paavo Perämäki

74

performance of the latest models of commerciallyavailable PXRF analysers. This study found that thePXRF analysers were effective tools for field-basedanalysis of soil samples for metal contamination. Thedata from these trials provided background materialfor the creation of a draft method (EPA 1998). This method provides guidance to users of PXRF for en-vironmental characterisation. It iswell known that accuracyof theXRF technique

is dependant on the homogeneity of the samples. PXRF should, therefore, be defined as a screeningmethod used together with confirmatory analysis oflaboratory methods. Furthermore, the quality andprecision of PXRF results are strongly dependent onsample collection and sample preparation methods (including sieving and drying) and calibration ofinstruments. XRF emission of a particular element isusually stronglydependent on thenatureof the samplematrix and interfering elements that might be present. Site-specificreferencesamples thathavesimilarmatrixcharacteristics to the samples to be analysed, are usedin some procedures to optimise calibrationsSeveral approaches canbeused for calibratingXRF

analysers (KalnickyandSinghvi2001).Onemethod is based on the fundamental parameter method, another method is to perform an empirical calibration basedon site-specific calibration standards analysed by anappropriate reference method. Measuring soil samples by XRF-based techniques

usually requires multi-step sample preparation proce-dures in order to obtain accurate and precise results. Elements ingeologicalsamplesareusuallydeterminedby XRF using loose powder samples that have beenfused as a glass disk or pressed as powder pellets (Potts 1987).CurrentlyPXRF instruments areused to an increas-

ing extent to provide immediate results at lower costs,than conventional laboratory techniques, in particular in connection with the investigation and remediationofcontaminatedsoilandgroundwater.On-siteanalysis is thus performedby thefield staffusing simple equip-mentandnon-standardisedmethodsandwithoutcostlyand time-consumingqualityassurance (QA) schemes. The major disadvantage of any scheme that does not incorporate an appropriate QA procedure is that theanalytical quality of the data is not then known, i.e.:it is not possible to know the precision and the bias associated with the data, or even if the equipment is functioning properly.The primary aim of this study is to recognise and

minimise systematic errors related to in homogene-ity and matrix effects of the sample, which may beassociated with measurements when analysing soilsamplescontaminatedwithheavymetalsbyPXRFand

to improve the reliability of results, without creatingprocedures that are too complicated for routine use.

Site descriptions

The sites selected for field study represent typicalsites contaminated with heavy metals in southernFinland (Table 1). SiteA:Thefirst sitewasa fallowfieldat theoutskirts

of thecityofLohjaabout 50kmnorthwest ofHelsinki. Awood impregnation plant had operated at this site,causing slightly raisedAs, Cu, and Cr concentrations (typically 50-1000mg kg-1). Investigations of this sitewere focused on an area of 200m2 in order to find the“hot spots” of the site. SiteB:An industrial areaof about 40000m2 located

in the city of Vantaa near Helsinki. Here, the heavymetal pollution derives from Pb smelting in the 20th

century. Recent ICP-AES analyses (Laiho 2003) revealed Pb concentrations between 100 and 80000mg kg-1 in the top 0 – 400 mm soil layer. SiteC:A shooting range in central Finland. Several

sand samples were found to be contaminatedwith Pb. Samples from this area was primarily used for inter-comparison of the four PXRF instruments.

Experimental

Sampling

Several persons from different organisations col-lected soil samples, using different techniques. Theuncertainty due to variation in sampling practices is not taken into consideration, and therefore the termsample is used here to note for an untreated freshsample.

Materials

Samples were collected by traditional methods using hand auger (drill) and shovel, after removingthe surface vegetation from the sampling point. Washing all the equipments by water between thesamples eliminated gross contamination. Table 1describes the sample material used for these in-vestigations. Sampleswere homogenisedmanuallyand stored in thin polypropylene bags (Minigrip,PE-LD 04).Non contaminated plasticNylon sieves (<0.5 and <2.0mm)were used for sieving tests andthe sieves were cleaned with compressed air andethanol between the samples. HNO3 (65%, Baker,ProAnalysis) and HCl (37%, Baker, ProAnalysis) were used for acid extraction of ICP-AES analyses in the laboratory.

Page 76: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Evaluation of portable x-ray fluorescence...

75

Sample(s) Samplingsite

Soil type Used for followinginvestigations

Note

Blank Un-known

Sand Control of PXRFinstruments

Uncon-taminated,analysed byICP-AES

Reference sample,GTKREF1

Un-known

Sand Control of PXRFinstruments

Analysed byICP-AES

Reference sample,GTKREF2

Site B Sand Control of PXRFinstruments

Analysed byICP-AES

SampleA SiteA Clay Limit of detection,sample preparationtests

Total amount of samples:29 from siteA

Sample B Site B Sand Precision of PXRFon high level con-centration of Pb

Total amount of samples:21 from site B

Eleven C samples (Fig. 5)

Site C Sand Inter-comparison ofPXRF instruments(Fig. 5)

Total amount of samples:33 from site C

NIST CRM 2710 Montanasoil

Validation

NIST CRM 2711 MontanaSoil

Validation

Table 1. Sample materials used for the investigations.

Sample preparation methods

The typical size of samples was 500-1000 g. Thesamples were split into sub-samples of about 100 g. Thesewere used for testing varying parameters, suchas grain size (0.5 mm and 2.0 mm), humidity, count time of the measurement (from 30 s to 240 s), andtemperature (between –5 °C and +25 °C). In the study mentioned above, the simplest field-

based sample preparationmethodconsistedof remov-ing vegetation and other organic material, as well as particles larger than 10 mm. The sample (samples A and B) was homogenised manually in a plasticbag. Samples were neither dried nor sieved, and themeasurement was taken directly through the bag on asmall wooden table without replicatemeasurements,using a 30 s count time. Themostcomplicatedof the testedfield-basedsam-

ple preparation procedures was similar to the samplepreparation preceding ICP-AES determination in thelaboratory (InternationalOrganizationofStandardiza-tion 1994). In this method, the soil samples (sub-sam-ples from sites A and B) were dried at a temperature< 70 °C for 24 hours and sieved to < 2.0 mm or <0.5mm fraction. Several tests, with samples prepared as pressed powder pellets, were also performed. Pellet preparation procedure is rather time consuming andrequires skilled personnel,whichmakes it less attrac-

tive for quick field-type measurements. Count timefor measurement was typically 120 s.The following sampling protocol (GTK protocol)

was developed for sampling andmeasuring contami-nated soil samples by PXRF:

• Remove stones and plant fragments from thesampling point

• Choose a sample for sample preparation(500–1000 g)

• Pre-homogenise the sample manually(in plastic bag)

• Dry the sample (water content must be less than20 % before measuring)

• Sieve the sample to a pre-defined particle size(grain size < 2.0 mm)

• Place the sample into a plastic bag• Use at least 10 mm thickness of sample for measuring (100–500 g)

• Use thesamebackgroundplateorstrong tableunder the sample, in order to avoid different backgroundeffects between the measurements

• Flatten theplasticbagcontaining thesampleevenlyon the surface

Page 77: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Jussi V-P. Laiho and Paavo PerämäkiLaiho and Paavo Perämäki

76

• Use 120 seconds count time• Perform a minimum of three replicate measure-ments

• Report all three results, calculate the average• Record observations and decisions • Confirm at least 5 % of the results by alternative,

preferably accredited, analytical methods • Measure control samples, a blank sample and a

reference sample, before and after every sampleset (also after every ten samples or after serviceof instrument)

• Clean and/or service the instrument if controlsample measurement fall outside approval range

• Service the instrument if drift control measure-ment fall outside approval range (if provided bymanufacturer)

To obtain more reliable PXRF measurements, fol-lowing should also be considered:• Compare in situ results to confirmatory laboratory

results to obtain a correlation curve and/or prepareseveralcalibrationsamples todeterminecorrelationcurve

• Extend the count time to up to 300 seconds• Use up to 10 replicate measurements instead of

three• Prepare duplicate samples • Carry out measurements on samples prepared as

pressed powder pellets

instrumental analysis

XRF

All the laboratoryXRFanalyses andmeasurementswere carried out at the Geolaboratory of GeologicalSurvey of Finland in Espoo. The in-house referencematerialwas analysed byPhilips PW1480XRF spec-trometer in the laboratoryusingpressedpowderpellets. Pellets were prepared by weighting dried and sievedsoil samples from site B (Table 1) in to a pulverisingswing-mill (Herzog HSM 100P) and pulverised in acarbonsteelbowl.Forpreparationof thepressedpellet,7.0 g of pulverised (< 75 µm) samplewas mixedwith0.4 g of organic binder and pulverised in a tungstencarbide bowl to obtain a grain size of 95 % < 10 µm. The pulverised pulp was pressed into a pellet at 20tons, using a steel piston press. Pellets were stored in

a closed polypropylene bag at room temperature, inorder to avoid contamination.

ICP-AES

All the laboratory ICP-AES analyses andmeasure-mentswerecarriedoutat theGeolaboratoryofGeologi-cal Survey of Finland inEspoo. An ICP-AESThermoJarrel Ash IRIS Advantage instrument was used for obtaining reference data to compare with the PXRFresults. Sieved soil samples (from sites A, B and C) were analysed by ICP-AES using an internationallyaccepted method for soil analysis, the ISO standardmethod 11464. The acid leach was performed as fol-lows:2.00 (±0.10) gof soil samplewere digestedwith12ml of aqua regia (9.0mlHCl + 3.0mlHNO3) at 90ºC for 8 hours. After addition of 50mlH2O, samples were centrifuged for 20minutes at 3000 rpm (JouanC412).Theclear solutionwasused for (further)analysis. An in-house referencematerial of pulverised soilwas used as a control sample.

PXRF

Four PXRF analysers were used for the samplepreparation study for inter-comparison of Pb-con-taminated sand samples (Table 2).The preliminary analyses of the study samples were

carriedoutbothin the laboratoryandunderfieldcondi-tions for comparing the PXRF instruments. Samplesfor the inter-comparisonstudywerecollected fromsiteC. Theminimum amount of sample for measurement was about 10 g,which formed a layer of about 10mmin the plastic bag used in the procedure. Further fieldmeasurementsand testsonsamplepreparationmethods were undertaken with the INNOV-X analyser.

Calibration and quality control (QC) and qualityassurance (QA) of PXRF´s

PXRFinstrumentscanbeused for severalpurposes,each requiring different QC and QA procedures. Typically, PXRF instruments have been used forlocating contaminated areas, in particular hotspots,when absolute values are not as important as findinga variation of high and low values. In this study internalcalibration,using fundamental

parameters software chosen by individual, was used. PXRF instruments also require user to make driftcorrection, for example with a stainless steel plate,before starting the measurements. Asacompromisebetween ideaqualityassuranceand

ease of operation, two control samples, one referencesample andoneblank sampleofuncontaminated sand

Page 78: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Evaluation of portable x-ray fluorescence...

77

MODEL: INNOV-X X-MET 2000 NITON XLi 700 NITON XLt 700

Manufacturer Innov-X-Sys-tems, USA

Metorex Inc.,Finland

Niton Corp., USA Niton Corp., USA

Operationprinciple

EDXRF EDXRF EDXRF EDXRF

X-ray source X-ray tube, sil-ver anode

55 Fe, 109Cd ,241Am-isotopes

55Fe, 109Cd ,241Am-isotopes

X-ray tube, silveranode

Detector High resolutionSi-PIN

High resolutionSi-PIN

High performanceSi-PIN

High PerformanceSi-PIN

Cooling system Thermo electri-cal

Thermo electri-cal

Thermo electrical Thermo electrical

Maincomponents

Single unit withintegrated PC

SIPS-probe andPC-unit

Single unit withVGA touch screen

Single unit withVGA touch screen

Weight 1.8 kg 1.6 kg(5.8 kg with PC)

0.72 kg 1.4 kg

Table 2. Technical specifications of the PXRF-analysers used for the investigations.

Sample name: Elements PXRF(ppm ± SD)

XRF ICP-AES Certified Values

GTKREF 1 Mn 500±93 * 400 92

GTKREF 1 Cu 550±41 * 170 150

GTKREF 1 Zn 570±67 41 30

GTKREF 1 As 54±16 * 46 46

GTKREF 1 Pb <LOD (±21) 99 69

GTKREF 2 Zn 450± 19 * 166 140

GTKREF 2 Pb 170± 18 * 340 280

NIST CRM 2710 Mn 14700±360 7780 10100±400

NIST CRM 2710 Cu 3450±78 2900 2950±130

NIST CRM 2710 Zn 8200±120 6250 6950±91

NIST CRM 2710 As 910±53 598 626±38

NIST CRM 2710 Pb 6200±86 5300 5532±80

NIST CRM 2711 Mn 1260±210 * 501 638±28

NIST CRM 2711 Cu 145±38 * 102 114±2

NIST CRM 2711 Zn 400±29 * 325 350.4±4.8

NIST CRM 2711 As 138±29 * 99 105±8

NIST CRM 2711 Pb 1360±37 * 1095 1162±31

Table 3. Results of the reference samples analysed by INNOV-X PXRF instrument and referencevalues by well-established laboratory methods using the XRF and ICP-AES techniques (mg kg-1).

*) These values were followed during the investigations

Page 79: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Jussi V-P. Laiho and Paavo PerämäkiLaiho and Paavo Perämäki

78

(Table 1), were measured after each ten samples, as well as at the beginning and in the end of each sampleset. The reference materials used in this study werealso analysed in the laboratory byXRF using pressedpowder pellets and by ICP-AES after acid extraction(Table 3.). An average of 25 replicatemeasurements byPXRF

were used on field to control the sampling and meas-uring conditions, precision and the bias associatedwith the data. Only elements described above weredetermined from the samples (siteA and site B). Thereference sample and blank sample were chosen torepresent the soil type and elements at the site, evenif some of the measurements were close to detectionlimits.Therecanbeseveral reasonsfor lowdetection limits;

probablya silveranode tubedoesnoteffectivelyexciteMn,Cu andZn. Also the standard deviation (SD) was varying between the different soil types. The lowMnresult analysed by ICP-AES is thought to be due tosome minerals not completely soluble to acid. Preliminary tests on different (site-characteristic)

empirical calibration procedures were runwithNISTstandard referencematerials (Table 3), but thosewerefound tobe toocomplicated for routineuseunderfieldconditions.However,sitecharacteristiccalibrationcanbe recommended for minimising the systematic error observed between different analytical methods.

Results and discussion

Preliminary testswerecarriedoutunderfieldcondi-tions (sites A, B and C) in order to test the simplest samplepreparationmethoddescribedabove.Untreatedsamples (size 500 - 1000 g) were put in plastic bags

and measured by one PXRF analyser from differentside of the sample. Relative difference between thehighest and the lowest result rose up to 1000% withinhomogeneous samples containing particles of vari-ous sizes. Similar resultswere observed for all PXRFanalysers when the test was repeated with the samesample. The relative difference was found the most significant when analysing wet samples, or inhomo-geneous samples such as waste material. Another preliminary test, an inter-comparison test

between different PXRF analysers, was run on siteC. Eleven air dried sand samples were homogenisedmanually in plastic bags and analysed by four differ-ent PXRF analysers (Fig. 5). The yield of the PXRFanalysers (ICP-AES = 100%) was measured to bebetween 65 % and 160%.Accordingly it was judgedthat this test showed that PXRF analysers are suitablefor analysingPb from sand samples, as in this case thedifferences between results from different analysers was not significant.Thesepreliminary tests showedclearly that soil type

canstronglyeffect therepeatabilityofPXRFmeasure-ments as well as the comparability of PXRF resultsto the laboratory analyses. Hence, it was essential tostart developing PXRF measurements by evaluationof sample preparation methods.The first investigation, dealing with soil sample

preparation procedures, was to evaluate the effect ofsieving on the subsequently analysed elemental con-centration, since particle size is known to affect theresults of XRF analyses (Clark et al.1999). It is clear that the type of sample and the concentration levels also affect the results. The sample chosen for the firstsieving investigationswasasandyclaysample (sampleA from site A, Table 1), containing a concentration

Fig. 1. The effect of sieving on final results (average of ten measurements) of the PXRF measurement.Other elements were not detected in the sample (High concentrations of Ti and Fe result divided by 100 anMn by 10).

Page 80: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Evaluation of portable x-ray fluorescence...

79

of heavymetals near the background values found inFinland (Puolanne et al.1994). The sample was veryhomogeneous and air-dried. Sieving had an effect on the mean concentration

measured by PXRF. Figure 1 shows that almostwithout exception, the highest values (average of 10replicates) were obtained for the smaller particle sizefractions (<0.5 mm or <2.0 mm). This was expecteddue to enrichment of elements in the smallest particles and the different mineralogy of samples.More significant differences between replicate

measurements were observed, for all fractions,whenanalysingeither relativelyhighconcentrations (<1000mg kg-1) or concentration near the detection limit ofPXRFmeasurement (Fig.3). For example, a variationin the low concentration of Zn in different particlesize fractions is substantial,when comparing the dif-ferent grain size fractions, and could lead to errors in decision-making on field (Table 4), if for exampleremediation level for Zn is based on lower guidelinevalue (150 mg kg-1). The study indicated that for the best results, at least

three replicate measurements should be made with

the PXRF instrument and that the samples should besieved before the measurements. Relative standard deviation was calculated for ten

replicatemeasurementsofadriedsandsample (sampleA), after different sample preparation procedures: (1) without sieving, (2) sieving to > 2.0 mm, (3) sievingto < 2.0mm, and (4) sieving to < 0.5mm. The results can be seen in Figure 2. The repeatability of thePXRFmeasurement was generally better for samples ofsmaller particle size: this effect was observed for allthe elements measured.At the second stage of the investigation the effect

of sample preparation on the sensitivity of the PXRFmeasurements was studied. Detection limits weredetermined by taking ten replicate measurements on soil samples. Based on these measurements, thestandarddeviationwascalculated.Thedetection limits presented in the Figure 3 are defined as 3 times thestandard deviation for each analyte. In thisstudy thedetection limitsof9environmentally

important elements were determinedby four different sample preparationmethods. TwoEPAmethods (EPA1998) were compared with two of our own samplepreparation protocols, of which one is a field methodand the other is the GTK protocol outlined above. EPA1 uses quartz (SiO2) to determine interference-free detection limits andEPA2 is a field-basedmethodapplied to dried soil samples. SampleA (Table 1) was the selected study sample, because it was relativelyhomogeneous, it did not contain particles larger than2mm,which could cause physical interferences in themeasurement. It was also observed, that the limit ofdetection for Cr, Cu and Zn rose considerably whenmeasured after sample preparation by field protocol(EPA2 and GTK1), using relatively dry soil material(moisture content 5 % – 10 %). This should be consid-

Particle size Mean Lowest Highest Highest / lowest, %

Total 81 48 115 240>2.0 mm 81 39 135 346<2.0 mm 88 64 115 180<0.5 mm 80 54 109 202

Table 4. Comparison of Zn concentrations (mg kg-1) in Finnishsoil by particle size fraction as determined by PXRF during thesieving tests (n=10).

Fig. 2. The effect of sieving on precision of the PXRF measurement (Other elements were not detected in thesample)

Page 81: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Jussi V-P. Laiho and Paavo PerämäkiLaiho and Paavo Perämäki

80

eredwhen analysing soil samples by PXRF analysersfrom relatively unpolluted sites. In Figure 4 the detection limits of 9 environmen-

tally important elements are compared with Finnishguideline values for contaminant concentrations insoil (Puolanne et al.1994). Itwas observed thatPXRFinstruments could easily be applied for determinationof low concentration levels of Pb and Zn, whereas there were some problems to detect even relativelyhigh concentrations of Cr or Cd. Similar results wereobserved with all of the PXRF instruments tested.The effect of moisture content on the accuracy of

PXRF measurement was investigated by adding 5 %- 40 % of distilled water to the dried and sieved sam-ple. Water content of the soil samplewas determinedgravimetrically.The results showedclearly thatoverallerror was minor when moisture content was small(5 %–15 %), and sample moisture contents above20%was leading to significant errors in PXRFmeas-urements of the tested types of materials. Moisturealters the matrix and therefore the penetration depthof the radiation. For example, the concentration of Pband Zn in a dry sample was about 2.0 times higher than the concentration obtained for samples withmoisture contents of 30 %. These results were similar to results of previous investigations (Kalnicky et al. 1992, Laine-Ylijoki et al. 2002).

Conclusions

In this study it was observed that both different techniques and sample preparation affected the finalresults. According the results, it can be presumed that sample preparation can lead tomore significant errorsthan the differences between PXRF instruments. Fur-

thermore, errors due to sample preparation can easilybeminimisedbypropersamplepreparation techniques. Thesestudiespointedout that soilmoistureandparticlesizeof the samples were the two factors,whichmostlyaffected the trueness of the results. As a conclusionof the study, a list of recommendations was producedfor sampling and measurement of contaminated soilsamples by PXRF.However, not all the errors can be avoided bymore

accurate sample preparation, anddifferences betweenthePXRFinstrumentsincreaseddramaticallywhensoilsamples of high concentration levels (>1000mg kg-1) were analysedwithout soil-characteristic calibration. This is suspected to be due to different fundamentalcalibration given by the instrument manufacturers. Therefore, it is always recommended to compare insitu results toconfirmatory laboratory results toobtaina correlation curve and/or prepare several calibrationsamples todeterminecorrelationcurvebefore startingany big projects. During the study it was also observed that further

work is needed for the improvement and harmonisa-tion of the PXRF methods as well as quality controlof in situ analyses. Various field methods are beingdeveloped, to an increasing extent, in order to opti-mise investigation and remediationof soil andgroundwater pollution. There is an urgent need to establisha common methodology for assessing the analyticalquality of the data obtained, i.e. a set of practical QAschemes. The QA schemes should be a compromisebetween the laboratoryQA(EN ISO/IEC17025:2000) and the current very limited QA used for most fieldmethods. A guide for environmental administrators should be provided to enable them to evaluate dataobtained by these fieldmethods properly. Harmonisa-

Fig. 3. Detection limits of some environmentally harmful elements determined by different PXRF methods, present studycompared to EPA 6200. EPA = Environmental ProtectionAgency. GTK = Geological Survey of Finland.

Page 82: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Evaluation of portable x-ray fluorescence...

81

Fig. 4. Detection limits of some environmentally harmful elements measured in the field and compared with Finnish guidelinevalues for contaminant concentrations in soil (Puolanne et al.1994).

Fig. 5. An example of Inter comparison of four PXRF instrument: Pb concentration in sand from shooting range. Laboratory = ICP-AES.

tion of methodologies would provide not only morereliable results of field measurements, but also morecomparable results between all users. Good planning of the survey is needed before using

PXRF for in situ field-based analysis, in order to gainas much information as possible on estimates of bothconcentration values and uncertainties, and to permit a realistic interpretation of the extent of contamina-tion at the site.

REFERENCES

Clark, S.,Menrath,w.,Chen,M.,Roda, S.& Succop, P. 1999. Useof aFieldPortableX-rayFluorescenceanalyser todeterminethe concentration of lead and othermetals in soil samples,Ann. Agric. Environ. Med. 1999, 6, 27–32.

ENiSO/iEC170252000.GeneralRequirementsfortheCompetenceof Testing and Calibration Laboratories, CENMarch 2000.

EPA1998.Method 6200: Field Portable X-ray Fluorescence spec-trometry for thedeterminationofelementalconcentrations in soiland sediment. Environmental ProtectionAgency, USA.

Page 83: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Jussi V-P. Laiho and Paavo PerämäkiLaiho and Paavo Perämäki

82

internationalOrganisation of Standardisation 1994. Interna-tional Standard ISO 11464.

kalnicky d.J., Patel J. & Singhvi R. 1992. Factors affectingcomparability of field XRF and laboratory analyses of soilcontaminants, in: Proceedings of the Forty-First Annual Con-ference onApplications of X-rayAnalysis, Colorado Springs,August 1992.

kalnicky d.J. & Singhvi R. 2001. Field portable XRF analysisof environmental samples, J. ofHazardous materials 83 (2001) 93–122.

laiho J. v-P. 2003. Unpublished research data of GeologicalSurvey of Finland.

laine-ylijoki,J.,Rustad, i.,Syrjä,J-J.&wahlström,M.2002.Technical report PRO3/23/02: Suitability of XRF –methods onon-site testing of waste materials. VTT 42.VTT 42.

Potts, P.J. 1987. A handbook of Silicate rockAnalysis. Blackie& Son limited, London.

Puolanne, J.,Pyy,O. & Jeltsch,u. 1994. Saastuneet maa-alueet ja niiden käsittelySuomessa, final report. The FinnishMinistryTheFinnishMinistryof the Environment.

Page 84: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003–2004

83

PAPERS PubliShEd by GEOlOGiCAl SuRvEy OF FiNlANd STAFF iN 2003–2004

The following list includes references from the database FIN-GEO (situation at 31th May 2005) to papers published in 2003and 2004 (or in 2002, if not reported previous Current Researchpublication) with at least one author from GTK staff.Ahonen, Lasse;Kaija, Juha; Paananen,Markku;Ruskeeniemi,

Timo; Hakkarainen, Veikko 2004. Palmottu natural analogue : aPalmottu natural analogue : asummary of the studies. Tiivistelmä: Palmotun luonnonanalogia-Tiivistelmä: Palmotun luonnonanalogia-tutkimus : yhteenveto tutkimuksista. Geologian tutkimuskeskus. Ydinjätteiden sijoitustutkimukset. Tiedonanto YST-121. 39 p. + 1 app.Ahtola, Timo; Reinikainen, Jukka; Seppänen, Hannu 2004.

Paleoproterozoicmarbles in the Svecofennian Domain, Finland. In: Castor, S. B., Papke, K. G. &Meeuwig, R. O. (eds.) Bettingon industrial minerals : proceedings of the 39th Forum on theGeology of Industrial Minerals, Reno/Sparks, Nevada, May18–24, 2003. Nevada Bureau of Mines and Geology. SpecialPublication 33, 11–15. Airo,Meri-Liisa 2003. Relation ofmagnetic rock properties toRelation ofmagnetic rock properties to

aeromagnetic characteristics of anArchean TTG-migmatite andgneiss area, the northern Fennoscandian Shield. In: IUGG 2003: XXIII General Assembly of the International Union of Geod-esy and Geophysics, June 30 – July 11, 2003, Sapporo, Japan :abstracts. Week B. Sapporo: IUGG, 262.Airo, M.-L.; Loukola-Ruskeeniemi, K. 2004.CharacterizationCharacterization

of sulfidedepositsbyairbornemagneticandgamma-ray responsesin eastern Finland. In: Coveney, R. M. & Pasava, J. (eds.) Ores and organic matter. Ore Geology Reviews 24 (1–2), 67–84.Alenius,Teija 2004. Siitepölyanalyysimaankäytön ja kasvilli-

suushistorian tutkimusvälineenä. In:Korpela, J. (author) Viipurinläänin historia. Osa 2: Viipurin linnaläänin synty. Lappeenranta:Karjalan Kirjapaino, 288–289.Alenius, Teija; Grönlund, Elisabeth; Simola, Heikki; Saksa,

Aleksandr 2004. Land-use history ofRiekkalansaari Island in theLand-use history ofRiekkalansaari Island in thenorthern archipelago ofLakeLadoga,KarelianRepublic,Russia. Vegetation History andArchaeobotany 13 (1), 23–31.Alenius, Teija; Haggrén, Georg; Jansson, Henrik; Miettinen,

Arto 2004. Ulkosaariston asutuksesta autiokyläksi – Inkoon Ors poikkitieteellisenä tutkimuskohteena. SKAS (1), 4–19.Alenius, Teija; Ojala, Antti; Tiljander, Mia 2004. Paleomag-Paleomag-

netic dating of pollen stratigraphy from lake sediment based onPSV master curve from central Finland. In: 34th InternationalSymposium onArchaeometry, 3–7 May 2004, Zaragoza, (Spain) : program and abstracts. Zaragoza : Barcelona: University ofZaragoza : University of Barcelona, 37.Andrén, T.; Best, G.; Flodén, T.;Harff, J.; Jensen, J. B.;Korja,

A.; Kotilainen, A.; Lemke, W.; Meschede, M.; Puura, V.; Usci-nowicz, S.; Vejbæk, O. 2004. Towards a Baltic Sea IODP. In:Puura, I., Tuuling, I. & Hang, T. (eds.) The Baltic : the EighthMarine Geological Conference, September 23–28, 2004, Tartu,Estonia : abstracts, excursion guide. Tartu: University of Tartu,Institute of Geology, 7.Antikainen, Merja; Backman, Birgitta; Rusanen, Kaisa; Finér,

Leena2003.Vaikuttaakometsänkäsittelypohjavesialueidenvedenlaatuun?. In: Finér, L., Laurén,A. &Karvinen, L. (eds.)Ajankoh-taista metsätalouden ympäristökuormituksesta – tutkimustietoaja työkaluja – seminaari Kolin Luontokeskus Ukko 23.9.2002. Metsäntutkimuslaitoksen tiedonantoja 886, 63–68.Antikainen, Merja; Lyytikäinen, Ari; Pihlaja, Jouni 2003.

Pohjavesien suojelun ja kiviaineshuollon yhteensovittaminen :loppuraporttiOutokummunseudulta.Abstract:TheharmonizationAbstract:Theharmonizationofgroundwaterprotectionandaggregateservice :final report fromthe surroundings of Outokumpu. Alueelliset ympäristöjulkaisutAlueelliset ympäristöjulkaisut 304. 40 p. + 1 app. map.

Autio, Sini (ed.) 2003. Geological Survey of Finland, CurrentGeological Survey of Finland, Current Research 2001–2002. Geological Survey of Finland. SpecialPaper 36. 97 p.Backman, Birgitta 2004. Groundwater quality, acidification,

and recovery trends between 1969 and 2002 in South Finland.Geological Survey of Finland. Bulletin 401. 110 p. + 8 app.Bulletin 401. 110 p. + 8 app.Backman,Birgitta;Lahermo,Pertti2004.Arseenipohjavesissä.Arseenipohjavesissä.

Summary:Arsenic in groundwater. In:Loukola-Ruskeeniemi,K.In:Loukola-Ruskeeniemi,K. &Lahermo,P. (eds.)ArseeniSuomen luonnossa,ympäristövaiku-tukset ja riskit. Espoo: Geologian tutkimuskeskus, 103–112.Balykin,P.A.;Polyakov,G.V.;Hanski,E.;Walker,R.J.;Huhma,

H.;Tran,T. H.;Ngô,T. P.;Hoàng,H.T.;Tran, Q.H.;Glotov,A. I.;Petrova, T. E. 2004. The Late Permian komatiite-basalt complexThe Late Permian komatiite-basalt complexin the SôngDà Rift, northwestern ViêtNam. Journal of Geology.Series B (23), 52–64.Barkov,AndreiY.; Fleet,Michael E.;Martin, Robert F.;Halko-

aho, Tapio A. A. 2004. A potentially new konderite-like sulfideof Fe, Pb, Cu, Rh, Pd, and Ir from the Penikat layered complex,Finland. In:Mungall, J. E.,Meurer,W. P. &Martin, R. F. (eds.) Platinum-group elements : petrology, geochemistry,mineralogy. The CanadianMineralogist 42 (2), 499–513.Blyth,Alexander;Frape,Shaun;Ruskeeniemi,Timo;Blomqvist,

Runar 2004. Origins, closed system formation and preservationof calcites in glaciated crystalline bedrock : evidence from thePalmottu natural analogue site, Finland. Applied Geochemistry19 (5), 675–686.Breilin, Olli; Tikkanen, Jaakko; Kesola, Reino; Leveinen,

Jussi;Mursu, Juha 2003. Groundwater from crystalline bedrockGroundwater from crystalline bedrockin municipal of Leppävirta in southeast Finland. In: Krásny, J.,Zbynek,H. &Bruthans, J. (eds.) Proceedings of the internationalconference onGroundwater in fractured rocks, 15–19 September 2003,Prague,CzechRepublic : extended abstracts. IHP-VI series on groundwater (7), 31–32.Breilin, O.; Elhammer, A.; Björk, L.; Edén, P.; Fredén, C.;

Kero, L.;Kotilainen,A.;Nenonen, K.;Ojalainen, J.; Ransed, G.;Rodhe, L.; Stén,C.-G.; Sigurdson, O.; Sohlenius, G.;Virransalo,P. 2004. Geonat – Geological information and nature values for the sustainable development of the northern Kvarken area – anew co-operation project 2003–2005. In:Mansfeld, J. (ed.) The26th Nordic GeologicalWinter Meeting, January 6th – 9th 2004,Uppsala, Sweden : abstract volume. GFF 126 (1), 142.GFF 126 (1), 142.Breilin, Olli; Kotilainen, Aarno; Nenonen, Keijo; Räsänen,

Matti; Ollqvist, Sanna 2004. The unique moraine morphology,The unique moraine morphology,stratotypes and ongoing geological processes at the KvarkenAr-chipelago on the land uplift area in the western coast of Finland. In:32nd InternationalGeologicalCongress,Florence, Italy,August 20–28, 2004 : abstracts. Part 1, 627.Part 1, 627.Breilin, Olli; Kotilainen, Aarno; Nenonen, Keijo; Virransalo,

Petri; Ojalainen, Jukka; Stén, Carl-Göran 2004. Geology of theGeology of theKvarken Archipelago. Espoo: Geological Survey of Finland. 47 p.Britschgi, Ritva;Ahonen, Ismo;Lammila, Jyrki;Lähteenmäki,

Pasi;Sahala, Lauri;Vuokko, Jouko 2003. Pohjavesien suojelun jakiviaineshuollonyhteensovittaminen :Satakunnan loppuraportti. Satakuntaliitto. SarjaA 267. 91 p. + 3 app. maps.91 p. + 3 app. maps.Brown,D.;Carbonell,R.;Kukkonen, I.;Ayala,C.;Golovanova,

I. 2003. Composition of the Uralide crust from seismic velocity(Vp,Vs),heatflow, gravity, andmagneticdata.EarthandPlanetaryScience Letters 210 (1–2), 333–349.Bruneton, M.; Pedersen, H. A.; Farra, V.; Arndt, N.; Kukko-

nen, I.;Vacher, P. 2004. Evolution of Precambrian lithosphere inFinland as inferred from seismic surface and mantle xenoliths [Electronic resource]. In: EGU General Assembly 2004, Nice,

Page 85: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003-2004

84

France, 25–30April 2004. Geophysical ResearchAbstracts 6, 1p.. Optical disc (CD-ROM).Bruneton, Marianne; Pedersen, HelleA.;Vacher, Pierre; Kuk-

konen, Ilmo T.;Arndt, Nicholas T.; Funke, Sigward; Friederich,Wolfgang;Farra,Véronique2004.Layered lithosphericmantle inthecentralBalticShield from surfacewaves andxenolithanalysis. Earth and Planetary Science Letters 226 (1–2), 41–52.Carlson,Liisa 2004. Bentonitemineralogy. Part 1 :Methods of

investigation – a literature review. Part 2 :Mineralogical researchof selected bentonites. Posiva. Working report 2004–02. 105 p.105 p.Cermak, V. (ed.);Kukkonen, I. T. (ed.) 2003. Heat flow and theHeat flow and the

structure of the lithosphere. Physics and Chemistry of the Earth28 (9–11), 345–519.Charman, Dan;Mäkilä, Markku 2003. Climate reconstructionClimate reconstruction

from peatlands. PAGES Newsletter 11 (2–3), 15–17.Chernet, T.;Marmo, J. 2003.Direct comparison onmechanical

and digital size analyses of Kemi chromite, Finland. In:Appliedmineralogy : papers presented at Applied mineralogy ’03, Hel-sinki, Finland, 17–18 March 2003. Minerals Engineering 16 (11Suppl.), 1245–1249.Chernet, T.;Marmo, J. 2003.Direct comparison onmechanical

and digital size analyses ofKemi chromite [Electronic resource]. In: Applied mineralogy ’03, Helsinki, Finland, March 17–18,2003, 3 p.. Optical disc (CD-ROM).Chernet, Tegist 2003. Effect of mineralogy and texture of

sand and hard-rock ilmenite in TiO2 pigment production by thesulphate process, a case study onAustralian ilmenite concentrateand Tellnes ilmenite concentrate, Norway. In: Duchesne, J.-C. & Korneliussen,A. (eds.) Ilmenite deposits and their geologicalenvironment with special reference to the RogalandAnorthositeProvince including a geologicalmap at scale 1:75,000 and a CDwith a guide to the province. Norges geologiske undersøkelse. Special publication 9, 45–46.Chernet, Tegist; Marmo, Jukka 2003. Direct comparison on

mechanical and digital size analyses of Kemi chromite, Finland. In: Autio, S. (ed.) Geological Survey of Finland, Current Re-search 2001–2002. Geological Survey of Finland. Special Paper 36, 17–21.Chernet, Tegist; Pakkanen, Lassi 2003. Estimation of ferric

iron, crystal water and calculation of chemical formulae for altered ilmenite from electron microprobe analyses, based onstoichiometric criteria. In: Autio, S. (ed.) Geological Survey ofFinland, Current Research 2001–2002. Geological Survey ofFinland. Special Paper 36, 23–28.Chevrel, S.;Kuosmanen, V.;Grösel, K.;Marsh, S.; Tukiainen,

T.; Schäffer, U.;Quental, L.;Vosen, P.;Loudjani, P.;Kuronen, E.;Aastrup, P. 2003. Remote-sensing monitoring of environmentalimpacts. Mining Environmental Management 11 (6), 19–23.Chevrel, Stéphane; Kuosmanen, Viljo; Grösel, Klemens H.

J.; Marsh, Stuart; Tukiainen, Tapani; Schäffer, Uwe; Quental,Lidia; Vosen, Peter; Loudjani, Philippe; Aastrup, Peter 2004.Hyperspectral remote-sensing assessment of mining-relatedenvironmental impacts – examples from theMINEO project. In:32nd International Geological Congress, Florence, Italy,August 20–28, 2004 : abstracts. Part 2, 1116.Ciobanu, Cristiana L.; Cook, Nigel J.; Sundblad, Krister; Ko-

jonen, Kari 2004. Tellurides and selenides in Au ores from theFennoscandian Shield : a status report. In: 32nd InternationalGeological Congress, Florence, Italy, August 20–28, 2004 : ab-stracts. Part 1, 274.Part 1, 274.Cosgrove, John; Jokinen, Jarkko; Siivola, Jaakko; Tirén, Sven

2003. IMGS 2002 report : the geological and structural charac-IMGS 2002 report : the geological and structural charac-terization of the Olkiluoto site in a critical perspective. STUK-YTO-TR 196. 19 p.Demidov, Igor N.;Houmark-Nielsen, Michael;Kjær, KurtH.;

Larsen, Eiliv; Lyså,Astrid; Funder, Svend; Lunkka, Juha Pekka;Saarnisto,Matti2004.Valdaianglacialmaxima in theArkhangelsk

districtofnorthwesternRussia. In:Ehlers, J.&Gibbard,P.L. (eds.) Quaternary glaciations : extent and chronology. Part 1: Europe. Developments in Quaternary Science 2, 321–336.Deutsch,A.; Pesonen, L. J.; Pihlaja, P. 2003. No fossil microm-No fossilmicrom-

eteorites in the Jotnian sandstoneofFinland–critical re-assessment of theevidence. In:66thAnnualMeteoritical SocietyMeeting, July28 –August 1, 2003,Mnster,Germany : abstracts.Meteoritics&Planetary Science supplement 38 (7),A102.Edfelt, Åsa; Eilu, Pasi;Martinsson, Olof; Niiranen, Tero;Wei-

hed, Pär 2004. The northern Fennoscandia IOCG-province. SGAThe northern Fennoscandia IOCG-province. SGANews (18), 1, 4–9.Ehlers, Carl; Skiöld, Torbjörn;Vaasjoki, Matti 2004. Timing of

Svecofennian crustal growth and collisional tectonics in Åland,SW Finland. Bulletin of the Geological Society of Finland 76(1–2), 63–91.Eilu,Pasi;Niiranen,Tero2003.OnkoSuomessarautaoksidi-kupa-

ri-kulta -assosiaation (FeOx-Cu-Au, IOCG)esiintymiä?Summary:Summary:Are there IOCG deposits in Finland?. Geologi 55 (1), 4–11.Geologi 55 (1), 4–11.Eilu, Pasi; Sorjonen-Ward, Peter; Nurmi, Pekka; Niiranen,

Tero 2003.A review of gold mineralization styles in Finland. In:A review of gold mineralization styles in Finland. In:Sundblad, K. & Cook, N. J. (eds.) A group of papers devoted tothe metallogeny of gold in the Fennoscandian Shield. EconomicEconomicGeology 98 (7), 1329–1353.Eilu, Pasi; Lahtinen, Raimo 2004.Arseeni kallioperässä ja mal-

miutuneissavyöhykkeissä.Summary:Anomalousarsenic inbedrockand ores in Finland. In: Loukola-Ruskeeniemi, K. & Lahermo, P. (eds.)Arseeni Suomen luonnossa, ympäristövaikutukset ja riskit. Espoo: Geologian tutkimuskeskus, 29–43.Ekdahl, Elias; Kukkonen, Ilmo 2003. Deep seismic reflectionDeep seismic reflection

survey in Finland : amajor scientific co-operation betweenFinlandand Russia. European Geologist (15), 15–17.Eklund, Olav (ed.) 2003. Lapland 2003 : excursion guide to

Finnish and Swedish Lapland 1.–7.9.2003. Geocenter tiedottaa. Report 20. 59 p.Elminen, T.;Airo, M.-L.;Mertanen, S.; Pajunen,M. 2003. Mul-Mul-

tiple reactivations of the Porkkala-Mäntsälä shear zone, southernFinland. In:Deformation mechanisms, rheology and tectonics, St. Malo, France, 14–16April 2003 : abstract volume, 53.Elo, Seppo 2003. Gravity operations of the Geological Survey

of Finland. In: Poutanen, M., Jokela, J. & Ollikainen, M. (eds.)In: Poutanen, M., Jokela, J. & Ollikainen, M. (eds.) Geodeticoperations inFinland2000–2003.Helsinki:GeodeettinenHelsinki:Geodeettinenlaitos, 31–33.Elo, Seppo; Uusihakala, Mauri 2004. GPS-gravity applicationsGPS-gravity applications

at a waste treatment centre [Electronic resource]. In: Sharing theEarth : EAGE 66th Conference & Exhibition, Paris, France, 7–10June 2004 : extended abstracts. Houten: EAGE, 4 p.. Optical disc(CD-ROM).Fabbri,AndreaG. (ed.);Gaál,Gabor (ed.);McCammon,Richard

B. (ed.) 2002.Deposit and geoenvironmentalmodels for resourceexploitation and environmental security. NATO Science Series. Series 2. Environmental security 80. 532 p. + CD-ROM.Frape, S.K.;Blyth,A.;Blomqvist, R.;McNutt, R.H.;Gascoyne,

M. 2003. Deep fluids in the continents : II. Crystalline rocks. In:Holland, H. D., Turekian, K. K. & Drever, J. I. (ed.) Treatise ongeochemistry. Vol. 5: Surface and ground water, weathering, andsoils. Oxford: Elsevier, 541–580.Frape, Shaun K.; Shouakar-Stash, Orfan; Blomqvist, Runar;

Blyth, Alec R.; McNutt, Robert H.; Gascoyne, Mel 2004. Infor-mation gained from isotope geochemistry on evolution of brines in crystalline rocks. In: 32nd International Geological Congress,Florence, Italy,August 20–28, 2004 : abstracts. Part 1, 708.Fredén, Curt; Karis, Lars; Lundqvist, Sven; Ransed, Gunnel;

Suominen, Veli; Johansson, Carl Erik 2004. GEOSITES in prac-tice – trans-national comparison and correlation. In: Parkes, M. (ed.)Natural and cultural landscapes – the geological foundation :proceedings of a conference, 9–11September 2002,DublinCastle,Ireland. Dublin: Royal IrishAcademy, 113–116.

Page 86: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003–2004

85

Frindt, Stephen;Haapala, Ilmari;Pakkanen,Lassi2004.Anoro-Anoro-genicGross Spitzkoppe granite stock in centralwesternNamibia: Part I. Petrology and geochemistry. AmericanMineralogist 89(5–6), 841–856.Furnes, H.; Banerjee, N. R.;Muehlenbachs, K.; Staudigel, H.;

De Wit, M.; Kontinen, A. 2003. Evidence for bioalteration inpillow lavas of Precambrian ophiolites. In:Geoscience horizons,Seattle 2003 : GSAAnnualMeeting and Exposition, November 2–5, 2003. Geological Society of America. Abstracts with Pro-grams 35 (6), 455.Geologian tutkimuskeskus GTK : vuosikertomus 2002. 2003.

Espoo: Geologian tutkimuskeskus. 51 p.51 p.Geological Survey of FinlandGTK : annual report 2002. 2003.

Espoo: Geological Survey of Finland. 51 p.51 p.Geologian tutkimuskeskus GTK : vuosikertomus 2003. 2004.

Espoo: Geologian tutkimuskeskus. 55 p.55 p.Geological Survey of FinlandGTK : annual report 2003. 2004.

Espoo: Geological Survey of Finland. 55 p.55 p.Gervilla, F.; Cabri, L. J.; Kojonen, K. K. R.; Oberthür, T.;

Weiser, T.; Johanson, B.; Sie, S. H.; Campbell, J. L.; Teesdale,W. J.; Laflamme, J. H. G. 2003. Understanding the distributionof platinum-group elements in somemineral deposits : compari-son of trace element analyses obtained by electron microprobeand micro-PIXE. In: EMAS 2003 : 8th European Workshop onModernDevelopments andApplications inMicrobeamAnalysis,18 to 22May 2003,Chiclana de la Frontera (Cádiz), Spain. [S.l.]:EuropeanMicrobeamAnalysis Society, 121–135.Gervilla, F.; Kojonen, K.; Parkkinen, J.; Välimaa, J. 2003.

Platinum-group element mineralogy, geochemistry and 3-Dmodeling of the Keivitsa Ni-Cu-PGE sulfide deposit, northernFinland. In: Eliopoulos, D. G. ... [et al.] (eds.) Mineral explora-In: Eliopoulos, D. G. ... [et al.] (eds.) Mineral explora-[et al.] (eds.) Mineral explora-tion and sustainable development : proceedings of the SeventhBiennialSGAMeeting,Athens,Greece, 24–28August 2003. Vol. 1. Rotterdam: Millpress, 583–586.Gervilla, Fernando; Cabri, Louis J.; Kojonen, Kari; Oberthür,

Thomas; Weiser, Thorolf W.; Johanson, Bo; Sie, Soey H.;Campbell, John L.;Teesdale,Williams J.; Laflamme, J. H. Gilles2004. Platinum-group element distribution in some ore deposits :results of EPMA and micro-PIXE analyses. MicrochimicaActaMicrochimicaActa147 (3), 167–173.Gornostayev, S.; Hiltunen, R.; Mutanen, T.; Härkki, J. 2003.

Mineralogical research on chromitites of theAkanvaara deposit,northern Finland and products of their reduction [Electronicresource]. In:Appliedmineralogy ’03,Helsinki, Finland,March17–18, 2003, 2 p. Optical disc (CD-ROM).Gornostayev, S.;Mutanen, T. 2003. The platinum-group min-The platinum-group min-

erals in chromitites of the Akanvaara deposit, northern Finlandand in their processing products. In:Appliedmineralogy : papers presented at Applied mineralogy ’03, Helsinki, Finland, 17–18March 2003. Minerals Engineering 16 (11 Suppl.), 1307–1312.Gornostayev, S.S.;Mutanen,T.;Härkki, J.2003.Theplatinum-The platinum-

group minerals (PGM) in somechromitite layers of theAkanvaaradeposit, northern Finland [Electronic resource]. In: Vancouver 2003. GeologicalAssociation ofCanada,MineralogicalAssocia-tion of Canada & Society of Economic Geologists joint annualmeeting,Vancouver,B.C.,Canada,May25–28,2003.Opticaldisc(CD-ROM). GAC-MAC program with abstracts 28, 1 p.Gornostayev, S. S.;Walker, R. J.;Hanski, E. J.; Popovchenko,

S. E. 2004. Evidence for the emplacement of ca. 3.0 Ga man-tle-derived mafic-ultramafic bodies in the Ukrainian Shield.Precambrian Research 132 (4), 349–362.Grinenko, L. N.; Hanski, E.; Grinenko, V. A. 2003. Usloviâ

obrazovaniâ Cu-Ni mestorozdeniâ Keivitsa, severnaâ Finlândiâ,po izotopnym dannym sery i ugleroda. Geohimiâ (2), 181–194.Geohimiâ (2), 181–194.Grönholm, Sari (ed.);Alviola, Reijo;Kinnunen,KariA.;Kojo-

nen, Kari; Kärkkäinen, Niilo;Mäkitie, Hannu 2004. Retkeilijänkiviopas. Espoo: Geologian tutkimuskeskus. 88 p.

Gustafsson, Juhani (ed.);Ahonen, Ismo; Lammila, Jyrki; Läh-teenmäki, Pasi; Lyytikäinen,Ari; Nurmi, Heikki; Salonen, Vesa2002. Pohjavesien suojelun ja kiviaineshuollon yhteensovittami-nen – loppuraportti Loimaan seudulta. Turku:Varsinais-Suomenliitto. 70 p. + 7 app. maps.70 p. + 7 app. maps.Haavisto-Hyvärinen,Maija;Korhonen,Riitta;Mäkilä,Markku

2004. Tuovi Kankainen in memoriam. Geologi 56 (7), 165.Häikiö, Jukka; Herranen, Teuvo 2004. Merijärvellä tutkitut

suot ja niiden turvevarat. Osa 1. Abstract: The peatlands andOsa 1. Abstract: The peatlands andpeat reserves of Merijärvi. Part 1. Geologian tutkimuskeskus.Part 1. Geologian tutkimuskeskus. Turvetutkimusraportti 349. 45 p. + 4 app.Halkoaho, Tapio 2002. The Vaara – Kauniinlampi komatiite

cumulate complex. In:Niemelä,M. (ed.) Talc-magnesite depositsTalc-magnesite deposits in Finland, September 10–15, 2002, Finland : third field correla-tion, 21–26.Halmemies, Sakari; Gröndahl, Siri;Arffman, Mika; Nenonen,

Keijo;Tuhkanen, Tuula 2003. Vacuumextraction based responseVacuum extraction based responseequipment for recovery of fresh fuel spills from soil. Journal ofHazardous Materials 97 (1–3), 127–143.Hänninen, Pekka; Sutinen, Raimo; Penttinen, Sari 2002. Maa-

perän seuranta-asemat.In: Pietola, L. & Esala, M. (eds.) Maa,josta elämme : IIMaaperätieteiden päivien laajennetut abstraktit. Pro Terra 15, 123–126.Hanski, Eero 2003. Nampa. Suomen geologinen karttaSuomen geologinen kartta

1:100 000 : kallioperäkartta = Geological map of Finland1:100 000 : pre-Quaternary rocks lehti = sheet 3623.Hanski, Eero; Walker, Richard J.; Huhma, Hannu; Polyakov,

Gleb V.; Balykin, Pavel A.; Tran, Trong Hoa; Ngô, Thi Phuong2004. Origin of the Permian-Triassic komatiites, northwesternVietnam. Contributions to Mineralogy and Petrology 147 (4),453–469.Härmä, Paavo 2003. Itä-Uudenmaan rakennuskivivarojen kar-

toitus, osa I. Itä-Uudenmaan liitto. Julkaisu 62. 19 p. + 4 app.Härmä, Paavo 2003. Itä-Uudenmaan rakennuskivivarojen kar-

toitus, osa II. Itä-Uudenmaan liitto. Julkaisu 80. 16 p. + 6 app.Hartikainen, Aimo; Nikkarinen, Maria 2002. Maaperän ja

perunan alkuainepitoisuuksien vertailua kahdella kohdealueel-la Itä-Suomessa. In: Pietola, L. & Esala, M. (eds.) Maa, jostaelämme : IIMaaperätieteiden päivien laajennetut abstraktit. ProTerra 15, 127–130.Hattori, K. H.; Cabri, L. J.; Johanson, B.; Zientek, M. L.

2004. Origin of placer laurite from Borneo : Se andAs contents,Origin of placer laurite from Borneo : Se andAs contents,and S isotopic compositions. Mineralogical Magazine 68 (2),353–368.Heikkinen, P. M.; Räisänen, M. L. 2003. Mineralogical and

geochemical evidence of nickel mobility and retention in theHitura sulphide mine tailings [Electronic resource]. In: Appliedmineralogy ‘03, Helsinki, Finland, March 17–18, 2003, 3 p. Optical disc (CD-ROM).Heldal, Tom; Selonen, Olavi 2003. Environmental impact of

the natural stone industry. In: Selonen, O.& Suominen,V. (eds.)In: Selonen, O. & Suominen,V. (eds.) Nordic stone. Paris: UNESCO : IAEG, 50–51.Heldal, Tom; Selonen, Olavi 2003. History and heritage. In:In:

Selonen,O. &Suominen,V. (eds.) Nordic stone.Paris:UNESCONordic stone. Paris:UNESCO: IAEG, 13–18.Hellmuth, Karl-Heinz; Tarvainen, Timo; Backman, Birgitta;

Hatakka,Tarja;Vesterbacka, Pia;Savolainen,Heimo2003. IAEAIAEACoordinated Research Project (CRP) ”The use of selected safetyindicators (concentrations,fluxes) in theassessmentof radioactivewaste disposal”. Report 4: Natural geochemical concentrations on the Baltic Shield of Finland for use as indicators of nuclear waste repository safety.Geologian tutkimuskeskus.YdinjätteidenGeologian tutkimuskeskus.Ydinjätteidensijoitustutkimukset. Tiedonanto YST-109. 161 p.Hellstén, Pasi;Nystén,Taina;Salminen, Jani;Granlund,Kirsti;

Huotari, Taija; Vallinkoski, Veli-Matti 2004. Kaliumformiaatinhajoaminenmaaperässä ja pohjavedessä :MIDAS-loppuraportti. Abstract:Biodegradationofpotassium formiate insoilandground-

Page 87: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003-2004

86

water – final report of studies on alternative de-icing chemicals.Suomen ympäristö 675. 53 p.Helmens, K. F.; Eskola, K. O.; Johansson, P. W.; Räsänen, M.

E. 2004. The Last Interglacial/Glacial Cycle recorded in a nearlyThe Last Interglacial/Glacial Cycle recorded in a nearlycontinuous sediment sequence from the Sokli Basin in FinnishLapland. In:Mansfeld, J. (ed.)The26thNordicGeologicalWinterMeeting, January 6th – 9th 2004, Uppsala, Sweden : abstractvolume. GFF 126 (1), 135.GFF 126 (1), 135.Holma, M. J.; Keinänen, V. J.; Ojala, V. J.; Eilu, P. 2003. TheThe

Levijärvi –LoukinenAu-Ni-Cu occurrence : a Palaeoproterozoicpolymetallic orogenic goldmineralisation in the Sirkka Line tec-tonic structure, northern Finland. In: Eliopoulos, D. G. ... [et al.]In: Eliopoulos, D. G. ... [et al.][et al.](eds.)Mineralexplorationand sustainabledevelopment :proceed-ingsof theSeventhBiennialSGAMeeting,Athens,Greece,24–28August 2003. Vol. 2. Rotterdam: Millpress, 1073–1076.Hongisto,H.; Jokinen, J.; Jokinen,T.;Säävuori,H.;Oksama,M.

2004.Full scaleEMmodellingon sea ice [Electronic resource]. In:Full scaleEMmodellingon sea ice [Electronic resource]. In:Sharing the Earth : EAGE 66th Conference & Exhibition, Paris,France, 7–10 June 2004 : extended abstracts. Houten: EAGE, 4p. Optical disc (CD-ROM).Hongisto, Hannu; Oksama, Matti; Jokinen, Jarkko; Suppala,

Ilkka 2004. Field test of a transient EM-system on sea ice. In:Field test of a transient EM-system on sea ice. In:In:Puska, L. (ed.) Sähkömagnetiikka 2004, 26. elokuuta 2004.Espoo: CSC, 8–9.Hubberten, H. W.; Andreev, A.; Astakhov, V. I.; Demidov, I.;

Dowdeswell, J.A.; Henriksen, M.; Hjort, C.; Houmark-Nielsen,M.; Jakobsson, M.;Kuzmina, S.; Larsen, E.; Lunkka, J. P.; Lyså,A.; Mangerud, J.; Möller, P.; Saarnisto, M.; Schirrmeister, L.;Sher,A. V.; Siegert, C.; Siegert, M. J.; Svendsen, J. I. 2004. TheTheperiglacial climate and environment in northern Eurasia duringthe last glaciation. In: Thiede, J. (ed.) Quaternary environments of the Eurasian North (QUEEN). Quaternary Science Reviews 23 (11–13), 1333–1357.Huhma, H.;Mutanen, T.;Whitehouse, M. 2004. Oldest rocksOldest rocks

of the Fennoscandian Shield : the 3.5 Ga Siurua trondhjemitegneiss in the Archaean Pudasjärvi Granulite Belt, Finland. In:Mansfeld, J. (ed.) The 26th Nordic Geological Winter Meeting,January 6th – 9th 2004, Uppsala, Sweden : abstract volume. GFFGFF126 (1), 10.Huhma,H.;Mutanen,T.;Whitehouse,M.2004.Oldest rocks ofOldest rocks of

the Fennoscandian Shield : the 3.5Ga Siurua trondhjemite gneiss in theArchaean PudasjärviGranulite Belt, Finland. In:Abstracts of the 14thAnnualV. M. Goldschmidt Conference,Copenhagen,Denmark, June 5–11, 2004. Geochimica et CosmochimicaActa68 (11S),A754.Huhta, Pekka 2003. Satakunnan kallioperä on vaikuttanut

maaperänerityispiirteisiin. Sarka. SatakunnanMuseonvuosikirja2001–2002, 62–67.Huhta, Pekka; Korhonen, Riitta; Korsman, Kalevi; Vuorela,

Irmeli 2003. Ainutlaatuinen Satakunnan maankamara tarjoaahaasteita tutkijoille ja soveltajille. Sarka. Satakunnan Museonvuosikirja 2001–2002, 56–81.Hukka, Juho 2003. Lyijyhohde. Vuoriteollisuus 61 (2),

54–55.Hukka, Juho 2003. Maasälvät. Vuoriteollisuus 61 (1), 50–51.Huotari, T.; Vanhala, H.; Hellstén, P.; Vaittinen, K. 2004.

Monitoring an alternative de-icer in salt contaminated aquifer using ERT. In: Near surface 2004 : 10th European Meetingof Environmental and Engineering Geophysics, Utrecht, TheNetherlands, 6–9 September 2004 : extended abstracts book.Houten: EAGE, 4 p.Huotari, Taija; Kukkonen, Ilmo 2004. Thermal expansionThermal expansion

properties of rocks : literature survey and estimation of thermalexpansion coefficient for Olkiluoto mica gneiss. Tiivistelmä:Tiivistelmä:Kivien lämpölaajenemisominaisuudet : kirjallisuustutkimus sekäOlkiluodon kiillegneissin lämpölaajenemiskertoimen estimointi. Posiva. Working report 2004–04. 62 p.62 p.

Huttunen, Timo;Saarelainen, Jouko;Väänänen, Tapio;Putki-nen, Seppo; Ikonen, Jorma;Kohonen, Jarmo;Pekkarinen, Lauri;Vuollo, Jouni;Äikäs, Olli 2003. Koli : geologinen retkeilykarttaKoli : geologinen retkeilykartta= geologisk friluftskarta = geological outdoor map 1:20 000.Kuopio: Geologian tutkimuskeskus.Huttunen, Timo (ed.); Hytönen, Markku; Kejonen, Aimo;

Rönty, Hannu; Saarelainen, Jouko; Tervo, Tapani; Väänänen,Tapio; Äikäs, Olli 2003. Koli : geologinen retkeilykartta jaopaskirja. Kuopio: Geologian tutkimuskeskus. 73 p.Huttunen, Timo; Johansson, Peter; Putkinen, Satu; Haa-

visto-Hyvärinen, Maija 2004 . Maaperäkartan sovelluksiayhdyskuntasuunnitteluun. In: Kaakinen, A. (ed.) Geologian3. tutkijapäivät, 10.–11.3.2004, Helsinki. Helsinki: Helsinginyliopisto, geologian laitos, 73.Hyvönen,Eija;Lerssi, Jouni;Väänänen,Tapio2003.AirborneAirborne

geophysical surveys assessing the general scale Quaternarymapping project in Finland. In: Mares, S. & Pospísil, L. (eds.) 9th Meeting of Environmental and Engineering Geophysics,Prague, Czech Republic, August 31st – September 4th 2003 :proceedings. Prague: Czech Association of the Applied Geo-physicists, 3 p.Hyvönen, Eija; Pänttäjä, Markku; Sutinen, Marja-Liisa;

Sutinen, Raimo 2003. Assessing site suitability for Scots pineAssessing site suitability for Scots pineusing airborne and terrestrial gamma-ray measurements inFinnish Lapland. Canadian Journal of Forest Research 33 (5),796–806.Iisalo, Esko 2003. Till stratigraphy and geochemical differ-

ences between till beds in western Finland. In: Räisänen,M. L.In: Räisänen,M. L. & Nikkarinen, M. (eds.) Complexity of glacial dispersal andComplexity of glacial dispersal andhydromorphicprocesses in tillgeochemistry.GeologicalSurveyof Finland. Special Paper 34, 21–42.Iljina,M. 2004. The unique Konttijärvi marginal series PGE

ore of the Portimo Layered Igneous Complex, Finland [Elec-tronic resource]. In: St. Catharines 2004. Geological Associa-tion of Canada & Mineralogical Association of Canada joint annual meeting, St. Catharines, Ontario, Canada, May 12–14,2004. GAC-MAC program with abstracts 29, 255. Optical disc(CD-ROM).Iljina, Markku J. 2004. Fennoscandian layered mafic intru-Fennoscandian layered mafic intru-

sions and relatedCu-Ni-PGE deposits. In: Iljina,M.& Sullivan,In: Iljina,M.& Sullivan,J. (eds.) Fennoscandian seminar, March 5, 2004, [Toronto] :Fennoscandian seminar, March 5, 2004, [Toronto] :agenda, abstracts and biographies, 2 p.Iljina, Markku (ed.); Sullivan, John (ed.) 2004. Fennoscan-Fennoscan-

dian seminar,March 5, 2004, [Toronto] : agenda, abstracts andbiographies. 15 p.15 p.Johansson, Carl Erik; Andersen, Steen; Erikstad, Lars; Suo-

minen, Veli 2004. Geodiversity in Nordic nature conservation.Geodiversity in Nordic nature conservation. In: 32nd International Geological Congress, Florence, Italy,August 20–28, 2004 : abstracts. Part 1, 579.Johansson, Peter 2003. Aeolian landforms and erosion in

northern Finland. In:Raukas,A.&Kukk,H. (eds.) InternationalIn:Raukas,A.&Kukk,H. (eds.) InternationalInternationalsymposium on Human Impact and Geological Heritage, 12–17 May 2003, Tallinn, Estonia : excursion guide and abstracts. Tallinn: Institute of Geology at Tallinn Technical University,72–73.Johansson, Peter 2003. Eskers and bedrock gorges (tunnel

valleys) in thePakasaivo area,westernFinnishLapland.Bulletinof the Geological Society of Finland 75 (1–2), 5–15.Johansson, Peter 2003. Kallio ja maaperä. In: Kuusisto, A.

(ed.) Ylläs-Aakenuksen alueen luonto. Metsähallituksen luon-nonsuojelujulkaisuja. SarjaA 141, 19–21.Johansson,Peter (ed.) 2003.Pallas-Ounastunturi : geologinen

retkeilykartta = geological outdoor map 1:50 000. 2nd rev. ed..Rovaniemi: Geologian tutkimuskeskus.Johansson,Peter (ed.);Mäkinen,Kalevi (ed.)2003.KoilliskairaKoilliskaira

: geologinen retkeilykartta = geological outdoormap 1:100 000.2nd rev. ed. Rovaniemi: Geologian tutkimuskeskus.Rovaniemi: Geologian tutkimuskeskus.

Page 88: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003–2004

87

Johansson,Peter2004.Esker systemsofdifferent ages in east-ernFinnishLapland. In:Zelcs,V.&Seglins,V. (eds.) Internationalfield symposium on Quaternary geology and modern terrestrialprocesses,westernLatvia, September 12–17, 2004 : abstracts ofpapers and posters. Riga: University of Latvia, 18–19 .Johansson,Peter2004.Evidencesofglaciationanddeglaciation

inwesternFinnishLapland. In:Lappalainen,E. (ed.)Vitality andIn:Lappalainen,E. (ed.)Vitality andVitality andpeace ofmind fromGreatTeuravuoma aapamire : post congress excursion to Lapland, 11–16 June, 2004, 52–58.Johansson,Peter2004. Jäätikköjokimuodostumat. In:Koivisto,

M. (ed.) Jääkaudet. Helsinki:WSOY, 139–151.Johansson, Peter 2004. Maaperäkartoituksen keskeiset ke-

hittämistavoitteet. In: Kaakinen, A. (ed.) Geologian 3. tutkija-päivät, 10.–11.3.2004, Helsinki. Helsinki : Helsingin yliopisto,geologian laitos, 10.Johansson,Peter;Haavisto-Hyvärinen,Maija;Huttunen,Timo;

Putkinen, Satu 2004. Maaperäkartan sovelluksia maaperän japohjaveden suojeluunSiilinjärvellä.Abstract:Applicationsof theAbstract:Applicationsof themap of surficial geology to soil and groundwater conservationin Siilinjärvi, central Finland. In: Seppälä, J.& Idman,H. (eds.)In: Seppälä, J.& Idman,H. (eds.) Maaperänsuojelu : Geologian tutkimuskeskuksen ja Suomenympäristökeskuksen tutkimusseminaari 5.11.2004. Suomenympäristö 726, 63–66.Johansson, Peter; Koivisto, Marjatta 2004. Moreenimuo-

dostumat. In: Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY,130–138.Johansson, Peter; Manninen, Tuomo 2004. Maankamaran

synty ja kehitys. In: Kajala, L. (ed.) Lemmenjoki : Suomensuurin kansallispuisto – The largest national park in Finland. Ivalo: Metsähallitus, 150–173.Johansson, Peter;Rainio, Heikki;Kejonen,Aimo 2004.Man-

nerjäätikön reunalla– tuulikerrostumat japölymaat. In:Koivisto,M. (ed.) Jääkaudet. Helsinki: WSOY, 106–113.Jones,A. P.;Mutanen, T.; Tuisku, P.; Hanski, E.; Price, G. D.

2003. ThePechenga structure,Russia :giantNi-CumineralisationThePechenga structure,Russia :giantNi-Cumineralisationrelated to large meteorite impact?. In: McDonald, I. ... [et al.](eds.)World class mineral deposits and Earth evolution, 18–21August 2003.Applied Earth Science 112 (2), B149–B150.Juntunen, Risto; Vartiainen, Sirkka; Pullinen,Arto 2004.Ar-

seeniPirkanmaan porakaivovesissä.Summary:Arsenic inwaterSummary:Arsenic inwater from drilled bedrock wells in Pirkanmaa, southern Finland. In:In:Loukola-Ruskeeniemi,K.&Lahermo,P. (eds.)ArseeniSuomenluonnossa, ympäristövaikutukset ja riskit. Espoo: Geologiantutkimuskeskus, 111–122.Juvonen,Riitta;Bartha,Andras;Lakomaa,TuulaM.;Soikkeli,

Leena A.; Bertalan, Éva; Kallio, Eeva I.; Ballók, Maria 2004.Comparison of recoveries by lead fire assay and nickel sulfidefire assay in the determination of gold, platinum, palladium andrhenium in sulfide ore samples. In: Kane, J. S. ... [et al.] (eds.)Geoanalysis 2003. Geostandards and Geoanalytical Research28 (1), 123–130.Kahelin, Hanna; Kallio, Eeva 2004. Arseenin kemiallinen

analysointi. Summary:Determination of arsenic concentrationsSummary:Determination of arsenic concentrations in geological and environmental samples. In: Loukola-Rus-In: Loukola-Rus-keeniemi, K. & Lahermo, P. (eds.)Arseeni Suomen luonnossa,ympäristövaikutukset ja riskit. Espoo: Geologian tutkimuskes-kus, 19–28.Kaija, Juha; Rasilainen, Kari; Blomqvist, Runar 2003. IAEAIAEA

CoordinatedResearchProject (CRP) ”The use of selected safetyindicators (concentrations, fluxes) in the assessment of radioac-tivewaste disposal”.Report 6: Site-specific natural geochemicalconcentrations and fluxes at the Palmottu U-Th mineralisation(Finland) foruse as indicatorsofnuclearwaste repository safety. Geologian tutkimuskeskus. Ydinjätteiden sijoitustutkimukset. Tiedonanto YST-114. 45 p.Kakkuri, Juhani;Virkki,Hanna2004.Maanousee. In:Koivisto,

M. (ed.) Jääkaudet. Helsinki: WSOY, 168–178.

Kallinen, Riitta-Liisa 2004. Kaavilla tutkitut suot ja niidenturvevarat. Osa 2.Abstract: The peatlands and peat reserves inOsa 2.Abstract: The peatlands and peat reserves inKaavi.Part2.Geologian tutkimuskeskus.TurvetutkimusraporttiPart2.Geologian tutkimuskeskus.Turvetutkimusraportti350. 28 p. + 3 app.Kananoja,Tapio 2004.Kallioperän suojelu- ja opetuskohteita

Kainuussa.Abstract: Sites for geological protection and educa-Abstract: Sites for geological protection and educa-tion in Kainuu. Suomen ympäristö 692. 124 p.Suomen ympäristö 692. 124 p.Kananoja,Tapio 2004.Kallioperän suojelu- ja opetuskohteita

Pohjois-Pohjanmaalla.Abstract: Sites for geological protectionAbstract: Sites for geological protectionand education in northern Ostrobothnia (Pohjois-Pohjanmaa). Suomen ympäristö 714. 157 p.Kane, JeanS. (ed.);Niskavaara,Heikki (ed.);Hämäläinen,Lea

(ed.); Sandström, Harry (ed.); Ramsey, Michael H. (ed.) 2004.Geoanalysis 2003. Geostandards and Geoanalytical Research28 (1), 9–136.Kankainen, Tuovi; Vuorela, Irmeli 2003. Rapolan rantaker-

rostuman kertomaa – kasvillisuuden rakenteesta ja viljelynhistoriasta. In: Heikkurinen-Montell, T. & Taskinen, H. (eds.) Sääksmäen Rapolan rautakautinen maisema ja elinkeinot Val-keakoskella. Rapola-tutkimuksia 3, 124–152.Käpyaho,A.;Mänttäri, I.;Huhma,H.2004.EpisodicArchaeanEpisodicArchaean

crustal growth and crustal recycling inKuhmo, eastern Finland :U-Pb zircon and Sm-Ndwhole-rock study of plutonic rocks. In:Mansfeld, J. (ed.) The 26th Nordic Geological Winter Meeting,January 6th – 9th 2004, Uppsala, Sweden : abstract volume.GFF 126 (1), 11.Karhu, Eila 2003. Suomen Kivikeskus aloitti toimintansa

Juuassa. Tietohippu (3–4), 4–6.Karhunen, Ritva 2004. Iniön ja Turun kartta-alueiden kal-

lioperä = Berggrunden inom Iniö och Åbo kartblad. Summary:Summary:Pre-Quaternary rocks of the Iniö and Turku map-sheet areas. Suomen geologinen kartta 1:100 000 : kallioperäkarttojen seli-tykset lehdet 1041 ja 1043. 76 p. + 1 app. map.76 p. + 1 app. map.Kärkkäinen, Niilo 2003. Gabbro-hosted ilmenite deposits in

Finland. In: Duchesne, J.-C.& Korneliussen,A. (eds.) Ilmenitedeposits and theirgeological environmentwith special referenceto theRogalandAnorthositeProvince including ageologicalmap at scale 1:75,000 and a CDwith a guide to the province.Norges geologiske undersøkelse. Special publication 9, 80–82.Kärkkäinen, Niilo K.; Bornhorst, Theodore J. 2003. The

Svecofennian gabbro-hosted Koivusaarenneva magmatic il-menite deposit, Kälviä, Finland. Mineralium Deposita 38 (2),169–184.Kauniskangas, Esa; Saijos, Henri 2004. Geologian tutkimus-

keskukselle geologisten karttojen tuotantojärjestelmä. ESRIFinland uutiset (2), 3–5.Kauppila, Tommi; Valpola, Samu E. 2003. Response of aResponse of a

shallow boreal lake to recent nutrient enrichment – implications for diatom-based phosphorus reconstructions. HydrobiologiaHydrobiologia495 (1–3), 47–58.Keinänen, M. M.; Korhonen, L. K.;Martikainen, P. J.; Varti-

ainen, T.;Miettinen, I. T.; Lehtola, M. J.;Nenonen, K.; Pajunen,H.;Kontro,M.H.2003.Gaschromatographic-massspectrometricGaschromatographic-mass spectrometricdetection of 2- and 3-hydroxy fatty acids as methyl esters fromsoil, sediment and biofilm. Journal of Chromatography B 783(2), 443–451.Kejonen,Aimo2003.Geologien elämänviisauksia japalindro-

meja. Geologi 55 (2), 34–37.Kejonen,Aimo2003.Yhdysvaltojenkadonneetkultakaivokset.

Kivi 21 (4), 20–21.Kejonen, Aimo; Kejonen, Eetu 2003. Lahden kivimessut

hajaannuksen ja hygienatuotteiden pyörteissä. Geologi 55 (7),186–189.Kejonen, Aimo 2004. Kansanuskomuksia ja geologiaa. In:

Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY, 226–233.Kejonen,Aimo 2004.Kiinalaisen kadonnut kultakaivos.Kivi

22 (2), 24–25.

Page 89: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003-2004

88

Kejonen,Aimo 2004. Mannerjäätikön reunalla – routiva maa. In: Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY, 114–116.Kejonen, Aimo 2004. On the Finnish pseudokarsts. In: Gaál,

L. (ed.) Proceedings of the 8th International Symposium onPseudokarst, Teply Vrch – Slovakia, 2004. Liptovsky Mikulás:Slovak Caves Administration, 24–31.Kejonen,Aimo 2004. Suomi ennen jääkautta. In:Koivisto,M.

(ed.) Jääkaudet. Helsinki:WSOY, 11–13.Kejonen, Aimo; Johansson, Peter 2004. Geologiset maise-

ma-alueet. In: Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY,211–225.Kejonen,Aimo;Kejonen,Eetu2004.Lahdenkivimessuillauusi

pitopaikka ja järjestäjä. Geologi 56 (7), 162–164.Keskitalo, Katriina (ed.); Kurkinen, Ilpo; Malkavaara, Terhi;

Liljeqvist, Lasse; Lyytikäinen,Ari; Nurmi, Heikki; Ranta, Panu;Sahala, Lauri; Timperi, Jukka; Tossavainen, Jyrki; Vallinkoski,Veli-Matti; Britschgi, Ritva 2004. Pohjavesien suojelun ja kivi-aineshuollonyhteensovittaminen–Kymenlaakson loppuraportti. Abstract: The adjustment of groundwater protection with aggre-gate service – final report from Kymenlaakso region.AlueellisetAlueelliset ympäristöjulkaisut 349. 134 p. + 3 app. maps.Kinnunen, Heli; Holopainen, Toini; Räisänen, Marja Liisa;

Kärenlampi,Lauri 2003. Fluoride in birch leaves, ground vegeta-Fluoride in birch leaves, ground vegeta-tion, litter and humus in the surroundings of a fertilizer plant andapatite mine in Siilinjärvi, eastern Finland. Boreal Environment Research 8 (2), 185–192.Kinnunen,KariA.2003.AidostaLapinkultahipusta takuutuote.

Prospäkkäri 27 (4), 24–31.Kinnunen, Kari A. 2003. Hurrikkaan tutkimustulokset. Lapin

Kullankaivaja (17), 33–34.Kinnunen, Kari A. 2003. Jaspista Susiluolassa : viime kesän

kaivauksilta taltioitu piikiven veroista kivimateriaalia. Karijoenjoulu 2003, 24–25.Kinnunen, KariA. 2003. Korukivien tunnistaminen on yhteis-

työtä. Kivi 21 (4), 6–12.Kinnunen, Kari A. 2003. Mercury-rich coating on some goldMercury-rich coating on some gold

nuggets from Ivalojoki placers, northern Finland. In: Autio, S. (ed.)GeologicalSurveyofFinland,CurrentResearch2001–2002. Geological Survey of Finland. Special Paper 36, 29–33.Special Paper 36, 29–33.Kinnunen, KariA. 2003. Santorinin kivet. Kivi 21 (1), 33.Kinnunen, Kari A. 2004. Hohtokordieriitti, uusi kotimainen

korukivi. Kivi 22 (1) , 8–21.Kinnunen, Kari A. 2004. Karijoen Susiluolasta tunnistettu

jaspista. Kivi 22 (3), 14–19.Kinnunen, Kari A. 2004. Kulta kiteytyi kvartsijuoneen. Pros-

päkkäri 28 (4), 14–20.Kinnunen,KariA. 2004. Kultaa ja kalsedonia samassa hipussa.

Kivi 22 (2), 26–27 .Kinnunen, KariA. 2004. Puskuojalta kultapitoista kalsedonia.

Prospäkkäri 28 (2) , 8–13.Kinnunen,KariA. 2004. Tapio-kultahipun tutkimus. Prospäk-

käri 28 (1), 14–20.Koistinen, Tapio; Stephens, Michael; Bogatchev, Vladimir;

Nordgulen, Oystein;Wennerström, Marit; Korhonen, Juha Ville2004. Geologicalmap of the Fennoscandian Shield 1:2 000 000.Geologicalmap of the Fennoscandian Shield 1:2 000 000. In:32nd InternationalGeologicalCongress,Florence, Italy,August 20–28, 2004 : abstracts. Part 1, 565.Part 1, 565.Koivisto, Marjatta (ed.) 2004. Jääkaudet. Helsinki: WSOY.

233 p.Koivisto,Marjatta2004. Jäätikkökuljetus. In:Koivisto,M. (ed.)

Jääkaudet. Helsinki: WSOY, 152–156.Koivisto,Marjatta 2004. Jäätikön jäljet. In: Koivisto,M. (ed.)

Jääkaudet. Helsinki: WSOY, 58–62.Koivisto, Marjatta 2004. Moreeni. In: Koivisto, M. (ed.) Jää-

kaudet. Helsinki: WSOY, 121–126.Koivisto,Marjatta 2004. Moreenin tutkimus. In: Koivisto,M.

(ed.) Jääkaudet. Helsinki:WSOY, 127–129.

Koivisto, Marjatta 2004. Rantakerrostumat. In: Koivisto, M. (ed.) Jääkaudet. Helsinki:WSOY, 179–184.Koivisto, Marjatta 2004. Suomen maaperän mineraalit. In:

Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY, 157–163.Koivisto,Marjatta2004.Uutta tietoaLappajärvestä. In:Koivisto,

M. (ed.) Jääkaudet. Helsinki: WSOY, 164–167.Koivisto,Marjatta;Kejonen,Aimo2004.Maalajit. In:Koivisto,

M. (ed.) Jääkaudet. Helsinki:WSOY, 117–120.Kojonen, K.; Isomäki, O.-P.; Knauf, V. 2002. Platinum groupPlatinum group

minerals and an undefined (Re, Mo, Cu, Os, Fe, Ni, Co)1.93S3from theProterozoicHituraNi-Cu-PGEdeposit,westernFinland. In: 18th GeneralMeeting of the InternationalMineralogicalAs-sociation : mineralogy for the new millennium, 1–6 September2002,Edinburgh,Scotland:programmewithabstracts.Edinburgh:InternationalMineralogicalAssociation, 285.Kojonen, K.; Isomäki, O.-P.; Pulkkinen, K.; Knauf, V. 2003.

Mineral processing of base metal sulphides and platinum group minerals (PGM) at the Proterozoic Hitura Ni-Cu-PGE deposit,western Finland [Electronic resource]. In: Applied mineralogy’03, Helsinki, Finland, March 17–18, 2003, 4 p. Optical disc(CD-ROM).Kojonen, K.; Zaccarini, F.; Garuti, G. 2003. Platinum-groupPlatinum-group

elements and gold geochemistry and mineralogy in the Ray-Izophiolitic chromitites,Polar Urals. In:Eliopoulos,D.G. ... [et al.]In:Eliopoulos,D. G. ... [et al.][et al.](eds.)Mineralexplorationand sustainabledevelopment :proceed-ingsof theSeventhBiennialSGAMeeting,Athens,Greece,24–28August 2003. Vol. 1. Rotterdam: Millpress, 599–602.Kojonen,Kari2004.Tarkianiitti (Cu,Fe)(Re,Mo)4S8uusi sulfi-

dimineraali Hituran kaivoksesta Nivalasta. Kivi 22 (3), 20–25.Kojonen, Kari; Isomäki, Olli-Pekka 2004. Tarkianiitti

(Cu,Fe)(Re,Mo)4S8–uusimineraaliHiturankaivoksesta.Materia61 (3), 36–41.Kojonen,Kari;Välimaa, Jukka;Gervilla,Fernando;Parkkinen,

Jyrki 2004. Platinum-group element mineralization pipes of thePlatinum-group element mineralization pipes of theearlyProterozoicKeivitsamafic-ultramafic intrusion,Sodankylä,northernFinland. In:32nd InternationalGeologicalCongress,Flor-ence, Italy,August 20–28, 2004 : abstracts. Part 2, 1267–1268.Part 2, 1267–1268.Kojonen, Kari K.; Roberts, Andrew C.; Isomäki, Olli-Pekka;

Knauf, Vladimir V.; Johanson, Bo; Pakkanen, Lassi 2004. Tarki-Tarki-anite, (Cu,Fe)(Re,Mo)4S8, a newmineral species from theHituramine,Nivala, Finland. In:Mungall, J. E.,Meurer,W. P. &Martin,R. F. (eds.) Platinum-group elements : petrology, geochemistry,mineralogy. The CanadianMineralogist 42 (2), 539–544.Konishi, Hiromi;Alviola, Reijo; Buseck, Peter R. 2004. 2111

biopyribole intermediatebetweenpyroxeneandamphibole:artifact or natural product?. AmericanMineralogist 89 (1), 15–19.Kontinen,Asko2002. JormuaOphioliteComplex. In:Niemelä,In:Niemelä,

M. (ed.) Talc-magnesite deposits in Finland, September 10–15,Talc-magnesite deposits in Finland, September 10–15,2002, Finland : third field correlation, 14–20.Kontinen,Asko;Meriläinen,Kauko 2004. Paltaniemi. SuomenPaltaniemi. Suomen

geologinen kartta 1:100 000 : kallioperäkartta = Geological mapof Finland 1:100 000 : pre-Quaternary rocks lehti = sheet 3432.Korhonen, J. V. (comp.);Aaro, S. (comp.);All, T. (comp.);Elo,

S. (comp.);Haller,L.Å. (comp.);Kääriäinen, J. (comp.);Kulinich,A. (comp.);Skilbrei, J.R. (comp.);Solheim,D. (comp.);Säävuori,H. (comp.);Vaher, R. (comp.); Zhdanova, L. (comp.);Koistinen,T. (comp.) 2002. Bouguer anomaly map of the FennoscandianShield : IGSN 71 gravity system,GRS80 normal gravity formula. Bouguer density 2670kg/m³, terrain correction applied.Anomalycontinued upwards to 500 m above ground : scale 1 : 2 000 000. Espoo : Trondheim : Uppsala : Moscow: Geological Survey ofFinland : Geological Survey of Norway : Geological Survey ofSweden :Ministry of Natural Resources of Russia.Korhonen, J. V. (comp.); Aaro, S. (comp.); All, T. (comp.);

Nevanlinna, H. (comp.); Skilbrei, J. R. (comp.); Säävuori, H.(comp.);Vaher, R. (comp.); Zhdanova, L. (comp.); Koistinen, T.(comp.)2002.Magneticanomalymapof theFennoscandianShield

Page 90: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003–2004

89

: DGRF-65 anomaly of total field.Anomaly continued upwardsto 500m above ground : scale 1 : 2 000 000. Espoo : Trondheim: Uppsala :Moscow: Geological Survey of Finland : GeologicalSurvey of Norway : Geological Survey of Sweden :Ministry ofNatural Resources of Russia.Korhonen, Juha Ville; Aaro, Sven; All, Tarmo; Elo, Seppo;

Koistinen, Tapio; Kulinich,Anatoli; Kääriäinen, Jussi; Skilbrei,JanReidar;Solheim,Dag;Vaher,Rein;Zhdanova,Ludmila2003.Correlation of potential field anomalies, petrophysical propertiesandevolutionof theFennoscandianShield. In: IUGG2003 :XXIIIGeneral Assembly of the International Union of Geodesy andGeophysics, June 30 – July 11, 2003, Sapporo, Japan : abstracts. Week B. Sapporo : IUGG, 35.Korhonen, JuhaVille;Säävuori,Heikki;Koistinen,Tapio2003.

Lithospheric sources of magnetic and gravity anomalies of theFennoscandian Shield. In: IUGG 2003 : XXIIIGeneralAssemblyof the International Union of Geodesy and Geophysics, June 30– July 11, 2003, Sapporo, Japan : abstracts. Week B. Sapporo :IUGG, 28.Korhonen, Juha Ville; Aaro, Sven; All, Tarmo; Elo, Seppo;

Kulinich, Anatoly; Skilbrei, Jan Reidar; Säävuori, Heikki; Va-her, Rein; Zhdanova, Ludmila; Koistinen, Tapio 2004. BouguerBouguer anomalymap of the Fennoscandian Shield 1:2 000 000. In: 32ndInternationalGeologicalCongress,Florence, Italy,August20–28,2004 : abstracts. Part 1, 565.Part 1, 565.Korhonen, Juha Ville; Aaro, Sven; All, Tarmo; Nevanlinna,

Heikki; Skilbrei, Jan Reidar; Säävuori, Heikki; Zhdanova,Ludmila; Koistinen, Tapio 2004. Magnetic anomaly map of theMagnetic anomaly map of theFennoscandian Shield 1:2 000 000. In: 32nd International Geo-logicalCongress, Florence, Italy,August 20–28, 2004 : abstracts. Part 1, 565.Korhonen, Juha Ville; Lahtinen, Raimo 2004. MagnetizationMagnetization

components of Precambrian rocks in Finland, central Fennoscan-dianShield. In:32nd InternationalGeologicalCongress,Florence,Italy,August 20–28, 2004 : abstracts. Part 2, 1348–1349.Part 2, 1348–1349.Korhonen, Juha Ville; Reeves, Colin; Ghidella, Marta;Maus,

Stefan; McClean, Susan; Ravat, Dhananjay 2004. World Dig-World Dig-ital Magnetic Anomaly Map. In: 32nd International GeologicalCongress, Florence, Italy, August 20–28, 2004 : abstracts. PartPart 1, 779.Korhonen, JuhaVille;Säävuori,Heikki;Koistinen,Tapio2004.

Bulk density and magnetic properties of central FennoscandianShield in time and space. In: 32nd International GeologicalCongress, Florence, Italy, August 20–28, 2004 : abstracts. PartPart 2, 951–952.Korhonen, Riitta 2003. Kalliomme ja maaperämme. In: Sar-In: Sar-

lund, S. (ed.) Tavinsalmen Kuninkaankartanosta KäärmelahteenTavinsalmen Kuninkaankartanosta Käärmelahteen: kotiseutukirja ja historiikki Maaningalta Haapamäen, Kinnu-lanlahden, Käärmelahden ja Tavinsalmen kylistä. Maaninka:Sinikivi-työryhmä, 9–10.Korhonen,Riitta 2003. Satakunnan soiden käyttömahdollisuu-

det. Sarka. Satakunnan Museon vuosikirja 2001–2002, 76–79.Korhonen, Riitta;Suomi,Timo 2003. Jalasjärvellä tutkitut suot

ja niiden turvevarat. Osa 2.Abstract:Themires and peat reservesOsa 2. Abstract:Themires and peat reserves of Jalasjärvi. Part 2. Geologian tutkimuskeskus. Turvetutkimus-Part 2. Geologian tutkimuskeskus. Turvetutkimus-raportti 343. 36 p. + 5 app.Korja,Annakaisa; Lahtinen, Raimo; Nironen, Mikko; Heikki-

nen,Pekka;Kukkonen, IlmoT.2004.ThegrowthofFennoscandiaThegrowthofFennoscandiaby Paleoproterozoic accretionary orogenies – results from FIREand BABEL reflection profiles. In: 32nd Internatioal GeologicalCongress, Florence, Italy, August 20–28, 2004 : abstracts. PartPart 2, 1225.Kortelainen, N. M.;Karhu, J.A. 2003. Tracing the decomposi-Tracing the decomposi-

tion of dissolved organic carbon in artificial recharge by carbonisotope ratios. In: International symposium on isotope hydrologyand integratedwaterresourcesmanagement,Vienna,Austria,19–23May 2003 : book of extended synopses. Vienna: IAEA, 25–26.Vienna: IAEA, 25–26.

Kortelainen,NinaM.;Karhu, JuhaA.;Lallukka,Heli;Lindqvist,Kristian 2003. Compositional and isotopic evolution of ground-Compositional and isotopic evolution of ground-water in a carbonate-bearing glacigenic aquifer, SW Finland. In:Batts, B. D. & Batts, J. E. (eds.) 5th International Symposiumon Applied Isotope Geochemistry, Heron Island, Queensland,Australia, May 26–30, 2003 : program and abstracts, 115–116.Kortelainen, N. M.;Karhu, J.A. 2004. Tracing the decomposi-Tracing the decomposi-

tion of dissolved organic carbon in artificial recharge by carbonisotope ratios. In: Isotopehydrologyand integratedwater resources management : internationalsymposiumheld inVienna,19–23May2003 : unedited proceedings. IAEA Conference & SymposiumPapers 23/P, 123–124.Kortelainen, N. M.; Karhu, J. A.; Lallukka, H.; Lindqvist, K.

2004. Evolutionof groundwater inacarbonate-bearingglacigenicEvolutionof groundwater inacarbonate-bearingglacigenicaquifer, SW Finland : hydrochemical and isotopic evidence. In:International conference on isotopes in environmental studies –aquatic forum2004,Monte-Carlo,Monaco,25–29October2004: book of extended synopses. Vienna: IAEA, 141–142.Vienna: IAEA, 141–142.Kortelainen, Nina; Gustavsson, Nils 2004. Virttaankankaan

pohjaveden jaKokemäenjoen jokivedenhapen javedyn isotooppi-koostumusseuranta :seossuhteidenvirhetarkastelusimuloinneilla. Summary:Theoxygen andhydrogen isotope ratio inVirttaankan-gas groundwater and Kokemäenjoki river water monitoringprogram. Turun Seudun Vesi Oy:n julkaisu 1/2004. 30 p.Turun Seudun Vesi Oy:n julkaisu 1/2004. 30 p.Kortelainen, Nina M.;Karhu, JuhaA. 2004. Regional and sea-Regional and sea-

sonal trends in the oxygen and hydrogen isotope ratios of Finnishgroundwaters : a key for mean annual precipitation. Journal ofHydrology 285 (1–4), 143–157.Kortelainen,P.;Pajunen,H.;Rantakari,M.;Saarnisto,M.2004.

Carbon pool in boreal Holocene lake sediments. In: SIL XXIXCongress, Lahti, Finland, 8–14August 2004 : book of abstracts. Lahti: Societas Internationalis Limnologiae (SIL), 241.Kortelainen, Pirkko; Pajunen, Hannu; Rantakari, Miitta;

Saarnisto, Matti 2004. A large carbon pool and small sink inA large carbon pool and small sink inboreal Holocene lake sediments. Global Change Biology 10(10), 1648–1653.Kotilainen, A. T.; Alvi, K.; Hämäläinen, J. M. S.; Kotilainen,

M.M.;Rantataro, J. 2004. The NorthAtlantic Oscillation and theTheNorthAtlanticOscillation and theBaltic Sea during the past 8000 years. In: Puura, I., Tuuling, I. &Hang,T. (eds.) TheBaltic : theEighthMarineGeologicalConfer-ence,September23–28,2004,Tartu,Estonia :abstracts, excursionguide. Tartu: University of Tartu, Institute of Geology, 26.Kotilainen, Aarno; Hutri, Kaisa-Leena 2004. SubmarineSubmarine

Holocene sedimentary disturbances in the Olkiluoto area of theGulfofBothnia,BalticSea :acaseofpostglacialpalaeoseismicity. Quaternary Science Reviews 23 (9–10), 1125–1135.Kotilainen,Aarno;Hämäläinen, Jyrki;Kohonen, Jarmo;Korja,

Annakaisa;Mertanen, Satu; Ojala, Juhani; Rämö, Tapani; Sund-blad, Krister; Vaarma, Markus 2004. Syväkairausta Itämerellä– haaveista totta tällä vuosituhannella?. Summary:A geologicalSummary:A geologicaldrilling programme for the Baltic Sea Basin – will the dreams come true in this millennium? Geologi 56 (9–10), 204–207.Geologi 56 (9–10), 204–207.Kousa,Anne; Nikkarinen, Maria 2003. Geochemistry of localGeochemistry of local

ground water in relation to the incidence of chronic diseases. In:Autio, S. (ed.) Geological Survey of Finland, Current Research2001–2002. Geological Survey of Finland. Special Paper 36,Special Paper 36,53–59.Kousa, A.; Moltchanova, E.; Taskinen, O.; Nikkarinen, M.;

Tuomilehto, J.;Karvonen, M. 2004.Chemistry ofwellwater andChemistry ofwellwater andthe acute myocardial infarction (AMI) incidence in Finland. In:Törrönen, R. &Gylling,H. (eds.) The 20thAnniversary Sympo-siumof theDepartment ofClinicalNutrition,March18–19,2004,Kuopio, Finland : abstracts. Kuopio University Publications D. Medical Sciences 325, 44.Kousa,A.;Moltchanova, E.;Viik-Kajander,M.;Rytkönen,M.;

Tuomilehto, J.;Tarvainen, T.;Karvonen,M. 2004. GeochemistryGeochemistryof groundwater and the incidence of acutemyocardial infarction

Page 91: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003-2004

90

in Finland. Journal of Epidemiology and Community Health 58(2), 136–139.Kousa,Anne;Moltchanova, Elena;Taskinen,Olli;Nikkarinen,

Maria;Tuomilehto, Jaakko;Karvonen,Marjatta 2004.Geochem-Geochem-istry of local ground water in relation to the incidence of acutemyocardial infarction (AMI) in Finland. In: 32nd InternationalGeological Congress, Florence, Italy, August 20–28, 2004 : ab-stracts. Part 2, 1371–1372.Part 2, 1371–1372.Kousa,Jukka;Luukas,Jouni2002.Piippola.Suomengeologinen

kartta 1:100 000 : kallioperäkartta = Geological map of Finland1:100 000 : pre-Quaternary rocks lehti = sheet 3411.Kozlovskaya, E.; Elo, S.; Hjelt, S.-E.;Yliniemi, J.; Pirttijärvi,

M. 2004. 3-D density model of the crust of southern and central3-D density model of the crust of southern and centralFinland obtained from joint interpretation of theSVEKALAPKOcrustal P-wave velocity models and gravity data. GeophysicalJournal International 158 (3), 827–848.Kozlovskaya,E.;Hjelt, S.-E.;Yliniemi, J.;Ushakov,A.;Elo,S.;

Pirttijärvi,M. 2004. 3-D inversion ofP- andS-wave arrivals from3-D inversion ofP- andS-wave arrivals fromlocal events recorded during the SVEKALAPKO deep seismicexperiment [Electronic resource]. In: EGU General Assembly2004, Nice, France, 25–30 April 2004. Geophysical ResearchAbstracts 6, 2 p. Optical disc (CD-ROM).Kozlovskaya, Elena; Korhonen, Juha Ville; Elo, Seppo; Hjelt,

Sven-Erik; Yliniemi, Jukka; Pirttijärvi, Markku 2003. CrustalCrustalmodel for southern and central Finland (Fennoscandian Shield). In: IUGG 2003 : XXIII General Assembly of the InternationalUnion ofGeodesy andGeophysics, June 30 – July 11, 2003, Sap-poro, Japan : abstracts. Week B. Sapporo: IUGG, 35.Kukkonen, I. T.; Kinnunen, K. A.; Peltonen, P. 2003. MantleMantle

xenoliths and thick lithosphere in the Fennoscandian Shield. In:Cermak, V. & Kukkonen, I. T. (eds.) Heat flow and the structureof the lithosphere. Physics andChemistry of the Earth 28 (9–11),349–360.Kukkonen, Ilmo T.; Jõeleht,Argo 2003. Weichselian tempera-Weichselian tempera-

tures from geothermal heat flow data. Journal of GeophysicalResearch 108 (B3), 11 p.Kukkonen, Ilmo T.; Jõeleht,Argo 2003. Weichselian tempera-Weichselian tempera-

tures from geothermal heat flow data. In: IUGG 2003 : XXIIIGeneral Assembly of the International Union of Geodesy andGeophysics, June 30 – July 11, 2003, Sapporo, Japan : abstracts. WeekA. Sapporo: IUGG, 199.Kukkonen,IlmoT.;Peltonen,Petri;Kinnunen,Kari2003.MantleMantle

xenoliths and thick lithosphere in the Fennoscandian Shield. In:IUGG 2003 : XXIII GeneralAssembly of the International Unionof Geodesy and Geophysics, June 30 – July 11, 2003, Sapporo,Japan : abstracts. WeekA. Sapporo: IUGG, 175.Kukkonen, I. T.; Kinnunen, K.; Peltonen, P. 2004. MantleMantle

xenoliths and thick lithosphere in the Fennoscandian Shield–geophysical implications. In:Mansfeld, J. (ed.)The26thNordicGeological Winter Meeting, January 6th – 9th 2004, Uppsala,Sweden : abstract volume. GFF 126 (1), 12.GFF 126 (1), 12.Kukkonen, Ilmo 2004. Suomen kallioperän seismiset heijas-

tusluotaukset päätökseen. Materia 61 (1), 24–27.Kukkonen, Ilmo 2004. Suomen syvimmän reiän kairaus käyn-

nissä Outokummussa. Vuorityö ja -tekniikka, 26–27.Kukkonen, Ilmo; Korja, Annakaisa; Lahtinen, Raimo; Heik-

kinen, Pekka 2004. Thermal modelling of crustal stacking andThermal modelling of crustal stacking andexhumation during the Palaeoproterozoic orogenic growth of thecentral Fennoscandian Shield. In: 32nd International GeologicalCongress, Florence, Italy, August 20–28, 2004 : abstracts. PartPart 2, 1467–1468.Kultti, Seija; Väliranta, Minna; Sarmaja-Korjonen, Kaarina;

Solovieva, Nadia; Virtanen, Tarmo; Kauppila, Tommi; Eronen,Matti2003.Palaeoecologicalevidenceofchanges invegetationandPalaeoecologicalevidenceofchanges invegetationandclimate during theHolocene in the pre-Polar Urals, northeast Eu-ropean Russia. Journal of Quaternary Science 18 (6), 503–520.Kunzendorf, Helmar; Vallius, Henry 2004. Rare earth ele-

ments (REE) in deep basin sediments of the Baltic Sea. BalticaBaltica17 (2), 53–62.Kuosmanen,V.V.;Arkimaa,H.A.;Kuosmanen,E.L.;Laitinen,

J. L. 2003. Combined use of AISA, HyMap and ultraspectralCombined use of AISA, HyMap and ultraspectralimage data for detection of environmental features, a case his-tory from Elijärvi chromium mine, Finland. In: Benes, T. (ed.) Geoinformation for European-wide integration : proceedings ofthe 22nd Symposium of the European Association of RemoteSensing Laboratories, Prague, Czech Republic, 4–6 June 2002.Rotterdam:Millpress, 473–478.Kuusisto, Erna 2004. Arseeni kasveissa. Summary:Arsenic in

plants. In: Loukola-Ruskeeniemi, K. & Lahermo, P. (eds.) Ar-seeni Suomen luonnossa, ympäristövaikutukset ja riskit. Espoo:Geologian tutkimuskeskus, 67–71.Lahti, Seppo I. 2003. Mineraalien värien syntymekanismeista.

Osa 3. Kivi 21 (1), 8–17.Lahtinen, Raimo (ed.); Korja,Annakaisa (ed.);Arhe, Katriina

(ed.);Eklund,Olav (ed.);Hjelt, Sven-Erik (ed.);Pesonen, Lauri J.(ed.)2002.Lithosphere2002 : second symposiumon the structure,Lithosphere2002 : second symposiumon the structure,composition and evolutionof the lithosphere inFinland,Geologi-cal Survey of Finland, Espoo,Otaniemi,November 12–13, 2002: programme and extended abstracts. Institute of Seismology. University of Helsinki. Report S-42. 146 p.Lahtinen, R.; Nironen, M.; Korja,A. 2003. PalaeoproterozoicPalaeoproterozoic

orogenic evolution of the Fennoscandian Shield at 1.92–1.77 Ga with notes on the metallogeny of FeOx-Cu-Au, VMS, andorogenic gold deposits. In: Eliopoulos, D. G. ... [et al.] (eds.)In: Eliopoulos, D. G. ... [et al.] (eds.)[et al.] (eds.) Mineral exploration and sustainable development : proceedings of the Seventh Biennial SGA Meeting, Athens, Greece, 24–28August 2003. Vol. 2. Rotterdam: Millpress, 1057–1060.Lahtinen, Raimo; Korja, Annakaisa; Nironen, Mikko 2004.

Paleoproterozoic evolution of the Fennoscandian (Baltic) Shield. In:32nd InternationalGeologicalCongress,Florence, Italy,August 20–28, 2004 : abstracts. Part 1, 563.Part 1, 563.Laiho, Jussi V.-P. 2003. Ympäristötutkimuksissa käytettävi-

en kenttämittareiden luotettavuutta voidaan helposti parantaa,esimerkkinä kannettavat XRF-kenttämittarit. Geologi 55 (4–5),Geologi 55 (4–5),94–99.Lambie,Katherine;Frape,Shaun;Stotler,Randy;Ruskeeniemi,

Timo; Hobbs, Monique 2004. Site characterization techniquesusing fracture minerals for radioactive waste disposal. In: Geo-science inachangingworld:GSAAnnualMeetingandExposition,Denver, Colorado,November 7–10, 2004. Geological Society ofAmerica.Abstracts with Programs 36 (5), 358–359.Lappalainen, Eino (comp.); Luukkanen, Ari (ed.) 2003. Suo-

seura ry:nopintoretkiKolarinSuur-Teuravuomalle9.–10.9.2003. Helsinki : Kuopio: Suoseura Ry : Geologian tutkimuskeskus. 104 p.Laurén, Ari; Koivusalo, Harri; Kokkonen, Teemu; Pentti-

nen, Sari; Nenonen, Keijo; Hänninen, Pekka; Finér, Leena;Mannerkoski, Hannu 2003. Uusia työvälineitä metsätaloudenympäristökuormituksen hallintaan – Femma. In: Finér, L.,Laurén, A. & Karvinen, L. (eds.) Ajankohtaista metsätaloudenympäristökuormituksesta– tutkimustietoa ja työkaluja–seminaariKolin Luontokeskus Ukko 23.9.2002. Metsäntutkimuslaitoksentiedonantoja 886, 89–95.Lauri, Laura S.; Karinen, Tuomo; Räsänen, Jorma 2003. TheThe

earliestPaleoproterozoicsupracrustal rocks inKoillismaa,northernFinland – their petrographic and geochemical characteristics andlithostratigraphy. Bulletin of the Geological Society of Finland75 (1–2), 29–50.Lehtonen, M. L.;O’Brien, H. E.; Peltonen, P.; Johanson,B. S.;

Pakkanen,L.K.2004.Layered lithosphericmantleat theedgeof theLayered lithosphericmantleat theedgeof theKarelianCraton :P-T and compositions of kimberlitic xenocrysts and xenoliths fromKaavi-Kuopio, Finland. In:Mansfeld, J. (ed.) The 26th Nordic Geological Winter Meeting, January 6th – 9th2004, Uppsala, Sweden : abstract volume. GFF 126 (1), 12.GFF 126 (1), 12.

Page 92: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003–2004

91

Lehtonen, M. L.; O’Brien, H. E.; Peltonen, P.; Johanson, B.S.; Pakkanen, L. K. 2004. Layered mantle at the Karelian CratonLayeredmantle at theKarelian Cratonmargin : P-T ofmantle xenocrysts and xenoliths from theKaavi-Kuopio kimberlites, Finland. In:Mitchell, R. H. ... [et al.] (eds.) Selectedpapers from the8th InternationalKimberliteConference,Victoria, BC, Canada, 22–27 June 2003. Vol. 2: The J. BarryHawthorne volume. Lithos 77 (1–4), 593–608.Lithos 77 (1–4), 593–608.Lehtonen,Marja 2004. Kaavin Lahtojoen sekä Kuhmon Sei-

taperän kimberliittien indikaatiot pohjamoreenissa. Summary:Summary:Glacial dispersion studies of two eastern Finland kimberlites inQuaternary till. Geologi 56 (4–5), 92–103.Geologi 56 (4–5), 92–103.Leino, Jukka2004.Tohmajärvenkunnassa tutkitut suot janiiden

turvevarat. Osa 1. Abstract: The peatlands and peat reserves ofOsa 1. Abstract: The peatlands and peat reserves ofTohmajärvi. Part 1. Geologian tutkimuskeskus. Turvetutkimus-Part 1. Geologian tutkimuskeskus. Turvetutkimus-raportti 355. 58 p. + 4 app.Leinonen, Seppo 2002. The Juurikkaniemi soapstone deposit.

In: Niemelä, M. (ed.) Talc-magnesite deposits in Finland, Sep-Talc-magnesite deposits in Finland, Sep-tember 10–15, 2002, Finland : third field correlation, 32–33.Leinonen, Seppo 2002. The Kivikangas and Haaponen soap-

stone deposits. In: Niemelä, M. (ed.) Talc-magnesite deposits in Finland, September 10–15, 2002, Finland : third field cor-relation, 27–29.Leinonen, Seppo 2003. Kivilajien synty. In: Vuorjoki, K.

(author) Kivimatka. Helsinki: Sarmala, 10–15.Leivuori, Mirja; Vallius, Henry 2004. Arseeni merisedi-Arseeni merisedi-

menteissä. Summary: Arsenic in marine sediments. In: Lou-In: Lou-kola-Ruskeeniemi, K. & Lahermo, P. (eds.) Arseeni Suomenluonnossa, ympäristövaikutukset ja riskit. Espoo: Geologiantutkimuskeskus, 89–96.Leveinen, Jussi;Harlin,Ali;Nousiainen,Pertti2003.FunctionalFunctional

fibre materials in passive treatment of polluted groundwater. In:EuroNanoForum 2003. European and international forum onnanotechnology,Trieste (Italy),9–12December2003 : catalogueof posters, 1 p.Leveinen, Jussi; Lintinen, Petri 2003. Flow model of anFlow model of an

industrial site in Pori, W-Finland – a simple approximationof a complex drainage system. In: Poeter, E. ... [et al.] (orgs.)[et al.] (orgs.) MODFLOW andmore 2003 : understanding throughmodeling :proceedings,September16–19,2003,ColoradoSchoolofMines.Vol. 1. Golden, CO : Colorado School ofMines, 188–192.Lindholm, Tapio;Heikkilä, Raimo;Kuznetsov, Oleg;Mäkilä,

Markku 2004. Ypäyssuo, a huge East Fennoscandian proposedYpäyssuo, a huge East Fennoscandian proposedRAMSAR mire site in Russian Karelia. In: Barry, M. (comp.) IMCG Scientific Symposium, 24–25 September 2004, [Paarl,SouthAfrica] :management challenges for wetlands,mires andpeatlands in the 21st century, 1 p.Lintinen, P.; Savolainen, H.; Jarva, J. 2003. Suggested newSuggested new

guideline values forCu,Cr,Ni andZn and comparisonwith con-centrations in soilparentmaterial inFinland[Electronic resource]. In: ConSoil 2003. 8th International FZK/TNO Conference onContaminatedSoil, 12–16May2003,Gent,Belgium:conferenceproceedings. Gent: ICC, 2 p.. Optical disc (CD-ROM).Lintinen, P.;Suppala, I.;Vanhala,H.;Eklund,M.2003. SurveySurvey

of a buried ice-marginal deposit by airborne EM measurements – a case from Kyrönjoki valley plain in southern Ostrobothnia,Finland. In: Autio, S. (ed.) Geological Survey of Finland, Cur-rentResearch2001–2002.GeologicalSurveyofFinland.SpecialSpecialPaper 36, 67–75.Lintinen, Petri; Tarvainen, Timo 2004. Luontaiset metallipi-

toisuudet pilaantuneessa maaperässä. Kuntatekniikka 59 (2),44–47.Loukola-Ruskeeniemi,K.;Kantola,M.;Halonen,T.;Seppänen,

K.; Henttonen, P.; Kallio, E.; Kurki, P.; Savolainen, H. 2003.Mercury-bearing black shales and human Hg intake in easternFinland : impact and mechanisms. In: Mercury. EnvironmentalGeology 43 (3), 283–297.Loukola-Ruskeeniemi, K.; Tanskanen, H.; Lahermo, P.;

Backman, B.; Juntunen, R.; Pullinen, A.; Vartiainen, S. 2003.Naturally high arsenic contents in groundwater in areas withabundant gold occurrences, Finland. In: Gobran, G. R. & Lepp,N. (eds.) 7th InternationalConferenceon theBiogeochemistryofTraceElements,Uppsala,Sweden, June15–19,2003 : conferenceproceedings.Vol. 2: Symposia. Uppsala: Swedish University ofAgricultural Sciences, 86.Lukkarinen, Heikki 2002. Kuopio. Suomen geologinenSuomen geologinen

kartta 1:100 000 : kallioperäkartta = Geological map of Finland1:100 000 : pre-Quaternary rocks lehti = sheet 3242.Lunkka, JuhaPekka; Johansson,Peter;Saarnisto,Matti;Sallas-

maa, Olli 2004. Glaciation of Finland. In: Ehlers, J. & Gibbard,Glaciation of Finland. In: Ehlers, J. & Gibbard,P. L. (eds.) Quaternary glaciations : extent and chronology. Part 1: Europe. Developments in Quaternary Science 2, 93–100.Luodes, Hannu;Selonen, Olavi 2003. GTK:n luonnonkivikar-

toituksella uusia kivilaatuja. Suomalainen kivi (4), 48–51.Luukkanen, Ari 2002. Kiuruvedellä tutkitut suot ja niiden

turvevarat. Osa 4.Abstract: Themires and peat reserves of Kiu-Osa 4.Abstract: Themires and peat reserves of Kiu-ruvesi.Part4.Geologian tutkimuskeskus.TurvetutkimusraporttiPart4.Geologian tutkimuskeskus.Turvetutkimusraportti341. 68 p. + 3 app.Luukkanen, Ari 2003. Kiuruvedellä tutkitut suot ja niiden

turvevarat. Osa 5.Abstract: Themires and peat reserves of Kiu-Osa 5.Abstract: Themires and peat reserves of Kiu-ruvesi.Part5.Geologian tutkimuskeskus.TurvetutkimusraporttiPart5.Geologian tutkimuskeskus.Turvetutkimusraportti346. 69 p. + 4 app.Luukkanen, Ari 2003. Kiuruvedellä tutkitut suot ja niiden

turvevarat. Osa 6. Abstract: The peatlands and peat reserves ofOsa 6. Abstract: The peatlands and peat reserves ofKiuruvesi. Part 6. Geologian tutkimuskeskus. Turvetutkimusra-Part 6. Geologian tutkimuskeskus. Turvetutkimusra-portti 348. 62 p. + 4 app.Luukkanen, Ari 2004. Lapinlahdella tutkitut suot ja niiden

turvevarat. Osa 1. Abstract: The peatlands and peat reserves ofOsa 1. Abstract: The peatlands and peat reserves ofLapinlahti. Part 1. Geologian tutkimuskeskus. Turvetutkimus-Part 1. Geologian tutkimuskeskus. Turvetutkimus-raportti 354. 50 p. + 3 app.Luukkonen, Erkki 2003. Nurmes. Suomen geologinenSuomen geologinen

kartta 1:100 000 : kallioperäkartta = Geological map of Finland1:100 000 : pre-Quaternary rocks lehti = sheet 4321.Maier, W. D.; Peltonen, P.; Grantham, G.; Mänttäri, I. 2003.

A new 1.9 Ga age for the Trompsburg intrusion, South Africa. Earth and Planetary Science Letters 212 (3–4), 351–360.Makarikhin, Vladimir; Suominen, Veli; Systra, Ylo 2004.

Unique objects of the Early Precambrian in the eastern Fen-noscandian Shield. In: 32nd International Geological Congress,Florence, Italy,August 20–28, 2004 : abstracts. Part 1, 580.Part 1, 580.Mäkelä-Kurtto, Ritva; Louekari, Kimmo; Nummivuori, Sari;

Sippola, Jouko; Kaasalainen, Marika; Kuusisto, Erna;Virtanen,Virpi; Salminen, Reijo; Tarvainen, Timo; Malm, Jukka 2003.Kadmium Suomen peltoekosysteemeissä : pitoisuuksia, taseitaja riskejä. Abstract: Cadmium in Finnish agro-ecosystems :Abstract: Cadmium in Finnish agro-ecosystems :concentrations, balances and risks. Maa- ja elintarviketalousMaa- ja elintarviketalous 27. 51 p. + app.Mäkilä, Markku 2004. Electric conductivity within a raisedElectric conductivity within a raised

bog in southeastern Finland : implications for bog development. In: 7th INTECOL InternationalWetlands Conference, Utrecht,The Netherlands, 25–30 July 2004 : book of abstracts. Utrecht:Utrecht University, 191–192.Mäkilä,Markku;Saarnisto,Matti 2004.An aapamire in north-An aapamire in north-

ern Finland as a carbon sink and source during the Holocene. In: 7th INTECOL InternationalWetlands Conference, Utrecht,The Netherlands, 25–30 July 2004 : book of abstracts. Utrecht:Utrecht University, 191.Mäkinen, Jari2003.Amathematicalmodel toexplain the effect

of comminution, resedimentation and outwashing on the finestfractions of till in four test areas in central Finland. In:Räisänen,In:Räisänen,M. L. & Nikkarinen, M. (eds.) Complexity of glacial dispersalComplexity of glacial dispersaland hydromorphic processes in till geochemistry. GeologicalSurvey of Finland. Special Paper 34, 43–69.Mäkinen, Jari 2004. Arseeni järvisedimenteissä.Summary:

Arsenic in lake sediments. In: Loukola-Ruskeeniemi, K. & La-In: Loukola-Ruskeeniemi, K. & La-

Page 93: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003-2004

92

hermo,P. (eds.)ArseeniSuomen luonnossa,ympäristövaikutukset ja riskit. Espoo: Geologian tutkimuskeskus, 73–88.Mäkinen, Jari; Makkonen, Hannu V. 2004. Petrology andPetrology and

structureof thePalaeoproterozoic (1.9Ga)Rytkynickel sulphidedeposit, centralFinland : a comparisonwith theKotalahti nickeldeposit. Mineralium Deposita 39 (4), 405–421.Mineralium Deposita 39 (4), 405–421.Mäkinen, Jari; Pajunen, Hannu 2004. Two opposite compo-Two opposite compo-

sition trends in boreal lake sediment columns. In: 32nd Inter-national Geological Congress, Florence, Italy, August 20–28,2004 : abstracts. Part 2, 1360–1361.Part 2, 1360–1361.Mäkinen, Kalevi; Pihlaja, Jouni 2003. Land use on drumlinsLand use on drumlins

in Finland. In:Raukas,A.&Kukk,H. (eds.) International sym-In: Raukas,A.&Kukk,H. (eds.) International sym-International sym-posiumonHuman Impact andGeologicalHeritage, 12–17May2003, Tallinn, Estonia : excursion guide and abstracts. Tallinn:Institute of Geology at Tallinn Technical University, 95–97.Mäkitie, Hannu; Lahti, Seppo I. 2004. Jalasjärven kart-

ta-alueen kallioperä. Summary: Pre-Quaternary rocks ofSummary: Pre-Quaternary rocks ofthe Jalasjärvi map-sheet area. Suomen geologinen karttaSuomen geologinen kartta1:100 000 : kallioperäkarttojen selitykset lehti 2221. 63 p. +63 p. +1 app., 1 app. map.Makkonen, HannuVeli;Mäkinen, Jari 2004. The Palaeoprot-The Palaeoprot-

erozoic (1.9 Ga) Rytky nickel sulphide deposit : discovery andgeology. In: 32nd InternationalGeologicalCongress, Florence,Italy, August 20–28, 2004 : abstracts. Part 1, 474.Mangerud, J.; Jakobsson, M.; Alexanderson, H.; Astakhov,

V.; Clarke, G. K. C.; Henriksen, M.; Hjort, C.; Krinner, G.;Lunkka, J. P.;Möller, P.;Murray,A.;Nikolskaya, O.; Saarnisto,M.; Svendsen, J. I. 2004. Ice-dammed lakes and rerouting ofthe drainage of northern Eurasia during the last glaciation. In: Thiede, J. (ed.) Quaternary environments of the EurasianNorth (QUEEN). Quaternary Science Reviews 23 (11–13),1313–1332.Manninen, Tuomo 2003. Pokka. Suomen geologinen karttaSuomen geologinen kartta

1:100 000 : kallioperäkartta = Geological map of Finland1:100 000 : pre-Quaternary rocks lehti = sheet 2744+3722.Mänttäri, Irmeli; Kohonen, Jarmo; Kujala, Hannu; Pihlaja,

Pekka 2004.A revised age for the Sääksjärvimeteorite impact,A revised age for the Sääksjärvimeteorite impact,south-western Finland : the connexion with a Caledonian fore-landbasin. In:32nd InternationalGeologicalCongress,Florence,Italy, August 20–28, 2004 : abstracts. Part 2, 1434.Part 2, 1434.Marmo, J.; Vareikiene, O. 2004. Development of standardDevelopment of standard

procedures for multidisciplinary approach using physical,chemical and mineralogical methods for explanation of geo-chemical anomalies in soil, Lithuania [Electronic resource]. In: EGU General Assembly 2004, Nice, France, 25–30 April2004. Geophysical Research Abstracts 6, 2 p. Optical disc(CD-ROM).Marmo, Jukka2004.Kolin alueenkallioperän tutkimukset. In:In:

Lovén,L. (ed.)Tutkittu ja tuntematonKoli :Kolin kansallispuis-Tutkittu ja tuntematonKoli :Kolinkansallispuis-ton tutkimusseminaari24.–25.2.2002.Metsäntutkimuslaitoksentiedonantoja 915, 15–18.Middleton, M.; Hyvönen, E.; Arkimaa, H.; Helminen, T.;

Laitinen, J.; Kuosmanen, V.; Räisänen, M. L.; Timonen, M.;Sutinen, R. 2003. Analysis of hyperspectral airborne HyMapAnalysis of hyperspectral airborne HyMap data for vegetation mapping around Lahnaslampi talc mine,Finland. In:Habermeyer,M.,Mller,A.&Holzwarth, S. (eds.) 3rd EARSeLWorkshop on Imaging Spectroscopy,Herrsching,Germany, 13–16 May 2003 : proceedings. Paris: EARSeL,Paris: EARSeL,349–356.Moisanen, Markku 2004. Vegetation development in theVegetation development in the

Teuravuoma mire complex and its environment as revealed bya pollen diagram. In: Lappalainen, E. (ed.) Vitality and peaceIn: Lappalainen, E. (ed.) Vitality and peaceVitality and peaceof mind from Great Teuravuoma aapa mire : post congress excursion to Lapland, 11–16 June, 2004, 42–49.Moore, Tim; Blodau, Christian; Turunen, Jukka 2004. Pat-

terns of N and S accumulation and retention in bogs, easternCanada. In: 7th INTECOL InternationalWetlands Conference,

Utrecht, The Netherlands, 25–30 July 2004 : book of abstracts. Utrecht: Utrecht University, 212.Moore, Tim R.; Turunen, Jukka 2004. Carbon accumulationCarbon accumulation

and storage in mineral subsoil beneath peat. Soil Science SocietyofAmerica Journal 68 (2), 690–696.Mutanen, Tapani; Huhma, Hannu 2003. The 3.5 Ga SiuruaThe 3.5 Ga Siurua

trondhjemite gneiss in the Archaean Pudasjärvi Granulite Belt,northern Finland. Bulletin of the Geological Society of Finland75 (1–2), 51–68.Mutanen, T.; Väänänen, J. 2004. PGE-Au-Cu-Ni potential ofPGE-Au-Cu-Ni potential of

postkinematicappinitic (1.79Ga) intrusions inFinland. In:McPhie,J. &McGoldrick,P. (eds.) Dynamic earth : past, present and future: 17th Australian Geological Convention, 8–13 February 2004,Hobart, Tasmania,Australia : abstracts and program. GeologicalSociety ofAustralia. Abstracts 73, 104.Abstracts 73, 104.Muurinen, Tapio; Aro, Ilkka 2002. Tutkimus Haukiputaan

soista ja turvevarojen käyttökelpoisuudesta. Abstract: ThemiresAbstract: Themires and peat reserves and their usefulness in the municipality ofHaukipudas. Geologian tutkimuskeskus. TurvetutkimusraporttiGeologian tutkimuskeskus. Turvetutkimusraportti342. 58 p. + 2 app.Muurinen, Tapio;Aro, Ilkka 2004. Kiimingin suot, turvevarat

ja niiden käyttökelpoisuus. Osa 2. Abstract: The peatlands ofOsa 2. Abstract: The peatlands ofKiiminki, peat reserves and their potential use. Part 2.GeologianPart 2. Geologiantutkimuskeskus. Turvetutkimusraportti 351. 39 p. + 2 app.Negrel, Philippe; Casanova, Joël; Blomqvist, Runar; Kaija,

Juha; Frape, Shaun 2003. Strontium isotopic characterization ofthe Palmottu hydrosystem (Finland) : water-rock interaction andgeochemistry of groundwaters. Geofluids 3 (3), 161–175.Geofluids 3 (3), 161–175.Nenonen, Jari; Peronius, Antti 2003. Placer gold-digging andPlacer gold-digging and

its impact on soil erosion in Finnish Lapland. In: Raukas, A. &In: Raukas, A. &Kukk, H. (eds.) International symposium on Human Impact andInternational symposium on Human Impact andGeological Heritage, 12–17 May 2003, Tallinn, Estonia : excur-sion guide and abstracts. Tallinn: Institute of Geology at TallinnTechnical University, 98–99.Nenonen, Jari 2004. Till stratigraphy and problems withTill stratigraphy and problems with

concrete-like till in the Haukipudas area, North of Oulu city. In:Zelcs, V. & Seglins, V. (eds.) International field symposium onQuaternary geology and modern terrestrial processes, westernLatvia, September 12–17, 2004 : abstracts of papers and posters. Riga: University of Latvia, 44.Nenonen,Keijo2003.Pyhäsalmen jaRuotasenalueenmaaperä.

In: Tulkku, J. (ed.) Ruotasen savut : kylä ja kaivos. Ruotanen:Ruotasen Maamiesseura, 19–26.Nenonen, Keijo 2004. Kvartäärikausi ja jääkausiaika. In: Koi-

visto,M. (ed.) Jääkaudet. Helsinki:WSOY, 42–44.Nenonen,Keijo 2004. Maapallo jäähtyy. In:Koivisto,M. (ed.)

Jääkaudet. Helsinki:WSOY, 40–41.Nenonen,Keijo 2004. Maapallon ikivanhat jäätiköitymiset. In:

Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY, 16–18.Nenonen,Keijo 2004. Mikä on jääkausi. In:Koivisto,M. (ed.)

Jääkaudet. Helsinki:WSOY, 14–15.Nenonen, Keijo; Eriksson, Brita 2004. Muinaiset jääkaudet

ja interglasiaalit Suomessa. In: Koivisto, M. (ed.) Jääkaudet. Helsinki:WSOY, 45–52.Nenonen, Keijo; Eriksson, Brita 2004. Veiksel-jääkausi. In:

Koivisto,M. (ed.) Jääkaudet. Helsinki:WSOY, 53–57.Nenonen, Keijo; Hotakainen, Markus 2004. Jäätiköitymisten

syyt ja ilmastonmuutokset. In: Koivisto, M. (ed.) Jääkaudet. Helsinki:WSOY, 32–39.Nenonen, Keijo;Määttä, Matti; Lovén, Lasse; Flander, Jukka-

Pekka2004.Saimaa-PielinenLakeSystemasanexampleofmajorSaimaa-PielinenLakeSystemasanexampleofmajor glaciations and earth’s crust development. In: 32nd InternationalGeological Congress, Florence, Italy, August 20–28, 2004 : ab-stracts. Part 1, 141.Part 1, 141.Nevalainen, Raimo; Hyvönen, Eija; Lerssi, Jouni; Liwata,

Pauliina;Middleton,Maarit;Palmu, Jukka-Pekka;Virkki,Hanna;Väänänen, Tapio 2002. Maaperän yleiskartoitus paikkatietoai-

Page 94: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003–2004

93

neistojen ja -analyysien avulla – uuden alueellisesti kattavantietovaraston kerääminen. In: Pietola, L. & Esala,M. (eds.) Maa,josta elämme : IIMaaperätieteiden päivien laajennetut abstraktit. Pro Terra 15, 116–119.Nevalainen, Raimo 2004. Geologiset tiedot verkossa – Geo-

karttapaikka jamuut verkkopalvelut. Ajankohtaista ympäristöstäPohjois-Savossa 9 (1), 36–38.Niiranen,Tero;Eilu,Pasi2003. Ironoxide-copper-golddepositsIronoxide-copper-golddeposits

in northern Finland. In:Eliopoulos,D.G. ... [et al.] (eds.)MineralIn:Eliopoulos,D. G. ... [et al.] (eds.)Mineral[et al.] (eds.) Mineralexploration and sustainable development : proceedings of theSeventh Biennial SGAMeeting, Athens, Greece, 24–28 August 2003. Vol. 2. Rotterdam:Millpress, 1091–1094.Niiranen, Tero; Hanski, Eero; Eilu, Pasi 2003. General geol-General geol-

ogy, alteration, and iron deposits in the Palaeoproterozoic Misiregion, northern Finland. Bulletin of the Geological Society ofFinland 75 (1–2), 69–92.Nikkarinen,Maria;Lestinen,Pekka2003.Sulphur insoilverticalSulphur insoilvertical

profiles in Pirkanmaa region, southern Finland. In: Räisänen, M.In: Räisänen,M. L. & Nikkarinen, M. (eds.) Complexity of glacial dispersal andComplexity of glacial dispersal andhydromorphic processes in till geochemistry. Geological Surveyof Finland. Special Paper 34, 5–20.Special Paper 34, 5–20.Nikkarinen,Maria;Hartikainen,Aimo;Kousa,Anne;Mertanen,

Enni 2004. Trace element composition of potatoes and edibleTrace element composition of potatoes and ediblemushrooms according to the geographical origin. In: Törrönen,R. & Gylling, H. (eds.) The 20thAnniversary Symposium of theDepartment of Clinical Nutrition, March 18–19, 2004, Kuopio,Finland : abstracts. Kuopio University Publications D. MedicalSciences 325, 52.Nikkarinen,Maria;Mertanen, Enni 2004. Impact of geologicalImpact of geological

originon traceelementcompositionofediblemushrooms. Journalof Food Composition andAnalysis 17 (3–4), 301–310.Nironen, Mikko; Kuosmanen, Eira; Wasenius, Pekka 2002.

Keski-Suomen granitoidikompleksi = Central Finland GranitoidComplex : kallioperäkartta = bedrock map 1:400 000. Espoo:Espoo:Geologian tutkimuskeskus.Nironen, Mikko 2003. Keski-Suomen granitoidikompleksi :

karttaselitys. Summary:CentralFinlandGranitoidComplex– ex-Summary:CentralFinlandGranitoidComplex– ex-planation to amap. Geologian tutkimuskeskus. TutkimusraporttiGeologian tutkimuskeskus. Tutkimusraportti157. 45 p. + 1 app. map.45 p. + 1 app. map.Nironen, Mikko; Mänttäri, Irmeli 2003. Structural evolutionStructural evolution

of the Vuotso area, Finnish Lapland. Bulletin of the GeologicalSociety of Finland 75 (1–2), 93–101.Nurmi, Pekka; Kuivamäki, Aimo; Lampio, Eero; Airo, Meri-

Liisa;Wennerström, Marit 2004.A new Internet based informa-A new Internet based informa-tion system for land use planning in the Helsinki capital region,Finland. In: 32nd International Geological Congress, Florence,Italy,August 20–28, 2004 : abstracts. Part 1, 233.Part 1, 233.Nyström,Annika;Selonen,Olavi2004.Rapakivienrapautumis-

prosessissa liukenevat aineet. Geologi 56 (9–10), 208–212.O’Brien, H. E.; Lehtonen, M. L. 2004. Karelian craton 250 kmKarelian craton 250 km

thick lithospheric mantle, eastern Finland. In:Mansfeld, J. (ed.) The 26th Nordic Geological Winter Meeting, January 6th – 9th2004, Uppsala, Sweden : abstract volume. GFF 126 (1), 13.Oberthür, Thomas; Weiser, Thorolf W.; Kojonen, Kari 2002.

Local variatons and regional trends in PGE geochemistry andmineralogy in theMainSulfideZoneof theGreatDyke,Zimbabwe.In: Boudreau, A. (ed.) 9th International Platinum Symposium,21–25 July, 2002, Billings,Montana, USA : extended abstracts. Billings,MT: Duke University, 337–340.Oberthür, Thomas;Weiser, ThorolfW.;Gast, Lothar;Kojonen,

Kari 2003. Geochemistry and mineralogy of platinum-group elements at Hartley PlatinumMine, Zimbabwe. Part 1 : Primarydistribution patterns in pristine ores of the Main Sulfide Zone ofthe Great Dyke. Mineralium Deposita 38 (3), 327–343.Oberthür, Thomas;Weiser, ThorolfW.;Gast, Lothar;Kojonen,

Kari 2003. Geochemistry andmineralogy of platinum-group ele-ments at Hartley PlatinumMine, Zimbabwe. Part 2 : Supergene

redistribution in the oxidized Main Sulfide Zone of the GreatDyke,andalluvialplatinum-groupminerals.MineraliumDeposita38 (3), 344–355.Öhman, T.; Pesonen, L. J.; Elo, S.; Uutela,A.; Tuisku, P.; Rai-

tala, J. 2003. The origin and evolution of the Saarijärvi impactThe origin and evolution of the Saarijärvi impact structure. In: 66thAnnual Meteoritical SocietyMeeting, July 28– August 1, 2003, Mnster, Germany : abstracts. Meteoritics &Planetary Science supplement 38 (7),A52.Ojala,Antti;Tiljander, Mia;Alenius, Teija 2003. Sedimenttien

paleomagneettinenajoittaminen : esimerkkinäMikkelinOrijärvenrautakautisen asuinpaikan siitepölystratigrafinen tutkimus. Sum-Sum-mary: Paleomagnetic dating of sediments. Geologi 55 (9–10),Geologi 55 (9–10),241–245.Ojala, Antti E. K.; Saarnisto, Matti; Snowball, Ian F. 2003.

Climate and environmental reconstructions from Scandinavianvarved lake sediments. PAGES Newsletter 11 (2–3), 10–12.Ojala,Antti E. K.; Tiljander, Mia 2003. Testing the fidelity of

sediment chronology : comparison of varve and paleomagneticresults fromHolocene lake sediments from central Finland. Qua-ternary Science Reviews 22 (15–17), 1787–1803 .Ojala, Antti E. K. 2004. Application of X-ray radiographyApplication of X-ray radiography

and densitometry in varve analysis. In: Francus, P. (ed.) Imageanalysis, sediments and paleoenvironments. Developments inPaleoenvironmental Research 7, 187–202.Ojala,V. Juhani 2004. Goldmetallogeny of the FennoscandianGoldmetallogeny of the Fennoscandian

Shield. In: Iljina,M.&Sullivan, J. (eds.)Fennoscandian seminar,In: Iljina,M. &Sullivan, J. (eds.) Fennoscandian seminar,Fennoscandian seminar,March 5, 2004, [Toronto] : agenda, abstracts and biographies, 1 p.Ojala, V. Juhani; Kuivamäki, Aimo; Vuorela, Paavo 2004.

Postglacial deformation of bedrock in Finland. Geologian tut-Geologian tut-kimuskeskus. Ydinjätteiden sijoitustutkimukset. TiedonantoYST-120. 23 p.Ollila, Kaija; Lindqvist, Kristian 2003. Air-oxidation tests

with Gd-doped UO2 : preliminary dissolution experiments withpre-oxidizedGd-dopedUO2+x. Tiivistelmä:Gd-UO2:n hapetus-kokeita ilmassa : alustavat liukenemiskokeet ennalta hapetetullaGd-UO2+x:lla. Posiva-raportti 2003–08. 51 p.Pääkkönen,Kari2003. Stone research inFinland. RocMaquina

(51), 18.Paama, Lilli; Rönkkömäki, Hannu; Parvinen, Pekka; Kuokka-

nen, Toivo 2004. Determination of lead in contaminated soils byDetermination of lead in contaminated soils bygraphite furnaceatomicabsorptionspectrometry forenvironmentalriskassessment.Proceedingsof theEstonianAcademyofSciences. Chemistry 53 (4), 201–209.Paananen, Markku; Ruskeeniemi, Timo 2003. Permafrost atPermafrost at

Lupin : interpretation of SAMPO electromagnetic soundings at Lupin.Tiivistelmä:Lupinin ikirouta :Lupinin sähkömagneettistenTiivistelmä:Lupinin ikirouta :Lupinin sähkömagneettistenSAMPO-luotausten tulkinta.Geologian tutkimuskeskus.Ydinjät-teiden sijoitustutkimukset. TiedonantoYST-117. 22 p. + 4 app.Paananen, M.; Lehtimäki, J.; Ruskeeniemi, T.; Degnan, P.;

Frape, S.;Lehto, K.;Moren, L. 2004. Electromagnetic soundingsElectromagnetic soundings in deep permafrost, Lupin Mine, northern Canada [Electronicresource]. In:EGUGeneralAssembly 2004,Nice, France, 25–30April 2004. Geophysical ResearchAbstracts 6, 2 p. Optical disc(CD-ROM).Paavola, Jorma 2003. Vieremän kartta-alueen kallioperä.

Summary: Pre-Quaternary rocks of theVieremämap-sheet area. Suomengeologinenkartta1:100000 :kallioperäkarttojenselitykset lehti 3342. 40 p. + 2 app. maps.40 p. + 2 app. maps.Pajunen, Hannu 2002. Ylikiimingissä tutkitut suot ja niiden

turvevarat. Osa 8. Abstract: The mires and peat reserves ofOsa 8. Abstract: The mires and peat reserves ofYlikiiminki, central Finland. Part 8. Geologian tutkimuskeskus.Part 8. Geologian tutkimuskeskus. Turvetutkimusraportti 340. 46 p. + 3 app.Pajunen, Hannu; Mäkinen, Jari 2003. Iron, phosphorus andIron, phosphorus and

nitrogen in Finnish lake sediments : their store and long-termaccumulation. In: Autio, S. (ed.) Geological Survey of Finland,Current Research 2001–2002. Geological Survey of Finland. Special Paper 36, 35–44.

Page 95: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003-2004

94

Pajunen,H.2004.Lakesedimentsasasinkofcarbon– long-termaccumulation data from Finland. In: SIL XXIX Congress, Lahti,Finland, 8–14 August 2004 : book of abstracts. Lahti: Societas Internationalis Limnologiae (SIL), 293.Pajunen, Hannu 2004. Järvisedimentit kuiva-aineen ja hiilen

varastona. Summary: Lake sediments as a store of dry matterSummary: Lake sediments as a store of dry matter and carbon. Geologian tutkimuskeskus. Tutkimusraportti 160.Geologian tutkimuskeskus. Tutkimusraportti 160.308 p. + 1 app.Pajunen, Hannu 2004. Ylikiimingissä tutkitut suot ja niiden

turvevarat. Osa 9. Abstract: The mires and peat reserves ofOsa 9. Abstract: The mires and peat reserves ofYlikiiminki, central Finland. Part 9. Geologian tutkimuskeskus.Part 9. Geologian tutkimuskeskus. Turvetutkimusraportti 356. 51 p. + 3 app.Pankka,Heikki;Vanhanen,Erkki2004.Au-Bi-Se-Teminerals inAu-Bi-Se-Teminerals in

theFe-Co-Au-Udeposits in theKuusamoPaleoproterozoic schist belt,northernFinland. In:32nd InternationalGeologicalCongress,Florence, Italy,August 20–28, 2004 : abstracts. Part 1, 274.Partridge, Tim C.; Lowe, John J.; Barker, Philip; Hoelzmann,

Philipp; Magri, Donatella; Saarnisto, Matti; Vandenberghe, Jef;Street-Perrott, F. Alayne; Gasse, Françoise 2004. Climate vari-ability in Europe and Africa : a PAGES-PEP III time stream IIsynthesis. In: Battarbee, R. W., Gasse, F. & Stickley, C. E. (eds.) Pastclimatevariability throughEuropeandAfrica.Developments in Paleoenvironmental Research 6, 583–603.Pekkala, Yrjö; Seppänen, Hannu 2002. Perspectives of thePerspectives of the

Finnish industrial minerals industry. In: Scott, P. W. & Bristow,C. M. (eds.) Industrial minerals and extractive industry geology: based on papers presented at the combined 36th Forum on theGeology of IndustrialMinerals and 11th Extractive IndustryGe-ology Conference, Bath, England, 7th–12thMay, 2000. London:The Geological Society, 129–132.Peltonen, P.; Kontinen,A. 2004. The Jormua Ophiolite : a ma-The Jormua Ophiolite : ama-

fic-ultramaficcomplex fromanancientocean-continent transitionzone. In: Kusky, T. M. (ed.)Precambrian ophiolites and relatedrocks. Developments in Precambrian geology 13, 35–71.Peltonen,P.;Kukkonen, I.T.;Kinnunen,K.A.;Huhma,H.2004.

Composition and structure of the 250-km-thick Fennoscandiancratonic root. In: Mansfeld, J. (ed.) The 26th Nordic GeologicalWinter Meeting, January 6th – 9th 2004, Uppsala, Sweden :abstract volume. GFF 126 (1), 13.GFF 126 (1), 13.Peltonen, Petri; Mänttäri, Irmeli; Huhma, Hannu; Kontinen,

Asko2002.Archeanzircons from themantle : the JormuaophioliteArcheanzircons from themantle : the Jormuaophioliterevisited. Geology 31 (7), 645–648.Geology 31 (7), 645–648.Peltonen,Petri2003. Geokemistit vastaan seismologit. Geologi

55 (8), 219.Peltonen, Petri;Mänttäri, Irmeli 2004. Zircons from themantleZircons from themantle

: timing the mantle veining and metasomatism in the passivemargin – type JormuaOphiolite (Finland). In: 32nd InternationalGeological Congress, Florence, Italy, August 20–28, 2004 : ab-stracts. Part 1, 596.Part 1, 596.Penttinen, Sari; Finér, Leena; Hänninen, Pekka; Laurén, Ari

2002.Puustoparametrienarvioiminen sähkönjohtavuudenavulla. In: Pietola,L. &Esala,M. (eds.) Maa, josta elämme : IIMaaperä-tieteiden päivien laajennetut abstraktit. Pro Terra 15, 93–95.Penttinen, Sari;Finér, Leena;Hänninen, Pekka2003. ElectricalElectrical

conductivity and dielectric coefficient – a useful tool to estimatenutrient status of forest. In:Decision support for multiple purposeforestry : a transdisciplinary conference on the development andapplication of decision support tools for forest management,Vienna,April 23–25, 2003 : book of abstracts, 62.Penttinen, Sari; Finér, Leena;Hänninen, Pekka;Mannerkoski,

Hannu; Kauppi, Susanne; Koivusalo, Harri; Kokkonen, Teemu;Kujala, Kauko; Laurén, Ari; Nenonen, Keijo 2003. Maaperänkosteuden ja sähkönjohtavuuden mittaukset Kangasvaaran jaKorsukorvenvaluma-alueella. In:Finér,L.,Laurén,A.&Karvinen,L. (eds.) Ajankohtaista metsätalouden ympäristökuormituksesta– tutkimustietoa ja työkaluja – seminaari Kolin Luontokeskus Ukko 23.9.2002. Metsäntutkimuslaitoksen tiedonantoja 886,107–112.

Penttinen,Sari;Hänninen,Pekka;Sutinen,Raimo2003.Electri-Electri-cal conductivity measurements for cultivated soils. In: Lindén,B. & Olesen, S. E. (eds.) Implementation of precision farmingin practical agriculture : proceedings of seminar no 336, NordicAssociation of Agricultural Scientists, June 10–12, 2002 Skara,Sweden. DIAS report. Plant production 100, 136–138.Penttinen, Sari;Alakukku, Laura; Hänninen, Pekka; Jaakkola,

Antti; Ristolainen, Antti 2004. Soil electrical conductivity andSoil electrical conductivity andfertilization. In:32nd InternationalGeologicalCongress,Florence,Italy,August 20–28, 2004 : abstracts. Part 1, 36.Part 1, 36.Penttinen, Sari; Finér, Leena;Hänninen, Pekka;Mannerkoski,

Hannu;Koivusalo, Harri;Kokkonen, Teemu; Laurén,Ari;Neno-nen,Keijo 2004. Monitoring of behavior of forest soils. In: 32ndMonitoring of behavior of forest soils. In: 32ndInternationalGeologicalCongress,Florence, Italy,August20–28,2004 : abstracts. Part 1, 35–36.Part 1, 35–36.Perttilä, M. (ed.);Albrecht, H.; Carman, R.; Jensen,A.; Jons-

son, P.; Kankaanpää, H.; Larsen, B.; Leivuori, M.; Niemistö, L.;Uscinowicz, S.;Winterhalter,B.2003.Contaminants in theBalticContaminants in theBalticSea sediments : results of the 1993 ICES/HELCOM Sediment Baseline Study. Meri. Report series of the Finnish Institute ofMarine Research 50. 69 p.Perttilä, Matti; Jonsson, Per; Larsen, Birger; Niemistö, Lauri;

Winterhalter,Boris;Axelsson,Walter2003.The 1993HELCOM/ICES Baltic Sea Sediment Baseline Study – conduct of the studyand conclusions. In: Perttilä,M. (ed.) Contaminants in the BalticIn: Perttilä,M. (ed.) Contaminants in the BalticContaminants in the BalticSea sediments : results of the 1993 ICES/HELCOM Sediment Baseline Study. Meri. Report series of the Finnish Institute ofMarine Research 50, 9–20.Perttunen, Vesa 2003. Koivu. Suomen geologinen karttaSuomen geologinen kartta

1:100 000 : kallioperäkartta = Geological map of Finland1:100 000 : pre-Quaternary rocks lehti = sheet 2633.Perttunen, Vesa; Hanski, Eero 2003. Törmäsjärven ja Koivun

kartta-alueiden kallioperä. Summary: Pre-Quaternary rocks ofSummary: Pre-Quaternary rocks ofthe Törmäsjärvi and Koivu map-sheet areas. Suomen geolo-Suomen geolo-ginen kartta 1:100 000 : kallioperäkarttojen selitykset lehdet 2631+2633. 88 p.Pesonen, L. J.; Elming, S.-Å.; Mertanen, S.; Pisarevsky, S.;

D’Agrella-Filho,M.S.;Meert, J.G.;Schmidt, P.W.;Abrahamsen,N.;Bylund, G. 2003. Palaeomagnetic configuration of continentsPalaeomagnetic configuration of continentsduring the Proterozoic. In: Sircombe,K. N. &McElhinny,M. W. (eds.) Orogenic belts, regional and global tectonics : amemorialvolume to Chris McAulay Powell. Tectonophysics 375 (1–4),289–324.Pesonen, Lauri J.; Mader, Dieter; Gurov, Eugene P.; Koeberl,

Christian; Kinnunen, KariA.; Donadini, Fabio; Handler, Robert2004. Paleomagnetism and Ar-40/Ar-39 age determinations ofimpactites from the Ilyinets structure, Ukraine. In: Dypvik, H.,Burchell,M. &Claeys,P. (eds.) Cratering inmarine environments and on ice. Berlin: Springer, 251–280.Berlin: Springer, 251–280.Peuraniemi, Vesa Juhani;Roman, Seija; Lahermo, Pertti 2004.

Groundwater ponds acidified by natural weathering processes inthe northern Ostrobothnia, northern Finland. In: 32nd Interna-tional Geological Congress, Florence, Italy,August 20–28, 2004: abstracts. Part 1, 358.Part 1, 358.Pihlaja, Jouni2004. MappingofQuaternarygeology inFinlandMappingofQuaternarygeology inFinland

at 1:20,000 and1:50,000. In:Zelcs,V. &Seglins,V. (eds.) Interna-tionalfield symposiumonQuaternarygeology andmodern terres-trial processes,westernLatvia,September 12–17,2004 : abstracts of papers and posters. Riga: University of Latvia, 46–47 .Pirttijärvi, M.; Kozlovskaya, E.; Elo, S.; Hjelt, S.-E.; Ylinie-

mi, J. 2004. 3-D potential field modeling using a block model3-D potential field modeling using a block model[Electronic resource]. In: EGU General Assembly 2004, Nice,France, 25–30April 2004. Geophysical ResearchAbstracts 6, 1p.. Optical disc (CD-ROM).Plant, J.A.; Reeder, S.; Salminen, R.; Smith,D. B.; Tarvainen,

T.;DeVivo,B.;Petterson,M.G.2003.ThedistributionofuraniumoverEurope : geological and environmental significance.AppliedEarth Science 112 (3), B221–B238.

Page 96: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003–2004

95

Pomiès, C.; Hamelin, B.; Lancelot, J.; Blomqvist, R. 2004.Pb-207/Pb-206 and U-238/Th-230 dating of uranium migrationin carbonate fractures from the Palmottu uranium ore (southernFinland). Applied Geochemistry 19 (3), 273–288.Puura, Väino; Konsa, Mare; Flodén, Tom; Henkel, Herbert;

Kärki, Aulis; Pihlaja, Pekka; Suuroja, Kalle 2002. StructuralStructuralsettings of estolites in meteorite craters. In:Dalwigk, I. von (ed.) 8th workshop of the European Science Foundation program IM-PACT : impact tectonism,Mora, Sweden,May 31 – June 3, 2002: program, abstracts & guide to Siljan and Uppland, 52.Puura, Väino; Kärki, Aulis; Konsa, Mare; Juvonen, Riitta;

Karhu, Juha;Kirs, Juho;Kleesment,Anne; Flodén, Tom; Pihlaja,Pekka; Suuroja, Kalle 2002. Extremely high, moderate and lowExtremely high, moderate and lowtemperature mineral phases in estolites – products of a coolingimpact plume. In: 9th ESF-IMPACTWorkshop ”Impacts : a geo-logical and astronomical perspective”, Prague (CzechRepublic),October 12–16, 2002 : abstract book, 65–68.Puura,Väino;Hints,Rutt;Huhma,Hannu;Klein,Vello;Konsa,

Mare; Kuldkepp, Reedik;Mänttäri, Irmeli; Soesoo,Alvar 2004.Svecofennian metamorphic zones in the basement of Estonia. In: Soesoo, A. (ed.) Special issue on the Precambrian basement of Estonia. Proceedings of the Estonian Academy of Sciences. Geology 53 (3), 190–209.Raiche, Art; Sugeng, Fred; Soininen, Heikki 2003. Using the

Loki 3D edge-finite-element program tomodel EMdipole-dipoledrill-hole data [Electronic resource]. In: ASEG 16th Geophysi-cal Conference & Exhibition, Adelaide, South Australia, 16–19February, 2003 : extended abstracts. Adelaide:AustralianSocietyof Exploration Geophysicists, 4 p. Optical disc (CD-ROM).Raiche, Art; Sugeng, Fred; Soininen, Heikki 2003. Using the

Loki 3D edge-finite-element program tomodel EMdipole-dipoledrill-holedata. In:ASEG16thGeophysicalConference&Exhibi-tion,Adelaide,SouthAustralia,16–19February,2003 : conferencehandbook. Preview 102, 84–85.Rainio,Heikki 2003. Rakennusgeologisiamuisteluja.GeologiRakennusgeologisiamuisteluja. Geologi

55 (4–5), 121–123.Rainio,Heikki;Lahermo,Pertti2003.TerveisiäKiitehenjärven

rannoilta. Karjalan heimo 88 (1–2), 6–10.Rainio, Heikki 2004. J. W. Snellman geologian asiamiehenä.

Snellmanien tiedotuslehti Domus Nostra 2004, 9–12.Rainio, Heikki 2004. Mahtavat Salpausselät. In: Koivisto,M.

(ed.) Jääkaudet. Helsinki:WSOY, 87–105.Rainio, Heikki 2004. Uskomattoman suurenmoisia ajatuksia

Suomen maaperän synnystä. In: Koivisto, M. (ed.) Jääkaudet. Helsinki:WSOY, 19–31.Rainio, Heikki; Johansson, Peter 2004. Jäätikkö sulaa. In:

Koivisto, M. (ed.) Jääkaudet. Helsinki: WSOY, 69–86.Räisänen, Marja L. 2003. Rehabilitation options for tailingsRehabilitation options for tailings

impoundments – case studies of ”wet” cover and wetland treat-ment. In:Hebestreit,C.,Kudelko, J.&Kulczycka, J. (eds.)MineIn:Hebestreit,C.,Kudelko, J. &Kulczycka, J. (eds.) MineMinewastemanagement : best available techniques. Kraków:Mineraland Energy Economy Research Institute, 141–150.Räisänen,Marja Liisa 2003. Rehabilitation options for tailingsRehabilitation options for tailings

impoundments – case studies of ’wet’ cover and wetland treat-ment. In: International conference ”Mine waste management – BAT project application”, 2–3 June, 2003,Wroclaw, Poland :proceedings, 42–47.Räisänen, Marja Liisa; Carlson, Liisa 2003. Selective extrac-Selective extrac-

tion methods applied for secondary precipitates in the miningenvironment. Nordiska föreningen för lerforskning. MeddelandeMeddelande(14), 6–7.Räisänen, Marja Liisa; Nikkarinen, Maria; Lehto, Olli;Aatos,

Soile 2003. Liukoisuustesteistä riskienhallintaan kaivosympäris-tössä. Vesitalous 44 (1), 39–43.Räisänen, Marja Liisa (ed.); Nikkarinen, Maria (ed.) 2003.

Complexity of glacial dispersal and hydromorphic processes intill geochemistry. Geological Survey of Finland. Special Paper 34. 69 p. + 1 app.

Räisänen,MarjaLiisa2004. After-careplansof theoldLuikon-After-care plans of theoldLuikon-lahtiCu-Zn-Comine and tailings facility previously used in a talcoperation, eastern Finland. In: SPILM 2004 : the internationalconference Sustainable Post-Industrial Land Management, 4–6November, 2004, Kraków, Poland : conference proceedings, 28.Räisänen,MarjaLiisa2004.Kosteikotkaivosympäristönvesien

puhdistajana. Geologi 56 (2), 44–49.Räisänen,MarjaLiisa; Juntunen, Petri2004.DecommissioningDecommissioning

of theoldpyritic tailings facilitypreviouslyused ina talcoperation,eastern Finland. In: Jarvis,A. P.,Dudgeon,B.A.&Younger, P. L. (eds.)Minewater2004 :process,policyandprogress :proceedings of the symposium, Newcastle upon Tyne, UK, 19–23 September 2004. Vol. 1. Newcastle upon Tyne: University of Newcastleupon Tyne, 91–99.Räisänen,Mika2004.Fromoutcrops todust–mapping, testing,

and quality assessment of aggregates. Publications of the depart-ment of geology D1. 80 p.Rämö, O. T.; Karinen, T.; Iljina, M.; Lauri, L. S. 2004. Nd andNd and

Sr isotope composition andoriginof a2.44Ga layeredmafic intru-sion in Koillismaa, Finland. In: Abstracts of the 14th Annual V. M.Goldschmidt Conference, Copenhagen,Denmark, June 5–11,2004. Geochimica et CosmochimicaActa 68 (11S),A593.Rämö,O.T.;Upton,B.G. J.;Kohonen, J.;Mänttäri, I.;Vaasjoki,

M.; Sviridenko, L. P. 2004. Origin of Mesoproterozoic CFB-typeOrigin ofMesoproterozoic CFB-typemagmatism in southeastern Fennoscandian Shield [Electronicresource]. In: IAVCEI General Assembly 2004, Pucón, Chile :abstract volume, 1 p. Optical disc (CD-ROM).Räsänen,Johanna;Kauppila,Tommi;Salonen,Veli-Pekka2004.

Paleolimnologisetmenetelmätvesipuitedirektiivin toimeenpanonvalmistelussa–esimerkkinä luontaisesti rehevät järvet.Summary:Summary:Useofpaleolimnologicalmethods inpreparingfor implementationof the EUWater FrameworkDirective – the example of naturallyeutrophic lakes. Geologi 56 (8), 188–193.Geologi 56 (8), 188–193.Räsänen, Jorma; Iljina,Markku;Karinen,Tuomo;Lauri, Laura;

Salmirinne, Heikki; Vuollo, Jouni 2004. Geologic map of theGeologic map of theKoillismaa area, northeastern Finland, 1:200 000. Rovaniemi:Geological Survey of Finland.Rasilainen,Kalevi;Gaál, Gabor 2003. NuPulse : a non-destruc-NuPulse : a non-destruc-

tive pulse neutron multiple detector tool for environmental log-ging and monitoring. In: 3rd SENSPOL workshop : monitoringin polluted environments for integrated water-soil management,Kraków, Poland, 3–6 June, 2003, 1 p.Rasilainen,Kalevi;Gaál, Gabor;Baker, James;Buckup,Klaus;

Meijer, Robertde;Maucec,Marko;Marwick,David;Williamson,Mark;Sideris,George;Sotiropoulos, Pavlos2003.Anon-destruc-tive pulse neutronmultiple detector tool for use in environmental,hydrocarbon andmineral explorationwork. In: Eliopoulos,D.G.In: Eliopoulos,D.G. ... [et al.] (eds.)Mineral exploration and sustainabledevelopment :[et al.] (eds.)Mineral exploration and sustainabledevelopment :proceedingsof theSeventhBiennialSGAMeeting,Athens,Greece,24–28August 2003. Vol. 2. Rotterdam:Millpress, 1013–1014.Rasilainen, Kalevi; Puustjärvi, Heikki; Kousa, Jukka; Luukas,

Jouni;Mäki,Timo2003.ThePaleoproterozoicPyhäsalmivolcanicThePaleoproterozoicPyhäsalmivolcaniccomplex, centralFinland–bimodalvolcanismandassociatedVMSdeposits. In:Eliopoulos,D.G. ... [et al.] (eds.)Mineral explorationIn:Eliopoulos,D.G. ... [et al.] (eds.)Mineral exploration[et al.] (eds.)Mineral explorationand sustainable development : proceedings of the Seventh Bien-nial SGAMeeting, Athens, Greece, 24–28 August 2003. Vol. 2. Rotterdam:Millpress, 1095–1098.Rasilainen, Kari; Suksi, Juhani; Ruskeeniemi, Timo; Pitkänen,

Petteri; Poteri,Antti 2003. Release of uranium from rock matrixRelease of uranium from rock matrix– a recordof glacialmeltwater intrusions? JournalofContaminant Hydrology 61 (1–4), 235–246.Rasilainen, Kari; Suksi, Juhani; Ruskeeniemi, Timo; Pitkänen,

Petteri 2004. The feasibility of USD method in tracking pastThe feasibility of USD method in tracking past hydrogeochemical changes in the Fennoscandian Shield. In:Oversby, V. M. & Werme, L. O. (eds.) Scientific Basis for Nu-clear Waste Management XXVII. Symposium held June 15–19,2003, Kalmar, Sweden. Materials Research Society symposiumproceedings 807, 565–570.

Page 97: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003-2004

96

Rask,Markku 2003. Graniittia vai valkobetonia Carrara-mar-morin tilalle? Suomalainen kivi (4), 20–21.Rask, Markku 2004. Sapokan rakennuskivipuisto on valmis.

Suomalainen kivi (3), 20–21.Ravat, D.; Ghidella, M.; Korhonen, J.;Maus, S.;McLean, S.;

Reeves, C. 2003. Toward theWorld Digital Magnetic AnomalyToward theWorld Digital Magnetic AnomalyMap (WDMAM). In:AGU 2003 FallMeeting, 8–12 December 2003, San Francisco, California. Eos, Transactions, AmericanGeophysical Union. Supplement 84 (46), F538–539.Read, David; Hellmuth, Karl-Heinz; Kaija, Juha; Ahonen,

Lasse 2002. Natural uranium fluxes and their use in repositorysafety assessment. In: Merkel, B. J., Planer-Friedrich, B. &Wolkersdorfer, C. (eds.) Uranium in the aquatic environment :proceedings of the InternationalConferenceUraniumMining andHydrogeology III and the InternationalMineWater AssociationSymposium, Freiberg,Germany, 15–21 September 2002. Berlin:Springer, 115–127.Read,David; Siitari-Kauppi, Marja;Kelokaski, Maarit;Black,

Stuart; Buckby, Tracy; Marcos, Nuria; Kaija, Juha; Hellmuth,Karl-Heinz 2004. Natural geochemical fluxes in Finland asindicators of nuclear repository safety. Teknillinen korkeakoulu.Teknillinen korkeakoulu. Kalliotekniikan laboratorio. A. Tutkimusraportti 34. 58 p.Reimann, Clemens; Koller, Friedrich; Frengstad, Bjørn; Kas-

hulina, Galina;Niskavaara, Heikki; Englmaier, Peter 2003. TotalTotalsulphur in leaves of several plant species from nine catchments within a 1 500 000 km² area in northernEurope : local vs. regionalvariability. Geochemistry : exploration, environment, analysis 3(2), 205–215.Reimann, Clemens; Siewers, Ulrich; Tarvainen, Timo; Bi-

tyukova, Liidia; Eriksson, Jan; Gilucis,Aivars; Gregorauskiene,Virgilija;Lukashev,ValentinK.;Matinian,NataliaN.;Pasieczna,Anna 2003. Agricultural soils in northernEurope : a geochemicalAgricultural soils in northernEurope : a geochemicalatlas. Geologisches Jahrbuch. Sonderhefte. Reihe D SD 5. 279p. + CD-ROMRissanen, Kristina; Kostiainen, Eila; Ylipieti, Jarkko; Salmi-

nen, Reijo; Chekushin, Victor 2002. The first Chernobyl falloutThe first Chernobyl falloutplume still visible in humus in the Arctic and subarctic regions of north-eastern Europe. In: The Second AMAP InternationalSymposiumonEnvironmentalPollutionof theArctic,Rovaniemi,Finland, October 1–4, 2002 : extended abstracts. AMAP Report 2002:2, 3 p.Ristolainen,Antti; Jaakkola,Antti; Hänninen, Pekka;Alakuk-

ku, Laura 2002. Maaperäfysiikka ja sato (MaSa)-viljelymaanfysikaalisten ja kemiallisten ominaisuuksien hallintamaaperä- jasatokarttojen avulla. In: Pietola, L. & Esala,M. (eds.) Maa, jostaelämme : IIMaaperätieteiden päivien laajennetut abstraktit. ProProTerra 15, 100–101.Roberts, M. D.; Oliver, N. H. S.; Lahtinen, R. 2003. Recon-

structing the architectureof highlydeformed andmetamorphosedZn-Cumassivesulphidedeposits in theVihanti-Pyhäsalmidistrict,central Finland. In: Eliopoulos, D. G. ... [et al.] (eds.) MineralIn: Eliopoulos, D. G. ... [et al.] (eds.) Mineral[et al.] (eds.) Mineralexploration and sustainable development : proceedings of theSeventh Biennial SGAMeeting, Athens, Greece, 24–28 August 2003. Vol. 2. Rotterdam:Millpress, 1099–1102.Roberts,MichaelD.;Oliver,NicholasH.S.;Fairclough,Martin

C.; Hölttä, Pentti S.; Lahtinen, Raimo 2003. Geochemical andoxygen isotope signature of sea-floor alteration associated witha polydeformed and highly metamorphosed massive sulfidedeposit, Ruostesuo, central Finland. Economic Geology 98 (3),535–556.Roberts, Michael D.; Oliver, Nicholas H. S.; Lahtinen, Raimo

2004. Geology, lithogeochemistryand paleotectonic settingof thehost sequence to the Kangasjärvi Zn-Cu deposit, central Finland: implications for volcanogenic massive sulphide exploration intheVihanti-Pyhäsalmi district. Bulletin of theGeological Societyof Finland 76 (1–2), 31–62.Ruotoistenmäki,Tapio2003.Ruotasengeofysikaalinenhistoria

ja nykypäivä. In:Tulkku, J. (ed.) Ruotasen savut : kylä ja kaivos. Ruotanen: RuotasenMaamiesseura, 12–17.

Ruotoistenmäki,Tapio 2004. Geophysical and tectonic charac-teristic of ore potential : Outokumpu area in South-East Finland. In:32nd InternationalGeologicalCongress,Florence, Italy,August 20–28, 2004 : abstracts. Part 1, 479–480.Part 1, 479–480.Rusanen,Kaisa;Finér, Leena;Antikainen,Merja;Korkka-Nie-

mi, Kirsti; Backman, Birgitta; Britschgi, Ritva 2004. The effectThe effect of forest cutting on the quality of groundwater in large aquifers in Finland. Boreal Environment Research 9 (3), 253–261.Ruskeeniemi, T.; Ahonen, L.; Paananen, M.; Blomqvist, R.;

Degnan, P.; Frape, S. K.; Jensen, M.; Lehto, K.; Wikström, L.;Morén, L.; Puigdomenech, I.; Snellman, M. 2003. Groundwaterunder deep permafrost conditions. In: Haeberli,W. & Brandová,D. (eds.) 8th International Conference on Permafrost, Zurich,Switzerland, 20–25 July 2003 : extended abstracts reporting cur-rent reserch and new information. Zurich: University of Zurich,141–142.Ruskeeniemi,Timo;Ahonen,Lasse;Paananen,Markku;Frape,

Shaun; Stotler, Randy; Hobbs, Monique; Kaija, Juha; Degnan,Paul; Blomqvist, Runar; Jensen, Mark; Lehto, Kimmo; Morén,Lena;Puigdomenech, Ignasi;Snellman,Margit 2004. Permafrostat Lupin : report of phase2. Tiivistelmä:Lupinin ikirouta : raporttiTiivistelmä:Lupinin ikirouta : raportti2 tutkimusvaiheesta. Geologian tutkimuskeskus. Ydinjätteidensijoitustutkimukset. TiedonantoYST-119. 89 p.Saarnisto,Matti2003.Karjalangeologia :Karjalan luonnonmai-

seman synty. In: Saarnisto,M. (ed.)Viipurin läänin historia. OsaIn: Saarnisto,M. (ed.) Viipurin läänin historia. OsaViipurin läänin historia. Osa1: Karjalan synty. Lappeenranta: Karjalan kirjapaino, 21–80.Saarnisto, Matti 2003. Tutkimusretki Hiitolan Kilpolansaa-

relle 1992 ja Valamoon 1996. In: Saarnisto, M. (ed.) ViipurinIn: Saarnisto, M. (ed.) ViipurinViipurinläänin historia. Osa 1: Karjalan synty. Lappeenranta: Karjalankirjapaino, 67–69.Saarnisto, Matti (ed.) 2003. Viipurin läänin historia. Osa 1:

Karjalan synty. Lappeenranta: Karjalan kirjapaino. 560 p. +560 p. +app. map.Saarnisto,Matti 2004. Karjalanmaanviljelyn pitkä esihistoria :

siitepöly ja siemenet paljastavat maanviljelyn salat. Joulukannel. Ajankohtaista karjalaista asiaa (4), 15–17.Saarnisto,Matti 2004. Muinainen Kymijoki. In: Uino, P. (ed.)In: Uino, P. (ed.)

AmmoinAnkkapurhassa :Kymenlaaksossakivikaudella.Helsinki:Museovirasto, 38–41.Saarnisto, Matti;Karhu, Juha 2004. The lastmammoths – pal-The last mammoths – pal-

aeoenvironment of the Holocene mammoth onWrangel Island. Quaternary Perspectives 14 (1), 126–129.Saarnisto,Matti;Lunkka, JuhaP.2004.Climatevariabilitydur-

ing the last interglacial-glacialcycle inNWEurasia. In:Battarbee,R. W., Gasse, F. & Stickley, C. E. (eds.) Past climate variabilitythroughEuropeandAfrica. Developments inPaleoenvironmentalResearch 6, 443–464.Saarnisto, Matti; Saksa, Alexander 2004. Radiocarbon datesRadiocarbon dates

from archaeological excavations in Viipuri – the corner site offormer Uudenportinkatu andEtelävalli. Fennoscandia archaeolo-Fennoscandia archaeolo-gica 21, 37–42.Saarnisto, Matti; Saksa, Aleksandr 2004. Radiohiiliajoituksia

Viipurinarkeologisiltakaivauksilta. In:Korpela, J. (author)Viipu-rin lääninhistoria.Osa2:Viipurin linnalääninsynty.Lappeenranta:Karjalan Kirjapaino, 259–261.Saksa,Aleksander;Saarnisto,Matti;Taavitsainen, Jussi-Pekka

2003. 1200-luvun lopun radiohiiliajoitus Viipurista. SKAS (3),15–20.Salminen, R. 2003. Geochemical atlas of Europe – do the newGeochemical atlas of Europe – do the new

maps reveal risky areas. In:Angelelli,A., Barchiesi, P. & Forni,S. (eds.) 4th European Congress on Regional Geoscientific Car-tography and Information Systems : geoscientific informationfor spatial planning, Bologna, Italy, June 17th – 20th 2003 :proceedings. Vol. 2. Bologna: Servizio geologico, sismico e deisuoli, 635–636.Salminen, R.; Bogatyrev, I.; Chekushin, V.;Glavatskikh, S. P.;

Gregorauskiene, V.; Niskavaara, H.; Selenok, L.; Tenhola, M.;Tomilina,O. 2003. BarentsEcogeochemistry – a large geochemi-Barents Ecogeochemistry – a large geochemi-cal baseline study of heavymetals and other elements in surficial

Page 98: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003–2004

97

deposits, NW-Russia and Finland. In:Autio, S. (ed.) GeologicalSurvey of Finland, Current Research 2001–2002. GeologicalSurvey of Finland. Special Paper 36, 45–52.Special Paper 36, 45–52.Salminen, R.; Bogatyrev, I.; Chekushin, V.;Glavatskikh, S. P.;

Gregorauskiene,V.;Selenok, L.;Tenhola,M.;Tomilina, O. 2003.Barents Ecogeochemistry projekti – raskasmetallien ja muidenalkuaineiden perustilan kartoitus Luoteis-Venäjällä ja Suomessa. Summary:BarentsEcogeochemistry–a largegeochemicalbaselinestudy of heavy metals and other elements in surficial deposits,NW-Russia and Finland. Geologi 55 (2), 28–33.Geologi 55 (2), 28–33.Salminen, R.; Bogatyrev, I.; Chekushin, V.; Tomilina, O.;

Tenhola, M. 2003. Barents Ecogeochemistry project – a largeBarents Ecogeochemistry project – a largegeochemical baseline study inNE Europe. In:Angelelli,A., Bar-chiesi, P. & Forni, S. (eds.) 4th European Congress on RegionalGeoscientificCartographyandInformationSystems:geoscientificinformation for spatial planning,Bologna, Italy, June 17th – 20th2003 : proceedings. Vol. 2. Bologna: Servizio geologico, sismicoe dei suoli, 653–654.Salminen, R.; Chekushin, V.; Tenhola, M.; Bogatyrev, I.;

Glavatskikh, S. P.; Fedotova, E.; Gregorauskiene, V.; Kashuli-na, G.; Niskavaara, H.; Polischuok, A.; Rissanen, K.; Selenok,L.; Tomilina, O.; Zhdanova, L. 2004. Geochemical atlas of theGeochemical atlas of theeastern Barents region. Journal of Geochemical Exploration 83(1–3), 1–530.Salminen, R.; Chekushin, V.; Tenhola, M.; Bogatyrev, I.;

Glavatskikh, S. P.; Fedotova, E.; Gregorauskiene, V.; Kashulina,G.; Niskavaara, H.; Polischuok, A.; Rissanen, K.; Selenok, L.;Tomilina,O.;Zhdanova,L.2004.Geochemical atlasof theeasternGeochemicalatlasof theeasternBarents region. Amsterdam: Elsevier. 548 p.Salminen, Reijo; Bogatyrev, Igor; Chekushin, Victor; Glavat-

skikh, Sergey P.; Gregorauskiene, Virgilija; Niskavaara, Heikki;Selenok, Lubov; Tenhola, Markku; Tomilina, Olga 2004. Geo-chemical baselines of nickel and chromium in various surficialmaterials in the Barents Region, NW Russia and Finland. Geo-standards and Geoanalytical Research 28 (2), 333–341.Salminen, Reijo; Gilucis, Aivars; Gregorauskiene, Virgilija;

Petersell,Valter;Tomilina,Olga2004.InfluenceofhumanactivitiesInfluenceofhumanactivitiesin the geochemical baselines in the Baltic countries, Finland andNW-Russia. In:32nd InternationalGeologicalCongress,Florence,Italy,August 20–28, 2004 : abstracts. Part 2, 850.Part 2, 850.Salmirinne, H.; Iljina, M. 2004. 3-D gravity modeling of un-3-D gravity modeling of un-

exposed feeder intrusion connecting western and eastern part oftheKoillismaaLayered Igneous Complex,Finland [Electronic re-source]. In:St.Catharines2004.GeologicalAssociationofCanada& Mineralogical Association of Canada joint annual meeting,St. Catharines, Ontario, Canada,May 12–14, 2004. GAC-MACprogram with abstracts 29, 258. Optical disc (CD-ROM).Saltikoff, Boris (comp.); Tontti, Mikko (comp.); Puustinen,

Kauko (comp.) 2002.Metallogenicmap of Finland 1 : 1 000 000.2002. Metallogenicmap of Finland 1 : 1 000 000. Espoo: Geological Survey of Finland.Sarala, Pertti 2003. Ribbed-moreenit – jäätikön liikesuunnan

poikittaiset indikaattorit. Summary: Ribbed moraines – trans-Summary: Ribbed moraines – trans-verse indicators of the ice flow direction. Geologi 55 (9–10),Geologi 55 (9–10),250–253.Sarala, Pertti 2004. Deglaciation pattern and glacial dynamics

of the southern Finnish Lapland. In: Mansfeld, J. (ed.) The 26thNordic Geological Winter Meeting, January 6th – 9th 2004,Uppsala, Sweden : abstract volume. GFF 126 (1), 124.GFF 126 (1), 124.Sarala, Pertti 2004. Glasiaalimorfologia ja moreenistratigrafia

glasiaalidynamiikan ilmentäjinä. In:Kaakinen,A. (ed.)Geologian3. tutkijapäivät, 10.–11.3.2004, Helsinki. Helsinki: Helsinginyliopisto, geologian laitos, 56–58.Sarapää, Olli; Ahtola, Timo; Reinikainen, Jukka; Seppänen,

Hannu 2003. Industrialmineral potential in Finland. In:Autio, S.Industrialmineral potential in Finland. In:Autio, S. (ed.)GeologicalSurveyofFinland,CurrentResearch2001–2002. Geological Survey of Finland. Special Paper 36, 5–12.Satkunas, Jonas;Ransed,Gunnel;Suominen,Veli;Taht,Krista;

Raudsep, Rein;Mikulenas,Vidas;Vdovets,Marina;Makarikhin,Vladimir; Cleal, Chris; Erikstad, Lars 2004. Geosites listings for

northern Europe – a status report. In: 32nd International Geo-logicalCongress, Florence, Italy,August 20–28, 2004 : abstracts. Part 1, 581.Schellschmidt, R.; Popov, Y.; Kukkonen, I.; Nover, G.; Mi-

lanovsky, S.; Borevsky, L.;Mottaghy,D.; Clauser, C. 2003. Heattransfer processes in the upper crust – a case study for the regionaround the Kola superdeep borehole, Russia. In: IUGG 2003 :XXIII GeneralAssembly of the International Union of Geodesyand Geophysics, June 30 – July 11, 2003, Sapporo, Japan : ab-stracts. WeekA. Sapporo : IUGG, 174.Schmidt-Thomé, P.; Lahti, M.; Gaál, G. 2002. Application of

airborne radiometric surveys in the mapping of areas with highnatural or anthropogenic ionizing radiation. In: Bølviken, B. (ed.) Natural ionizing radiation and health : proceedings from asymposium held at the NorwegianAcademy of Science and Let-ters, Oslo 6–7 June 2001. Oslo: NorwegianAcademy of Scienceand Letters, 25–31.Schmidt-Thomé, Philipp; Greiving, Stefan; Kallio, Hilkka;

Fleischhauer, Mark; Jarva, Jaana 2004. Natural hazard and riskmaps for European regions. In: 32nd International GeologicalCongress, Florence, Italy, August 20–28, 2004 : abstracts. Part 1, 589.Schmidt-Thomé, Philipp; Kallio, Hilkka; Staudt, Michael

Gerhard 2004. Developing tools for planners concerning spatialimpacts of sea level rise in the Baltic Sea Region. In: 32nd In-ternational Geological Congress, Florence, Italy,August 20–28,2004 : abstracts. Part 1, 351–352.Part 1, 351–352.Schultz, Eija; Joutti,Anneli; Räisänen, Marja Liisa; Lintinen,

Petri;Martikainen,Esko;Lehto,Olli2004.ExtractabilityofmetalsExtractabilityofmetals and ecotoxicity of soils from two oldwood impregnation sites inFinland. Science of the Total Environment 326 (1–3), 71–84.Selonen,Olavi2003.GraniittejaSuomenkeskeltä.Suomalainen

kivi (3), 36–40.Selonen, Olavi 2003. Kaakkois-Suomen graniittien tie vie

ulkomaille. Suomalainen kivi (2), 34–37.Selonen, Olavi 2003. Lounais-Suomesta globaaleja kivibran-

deja. Suomalainen kivi (1), 34–36.Selonen,Olavi 2003. Requisites for natural stone. In: Selonen,Requisites for natural stone. In: Selonen,In: Selonen,

O. & Suominen,V. (eds.) Nordic stone. Paris:UNESCO : IAEG,Nordic stone. Paris:UNESCO : IAEG,11–12.Selonen, Olavi; Heldal, Tom 2003. Technologies. In: Selonen,In: Selonen,

O. & Suominen,V. (eds.) Nordic stone. Paris:UNESCO : IAEG,Nordic stone. Paris:UNESCO : IAEG,42–50.Selonen, Olavi; Härmä, Paavo 2003. Stone resources and dis-Stone resources and dis-

tribution : Finland. In: Selonen,O.& Suominen,V. (eds.)NordicIn: Selonen,O. & Suominen,V. (eds.) NordicNordicstone. Paris: UNESCO : IAEG, 19–29.Selonen, Olavi; Luodes, Hannu; Ehlers, Carl 2003. NaturalNatural

stone in Finland – production and development. VuoriteollisuusVuoriteollisuus 61 (3), 39–43.Selonen, Olavi (ed.); Suominen, Veli (ed.) 2003. Nordic stone.Nordic stone.

Paris: UNESCO : IAEG. 64 p.Selonen, Olavi 2004. GTK kartoittaa laajasti Suomen kallio-

perää. Suomalainen kivi (3), 28–29.Selonen,Olavi2004.Kivialaesimerkkikestävästäkehityksestä.

Suomalainen kivi (4), 30–31.Selonen, Olavi 2004. Liuskekiviä käytetään verhouksissa ja

ympäristörakentamisessa. Suomalainen kivi (1), 22–24.Selonen,Olavi;Ehlers,Carl2004.Naturstensindustrin iFinlandNaturstensindustrin iFinland

– en bransch i uppsving. Geologiskt forum 11 (42), 18–25.Selonen,Olavi; Johansson,Kurt 2004.Hållbarutveckling inomHållbarutveckling inom

stenbranschen. STEN 66 (4), 37.STEN 66 (4), 37.Skyttä,Pietari2004.Rakennegeologisia tutkimuksiaeteläisessä

Suomessa Inkoon-Kiskon alueella. Summary:Structural geologySummary:Structural geologyinvestigations in the Inkoo-Kisko area, southernFinland. Geologi56 (3), 68–72.Sorjonen-Ward, Peter 2002. Geological setting of the Nun-

nanlahti soapstone deposits. In:Niemelä,M. (ed.)Talc-magnesiteIn:Niemelä,M. (ed.) Talc-magnesiteTalc-magnesitedeposits in Finland, September 10–15, 2002, Finland : third fieldcorrelation, 34–37.

Page 99: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003-2004

98

Sorjonen-Ward, P.; Systra, Y. J. 2002. Tectonics and deepstructure of the southeastern Fennoscandian Shield and its mar-ginal zone. In: Sahrov, N. V. ... [et al.] (eds.) Glubinnoe stroeniei geodinamika Fennoskandii, okrainnyh i vnutriplatformennyhtranzitnyh zon : materialy vos’moj mezdunarodnoj konferencii,16–20 sentjabrja2002g., Petrozavodsk. Petrozavodsk:Karel’skijnaucnyj centr RAN, 277–278.Sorjonen-Ward, P.; Ojala, V. J.; Airo, M.-L. 2003. Structural

modelling and magnetic expression of hydrothermal alterationin the Paleoproterozoic Lapland greenstone belt, northern Fen-noscandian Shield. In: Eliopoulos,D.G. ... [et al.] (eds.)MineralIn: Eliopoulos,D. G. ... [et al.] (eds.)Mineral[et al.] (eds.) Mineralexploration and sustainable development : proceedings of theSeventh Biennial SGAMeeting, Athens, Greece, 24–28 August 2003. Vol. 2. Rotterdam:Millpress, 1107–1110.Starr, Michael; Lindroos, Antti-Jussi; Ukonmaanaho, Liisa;

Tarvainen, Timo; Tanskanen, Heikki 2003. Weathering releaseWeathering releaseof heavy metals from soil in comparison to deposition, litterfalland leaching fluxes in a remote, boreal coniferous forest.AppliedGeochemistry 18 (4), 607–613.Stotler,RandyL.;Frape,ShaunK.;Ruskeeniemi,Timo;Ahonen,

Lasse; Blomqvist, Runar; Degnan, Paul; Jensen, Mark; Lehto,Kimmo;Morén, Lena; Snellman, Margit 2003. Hydrogeochem-istry of crystalline bedrock under deep permafrost conditions. In:Geoscience horizons, Seattle 2003 : GSAAnnual Meeting andExposition,November 2–5,2003.GeologicalSocietyofAmerica. Abstracts with Programs 35 (6 ), 573.Suksi, Urho J.; Rasilainen, Kari; Ruskeeniemi, Timo;Marcos,

Nuria; Hellmuth, Karl-Heinz 2002. Natural U occurrences as aNatural U occurrences as apalaeo-hydrogeological indicator–observations from thePalmottunatural analogue site, Finland. In:Merkel,B. J., Planer-Friedrich,B. &Wolkersdorfer,C. (eds.) Uranium in the aquatic environment :proceedingsof the InternationalConferenceUraniumMiningandHydrogeology III and the InternationalMineWater AssociationSymposium, Freiberg,Germany, 15–21 September 2002. Berlin:Berlin:Springer, 231–240.Suomi, Timo;Korhonen, Riitta 2004. Karviassa tutkitut suot ja

niiden turvevarat.Osa2.Abstract:Thepeatlandsandpeat reservesOsa2.Abstract:Thepeatlands andpeat reserves of Karvia. Part 2. Geologian tutkimuskeskus. Turvetutkimusra-Part 2. Geologian tutkimuskeskus. Turvetutkimusra-portti 357. 42 p. + 4 app.Suominen, Meeri; Kontas, Esko; Niskavaara, Heikki 2004.

Comparisonof silver andgold inquarting in thefire assaydetermi-nationof palladium, platinum and rhodium ingeological samples. In: Kane, J. S. ... [et al.] (eds.) Geoanalysis 2003. Geostandards and Geoanalytical Research 28 (1), 131–136.Suominen, Veli 2002. Ballastproduktionen i Finland. Norden-Norden-

skiöld-samfundets tidskrift (62), 111–124.Suppala, I.;Vanhala,H.;Lintinen,P.2003.ComparisonbetweenComparisonbetween

ground and airborne EM data in mapping acid sulphate soils andsulphide bearing clays in the river Kyrönjoki valley, westernFinland. In:Mares, S. & Pospísil, L. (eds.) 9thMeeting of Envi-ronmental andEngineeringGeophysics,Prague,CzechRepublic,August 31st – September 4th 2003 : proceedings. Prague: CzechAssociation of theApplied Geophysicists, 4 p.Suppala, I.;Hongisto, H.;Oksama,M. 2004. Effect of the con-Effect of the con-

ducting aircraft to fixed-wing airborne electromagnetic measure-ments [Electronic resource]. In: Sharing the Earth : EAGE 66thConference&Exhibition,Paris,France,7–10June2004 : extendedabstracts. Houten: EAGE, 4 p. Optical disc (CD-ROM).Sutinen, R.; Teirilä, A.; Pänttäjä, M.; Sutinen, M.-L. 2002.

Distribution and diversity of tree species with respect to soilelectrical characteristics in Finnish Lapland. Canadian Journalof Forest Research 32 (7), 1158–1170.Sutinen, R.; Teirilä, A.; Pänttäjä, M.; Sutinen, M.-L. 2002.

Survival of artificially regenerated Scots pine on till soils withrespect tovaryingdielectricproperties.Canadian JournalofForest Research 32 (7), 1151–1157.Svendsen, J. I.; Alexanderson, H.; Astakhov, V. I.; Demidov,

I.; Dowdeswell, J. A.; Funder, S.; Gataullin, V.; Henriksen, M.;Hjort, C.; Houmark-Nielsen, M.; Hubberten, H. W.; Ingólfs-son, Ó.; Jakobsson, M.; Kjær, K. H.; Larsen, E.; Lokrantz, H.;Lunkka, J. P.; Lyså,A.;Mangerud, J.;Matiouchkov,A.;Murray,A.;Möller, P.;Niessen, F.;Nikolskaya, O.; Polyak, L.; Saarnisto,M.; Siegert, C.; Siegert, M. J.; Spielhagen, R. F.; Stein, R. 2004.LateQuaternary ice sheet history of northern Eurasia. In:Thiede,J. (ed.)Quaternaryenvironmentsof theEurasianNorth (QUEEN). Quaternary Science Reviews 23 (11–13), 1229–1271.Svetov, S. A.; Huhma, H.; Svetova, A. I.; Nazarova, T. N.

2004. The oldest adakites of the Fennoscandian Shield. DokladyThe oldest adakites of the Fennoscandian Shield. DokladyEarth Sciences 397A (6), 878–882. Taavitsainen, Jussi-Pekka;Taavitsainen, Jussi-Pekka;Sepänmaa, Timo; Miettinen, Mirja; Storå, Jan; Saarnisto, Matti2004. Hietamäki in Jämsä – amulti-period dwelling site in centralHietamäki in Jämsä – amulti-period dwelling site in centralFinland. Fennoscandia archaeologica 21, 3–21.Fennoscandia archaeologica 21, 3–21.Taipale, Kalle 2003. Maa kivimiesten näkemänä : Geologian

tutkimuskeskuksen arkistot kertovat. Raito 21 (1), 22–25.Taipale, Kalle 2003. Särkyvää! Suomen Luonto 62 (4),

22–27.Talkkari, Ari; Nevalainen, Raimo 2003. GeoreferencedGeoreferenced

1:250 000 soil database for Finland – an approach based on mul-tisource geological and soil data. In:Angelelli,A.,Barchiesi, P. &Forni, S. (eds.) 4thEuropeanCongress onRegional GeoscientificCartography and Information Systems : geoscientific informa-tion for spatial planning, Bologna, Italy, June 17th – 20th 2003 :proceedings. Vol. 1. Bologna: Servizio geologico, sismico e deisuoli, 276–278.Tanskanen, Heikki; Lahermo, Pertti; Loukola-Ruskeeniemi,

Kirsti 2004. Arseeni Kittilän pohjavesissä Keski-Lapissa.Sum-mary: Arsenic in groundwater in Kittilä, Finnish Lapland. In:Loukola-Ruskeeniemi,K. & Lahermo, P. (eds.) Arseeni Suomenluonnossa, ympäristövaikutukset ja riskit. Espoo: Geologiantutkimuskeskus, 123–134.Tarvainen, Timo 2002. Heavymetal accumulation in soils and

mobility. Indicator development using the FOREGS and BalticSoil Survey databases. In: Expert meeting on indicators for soilcontamination, Sevilla, Spain, 27–29 May 2002. Copenhagen:European Environment Agency, 2–4.Tarvainen, Timo; Backman, Birgitta; Hellmuth, Karl-Heinz;

Hatakka, Tarja; Savolainen, Heimo 2003. IAEA CoordinatedIAEA CoordinatedResearch Project (CRP) ”The use of selected safety indicators (concentrations, fluxes) in the assessment of radioactive wastedisposal”.Report5:Chemicalweathering rateson theBalticShieldof Finland for use as indicators of nuclear waste repository safety. Geologian tutkimuskeskus. Ydinjätteiden sijoitustutkimukset. TiedonantoYST-113. 51 p.Tarvainen, Timo; Schmidt-Thomé, Philipp 2003. Heavymetal

enrichment factors for different analyticalmethods. In:Autio, S. (ed.)GeologicalSurveyofFinland,CurrentResearch2001–2002. Geological Survey of Finland. Special Paper 36, 61–65.Special Paper 36, 61–65.Tarvainen,Timo 2004. Arseenimaaperässä.Summary:Arsenic

in soils. In: Loukola-Ruskeeniemi, K. & Lahermo, P. (eds.) Ar-seeni Suomen luonnossa, ympäristövaikutukset ja riskit. Espoo:Geologian tutkimuskeskus, 45–49.Tarvainen, Timo; Mannio, Jaakko 2004. Arseeni pintavesissä

ja purosedimenteissä. Summary: Arsenic in surface waters andSummary: Arsenic in surface waters andstream sediments. In: Loukola-Ruskeeniemi, K. & Lahermo, P.In: Loukola-Ruskeeniemi, K. & Lahermo, P. (eds.) Arseeni Suomen luonnossa, ympäristövaikutukset ja riskit. Espoo: Geologian tutkimuskeskus, 97–101.Tenhola, Markku; Lahermo, Pertti; Väänänen, Pauli; Lehto,

Olli2004. Alueellisessageokemiallisessa purovesikartoituksessatodettujen fysikaalisten ominaisuuksien ja alkuainepitoisuuksienvertailu Suomessa vuosina 1990, 1995 ja 2000. Summary: Com-Summary: Com-parison of physical properties and element concentrations in theregional geochemicalmapping of streamwater in Finland during1990, 1995, and 2000. Geologian tutkimuskeskus. Tutkimusra-Geologian tutkimuskeskus. Tutkimusra-portti 159. 35 p.

Page 100: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003–2004

99

Tervo,Tapani2003. Vuolukiven synty. In:Vuorjoki,K. (author) Kivimatka. Helsinki: Sarmala, 16–17.Tiljander, Mia; Saarnisto, Matti; Ojala,Antti E. K.; Saarinen,

Timo 2003. A 3000-year palaeoenvironmental record from an-A 3000-year palaeoenvironmental record from an-nually laminated sediment of Lake Korttajärvi, central Finland. Boreas 32 (4), 566–577.Toivonen, Tapio 2003. Honkajoella tutkitut suot ja niiden

turvevarat. Abstract: The mires and peat reserves of Honkajoki.Abstract: The mires and peat reserves of Honkajoki. Geologian tutkimuskeskus. Turvetutkimusraportti 347. 40 p. + 4 app.Toivonen, Tapio 2004. Multialla tutkitut suot ja niiden käyttö-

kelpoisuus. Osa 2.Abstract:Themires ofMultia and their useful-Osa 2.Abstract:Themires ofMultia and their useful-ness. Part 2. Geologian tutkimuskeskus. TurvetutkimusraporttiPart 2. Geologian tutkimuskeskus. Turvetutkimusraportti352. 65 p. + 4 app.Toivonen, Tapio 2004. Pernajassa tutkitut suot ja niiden turve-

varat. Abstract:Themires andpeat reservesofPernaja.GeologianAbstract:Themires and peat reserves ofPernaja. GeologianGeologiantutkimuskeskus. Turvetutkimusraportti 353. 26 p. + 4 app.Tukiainen, Tapani; Krebs, Johan Ditlev; Kuosmanen, Viljo;

Laitinen, Jukka;Schäffer,Uwe2003. Field and laboratory reflect-Field and laboratory reflect-ance spectra of kimberlitic rocks, 0.35–2.5 µm,West Greenland. Danmarks og Grønlands Geologiske Undersøgelse. RapportRapport 2003/43. 25 p.Turunen, Jukka 2003. Past and present carbon accumulationPast and present carbon accumulation

in undisturbed boreal and subarcticmires : a review. Tiivistelmä:Tiivistelmä:Luonnontilaistensoidenpitkänajan- janykykertymätboreaalisellaja subarktisella kasvillisuusvyöhykkeellä : katsaus. Suo 54 (1),15–28.Turunen, Pertti 2004. On the use of theVLFmethod inmineralOn the use of theVLFmethod inmineral

exploration – experiences from the northern Finland. In: VLFWorkshop 2004, SodankyläGeophysicalObservatory, 27th Sep-tember – 1st October 2004 : abstracts. Sodankylä GeophysicalObservatory publications 96, 25.Tyni, Matti; Puustinen, Kauko; Karhu, Juha; Vaasjoki, Matti

2003. The Petäiskoski carbonate veins at Juuka, eastern Finland.The Petäiskoski carbonate veins at Juuka, eastern Finland. In: Autio, S. (ed.) Geological Survey of Finland, Current Re-search 2001–2002. Geological Survey of Finland. Special PaperSpecial Paper 36, 13–16.Uski,Marja;Hyvönen,Tellervo;Korja,Annakaisa;Airo,Meri-

Liisa 2003. Focal mechanisms of three earthquakes in FinlandFocal mechanisms of three earthquakes in Finlandand their relation to surface faults. Tectonophysics 363 (1–2),141–157.Väänänen, Jukka 2004. Sieppijärven ja Pasmajärven kartta-

alueiden kallioperä. Summary: Pre-Quaternary rocks of theSieppijärvi and Pasmajärvimap-sheet areas.Suomen geologinenkartta 1:100 000 : kallioperäkarttojen selitykset lehdet 2624 ja2642. 55 p. + 1 app., 2 app. maps.55 p. + 1 app., 2 app. maps.Väänänen,Tapio;Kokkonen,Jyrki2003.GEOKARTTAInternetGEOKARTTAInternet

map service – a new perspective of delivering maps on Internet byGeologicalSurvey ofFinland. In:Angelelli,A.,Barchiesi,P. &Forni, S. (eds.) 4thEuropeanCongress onRegional GeoscientificCartography and Information Systems : geoscientific informa-tion for spatial planning, Bologna, Italy, June 17th – 20th 2003 :proceedings. Vol. 2. Bologna: Servizio geologico, sismico e deisuoli, 428–429.Vaarma,Markus;Pipping,Fredrik2003.Kyyjärvi–Perhokartta-Kyyjärvi–Perhokartta-

alueenkallioperä .Summary:Pre-Quaternary rocksof theKyyjärviSummary:Pre-Quaternary rocksof theKyyjärviand Perho map-sheet areas. Suomen geologinen kartta 1:100 000Suomen geologinen kartta 1:100 000: kallioperäkarttojen selitykset lehdet 2331 ja 2332. 54 p.Vaasjoki,Matti 2003. Aktualismi, paradigmat ja talonpoikais-

järki. Geologi 55 (6 ), 144–146.Vaasjoki, Matti; Huhma, Hannu; Lahtinen, Raimo; Vestin,

Jessica 2003. Sources of Svecofennian granitoids in the lightSources of Svecofennian granitoids in the light of ion probe U-Pb measurements on their zircons. PrecambrianPrecambrianResearch 121 (3–4), 251–262.Väisänen, Markku; Mänttäri, Irmeli 2002. 1.90–1.88 Ga arc1.90–1.88 Ga arc

and back-arc basin in the Orijärvi area, SW Finland. Bulletin ofthe Geological Society of Finland 74 (1–2), 185–214.

Väisänen, Ulpu 2004. Groundwater and factors affecting its quality : examples from theRovaniemidistrictofnorthernFinlandand western Nicaragua. Geological Survey of Finland. BulletinBulletin400. 145 p. + 5 app.Väisänen,UlpuMirja 2004. Groundwater and factors affectingGroundwater and factors affecting

its quality : examples from northern Finland and Nicaragua. In:32nd International Geological Congress, Florence, Italy,August 20–28, 2004 : abstracts. Part 1, 638.Part 1, 638.Valjus, T.; Breilin, O.; Vanhala, H.; Lehtimäki, J. 2004. De-De-

tailed geophysical study of glaciofluvial aquifer at Kempele,western Finland. In:Near surface 2004 : 10th EuropeanMeetingof Environmental and Engineering Geophysics, Utrecht, TheNetherlands, 6–9 September 2004 : extended abstracts book.Houten: EAGE, 4 p.Valli,Tuire; Jokinen,Tarmo;Lehtimäki, Jukka;Vanhala,Heikki

2003. Sampo – frequency domain wide-band EM system forSampo – frequency domain wide-band EM system for deep hydrogeological and environmental studies. In:Mares, S. &Pospísil,L. (eds.) 9thMeeting ofEnvironmental andEngineeringGeophysics, Prague, Czech Republic, August 31st – September 4th 2003 : proceedings. Prague:CzechAssociation of theAppliedGeophysicists, 4 p.Vallius, Henry; Leivuori, Mirja 2003. Classification of heavyClassification of heavy

metal contaminated sediments of the Gulf of Finland. BalticaBaltica16, 3–12.Vanhala, H.; Räisänen, M. L.;Huotari, T.;Valjus, T.; Lehtimä-

ki, J.; Suppala, I. 2004. Characterizing tailings impoundment atCharacterizing tailings impoundment at the closed Hammaslahti Cu-Zn mine, Finland. In: Near surface2004 : 10th European Meeting of Environmental and Engineer-ing Geophysics, Utrecht, The Netherlands, 6–9 September 2004: extended abstracts book. Houten: EAGE, 4 p.Vanhala, H.; Suppala, I.; Lintinen, P.; Lehtimäki, J. 2003.

Mapping buried glaciofluvial aquifer by airborne EM measure-ments – a case from Kyrönjoki valley in southern Finland. In:Mares, S. & Pospísil,L. (eds.) 9thMeeting ofEnvironmental andEngineering Geophysics, Prague, Czech Republic, August 31st – September 4th 2003 : proceedings. Prague: CzechAssociationof theApplied Geophysicists, 4 p.Vanhala, H.; Suppala, I.; Lintinen, P. 2004. Integrated geo-Integrated geo-

physical study of acid sulphate soil area near Seinäjoki, southernFinland [Electronic resource]. In: Sharing the Earth : EAGE 66thConference&Exhibition,Paris,France,7–10June2004 : extendedabstracts. Houten: EAGE, 4 p.. Optical disc (CD-ROM).Vareikiene,O.;Lindqvist,K.;Marmo,J.2003.SelectedelementsSelectedelements

and their mineral carriers in the fine fraction of theA horizon insoil of Asmena Highlands, Lithuania. Nordiska föreningen för lerforskning. Meddelande (14), 8–12.Meddelande (14), 8–12.Vareikiene, Olga; Marmo, Jukka; Kadunas, Valentinas; Lind-

qvist, Kristian 2003. Mineral mode of occurrence of selectedMineral mode of occurrence of selectedelements in the fine fraction of soil (horizon A1) of AsmenaHighlands, Lithuania. Geologija (42), 9–18.Geologija (42), 9–18.Vareikiene, Olga; Lehtonen, Marja 2004. Heavy minerals inHeavy minerals in

the study of soil : techniques, their limitations and advantages. Geologija (46), 1–7.Veski, Siim;Seppä, Heikki;Ojala,Antti E. K. 2004.Cold eventCold event

at 8200 yr B.P. recorded in annually laminated lake sediments ineastern Europe. Geology 32 (8), 681–684.Geology 32 (8), 681–684.Vesterbacka, P.; Mäkeläinen, I.; Tarvainen, T.; Hatakka, T.;

Arvela,H.2004.Kaivoveden luonnollinen radioaktiivisuus–otan-tatutkimus2001.Abstract:Natural radioactivity inprivatewells inAbstract:Natural radioactivity inprivatewells inFinland – a representative survey 2001 . STUK-A 199. 51 p.Viana, R. R.; Mänttäri, I.; Kunst, H.; Jordt-Evangelista, H.

2003. Age of pegmatites from eastern Brazil and implications ofAge of pegmatites from eastern Brazil and implications ofmica intergrowths on cooling rates and age calculations. Journalof SouthAmerican Earth Sciences 16 (6), 493–501.Virtanen, Kimmo; Herranen, Teuvo 2003. Piippolassa tutkitut

suot ja niiden turvevarat. Osa 2. Abstract: The mires and peatOsa 2. Abstract: The mires and peat reserves in the municipality of Piippola, central Finland. PartPart

Page 101: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of Finland, Special Paper 38Papers published by Geological survey of Finland staff in 2003-2004

100

2. Geologian tutkimuskeskus. Turvetutkimusraportti 344. 78 p. + 4 app.Virtanen, Kimmo; Hänninen, Pekka; Kallinen, Riitta-Liisa;

Vartiainen, Sirkka; Herranen, Teuvo; Jokisaari, Ritva 2003.Suomen turvevarat 2000. Summary:The peat reserves of Finlandin 2000. Geologian tutkimuskeskus. Tutkimusraportti 156 . 101Geologian tutkimuskeskus. Tutkimusraportti 156 . 101p. + 7 app.Virtanen, Kimmo; Kallinen, Riitta-Liisa; Herranen, Teuvo

2003. Alavieskassa tutkitut suot ja niiden turvevarat. Abstract:Abstract:The mires and peat reserves in the municipality of Alavieska,western Finland. Geologian tutkimuskeskus. Turvetutkimusra-Geologian tutkimuskeskus. Turvetutkimusra-portti 345. 47 p. + 4 app.Virtanen, Kimmo 2004. Arseeni Pohjois-Pohjanmaan soiden

turvekerrostumissa.Summary:Arsenic inpeat in theOstrobothnianSummary:Arsenic inpeat in theOstrobothnianarea,northernFinland. In:Loukola-Ruskeeniemi,K.&Lahermo,In:Loukola-Ruskeeniemi,K. &Lahermo,P. (eds.) Arseeni Suomen luonnossa, ympäristövaikutukset jariskit. Espoo: Geologian tutkimuskeskus, 51–58.Virtanen, Kimmo 2004. Peat geological surveys and peat re-

sources in Finland. Peatlands International (2), 40–41.Virtanen,Kimmo;Lerssi, Jouni2004.Airbornegammaradiation

data : use of peat thickness estimation. In: Lappalainen, E. (ed.)In: Lappalainen, E. (ed.) Vitality and peace of mind from Great Teuravuoma aapa mire :post congress excursion to Lapland, 11–16 June, 2004, 50–51.Virtasalo, Joonas;Kotilainen,Aarno2004.Trackingpost-glacialTrackingpost-glacial

environmentalchange in theArchipelagoSeausingbiogenic sedi-ment structures. In: Puura, I., Tuuling, I. & Hang, T. (eds.) TheBaltic : the Eighth Marine Geological Conference, September 23–28, 2004, Tartu, Estonia : abstracts, excursion guide. Tartu:University of Tartu, Institute of Geology, 59.Vuollo, J. I.; Huhma, H.; Stepanov, V.; Fedotov, G. 2002.

Geochemistry and Sm-Nd isotope studies of a 2.45 Ga dykeswarm : hints at parentalmagma composition and PGE potentialto Fennoscandian layered intrusions. In: Boudreau, A. (ed.) 9thInternational Platinum Symposium, 21–25 July, 2002, Billings,Montana,USA : extended abstracts. Billings,MT:DukeUniver-sity, 469–470.Vuori, Saku K. 2004. Petrogenesis of the Jurassic gabbroic in-Petrogenesis of the Jurassic gabbroic in-

trusions ofVestfjella,DronningMaudLand,Antarctica. Helsinki:Helsinki:University of Helsinki. 102 p.Weihed, Pär;BergmanWeihed, Jeanette;Sorjonen-Ward, Peter

2003. Structural evolution of theBjörkdal gold deposit, Skelleftedistrict, northern Sweden : implications for early Proterozoicme-sothermal gold in the late stage of the Svecokarelian orogen. In:Sundblad, K. & Cook, N. J. (eds.) A group of papers devoted tothe metallogeny of gold in the Fennoscandian Shield. EconomicGeology 98 (7), 1291–1309.Weihed, Pär; Eilu, Pasi 2003. Gold, Fe oxide-Cu-Au andVMS

metallogenyof theFennoscandianShield. In:Eliopoulos,D.G. ...In:Eliopoulos,D. G. ... [et al.] (eds.) Mineral exploration and sustainable development :proceedingsof theSeventhBiennialSGAMeeting,Athens,Greece,24–28August 2003. Vol. 2. Rotterdam: Millpress, 1123–1126.Weihed, Pär (ed.); Eilu, Pasi (ed.) 2003. FeOx-Cu-Au, VMS,FeOx-Cu-Au, VMS,

and orogenic gold deposits in light of the tectonic evolution ofthe Fennoscandian Shield. In: Eliopoulos, D. G. ... [et al.] (eds.)In: Eliopoulos, D. G. ... [et al.] (eds.)[et al.] (eds.) Mineral exploration and sustainable development : proceedings of the Seventh Biennial SGA Meeting, Athens, Greece, 24–28August 2003. Vol. 2. Rotterdam:Millpress, 1055–1130.Werme, Lars;King, Fraser;Ahonen, Lasse;Taxén,Claes;Vuo-

rinen, Ulla 2004. KBS-TR-90 twenty-five years on – progress inthe understanding of the long-term corrosion behaviour of copper canisters. In: Oversby, V. M. & Werme, L. O. (eds.) ScientificBasis for Nuclear Waste Management XXVII. Symposium heldJune 15–19, 2003, Kalmar, Sweden. Materials Research Societysymposium proceedings 807, 417–422.Werner, S. C.; Plado, J.; Pesonen, L. J.; Janle, P.; Elo, S. 2002.

Potential fields and subsurfacemodels of Suvasvesi North impactstructure, Finland. In:Aubourg,C. ... [et al.] (eds.) Rockmagnet-ism and its applications. Physics and Chemistry of the Earth 27 (25–31), 1237–1245.Yakhnin,E.Ya.;Tomilina,O.V.;Chekushin,V.A.;Salminen,R.

2003. Sravnitel’nyjanalizdannyho sostave atmosfernyhosadkovi sneznogo pokrova na territoriiLeningradskoj oblasti iÛgo-vos-tocnoj Finlândii i utocnenie parametrov atmosfernogo vypadeniâtâzelyh metallov. Ekologiceskaâ himiâ 12 (1), 1–12.Yli-Halla, Markku; Talkkari, Ari; Nyholm, Rainer; Nevalai-

nen, Raimo; Lerssi, Jouni; Väänänen, Tapio; Tamminen, Pekka;Starr, Michael 2003. Numeerinen Suomen maannostietokantamittakaavassa 1:250 000 – pilottihanke. Abstract:GeoreferencedAbstract:Georeferencedsoil database of Finland at scale 1:250,000 – pilot project. MTT:nMTT:nselvityksiä 44. 52 p. + 1 app.

Page 102: gical Sur Geological Survey of Finland Current Research ...tupa.gtk.fi/julkaisu/specialpaper/sp_038.pdf · Geological Survey of Finland, Current Research 2003–2004, Edited by SiniAutio

Geological Survey of FinlandCurrent Research 2003-2004

Geological Survey of FinlandEspoo 2005

Geological Survey of Finland, Special Paper 38

Edited by Sini Autio

Tätä julkaisua myy Denna publikation säljes av This publication can be obtained from

GEOLOGIAN GEOLOGISKA GEOLOGICAL SURVEYTUTKIMUSKESKUS (GTK) FORSKNINGSCENTRALEN (GTK) OF FINLAND (GTK)Julkaisumyynti Publikationsförsäljning Publication salesPL 96 PB 96 P.O. Box 9602151 Espoo 02151 Esbo FI-02151 Espoo, Finland( 020 550 11 ( 020 550 11 ( +358 20 550 11Telekopio: 020 550 12 Telefax: 020 550 12 Telefax: +358 20 550 12

GTK, Kuopion yksikkö GTK, Kuopio enhet GTK, Kuopio UnitKirjasto Biblioteket LibraryPL 1237 PB 1237 P.O. Box 123770211 Kuopio 70211 Kuopio FI-70211 Kuopio, Finland( 020 550 11 ( 020 550 11 ( +358 20 550 11Telekopio: 020 550 13 Telefax: 020 550 13 Telefax: +358 20 550 13

GTK, Rovaniemen yksikkö GTK, Rovaniemi enhet GTK, Rovaniemi UnitKirjasto Biblioteket LibraryPL 77 PB 77 P.O. Box 7796101 Rovaniemi 96101 Rovaniemi FI-96101 Rovaniemi, Finland( 020 550 11 ( 020 550 11 ( +358 20 550 11Telekopio: 020 550 14 Telefax: 020 550 14 Telefax: +358 20 550 14

E-mail: [email protected] ISBN 951-690-916-7WWW-address: www.gtk.fi ISSN 0782-8535

Geological Sur ve y of F

inland, Curr ent R

esearch 2003 – 2004S

ini A

utio (ed.)

selkä 7,5 mm

9 789516 909168