giroler-sulfide process physical properties

194
AECL-5702 ATOMIC ENERGY m£tt L'ENERGIE ATOMIQOE OF CANADA LIMITED fi&Jr DU CANADA LIMITEE GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES by H.J. NEUBURG, J.F. ATHERLEY and L.G. WALKER Chalk River Nuclear Laboratories Chalk River, Ontario May 1977

Upload: phungbao

Post on 04-Jan-2017

221 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

AECL-5702

ATOMIC ENERGY m£tt L'ENERGIE ATOMIQOEOF CANADA LIMITED f i & J r DU CANADA LIMITEE

GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

by

H.J. NEUBURG, J.F. ATHERLEY and L.G. WALKER

Chalk River Nuclear Laboratories

Chalk River, Ontario

May 1977

Page 2: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

GIRVLER-SULFIVE PROCESS PHYSICAL PROPERTIES

by

H.3. Uzu.bu.KQ, J.F. kthzilty and L.G. Walkzx.

Chemical Engineering BranchChalk River Nuclear Laboratories

Chalk River, Ontario

May 1977

AECL-5702

Page 3: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

Propriétés physiques du procédé GS

par

H.J. Neuburg, J.F. Atherley et L.G. Walker

Résumé

On a déterminé les propriétés physiques du sulfure d'hydrogènepur et des solutions gazeuses et liquides du système H2S-H2O. Onprésente des tableaux couvrant quarante-neuf propriétés différentesdans le domaine des pressions et des températures d'intérêt pour leprocédé GS (Girdler-Sulfi'de) de production d'eau lourde. Toutesles propriétés sont présentées en unités SI.

Un programme machine permettant de calculer les propriétés descomposants purs ainsi que les mélanges gazeux et les solutionsliquides dans des conditions saturées et non-saturées est inclus.

Ce manuel est une édition complètement révisée du rapportAECL-4255. Son but est de servir de répertoire standard despropriétés physiques dans les usines d'eau lourde GS du Canada.

L'Energie Atomique du Canada, LimitéeLaboratoires Nucléaires de Chalk River

Chalk River, Ontario

Avril 1977

AECL-57O2

Page 4: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

GIRPLER-SULFZPE PROCESS PHVS1CAL PROPERTIES

by

H.3. Unu.bu.fLQ, J . F . Ath<LHlo.y and L.G. Walke.1

ABSTRACT

Physical properties of pure hydrogen sulfide and ofgaseous and liquid solutions of the H2S-H20 system have beenformulated. Tables for forty-nine different properties in thepressure and temperature range of interest to the Girdler-Sulfide(GS) process for heavy water production are given. All propertieare presented in SI units.

A computer program capable of calculating propertiesof the pure components as well as gaseous mixtures and liquidsolutions at saturated and non-saturated conditions isincluded.

The present handbook is a completely revised editionof Atomic Energy of Canada Limited Report AECL-4255, and isintended to be used as a standard physical property packageat the GS heavy water plants in Canada.

Chemical Engineering BranchChalk River Nuclear Laboratories

Chalk River, Ontario

May 1977

AECL-5702

Page 5: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

TABLE OF CONTENTS

Pag<

1. INTRODUCTION 1

2. PHASE DIAGRAMS OF GS PROCESS MATERIALS 4

2.1 P-V-T Surfaces of Pure H2O and H2S 52.2 P-T-X(Y) Surfaces for the Binary System 5

3. FIXED POINT PROPERTIES OF WATER, HYDROGEN SULFIDE 14AND THE BINARY SYSTEM H20-H2S

3.1 Fixed Point and Condensed Thermophysical 14Data for Water

3.2 Fixed Point Properties of H2S and Quadruple 14Point Properties of the H2O-H2S System

4. THERMOPHYSICAL PROPERTIES OF HYDROGEN SULFIDE 21

4.1 Vapour Phase Properties of H2S 21

4.1.1 P-V-T Properties and Equations of 21State

4.1.2 Heat Capacity of H2S as an Ideal Gas 244.1.3 Enthalpy of H2S Gas 254.1.4 Entropy of H2S Gas 264.1.5 Fugacity of H2S Gas 214.1.6 Joule-Thomson Coefficient of H2S 28

4.2 Properties of Liquid and Gaseous H2S Along 30the Saturation Line

4.2.1 Orthobaric Densities and Molar Volumcr 30at Saturation

4.2.2 Saturation Vapour Pressure 31A.?. .3 Heat of Vaporization 324.2.4 Enthalpy of Saturated H2S Gas 324.:?. 5 Enthalpy of Saturated H2S Liquid 334.2.6 Heat Capacity of Liquid H2S at 33

Saturation

4.3 Transport Properties of Pure H2S 34

4.3.1 Viscosity of H2S Gas 344.3.2 Viscosity of H2S Liquid 364.3.3 Thermal Conductivity of H2S Gas 374.3.4 Thermal Conductivity of H2S Liquid 384.3.5 Surface Tension of Liquid H2S 39

Page 6: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

TABLE OF CONTENTS (Continued)

Page

THERMOPHYSICAL PROPERTIES OF THE H2O-H2S SYSTEM 46

5.1 Liquid-Vapour Equilibrium Properties of the 46H2O-H2S System

5.1.1 Vapour-Liquid Equilibrium Compositions 465.1.2 Gas-Phase Fugacity Coefficients 485.1.3 Henry's Law Constant 505.1.4 Activity Coefficients 525.1.5 Densities of Aqueous Solutions of H2S; 53

Apparent and Partial Molar Volume ofDissolved H2S

5.1.6 Molecular Weight of Solutions and Humid 54Vapour

5.1.7 Compressibility Factor and Density of 55Humid Vapour

5.1.8 Enthalpy of Humid H2S 555.1.9 Entropy of Humid H2S 585.1.10 Heat of Solution of H2S in Water 595.1.11 Enthalpy of H20 Liquid Saturated with 60

Dissolved H2S Gas5.1.12 Liquefaction Temperature of H2S in H20 61

Mixtures5.1.13 Hydrate Formation Temperature 62

5.2 Transport Properties of Saturated Solutions 62

5.2.1 Viscosity of H2S Gas Saturated with 62Water Vapour

5.2.2 Viscosity of H2S Saturated Aqueous 64Solutions

5.2.3 Thermal Conductivity of H2S Gas 66Saturated with Water Vapour

5.2.4 Thermal Conductivity of H2S Saturated 67Aqueous Solutions

5.2.5 Diffusion Coefficient of H20 in H2S 69Gas

5.2.6 Diffusion Coefficient of H2S in H20 71Liquid

5.2.7 Surface Tension of Water Against H2S 72Vapour

Page 7: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

TABLE OF CONTENTS (Continued)

Page

6. DEUTERIUM EXCHANGE EQUILIBRIUM 83

6.1 Equilibrium Constant for D Exchange Between 83H20 and HDS

6.2 Relative Volatility of (HD0/H20)g to 84(HDO/H2OH

6.3 Relative Volatility of (HDS/H2S)cr to 84(HDS/H2S)£

6.4 Heat of Reaction for D Exchange Between 85H20 and HDS

6.5 Equilibrium Constant for Distribution of D 85in H20

6.6 Equilibrium Constant for Distribution of D 85• in H2S

6.7 Overall Distribution Coefficient (3) 86

7. COMPUTER PROGRAM FOR CALCULATING PHYSICAL 93PROPERTIES OF GS PROCESS MATERIALS

APPENDIX A T. Tables of Properties 106

APPENDIX B - Conversion Factors 184

Page 8: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

7. IHTROVUCTIQU

A basic set of physical properties of the H2S-H20system is required for calculations related to the Girdler-Sulfide (GS) process for production of heavy water and theassociated distillation units. The earliest collections ofsuch properties were made by Spevack (1) and at SavannahRiver (2,3). The Lummus Company assembled their own set ofproperties for designing the Port Hawkesbury and Bruce plants,and Canatom Ltd. have made a collection of properties inconjunction with Atomic Energy of Canada Limited (AECL), forthe rehabilitation of the Glace Bay Heavy Water Plant. OntarioHydro (4) have produced a set of properties in the InternationalSystems of Units (SI) for use at the Bruce Heavy Water Plant,and a collection of properties was also made by the IndianAtomic Energy Commission (5).

When GS Process studies commenced at Chalk RiverNuclear Laboratories (CRNL) in 1969, the properties usedinitially were those reported by Burgess et al. (6), but itwas found that in many instances these were not as accurate asdesirable especially with respect to enthalpies. In an effortto overcome the lack of information on some of the properties,AECL with the collaboration of Canatom published AECL-4255 (7)which was the most complete account of properties of the H2S-H20system so far reported, and was recommended for adoption as thestandard physical property package for all the heavy water plantsin Canada. Unfortunately, no better solubility data for H2S inH20 than those reported by Selleck et al. (8) were available atthe time. The polynomial functions fitted to those data by Burgesiet al. were used in manual AECL-4255. The experimental data ofSelleck et al. presented only a few points in the pressure-temperature region of interest to the GS process so that thesolubility and humidity data used in GS process calculationswere in large measure dependent on conditions outside the regionof real importance. Since most of the properties concerning thesaturated vapour and liquid phases are functions of humidity andsolubility respectively, the need to have a reliable model forthe equilibrium of the H2S-H2O system in the GS process regionbecame evident.

Page 9: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

• 2 -

The present publication is a completely revisededition of AECL-4255. A therraodynamic model for theequilibrium of the H2S-H20 system in the GS process regionwas developed. The model was based on the extensivesolubility data measured more recently by Mather (9) inthe region of 10°to 180°C and 155 to 6670 kPa. The Redlich-Kwong equation of state is used to calculate fugacitycoefficients and P-V-T behaviour for pure H2S gas andH2S-H20 gas mixtures, which is preferable for highpressure systems over the virial type of equation used inmanual AECL-4255.

Many properties calculated in AECL-4255 have beenincluded without modification in the present manual, mainlythose concerning deuterium exchange equilibrium and transportproperties of pure compounds. All properties of mixtures havebeen recalculated and many new ones have been introduced. Itwas established that the predictions are generally in excellentagreement with experimental measurements whenever they areavailable; unfortunately quite a few of the properties calculatedhere stem from fundamental relationships and cannot be checkedagainst experimental evidence. Measurements of these wouldbe advantageous to confirm or to modify these calculations.

All properties in the present report are given in SIunits and tables for forty-nine different properties areappended covering mostly the P,T range of interest to the GSprocess. Figures and bibliographic references are includedat the end of each section, and the nomenclature of equationsis given following each formula. Computer function subroutinesfor most of the tabulated properties are appended. A detaileddescription of the use and limitations of this computer programis included.

Revisions and updating of this report will be made withthe publication of new and more accurate data, or when there isneed of new sections.

REFERENCES

1. Spevack, J.S., "The Concentration of Deuterium by theS Process. I. Fundamental Principles and Basic Methodof Calculation", USAEC Report A-393, Office Tech. Services,U.S. Dept. Commerce (1942).

Page 10: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

— 3 —

Bebbington, W.P., Thayer, V.R., and Proctor, J.F.,"Production of Heavy Water - Savannah River and DanaPlants Technical Manual", USAEC Report DP-400, OfficeTech. Services, U.S. Dept. Commerce (1959).

Polh, H.A., and Hull, H.L., "Thermal Behaviour ofCountercurrent Equipment", USAEC Report DP-97, OfficeTech. Services, U.S. Dept. Commerce (1955).

Meranda, D.G., "Physical Properties of H2O-H2S System",Hydro Electric Power Commission of Ontario, ReportCNS-IR-70, January 1971.

Bhargava, R.K., et al., "Thermodynamic Properties ofH2S-H20 System", Government of India Atomic EnergyCommission, Report B.A.R.C.-316, Bhaba Atomic ResearchCentre, Bombay, India (1968).

Burgess, M.P., and Raymond, P.G., "Physical Propertiesof Hydrogen Sulfide-Water Mixtures", AIChE Journal,15(2), 272 (1969).

Galley, M.R., Miller, A.I., Atherley, J.F., and Mohn, M.,"GS Process Physical Properties", Atomic Energy of CanadaLimited Report No. AECL-4255 (1972).

Selleck, F.T., Carmichael, L.T., and Sage, B.H., "PhaseBehaviour in the Hydrogen Sulfide-Water System", Ind.Eng. Chem., 44 (9), 2219 (1952).

Mather, A.E., "Composition of the Co-existing Phases inthe Hydrogen Sulfide-Water System", Atomic Energy of CanadaLimited Unpublished Internal Report, June 26, 1974.

Page 11: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

— 4 —

f. PHASE V1AGRAMS OF GS PROCESS MATERIALS

A knowledge of the phase properties of materials isfrequently required in planning laboratory work as well as inthe development of plant processes. These properties includethe nature of the phase (whether gas, liquid, or solid) as wellas the composition. This information is conveniently summarizedgraphically usually by outlining the regions of stability forthe various phases. The diagram may be two or three dimensionaldepending on the number of components involved as well as thenumber of independent variables. The kind of information soughtmost frequently, which is readily available from the phasediagram, ranges from the simple question of what equilibriumphase is to be expected under a given system temperature,pressure and'composition, to a quantitative use of the diagramin determining the relative proportions zf various phasesafter a phase transformation. The phase rule of J.W. Gibbs isa statement of the number of degrees of freedom, F, that mustbe specified for a heterogeneous system of various phases andcomponent substances to be in thermal, mechanical, and chemicalequilibrium. If F is non-zero there is freedom to change someintensive property of the system such as temperature, pressure,or composition without altering the number of phases present.If the equation of state (a statement of the behaviour) of thesystem is determined only by temperature, pressure, and composition,the degrees of freedom for a system of C components and P phasesare given by F=C-P+2. For a single pure substance, the systembecomes invariant when three phases coexist; so long as thesethree are present (their relative amounts are immaterial) thepressure and temperature have definite invariant values. Whatthese values are must be determined by measurement. In the caseof pure water, the temperature of the invariant triple point forcoexisting gas, liquid and solid, is the basis of the absolutetemperature scale and was set arbitrarily at exactly 273.16 K.A binary system becomes invariant when four phases coexist. Inevaluating the value of P, each distinct solid phase or immiscibleliquid constitutes a different phase. At least one invariantcondition exists in these simple systems and frequently many areobserved in those that show various polymorphic crystalline statesor show compound (e.g., hydrate) formation.

Thermodynamic principles alone such as the phase ruleare unable to give any indication of the conditions of temperature,pressure, or composition required to ensure the existence orstability of a phase nor the positions of phase boundaries andinvariant points in the diagrams. However, thermodynamic re-lations when combined with valid experimental results enable one

Page 12: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 5 -

to calculate the properties of a phase under conditionsslightly removed from the measured ones. For example,the boundaries of the stability regions for the variousphases are frequently mapped on the diagrams using relationssuch as the Clapeyron equation, one of the most useful inthis regard.

2.7 P-I/-T Su/i6ac.e.& o& Vaftz H20 and H2S

Figures 2.1 and 2.2 illustrate the P-V-T surfacesof the various easily observed phases for pure H20 and H2Srespectively. The figures show primarily, as three dimensionalmodels, the specific volume of the substance as a function ofpressure and temperature. The various phases are easily seenbecause of the usually marked change in density along theboundaries for their coexistence. These figures also show tneprojections of the stability regions on the T-V, P-T, and P-Vplanes where the corresponding phase diagrams are displayed.The P-V and P-T diagrams show various isotherms and isochoresrespectively, whereas the isobars have been deleted on the T-Vdiagrams to emphasize the other features shown. The figures alsoillustrate the critical point and a triple point representingthe invariant nature of a single-component system when solid,liquid and gas coexist (a "triple point line" has been drawnjoining the specific volume points corresponding to solid,liquid, and gas phases on the P-V-T surface, and in the P-Vand T-V diagrams).

2.2 ?-T-K[V) SafL^aati ion the. Blnaiy Syitzm

For a two-component system existing as a single phase,three variables, i.e., temperature, pressure, and concentration,are necessary to fu ".y describe the system. The complete andsimultaneous representation of these variables in a phasediagram requires three axis, that is, a solid model. Planescan be passed through the model at convenient locations todescribe the behaviour of the system with variation of twocoordinates. As an illustration, P-T, P-X(Y) and T-X(Y)diagrams were constructed, and are presented in Figures 2.3,2.4, 2.5 and 2.6.

The P-T diagram of Figure 2.3 shows the regions ofcoexistence of two phases, the solid lines of three-phasecoexistence and two quadruple points where four phases are

Page 13: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 6 -

coexisting. The information needed to represent the severallines and fixed points on this diagram was obtained from theexperimental data of Selleck et al. (1). The point of coldtower operation in the GS process is about 31°C and 2070 kPaand it can be seen from Figure 2.3 that it lies in the regionwhere aqueous liquid and gas can coexist; if the pressure isincreased to about 2300 kPa at 31°C, liquid E2S (saturated withwater) will appear in the solution, and if the temperature in thetower drops to about 29 C at 2070 kPa, a solid hydrate (6H2S-46H2O)will be formed.

The P-X diagrams shown in Figures 2.4 and 2.5 wereconstructed at constant temperatures of 25°C and 37.8°C. Thelast temperature was chosen because experimental data wereavailable for the aqueous liquid saturation line and the dew-point line over a limited pressure region. Also the compositionof the water-saturated liquid H2S (hydrogen sulfide - rich liquid)in equilibrium with aqueous liquid has been measured at 37.8°C (1).The experimental points are plotted together with the predictedsaturation lines in Figure 2.5, and the extrapolation of theselines to the low pressure region was achieved with a model for theliquid and vapour phase equilibrium compositions of the H2S-H20system. This is explained in Section 5. The liquefactionpressures of H2S and the hydrate (6H2S-46H2O) formation pressureswere determined from the equations given by Burgess et al. (2).The P-X diagram at 25°C (Figure 2.4) was constructed from thesame equilibrium model. In Figures 2.4, 2.5 and 2.6, the molefraction coordinate was magnified at the low and high H2S con-centration extremes to give a better picture of the saturationlines. Figure 2.4 shows that if the pressure is increased at25°C, hydrate will be formed first; whereas at 37.8°C (Figure 2.5),H2S liquid will appear in solution before the hydrate is formed.If the temperature is 29.5°C, both hydrate and H2S liquid wouldform simultaneously at 2238.8 kPa, one of the quadruple pointconditions.

Figure 2.6 shows a temperature-composition diagram at aconstant pressure of 2.05 MPa (cold tower GS process operatingpressure). The saturation lines and the hydrate and liquid H2Sformation temperatures were determined as before. It can beobserved from this figure that by decreasing the temperature to28.7°C hydrate will be formed, and a further decrease in temperatureto 26°C will result in the additional formation of H2S liquid (formost proportions of H2S and H20).

Page 14: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 7 -

REFEREHCES

1. Selleck, P.T., Carmichael, L.T., and Sage, B.H., Ind.Eng. Chem., 44 (9), 2219 (1952).

2. Burgess, M.P. , and Germann, R.P. , AIChE Journal, 3.5 (2),273 (1969). —

Page 15: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

8 -

GAS^Criticol point

/ CritMCrilicol isotherm

^.LIOUID

'LIQUID

\ VAPOR

Triple point line \

C E "

SOUO-SOUD

-Triple poinl# .SOUO-UQWO/ /

Isometrics

LIQUID. M S

FIGURE 2.1 p-V-T SURFACE AND PROjECliONS FOR FLO

FROM DAVID M. HIMMELBLAU, BASIC PRINCIPLES AND CALCULATIONS INCHEMICAL ENGINEERING, 3rd ed., (CJ 1974, pp. 220-221. REPRINTEDBY PERMISSION OF PRENTICE-HALL, INC., ENGLEWOOD CLIFFS, NEWJERSEY, U.S.A.

Page 16: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

GAS,Critical point

jf Criticol isotherm

FIGURE 2.2 p-V-T SURFACE AND PROJECTIONS FOR H 2S

ADAPTED FROM DAVID M. HtMMELBLAU. BASIC PRINCIPLES AND CALCULATIONSIN CHEMICAL ENGINEERING, 3rd ed., (£) 197^, pp. 220-221. REPRINTEDBV PERMISSION OF PRENTJCE-HALL, INC., ENGLEWOOD CLIFFS, NEW JERSEY,U.S.A.

Page 17: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 10-

=3COtoUJCdQ_

10<

7

5

HYDRATE ANDH 2S LIQUID 00

H 2S LIQUID AND flQUEOUS LIQUID

AQUEOUS LIQUID AND GAS

QUADRUPLE POINT:, AQUEOUS LIQUID, ICE AND GAS

CRITICAL

Gas

-10 0 10 20 30 40 50 60 70 80 90 1G0 110 120

TEMPERATURE °C

F I G U R E 2.3 PRESSURE - TEMPERATURE DIAGRAM FOR HYDROGEN SULFI DE-WATER SYSTEM

Page 18: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 1 -

-a:

CC

azQ.

3000

2000 "

1000 -

100

50

20

10

AQUEOUSLIQUID ,

^AQUEOUSLIQUID ANDHYDRATE

H2S LIQUID-

HYDRATE AND LIQUID H2S

HYDRATE AND GAS

AQUEOUS LIQUID AND GAS

GAS

F I G U R E l.k

PRESSURE - COMPOSITIONWATER - HYDROGEN SULFIDE

25°C

I I I 10.04 0.08 0.1 0.3 0.5 0.7 0.9 0.92

MOLE FRACTION HYDROGEN SULFIDE

0.96 1.0

Page 19: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-12-

3 0 0 0 -

2000

1000

500

HYDRATE AND H2S LIQUID

' /AQUEOUS LIQUID AND H2S L I I

/AQUEOUS LIQUID> AND I./DRATE

200

100

10

iL

AQUEOUS LIQUID AND GAS

H 2S LIQUID

GAS

FIGURE 2.5

PRESSURE - COMPOSITIONWATER - HYDROGEN SULFIDE

37.8°C

I I0.04 0 08 0 1 0.3 0.5 0.7 0.9 0.92

MOLE FRACTION HYDROGEN SULFIDE0.96 1 0

Page 20: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-13-

150AQUEOUS LIQUID

AND GAS

100

UJ

cc

cc

50

AQUEOUSLIQUID

I

AQUEOUS\ LIQUID ANDV HYDRATE

HYDRATEAND GAS

GAS

FIGURE 2.6

TEMPERATUREWATER

P =

COMPOSITIONHYDROGENSULFIDE2.05 MPa

I I I

HYDRATEAND H2S LIQUID

• , I i

LIQU11

I0 .02 .06 .1 .2 .3 A .5 .6 .7 .8 .9 .92 .94 .96 .98 1

MOLE FRACTION HYDROGEN SULFIDE

Page 21: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

— 14 —

3. FTXEP P0IWT PROPERTIES OF WATER, HVVROGEN SULF1VE, ANV THEBINARY SYSTEM H20-HzS

3.1 Tlxzd Point and Condzntzd Thufimophysical Data faon. Watzfi

Table 3.1 presents the important fixed point propertiesof water. Table 3.2 shows the important thennophysicalproperties of liquid water at the saturation vapour pressurein the range 0 to 230°C. The enthalpy of subcooled liquidwater over the temperature range 30 to 220 C, required in thecalculation of aqueous H2S solution enthalpies, is generatedfrom the formulation presented in the manual of the "Propertiesof Water and'Steam in SI Units" (1).

3.2 Fixed Point ?fiope.fitie.* o& HZS and Qjxadn.ix.plz. Point Pnopz.fitle.liO|J thz H2Q-HZS

Selected thennophysical properties of H2S are given inTable 3.3 for the primary triple point, the normal boilingstate and the critical state. Important properties of the H2O-H2Ssystem at the major quadruple points are presented in Table 3.4.

REFERENCE

1. E. Schmidt, "Properties of Water and Steam in SI Units",Springer-Verlarg, West Berlin (1969).

Page 22: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 15-

TABLE 3.1

PHYSICAL CONSTANTS OF WATER

Property Reference

Molecular weight H20 18.05 g/moloc K

Triple point temperature 0.01 273.16 (1)Freezing point temperature 0.00 273.15 (1)Normal boiling point 100.00 373.15 (1)Critical temperature 374.15 647.30 (2)

Critical pressure 22.04 MPa (2)Critical density 0.317 kg/dm3 (2)

Critical volume 3.15 dm3/kg; 56.7 cm3/tnol (3)

Critical compressibilityfactor, Z 0.232Pitzer accentric factor 0.348 (3)

Latent heat of fusion(273.16 K, 6.11 kPa) 6.008 kJ/mol (4)Latent heat of vaporizationat normal boiling point 40.656 kJ/mol (4)

Redlich-Kwong constants,fia . 440 (5)

(gas) Qb .090

Page 23: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

TABLE 3 . 2

PHYSICAL PROPERTIES OF LIQUID WATER ALONG THE SATURATION CURVE FROM O - 2 2 O ° C ( b )

Tetiperatur*

°c X

O.O1 273.14251015202530

3234363840

4550556065

7075808590

95100105110115

120122124126128

1301321341-16138

Idn

145150160170

ISO190200210220230

275.15278.15283.15298.15293.15298.15303.15

305.15

309.15311.15313.15

318.15323.15328.15333.15338.15

343.15348.15353.15358.15363.15

368.15373.15378.15383.15388.15

393.15395.15397.15399.15401.15

403.15405.15407.15409.15411.15

413.15418.15423.15433.15443.15

453.15463.15473.154S3.15493.15503.15

VapourPressure(6)

JtPa

0.6110.7060.8721.231.702.343.174.24

4.76

5.956.637.38

9.5912.3515.7619.9425.03

31.193B.5847.3957.8370.14

64.55101.3120.8143.3169.1

198.5211.4225.0239.3254.4

270.1266.7304.1322.3341.4

361.4415.5476.0618.1792.0

1002.71255.11554.91907.72319.82797.6

Density<2)kg/dm'

0.999S0.99990.99990.99960.99910.99820.99710.9957

0.9950

0. 99370.99300.9923

0.99023.98800.98560.98310.9805

0.97770.97480.97170.96850.9652

0.96180.95830.95460.95070.9468

0.94290.94120.93960.93790.9362

0.93460.93280.93110.92940.9276

0.92580.92140.91680.90730.8973

0.88690.87600.86470.85280.84030.8273

Enthalpy(61kj/mcl

0.0000.1510.3780.7571.1351.5121.8892.266

2.4172.5672.7182.8683.019

3.3953.7714.1484.5244.901

5.2785.6556.0336.4126.790

7.1697.5497.9298.3108.692

9.0749.2279.3809.5349.688

9.8429.995

10.15010.30510.458

10.61311.00011.38712.17212.958

13.75114.55115.36016.17617.00517.845

Heat ofVaporization(6)

kJ/mol

45.06344.97844.85044.63644.42344.21143.99843.785

43.69943.61443.S2843.44343.357

43.14242.92442.70842.48842.266

42.04341.82041.59341.36241.132

40.89840.66040.42040.17339.925

39.67439.57239.46939.36639.254

39.15739.05338.9473R.83R3B.732

38.62438.34838.06937.50536.903

36.27815.62034.93434.21133.44932.647

RelativeEntropy(6)J/faol.K)

0.0000.5491.3712.7204.0445.3436.6197.871

8.3668.8589.3469.832

10.31

11.5112.6813.8314.9716.10

17.2018.2919.3720.4321.49

22.522 3.5424.5525.5526.54

27.5227.9128.2928.6629.06

29.4429.0230.203n.;830.95

31.3]32.2633. IB3'j.0036.79

38.5540.2842.0043.6'J45.3747.04

IsobaricHeat

Capacity 16)J/ftnol.K)

75.99

75.55

75.34

75.28

75.28

75.32

75.39

75.50

75.63

75.79

75.99

76.20

76.46

76.78

77.12

77.5778.0878.65

7'J.3280.0980,9681.9783.1084.40

Viscosity(71UPa.B

1786

1304

1002

798.3

653.9

547.8

467.3

404.8

355.4

315.6

283.1

254.8

231.0

210.9

194.1

179.8167.7157.4

148.5140.7133.9127.9122.4117.5

SurfaceTension(7)

<nN/m

75.60

74.24

72.78

71.23

69.61

67.93

66.19

64.40

62.57

60.69

5B.79

56.83

54.85

52.83

50.79

48.7046.5944.44

42.2640.0537.8135.533J.2330.90

ThermalConductivity 17)

W/(m.K|

0.569

0.587

O.iO3

0.618

0.631

0.643

0.653

0.662

0.670

0.676

0.681

0.684

0.687

0.688

0.688

0.6870.6840.681

0.6770.6710.6640.6570.6480.639

(a) The re la t ive entropy is obtained by substracting the absolute entropy of liquid water at the t r i p l e point from the absolute entropy ofliquid water at a given temperature and saturation vapour pressure. The absolute entropy of liquid water at the t r ip l e point i s 63.52J/{mol-X) including a residue entropy of 0.B1 j/(mol.K) at 0 K.

(b) Vapour pressures, enthalpies, heats of vaporization, and relat ive entroi ies of liquid vater arc based on the formulations preparedby the 1967 International Formulation Cw-iittee on the Properties of Steaii as compuud Dy L. Schmidt (6). The other properties inth is table use values published in the U70 UK Steam Tables in SI Units (7).

Page 24: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-17

REFERENCES FOR TABLES 3.7 and 3.2

1. The International Practical Temperature Scale of 1968.

2. Kell, G.S., "Thermodynamic and Transport Properties ofFluid Water", in "Water, A Comprehensive Treatise", Vol.1, F. Franks, ed., Plenum, New York, 1972.

3. Reid, R.C., and T.K. Sherwood, "The Properties of Gases andLiquids", 2nd ed., p. 584, McGraw-Hill, New York, 1966.

4. U.S. National Bureau of Standards, "Selected Values ofChemical Thermodynamic Properties, Series II", Bulletin500, p. 539, Washington, D.C., 19.

5. Besserer, G.J., Canatom MonMax Report No. 9003 - Part 2,1974.

6. E. Schmidt, "Properties of Water and Steam in SI Units",Springer-Verlag, West Berlin, 1969.

7. "UK Steam Tables in SI Units 1970", Edward Arnold, London1970.

Page 25: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-18-

TABLE 3.3

THERMOPHYSICAL PROPERTIES OF H2S AT FIXED POINTS

Property

Molecular weight

Melting point at 101.3 kPa, °C

Boiling point at 101.3 kPa, °C

Triple point temp (C,I-l-g), °C

Triple point pressure, kPa

Density of-solid (C,I) at triple point,kg/dm3

Thermodynamic Properties

AH (fusion) at triple point, kJ/mol

AH (sublimation) at triple point, kJ/mol

AH (evap) at normaj. boiling point, kJ/mol

Cp (solid I) at triple point, J/(mol.K)

Cp (liquid) at triple point, J/(mol.K)

Cp (ideal gas) at triple point, J/(mol.K)

Absolute entropy of solid I at triplepoint J/(mol.K)

Critical State Properties

Critical temperature, Tc (K)

Critical pressure, Pc (kPa)

Critical molar volume, Vc (dm3/mol)

Critical compressibility factor, Zc

Other Properties

Dipole moment (debye)

Pitzer accentric factor

Redlich-Kwong Constants fia(gas) ah

34

-83

-60

.080

.27

-85.75

22

1

2

19

1861.67.

33.

84.

373.

9010

0.

0.

0.

0.0.0.

.69

.1

.377

.292

.670

.49

.8

,37

,66

6

09771

283

98

0964

43400882

Referencesand Notes

1

a

2

23,b

3

3

3

33

3

3

44cd

5

e

66

REFERENCES

1. Babb, S.E., Jr., J. Chem. Phys. 51, 847 (1969).

Page 26: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

19-

2. Clark, A.M,. Cockett, A.H., and E' ner, H.S., Proc.Roy. Soc. A209, 408 (1951).

3. Giauque, W.F., and Blue, R.W., J. Am. Chem. Soc. 58,831 (1936). ~

4. Kobe, K.A., and Lynn, R.E., Jr., Chem. Revs. 52, 117(1953). ~~

5. McClellan, A.L., "Tables &J Experimental Dipole Moments",W.H. Freeman, San Francisco, 1963.

6. Chueh, P.L., and Prausnitz, J.M., I & EC Fundamentals,6, 492 (1967).

MOTES FOR TABLE 3.3

a) Value calculated from the vapour pressure data of E.C.W.Clarke and D.N. Glew, Can. J. Chem. 48, 764 (1970).

b) Value estimated by Giauque and Blue, Ref. 3 above.

c) Determined from the limiting orthobaric density at thecritical point.

d) Determined from the relation Zc = PCVC/RTC.

e) The Pitzer accentric factor is defined as W = -log(Ps/Pc)- 1.000 where Ps is the vapour pressure at reducedtemperature Tr = 0.700 (see G.N. Lewis and M. Randall,"Thermodynamics", revised by K.S. Pitzer and L. Brewer,McGraw-Hill, N.Y. 1961, Appendix 1). The vapour pressureof H2S at Tr = 0.700 was calculated from the formulationgiven in Section 4.2.2.

Page 27: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-20-

TABLE 3.4

PROPERTIES OF H2O-H2S SYSTEM AT QUADRUPLEPOINTS WITH COEXISTING VAPOUR PHASE

Pressure(kPa)

2239

93.1

Temperature(°C)

29.5

-0.39

MoleGas

0.9971a

FractionH2S

Liquid

0.997a

0.9872

of H2SAqueousLiquid

0.0329b

Coexisting RePhases

1. Hydrate,6H2S.46H2O

2. Aqueous liquid3. H2S rich liquid4. Humid vapour

1. Hydrate,6H2S.46H20

2. Aqueous liquid3. Ice (H20s)

ferenc*

1,2

3

4. Humid vapour

(a) Value of Selleck et al. (Reference 4) obtained by extrapolatinghigher temperature data.

(b) Value based on the work of E.A. Mather (unpublished results).

REFERENCES

1. Sage, B.H., and Lacey, W.N., "Some Properties of the LighterHydrocarbons, Hydrogen Sulfide, and Carbon Dioxide", AmericanPetroleum Institute Monograph on Project 37, New York, 1955,Section XXI.

2. Scheffer, F.E.C., Zeit. f. phys. Chem. 84, 734-45 (1913).

3. Scheffer, F.E.C., Proc. Koninkl. Nederland, Akad, Wetenschap.13, 829 (1911).

4. Selleck, F.T., Carmichael, L.J., and Sage, B.H., Ind. Eng. Chem.44, 2219 (1952).

Page 28: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

— 21 —

4. THEMOPHVSICAL PROPERTIES OF HVVROGEN SULTIVE

4.1 Vapoun. Pha&e. PKopzKtl<n> oh H2S

4.1.1 P-V-T Pxope.KtizA and Equation* o& State. {Table A-JJ

Numerous equations of state have been developed up tothe present time, and for many of these H2S has been used asa test substance (1).

Equations of state fall roughly into two categories:

a) the van der Waals type involving two or more parameterswhich attempt to account empirically for the free volumeof the gas and intermolecular attractions,

b) the virial type in which the compressibility factor isexpressed as a converging infinite series in reciprocalmolar volume (or density) or in pressure.

Leiden form: Z = Pv/RT = 1 + B/v + C/v2 + D/v3 + ... (4.1)

Berlin form: Z = 1 + B'P + C'P2 + D'P3 + ... (4.2)

The following relations exist between the first few coefficientsof these two infinite series:

B " RT

^ (RT)"

TV = (D - 3BC + 2B3)(RT3)

For a pure substance, the virial coefficients depend only ontemperature, while for gas mixtures composition enters as anadditional variable. The most satisfactory equation of thevan der Waals type is the empirical, two-parameter, Redlich-Kwong equation (2):

Page 29: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 2 2 -

- Pv _ v a ,, ,NZ = WT " TTTT TD (4.3)

RT v-b R T3/2 ( v + b )

constants a and b are related to the critical temperature andpressure by:

(4.4)

b - SlLRJ* (4.5)

Eq. (4.3) is a cubic in v which yields one real root above thecritical temperature and three real roots below the criticaltemperature. At saturation P,T conditions (dew point), thelargest root gives an accurate calculation of the molar volumeof the gas, and the smallest root gives an estimate of themolar volume of the saturated liquid.

Although the virial equation approach has the advantageof simplicity and a theoretical basis in the statisticalmechanics of intermolecular forces, it presents the drawbackof inadequate information on the coefficients beyond the second,particularly below the critical temperature. The lack ofknowledge about the third virial coefficient of water preventsa convenient description of saturated H2S-H2O gas mixtures underGS process conditions by the virial equation of state. It wasfound that Redlich-Kwong1s equation gave better results whenused in modelling the phase equilibria of the H2S-H20 system (3).

To be consistent in the use of the equation of state,Redlich-Kwong1s equation was employed in treating the propertiesof pure H2S under each of the following conditions:

a) superheated pure H2S vapour

b) pure H2S gas at temperatures above Tc (373.6 K) and atdensities less than half of the critical density

c) humid H2S in vapour-liquid equilibrium with aqueous solutions.

Page 30: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-23-

Quantitative data on the volumetric properties ofpure H2S gas are presently available from three primarysources, each covering fairly distinct pressure andtemperature ranges:

a) the low pressure and low temperature results of Wrightand Maass (4) extending from -35°C to 47°C with pressuresup to 0.40 MPa

b) the work of Reamer, Sage and Lacey (5) covering moderatetemperature and pressure ranges (4.4°C to 171°C withpressures up to 69 MPa)

c) the high temperature and high pressure results of Lewisand Fredericks (6) (100°C to 220 C with pressures between9.1 and 168 MPa).

During the development of the present work it was found thatRedlich-Kwong's equation of state gives good reproducibilityof the experimental measurements of molar volumes of pure H2Sgas in the P,T range of interest to the GS process. Table A-lgives the specific volume of dry H2S in the pressure range of1.3 to 2.3 MPa and temperatures between 20 and 180°C.

Other Equations of State for H2S Gas

Besides the Redlich-Kwong and the usual virial equations,several other equations have been used in the past for expressingP-V-T behaviour of compressed H2S. In most instances the valuesof the equation parameters are questionable. Also theirapplication to H20-H2S vapour mixtures is uncertain becauseof the empirical nature of their mixing rules. Many of theequations chosen previously to describe the behaviour of H2Shave outstanding reputations in predicting the volumetricbehaviour of well-studied gases such as the lighter hydrocarbons.However, their application to H2S is severely limited due to thescarcity of precise volumetric data particularly at temperaturesless than Tc.

West (7) used the five-constant Beattie-Bridgeman equationsfor calculating several thermodynamic properties of H2S with theconstants determined from those of N2 using corresponding statesscaling factors (8). A set of eight parameters for use with theBenedict-Webb-Rubin (BWR) virial type equation were determinedfor H2S by numerical analysis of P-V-T data from Sage and Lacey

1swork on CHit-H2S gas mixtures at temperatures between 71 C and138°C and pressures to 34.5 MPa (9). The parameters for CHi»were well known from previous work with this gas.

Page 31: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 2 4 -

Starling (10) extended to eleven the number ofparameters in the various density coefficients of the BWRequation for better results with low temperature gases.The eleven parameters were obtained from a regressionanalysis of the previously published volumetric data forH2S (5). As the data used are inaccurate for temperaturesbelow 100 C, some of the constar^ ~'n Starling's equationare of doubtful value.

Holleran (11) has developed a new type of stateequation that uses only three parameters and satisfies theprinciple of corresponding states. It is based on theobservation that for many non-polar and polar gases (watervapour excepted) a linear relation occurs between temperatureand gas density over a wide range of conditions where thecompressibility factor of the compressed gas is unity (theso-called "unit compressibility law"). Holleran shows thatH2S obeys the unit compressibility law within the accuracyof Lewis and Frederick's data for supercritical H2S. Theequation appears to hold for temperatures between Tc and 5 Tcand from zero to somewhat beyond the critical density.

4.7.2 Heat Capacity oi H2S a* an Id&al Gai,

The best published data on the constant pressure heatcapacity of H2S as an ideal gas, based on statistical mechanicalcalculations with spectroscopic data, have been expressed as aregression polynomial (12):

Cp* = 34.1242 - 1.35836 x 10"2T + 5.76578 x 10~sT2

- 3.56297 x 10"8T3 (4-6)

where, Cp* = molar isobaric heat capacity for the ideal gas,J/(mol.K)

T = temperature, K

Eq. (4.6) is recommended for use between 200 K and 620 K, whichadequately covers the temperature range of interest to the GSprocess.

The heat capacity at constant volume for the ideal gasis:

Cv* = Cp* - R (4.7)

where R is the molar gas constant (8.3143 J/(mol.K)).

Page 32: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 2 5 -

4.7.3 Enthalpy o$ H2S Ga.4 (Table. A-2)

Theoretical estimates of H2S enthalpy have been madeby West (7), Burgess et al. (13) and in AECL-4255 (14),using the method described by Dodge (15)• A different equationof state to describe P-V-T behaviour of H2S was used in eachcase. The fundamental equation for enthalpy is:

H(P,T) - H(PO,TO) = f (0\ dP +/ Cp*dt + / ( | p \ nd P < 4 ' 8 )

where H(P,T) = enthalpy of H2S at T,P, J/mol

H(P ,T ) = enthalpy of H2S at reference conditionsP0,T0( J/mol

P* = sufficiently low pressure such that the gasbehaves ideally, kPa

The reference state of zero enthalpy has been chosen as pureH2S taken as the vapour at To = 273.15 K and Po = 101.3 kPa.

After suitable transformations, eq. (48) converts to:

H(P,T) - H(PO,TO) = RTOU - ZO + f -£ (U) dv} +f Cp*dT

K v f

RT{Z - 1 +/ i (^1 dv> (4.9)'v

where Zo = compressibility factor at reference (TO,PO) conditions

Z = compressibility factor at final T,P conditions

v_ = molar volume of pure H2S at reference conditions,0 dmVmol

V£ = molar volume of pure H2S at final P,T conditions,dm3/mol

Page 33: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

Equation (4.9) can be further expanded in terms ofthe Redlich-Kwong equation of state. However, this is aspecial case of the expression for the enthalpy of humidH2S (when the mole fraction of water vapour is zero). Sincethe enthalpy of humid H2S is fully formulated in Section 5,eq. (4.9) will not be further developed at this stage.Enthalpy values of the pure H2S gas in the ranges of 20 Cto 180 C and 1.3 MPa to 2.3 MPa are presented in Table A-2.

4.1.4 Enttopy 0 (, H2S Gas [Table. A-3)

The absolute entropy of H2S as an ideal gas at thenormal boiling point was calculated from measured heatcapacities and heats of phase transitions in the temperaturerange from 6 to 212.9 K (16,17):

S* - (101.3 kPa, 212.9 K) = 194.0 ± 0.4 J/(mol.K)ri 2 £>

Absolute entropies of the real gas under other conditionsof temperature and pressure can be determined from the generalformulation.

-real gas ,„ p. _ -* , /bH2S U'F) " bH2S

+J212.9

Since in the present work the interest was to calculateentropies of H2S gas relative to the entropy of the purereal gas at 101.3 kPa and 273.15 K the following cycle wasemployed to perform the calculations:

-real gas ( T p ) _ s£eal gas (273.15 K, 101.3 kPa) =

(4.

Page 34: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 2 7 -

By noting that

/• P 2 / \ /-V2

l^\ dv

the Redlich-Kwong equation of state was used to yield:

qreal gas (r p. <,real gas (2T> -ic K 1(11 o kPfl\ _bH2S {i'e) bH2S U/J.ia «-. 101.J KFa;

/"T Cp*dT + R ^ v-b _ 0 5a ^ vr _ 0.5a £ n (v+b)

J213.15 V r" Tr' b V r T ' b

(4.12)

where a,b = Redlich-Kwong constants for H2S

T = reference temperature (273.15 K)

vr = reference molar volume of H2S, dm3/mol

v = final volume of H2S, dm3/mol

T = final temperature, K

Relative entropies of pure H2S in the range 1.3 to 2.3 MPa and20 to 180°C are presented in Table A-3.

4.1.5 Fugacity oh H2S Gat> [Tabto. A-4J

The fugacity of the real gas is related to the actual gaspressure through the equation:

f H Q = % Q P (T fixed) (4n 2 D n2 D

where f„ s = fugacity of the real gas, kPa

P = pressure of the pure H2S gas, kPa

<PW „ = fugacity coefficient

Page 35: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

•28-

When using the Redlich-Kwong equation of state, the fugacitycoefficient for pure H2S is conveniently expressed by theequation (18):

" RT / [p " In (-^ " RT / [p " J dv "

and after integration:

_v_ - (Z-l) -£nZ (4.15)

Fugacities for pure H2S gas predicted from eq. (4.15), deviatedby not more than 2 per cent from the fugacities calculated byHoffman and Weber (19) using the volumetric data of Reamer,Sage and Lacey (5) from the normal boiling point to the criticaltemperature of H2S and pressures from 101.3 kPa to 6900 kPa.

Fugacities of H2S in the ranges of 20 to 180°C and 1.3 to2.3 MPa are given in Table A-4.

4.1.6 3oule.-Thomi>on CQe.nie.lnnt oi H2S {Table. A-5)

The temperature change experienced by a gas throughadiabatic expansion is described by the Joule-Thomson coefficient,defined as

rA

(4.16)H

Eq. (4.16) can be converted into:

Cp \WJT

TOv/ST)- - v

Page 36: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 2 9 -

From the point of view of the pressure explicitRedlich-Kwong equation of state, the Joule-Thomson coefficientis better expressed as:

yJT = - (T(3P/3T)v/(3P/3v)T - v) (4.18)

T(3P/3T) - -5* + \ - * (4.19)

and

RT ( 4OP / 9 v )= ^ j _

1 Ti/2[v(v+b)]2 (v-b)2

The combination of eqs. (4.18), (4.19) and (4.20) was used tocalculate Joule-Thomson coefficients of pure H2S gas in thetemperature range of -60°C to 220°C and pressures from 100 to2800 kPa. The results are given in Table A-5. The symbol -Rin the table indicates that H2S is not in gaseous state underthese P,T conditions.

Another important feature is given by the fact that theJoule-Thomson effect gives rise to a cooling of the gas onlywhen MJX is positive. In certain regions of P,T yj^ is negativeand the gas will be heated by isoenthalpic expansion. The P.Tlocus when yjx is zero sets the limits of possibility forliquefying the gas by expansion.

For yjT = 0, eq. (4.18), (4.19) and (4.20) yield thefollowing cubic in molar volume.-

v3(5a-2RT3/2b) - v2(4RT3/2b2 + 7ab) - v(2RT3/2b3 + ab2) + 3ab3 = 0

(4.21)

For a given temperature the molar volume is found from eq. (4.21),and with v & T the pressure corresponding to the inversion curveis calculated from Redlich-Kwong's equation of state.

The Joule-Thomson coefficient inversion curve of H2S isillustrated in Figure 4.1.

Page 37: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 3 0 -

4.2 Vfiope-fLtlzA ofi liquid and Ga&zoui, H23 Along the. Saturation linn

4.2.1 Qtithobanlc. Ve.nAltle.6 and Molar Volume.* at Saturation[Table.* A-6 and A-7]

Numerous measurements of the densities of coexistingvapour and liquid phases of pure H2S have been reported. Theresults are presented in Figure 4.2 with literature references.The rule of "rectilinear diameter" for the mean of the orthobaricdensities at each temperature is followed very well along thewhole liquid-vapour equilibrium line. Liquid and gas densitiesat saturation are related by a linear function of temperature:

(p. + p )/Z = 0.6416 - 0.7889 x 10"3 T, T < T* g ~~ c

(4.22)

where p0, p = liquid and gas densities respectively, kg/dm3

T = temperature, K

This equation may be used to determine the specific volumeof H2S liquid at saturation when the specific volume of H2S gas atsaturation is known.

The Redlich-Kwong equation of state is capable of predictingthe experimental saturation volumes of the gas accurately up tonearly the critical point. Expressed as a cubic in molar volumeit reads:

va . - 0 (4.23)

with a = 0.434 RTC2>5/PC

b = 0.0882 RTC/PC

At temperatures under Tc the largest real root of eq. (4.23)is to be associated with the saturation molar volume of the vapourphase while the smallest real root is associated with the liquidstate. However, the predicted saturated liquid molar volumeswere consistently higher than those measured.

Page 38: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 3 1 -

Another approach was attempted to predict the molarvolume of saturated liquid by using the generalized equationof state for compressed liquids proposed by Tien Tsung et al.(20). This followed the experimental volumes up to 75°C butshowed considerable deviations at higher temperatures.

At present, the most precise predictions use the Redlich-Kwong molar volume for saturated vapour volumes and from thisthe saturated liquid volume is determined by using the equationof "rectilinear diameter". Tables A-6 and A-7 indicate thesaturation densities of H2S vapour and liquid respectively, inthe temperature range of -70 to 89°C.

4.2.2 Saturation Vapoui Vn.zi>i>ViKt [Table. A-8)

The vapour pressure of pure H2S was formulated overthe entire liquid range by the Cox equation (21),

log10 Ps = A (1 - Tb/T) + 2.00572 (4.24)

where Pg = saturation vapour pressure, kPa

T = temperature, K

Tb = normal boiling point, 212.88 K

A = temperature dependent constant

The constant A is expressed as a function of reduced temperatureusing the vapour pressure data of Clarke and Glew (22) , Kay andRambosek (23), and Kay and Brice (24):

A = 5.6958 - 2.5610 Tr + 1.3958 Tr2 (4.25)

Figure 4.3 shows the calculated vapour pressures for temperaturesbetween the triple point and the critical point.

Cox's equation is inconvenient to calculate T given acertain saturation pressure Ps. For this reason, the samevapour pressure data were used to formulate the Antoine equation(25) which is satisfactory up to 0.85 Tc ( 318 K with a correspondingpressure of ^ 3200 kPa).

log10 (Ps/kPa) = 6.25411 - f^^yy, T < 318 K (4-26)

T = 6254118-°io^0 (PS) + 19'77' ps < 3200

Page 39: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 3 2 -

Table A-8 presents saturation vapour pressures in therange of -70 to 99°C.

4.2.3 Heat o& Vaporization [Table. A-9)

The heat of vaporization of pure H2S liquid is calculatedusing the Clapeyron equation:

d ps1 = A (A OR)

dT T(vg - v£) W'**)

where A = latent heat of vaporization, kJ/mol

Ps = saturation vapour pressure, kPa

T = saturation temperature, K

Vg = molar volume of gas at saturation, dm3/mol

v. = molar volume of liquid at saturation, dm3/mol

dPs/dT is available from the Cox equation as presented in 4.22,while vj, results from the combined relations for the "rectilineardiameter" and for Vg (from the Redlich-Kwong equation). Thecalculated values or A agree within 3 per cent with thosepredicted from the Watson correlation (26):

r

X- >'L . t , 1 (4.29)using A' and Tr1 as the enthalpy of vaporization and the reducedtemperature respectively, at the normal boiling point.

Heats of vaporization in the temperature range of -70to 89°C are presented in Table A-9.

4.2.4 Enthalpy o{, Satutatud H2S Gai {Table. A-JO)

The same formulation indicated in Section 4.1.3 wasused in the present case to calculate the enthalpy of H2S gasalong the saturation line. For a given temperature, thesaturation pressure was calculated with Cox's equation andmolar volumes of the vapour were determined using Redlich-Kwong'sequation of state. The results are presented in Table A-10.

Page 40: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 3 3 -

The reference state for enthalpy values was taken as the realgas at 273.15 Kand 101.3 kPa with H|as = 0.

4.2.5 Enthalpy o£ Sa.tu.na.tzd U2S Liquid [Tablz A-77)

The enthalpy of saturated liquid H2S was calculatedat each temperature as

H l i q = H g a s " X (4

Results are presented in Table A-11. The calculated liquidenthalpies agree well with the equivalent values reported byWest (7) throughout their common range.

4.2.6 Hzat Capacity o& Liquid H2S at Saturation [Tablz A-7Z)

Two sets of experimental data (16,27) are availablefor the constant pressure molar heat capacity. Both sets arefor temperatures between the triple point and normal boilingpoint. The formulation obtained for this low temperature rangeis (12):

(Cp) - 3939.0 - 58.2807T + 2.92107 x 10"J T2 - 4.87358 x3

(4.31)

where (Cp)s = constant pressure molar capacity at saturationconditions, J/(mol.K)

T = temperature, K

To estimate (Cp)s for liquid H2S at higher temperatures, thefundamental equation

dH = CpdT + vdP - T(|^) dP (4.32)9T p

indicates that the desired heat capacity may be determined fromthe temperature coefficient of the liquid-phase enthalpy alongthe saturation line:

8HT\ / /8vT\ \ dPo) ltaJ ))

Page 41: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 3 4 -

(Cp)g was calculated in the te~:r.stature range of -70 to 89°Cand is presented in Table A-12. dPs/dT was determined bydifferentiation of the Cox equation and ( V L ) S as above(Section 4.2.1). The quantities (9HL/9T) S and (9VL/3T)P S wereestimated by numerical differentiation of the values generatedfrom the formulations for H L and VL.

4.3 TfianApotLt Vnopzfitlz^ o{ Pu/te H2S

4.3.1 VUcalty o& H2S Ga& (Table. A-13)

Three experimental values for the viscosity of gaseousH2S are given in the Handbook of Chemistry and Physics (28).

For the determination of viscosity at other temperatures,the Chapman-Enskog equation for viscosity has been used (29),employing the method of Monchick and Mason (30) to determinethe collision integral term ftv.

In general terms, the solution for viscosity is:

y = 2.669x10"5 Mr/ (a2ftv) (4.34)

where y = viscosity in mPa.s

M = molecular weight of H2S = 34.08 g/mol

T = temperature, K

a = hard-sphere diameter = .349 nm

2V = collision integral for polar gas, determined byusing Stockmayer potential

For H2S, U = 0.001274 /F x l/«v

The collision integral nv is tabulated by Monchick andMason (30) and Reid and Sherwood (29) as a function of T* and6, where

T* = kT/e = J J ? T for H2S

and <$ = (dipole moment) 2/2ea3 = 0.21 for H2S

Page 42: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 3 5 -

The collision integral has been fitted to theequation:

Slv = a + b log10T + c(log10T)2 +d(log 1 0T)

3 (4.35)

giving

a = 8.19631

b = -1.22152

c = -1.38768

d = +0.33337

T = temperature, K

Testing the correlation against experimental data givesgood agreement (Table 4.1).

TABLE 4.1

VISCOSITY COMPARISON FOR H2S GAS

Viscosity, mPa.s

Temp. Experimental Data Monchick and Deviation°C Ref. 28 Mason From Experiment

0 0.01166 0.01161 -0.4%17 0.01241 0.01255 +1.1%100 0.01587 0.01606 +1.2%

At pressures up to a few hundred kPa, the viscosityremains essentially constant and at higher pressures it increaseswith density.

The Coreman and Beenakker correlation has been foundto be quite accurate for low molecular weight gases (29):

= [1 + (0.55 pbQ + 0.96(pbo)2 + 0.61(pbo)

3)T*(~°-59)]

(4.36)

Page 43: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-36-

where y = viscosity at elevated pressure, mPa.s

y = low-pressure viscosity at the same temperature, mPa.s

T* = kT/eQ = T/301.1 for H2S

T = temperature in degrees K

p = density of gas in mol/cm3

b o = hard-sphere volume - 60.02 for H2S

For H2S:

V = VQ [1 + (957.319p + 100.282 x 103p2 + 38.252 x 105p3)T("°-59)]

(4.37)

Table A-13 shows viscosity vs. temperature at variouspressures.

4.3.2 Vi&coAity ojj HZS Liquid [Table. A-14)

The viscosity of liquid H2S at saturation has beenreported between the triple point and the normal boiling point(31,32) and it was also measured in the range of -11.5 to 50°Cby Hennel and Krynicki (33).

The data of Hennel and Krynicki covered a temperaturerange of interest to the GS process, and were fitted by theequation:

log (y) = a + k + «£. (4.38)1 0 i •••

with a = -3.6480

b = 1.25601 x 103

c = -1.31834 x 105

y is viscosity in mPa.s, T is temperature in degrees K.

The calculated viscosities as a function of temperature areshown in Table A-14.

Page 44: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

37-

4.3.3 Thtfimal Conductivity o{, H2S Gcu [Table. A-15)

Barua et al. (34) have recorded the thermal con-ductivity of H2S gas by hot wire cell measurements atatmospheric pressure.

These data are in good agreement with those given inHandbook of Chemistry and Physics (28) (Table 4.2).

Barua's experimental data were fitted to give thethermal conductivity as a function of temperature:

k = a + bT + cT2 + dT3 (4.39)

where a = -3.64399 x 10"2

b - 3.34427 x 10"*"

c = -7.34909 x 10"7

d = .63274 x 10"9 and T = K, k - W/(m.K)

The thermal conductivity of all gases increases withpressure, although the effect is relatively small at low andmoderate pressures,

A general figure of about 1% increase in conductivityper 0.1 MPa pressure increase up to 1 MPa has been suggested.

For polar compounds at higher pressures, no methodof estimation has been established.

As an approximation, the generalized charts of Lenoir,Junk and Comings (35) have been used.

For pressures up to 2700 kPa, the following relationwas derived from the charts:

k/kQ = 0.043 Pr + 1.0 (4.40)

where k = conductivity at pressure P, temperature T

k = conductivity at low pressure, temperature T

Pr = P/Pc = P/9007.49

P = pressure, kPa

Page 45: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 3 8 -

Values of conductivity at various temperatures andpressures are given in Table A-15.

TABLE 4.2

EXPERIMENTALLY MEASURED H2S GAS THERMAL CONDUCTIVITY

Thermal ConductivityW/(m.K) x 102

Temperature Barua et al. Handbook of Chem.°C

-78.5 0.548

-26.2 1.059

0.0 1.340

20.1 1.432

80.0 1.784

120.0 2.010

160.0 2.181

200.0 2.432

-17.8 1.176

- 6.7 1.246

4.4 1.315

15.6 1.401

37.8 1.540

4.3.4 Tkeimal Conductivity o& HZS Liquid [Tablz A-16)

No experimental data exist for the thermal conductivityof liquid H2S. It was estimated from Vargaftik's modificationof Palmer's equation (36), which can be applied to inorganicliquids:

Page 46: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-39-

where k = thermal conductivity, W/(m.K)

Cp = specific heat, J/(g.K)

p = density, g/cm3

a = abnormality factor = g? 354 T

A, = latent heat of vaporization at normal boilingD point (18,670 J/mol)

Tb = normal boiling point (212.88 K)

M = molecular weight (34.08 g/mol)

For liquid H2S a = 1, and eq. (4.41) is reduced to:

k - 0.13186 Cp p 4 / 3 W/(m.k) (4.42)

The density of liquid H2S was determined as explainedin Section 4.2.1 and the specific heat as explained in 4,2.6.The calculated values of k for liquid H2S at saturation aregiven in Table A-16.

4.3.5 SU.H&O.C.Z Jun&ion ofi Liquid H2S [Table. A-17]

The surface tension of anhydrous liquid H2S was measuredby Herrick and Gaines (37) in the temperature range of 25 to 40°CThey found that their data were well represented by the Guggenheiequation (38):

/ T\ll/9Y " Yo I1 " T> <4"43)

where y = surface tension of liquid H2S, mN/m

YO= 80 mN/m

T = temperature, K

Tc = critical temperature (373.6 K)

The calculated values of y axe presented in Table A-17.

Page 47: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 4 0 -

REFERENCES

1. Shah, K.K. and Thodos, G. , Ind. Eng. Chem., 57 (3),30 (1965). ~

2. Redlich, 0., and Kwong, J.N.S., Chem. Rev., 44, 233(1949). ~

3. Neuburg, H.J., and Walker, L.G., AECL* Unpublished InternalReport, (1976).

4. Wright, R.H., andMaass, 0., Can. J. Research, 5, 442(1931).

5. Reamer, H.H., Sage, B.H., and Lacey, W.N., Ind. Eng.Chem. , 42, 140 (1950).

6. Lewis, L.C., and Fredericks, W.J., J. Cheiu. Eng. Data,U (4), 482 (1968).

7. West, J.R., Chem. Eng. Progr., 44, 287 (1948).

8. Maron, S.H., andTurnbull, D., Ind. Eng. Chem., 33, 408(1941). ~

9. Sage, B.H., and Lacey, W.N., "Some Properties of the LighterHydrocarbons, Hydrogen Sulfide and Carbon Dioxide", AmericanPetroleum Institute (1955).

10. Starling, K.E., and Powers, J.E., Ind. Eng. Chem. Fundam.,9, 531 (1970).

11. Holleran, E.M., J. Chem. Phys., 47 (12), 5318 (1967).

12. Touloukian, Y.S., and Makita, T., "Thermophysical Propertiesof Matter, The TPRC Data Series", V. 6, p. 78, N.Y.,Plenum (1970).

13. Burgess, M.P., and Germann, R.P., AIChE Journal, 15 (2),273 (1969). ~

14. Galley, M.R., Miller, A.I., Atherley, J.F., and Mohn, M.,"GS Process Physical Properties", AECL*4255 (1972).

15. Dodge, B.F., "Chemical Engineering Thermodynamics", p. 218,McGraw-Hill, N.Y., (1944).

16. Giauque, W.F., and Blue, R.W., J. Am. Chem. Soc., 58, 831(1936). —

Atomic Energy of Canada Limited.

Page 48: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-41 -

17. Cross, P.C., J. Chem. Phys., 3, 168 (1935).

18. Prausnitz, J.N., "Molecular Thermodynamics of Fluid-PhaseEquilibria", p. 41, Prentice Hall Inc. (1969).

19. Hoffman, D.S., and Weber, J.H., Petroleum Refiner, 35(3), 213 (1956). ~

20. Tien-Tsung Chen and Goug-Jen Su, AIChE Journal, 21 (2),397 (1975). ~~

21. Cox, E.R., Ind. Eng. Chem., 28, 613 (1936).

22. Clarke, E.C.W. , and Glew, D.N., Can. J. Chem., 48, 764(1970).

23. Kay, W.B., and Rambosek, G.M., Ind. Eng. Chem., 45, 221(1953). ~~

24. Kay, W.B., and Brice, D.B., Ind. Eng. Chem., 45, 615 (1953).

25. Antoine, C., Compt. Rend., 107, 681 (1888).

26. Bhargava, R.K., et al., "Thermodynamic Properties of H2S-H2OSystem", Government of India Atomic Energy CommissionReport B.A.R.C.-316, Bahba Atomic Research Centre, Bombay,India (1968).

27. Clusius, K., and Frank, A., Z. Physik. Chem., B34, 420(1936).

28. Weast, R.C., "Handbook of Chemistry and Physics", 52ndEdition, Chemical Rubber Co., Cleveland, Ohio (1967).

29. Reid, R.C., and Sherwood, T.K., "The Properties of Gasesand Liquids", McGraw-Hill, New York (1966).

30. Monchick, L., and Mason, E.A., J. Chem. Phys., 35, 1676(1961). —

31. Steele, B.D., Mclntosh, D., and Archibald, E.H., Phil.Trans. Roy. Soc., A205, 99 (1906).

32. Runovskaya, J.V., Zorin.A.D., and Devyatykh, G.G., Zhur.Neorg. Khim., 15, 2581 (1970).

33. Hennel, J.W., and Krynicki, K., Acta Physica Polonica, XIX,523 (1959).

Page 49: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 4 2 -

34. Barua, A.K., Marra, A., and Mukhopadhyay, P., J. Chem.Phys., 49, 2422 (1968).

35. Lenoir, J.M. , Junk, W.A. , and Coinings, E.W., Chem. Eng.Progr., 49, 539 (1953).

36. Perry, R.H., Chilton, C.H., "Chemical Engineer's Handbook",5th Edition, McGraw-Hill, New York (1973).

37. Herrick, C.S., and Gaines, G.L., Jr., J. Phys. Chem., 77(22), 2703 (1973).

38. Guggenheim, E.A. , J. Chem. Phys., 13_, 253 (1945).

Page 50: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

£UUU

1800

1600

1400

1200

1000

800

600

400

200

""""-•-• ^ FIGURE 4.1""""" ^ JOULE-THOMSON COEFFICIENT INVERSION

yn > 0 (COOLING)

CRITICAL POINT ^_0^-^*

/ •

f LIQUID H2S

1

CURVE OF H2S

\

)

yjjn < 0 (HEATING)

125,000 50,000 75,000

PRESSURE, kPa

100,000

Page 51: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

1.0000

0.9000

0.8000

0-7000

O.bOOO

- 0.5000

0.4000

0.3000

0•2000

0.1000

0.0000

FIGURE 4.2 ORTHOBARIC DENSITIES OF HYDROGEN SULFIDE

• LIQUID DENSITY ,|Y t KUBOSH. IM.EM.f ME!. 45.221(1153)

t> VAPOR DENSITY J ~

O LIQUID DENSITY) H K I t t l l mO.EW.Oia.

+ VAPOR DENSITY J I?. '1 4 0 1 1 8 5 0*

n LIQUID DENSITY - CUM ( CUI. CU.l.Cm.41.764(1970)

A LIQUID DENSITY IIEKIC t iMMISII .Mmn.CHE».2M,3«(I932)

V LIQUID DENSITY ZOIII el i l ZHM.IEOtt.Mmil12,2529(1967)

O LIQUID DENSITY]

EQUATION OF RECTILINEAR DIAMETER: (Pl+Pl)

0.641fc-0.7889ilO'3T[T in kelvins)

i .Him. ICTI rnsic*' POLOMICI. 23.4IK11S3)

o VAPOR DENSITY

O

-CRITICAL DENSITY = 0-3169 kg.dm"3

(Vc = 0.09824 dtn3.mol "'

TRIPLE POINTTEMP.

(-B5.8°C).

NORMALBOILING POINTI (-t>0.27°C) s o CRITICAL TEMP.

I (100.t°C)

- 1 0 0 -80 -60 -40 -20 0 20

TEMPERATURE ( ° C )

40 faO 80 100 120

Page 52: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 4 5 -

10

103

102

D TRIPLE POINT

O BOILING POINT

A CRITICftL POINT

FIGURE 4.3 SATURATION VAPOR PRESSURE OF H2S

10-80 -60 -40 -20 0

TEMPERflTURE

20 40 bO 80 100

Page 53: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 4 6 -

5. THERMOPHYSICAL PROPERTIES OV THE HZO-HZS SYSTEM

5.7 Llquld-Va.pou.fi Equilibrium P/iopzitlzA of, the. H20-H2S System

5.7.J Vapoufi-Liquid Equltlbilum Compositions [Tabtts A-1& and A - I 9 )

For a binary gas-liquid system, the basic equilibriumrelationships are:

fig - f / (5.1)

f2g - fi1 (5.2)

where:

f.g = fugacity of component i in gas-phase

af. = fugacity of component i in liquid-phase.

The fugacities in the gas-phase can be written as:

fig = <hyiP (5.3)

f2g = <f>2y2P (5.4)

where:

ij). = fugacity coefficients of component i in the gas-phase

y. = mole fraction of component i in the gas-phase

P = total pressure, kPaIf unsymmetrically normalized activity coefficients are

used, the liquid-phase fugacities can be written as:

f / - Y l x l P ls ^ exp j v ' < P

R -P i > | (5.5)

. PO . - £

fa - Y2*x2H2>1 expl^i-} (5.6)

Page 54: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 4 7 -

where:

Yi =• activity coefficient of component 1 (solvent)

Y2 = activity coefficient of component 2 (solute)

= mole fraction of component i in liquid-phase

saturation (vapour)at temperature T, K

Pi = saturation (vapour) pressure of pure liquid 1 (solvent)

<J>i = fugacity coefficient of pure saturated vapour 1 (solvent)at temperature T and pressure Px

s

0

Vi = molar liquid volume of pure 1 (solvent) at temperature T,dm3/mol

R = gas constant, dm3.kPa/(mol.K)

POH2>i= Henry's law constant of solute 2 in reference solvent 1

at temperature T, adjusted to zero pressure, kPa

Vz = partial molar volume of solute 2 in the liquid solutionat temperature T, dmVmol

In equations (5.5) and (5.6) the unsymmetrical normalizationof the activity coefficients has been used, so that:

Yi •> 1 as x, + 1

Y 2 •*• 1 a s x 2 •*• 0

Since all the variables defined in eqs. (5.1) to (5.6)are functions of P,T and the mole fractions, for a given pressureand temperature the mole fractions in equilibrium were calculatediteratively (1), by making use of equations (5.1) to (5.6) andthe additional stoichiometric relationships:

xi + x 2 = 1 (5.7)

yi + y2 = 1 (5.8)

Page 55: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 4 8 -

A complete description of the system requires adefinition of the models used to calculate the differentvariables in eqs. (5.3 to 5.6), as indicated in thefollowing sections. Also experimental information onequilibrium compositions in a broad range of pressuresand temperatures is necessary for parameter adjustments.For that purpose, the solubilities measured by Mather (2)in the range of 10 to 180°C and 154 to 6670 kPa wereemployed.

The experimental solubilities measured by Mather areshown in Figure 5.1 together with predictions made by themodel for the same isotherms. Figure 5.2 shows the vapour-phase mole fractions of H2S predicted by the model for theconditions of the experimental measurements made by Selleck etal. (3). The measured points are also included.

Figure 5.3 indicates different isobars between 100and 5000 kPa for the solubility of H^S in HaO, for temperaturesup to 190 C. The limiting curves of three-phase coexistenceare also shown, with inclusion of the experimental data whichdetermined the boundaries of the region of coexisting aqueousliquid (La), H2S liquid (Ls) and gas; and the region of co-existing hydrate (Ss), aqueous liquid (La) and gas. The quadruplepoint (Ss, Ls, La and gas) is also included. The calculatedvapour-phase humidities and liquid-phase solubilities inequilibrium are given in Tables (A-18) and (A-19) respectively.

5.1.2 Gat>-Vhcu>z Fugacltij Coniilclnnti, [Table.* A-20 and A-21)

In terms of the independent variables V and T, thefugacity coefficient of species i in a gas mixture is givenby (4):

RT In*. = 1 |(^-) - — j dv - m n Z (5.9)niT,v,n,

where Z is the compressibility factor of the gas mixture.

Eq. (5.9) when applied to the Redlich-Kwong equationof state yields for the fugacity coefficient of componentk in a mixture of m components (4):

Page 56: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 4 9 -

m

+ ^ L rto 3 * . * i . to is

where

<J>, = fugacity coefficient of component k

v - molar volume of gas mixture, dm3/mol

b = Redlich-Kwong constant for the gas mixture, dm3/mol

b^ =* Redlich-Kwong constant of component k, dm3/mol

y. =» gas-phase mole fraction of component i

a.., = binary Redlich-Kwong constant between components i and k,1 K dm6.kPa.K°-;mol2

a - Redlich-Kwong constant for the gas mixture, dm6.kPa.Kc"

R -= gas constant, dm3 ,kPa/ (mol .K)

T » temperature, K

P = pressure, kPa

The molar volume of the gas mixture, v, is calculated fromthe Redlich-Kwong equation of state (eq. 4.3 in Section 4.1.1).The characteristic constants a and b of the Redlich-Kwong equationof state are given by the following mixing rules:

a - E z y. y. a.,

b - E y± b.

where a. = a.. = ^1 1 X Pci

' RTci

(5.

<5.

(5.

(5.

11)

12)

13)

14)

Page 57: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-50-

fiai and fl^i are dimensionless constants, Tci and Pci are thecritical temperature and pressure of component i respectively.

The terms alj for i f j have been relaxed from thegeometric mean assumption and are calculated through the seriesof equations:

a l

ij Z p :

where

R T

w. + w.Z .. = 0.291 - 0.08 (-i 1) (5.18)cij 2

Tcij - (TciTCJ

c , vci are the critical volumes of i and j respectively, Zcijthe critical compressibility factor of the mixture, wi, WJ theaccentric factors of components i and j, and k^. a binary constantrepresenting the deviation from the geometric mean for

As discussed elsewhere (1), it was found advantageousto use Redlich-Kwong's eq. (5.10) to calculate fugacity coefficientsof the gas-phase components as compared to a model derived fromthe virial equation of state. Tables A-20 and A-21 show thefugacity coefficients as functions of pressure and temperaturein the ranges of interest to the GS process.

5.7.3 He.nny'6 Law Constant {Table. A-22)

If Henry's law constant is referred to the saturationpressure of the solvent (P?), eqs. (5.4) and (5.6) can becombined to yield:

Page 58: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-51 -

p,S 5logi0(<!>2y2P/x2) = logxoYf + logmHa,! + (v2 /2.303RT)(P-Pp

(5.20)

At a certain temperature, when (P-P ) ->-0, x2 •*• 0 and y2 ~*"1,according to the unsymmetrical normalization of the activitycoefficients. Therefore, from eq. (5.20):

(5.21)

Figure 5.4 is a plot of the quantity i o g i 0 ( y )as a function of the H2S "over-pressure", (P-Pi

s)s at the fivetemperatures for which humidity data have been measured bySelleck et al. (3). The values of x2 corresponding to Selleck'sy2 values were obtained from Mather's data (2) at the same P,Tconditions. The solubilities determined at moderate pressures(to 6.7 MPa) by Mather, are thought to be more accurate thanthose measured by Selleck et al., especially at low temperatures.

Henry's law constant for each of the five temperatureswas determined as the intercept in Figure 5.4, correspondingto (P-Pis) = 0. The values of K?1^ are given in Table 5.1.

TABLE 5.1

HENRY'S LAW CONSTANT DERIVED FROM FIGURE 5.4p s

Temperature Logi o (<t>2y2P/x2) H2ji

(°C) kPa

37.8 4.854 7.145x10"

71.1 5.076 1.191xl05

104.4 5.190 1.549xlO5

137.8 5.266 1.845xlO5

171.1 5.307 2.028xl05

These results together with those calculated by Clarke andGlew (5) at low temperatures, were regressed to produce thefollowing polynomial suitable for calculating Henry's lawconstant in the temperature range 0" to 180 C.

Page 59: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 5 2 -

H?J? - 7.26781 x 106 - 9.42662 x 1O*T + 4.69977 x 102T2

- 1.12991T3 +1.33215 x 10-3T4 - 6.22023 x 10~7T5 (5.22)

where Hfjf = Henry's law constant, kPa

T = temperature, K

The Henry's law constants calculated through eq. (5.22) canbe reduced to zero pressure by the relationship:

H??! - Hi,1? exp <v£ Pf/RT) (5.23)

The values of H|?I in the range of 273 to 473 K are plotted inFigure 5.5 together with those obtained from the correlationspresented by Clarke and Glew (5), and Besserer (6). Table A-22gives Hfif in the range of 0° to 180°C.

(To.blt A-?3J

The activity coefficients of the liquid-phase componentswere calculated from the two-suffix Margules model (4), withfor the unsymmetric normalization convention yields:

In Yi = ^ x| (5.24)

and In y* = A( xf _ i) (5.25)

Constant A is temperature dependent only, and was optimized witha least-squares criterion by making use of the H2S solubilitiesmeasured by Mather. The resulting values of A at each temperatureare shown in Figure 5.6 together with those calculated throughthe fitted polynomial.

A(J/mol) = -.308509690 x 108 + T(.502979155 x 106 + T(-.341175130

x 10" + T(.123159307 x 102 + T(-.249394105 x 10"*

+ T(.268515538 x 10"--Tx.120066900 x 10~7)))))(5.26)

where:

T = temperature, K

Equation (5.26) is applicable in the range of 10 to 180°C.

Activity coefficients of solute H2S (Y2) are given inTable A-23. The activity coefficients of solvent H20 (YI)were found to be equal to one for all practical purposes.

Page 60: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-53-

5.1.5 VtM-Lt-izA o6 Aqu&oai Solat-ioni, o& H 2S; kppa.n.tnt andVatitlal Mola.fi Volume. o£ Vl^&olsjzd HZS [Tablz A-Z4)

Densities of H2S-H2O saturated solutions were reportedby Selleck et al. (3) and by Murphy and Gaines (7). To checkthe consistency of the available data and to formulate densitiesfor the saturated solutions, the apparent molar volumes ofdissolved H2S were calculated using the published densities by(7):

\ ( 5 > 2 7 )

where:

<S> „ = apparent molar volume of H2S, dm3/mol

Mu o = molecular weight of H2S, 34.08 g/molH2O

Mj. Q = molecular weight of H20, 18.02 g/mol

x = mole fraction of H2S in solution

d = density of the solution, kg/dm3

dr. 0 = density of pure liquid water at the temperature andpressure of the solution, kg/dm3

Although Murphy and Gaines had calculated $„ s from theirdensity results using Selleck1s solubilicy data, $ H

2S w a s recal-

culated using the better solubility resulcs of Matner and properlyintroducing the density of pure water as given by Franks (8):

dH20 <kS/m3> = <a

o + a i T + a a T 2 + a 3 T 3 + aitT4 + a5T

5)/(l + bT)

(5.28)

with

T = temperature, K

aQ = 5.0756897 x 102 aM = -1.7344969 x 10"7

a, = 3.2813464 a5 = 9.9308722 x 10"!!

a2 = -4.6638625 x 10"2 b = -4.5854083 x 10"3

a3 = 1.2941179 x 10"1*

Page 61: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 5 4 -

In the pressure range of interest to tl:•"• GS process,the pressure correction of d^O *-S negligible for all practicalpurposes. Figure 5.7 shows the values of $H2S calculated fromthe various experimental sources. Included for comparison aremolar volumes of pure liquid H2S at its bubble point as well asthe molar volumes of dissolved H2S calculated from Lyckman'scorrelation (9). Except at the lowest temperatures, the apparentmolar volumes determined from the data of Selleck et al. appearto be too large and too dependent on pressure. As there are noappreciable effects of system pressure on $H2S obtained from Murphyand Gaines results (i.e., they are independent of concentration),the values are essentially the true molar volumes for dissolvedH2S, Vgol^^ which was correlated as a linear temperature functionover tRebrange 21° to 42°C:

rrelated°C:

="9.938 x 10"3 + 4.865 x 10"5T (5.29)

where T = temperature, K

The molar volumes of dissolved H2S(Vu2g ), were approximated bythe partial molar volumes of H2S (v|;( which is justified fordilute solutions of gases in liquids at high pressures, providedthe unsymmetric convention for normalization is used (4). Thepartial molar volume of solvent (H2O) was assumed to be equal tothe molar liquid volume of pure H2O at temperature T, which ispossible if the solution is remote from the critical conditionsof the solvent (10).

Although the formulation of Vu°in given by eq. (5.29) isvalid only in the indicated temperature range, its use over theentire range of interest to the GS process should not introducesignificant errors considering the good agreement betweenextrapolated values at higher temperatures with those predictedby Lyckman's correlation.

Densities of HjS-saturated solutions are given inTable A-24.

5.1.6 Mottcu.Za.fi We-lght o{, Solution* and Humid Vapoui [TabZe.&K-1S and A-Z6).

For each P,T set the mole fraction of dissolved H2S canbe determined, and the molecular weight of the saturated solutionis given by:

Page 62: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 5 5 -

WML = 18.02 (1 - XR g) + 34.08 X^ g.g/mol (5.30)

Likewise, by knowing the humidity at a certain P,T, themolecular weight of the humid vapour will be:

WMG = 18.02 yH 0 + 34.08 (1 - yR Q ) , g/mol (5.31)

5.1.7 Compxz-i-ilbmty Vactot and VznAlty ofi Humid Vapoun.[Tablz& A-27 and A-2S)

By determining the molar volume of the humid vapourthrough eq. (4.3) with the mixing rules of Section 5.1.2, thecompressibility factor of the gas mixture can be calculated as

Z = <5

Table A-27 gives the compressibility factors of humid H2S as afunction of P,T.

The density of the gas-mixture can then be determined from:

pm " r~KT~ (5.33)m

Table A-28 gives the density of gas mixtures.

5.1.S Enthalpy o & Humid H2S [Table. A-29)

The enthalpy of H2S-H2O gas mixtures relative to suitablereference conditions of the two components can be calculatedthrough a convenient thermodynamic cycle. The reference statechosen for water is the pure liquid at 273.15 K and its saturationvapour pressure (0.61 kPa). For H2S, the reference state is takenas the gas at 273.15 K and 101.3 kPa. The cycle for determiningthe enthalpy of one mole of gas mixture, at some prescribedtemperature and pressure, consists of the following steps startingwith the pure components in their reference states:

Page 63: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-56-

1.

2.

3.

H n moles of water are vaporized at 273.15 K and 0.61 kPaequiring 45,069 yR Q joules.

Water vapour is transformed into ideal gas at 273.15 K byreducing the pressure to zero, requiring an enthalpy changethat is small and neglected here.

The temperature of the ideal water vapour is changed from273.15 K to T requiring

•T

273.15L nH2°

d T

yH2S(= l-yH20) moles of H2S gas at 273.15 K and 101.3 kPaare converted to ideal gas at 273.15 K. The enthalpy changehere is 58.06 (1 - yn o) joules.

H2S as an ideal gas is changed in temperature from 273.15 Kto T requiring

273.15

6. The ideal gas components are mixed at temperature T, andthe enthalpy of mixing is assumed to be negligible.

7. The mixed ideal gases are compressed isothermally to the requiredfinal pressure with an accompanying enthalpy change given by

(5.34)

From the Redlich-Kwong equation of state applied to the gasmixture, the integral of the right hand side of eq. (5.34) is:

/ 5T (3Zmv \3T~) dv

v,y±ln ( 5. 3 5 )

Page 64: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 5 7 -

The calculation of constants a and b has been outlined inSection 5.1.2.

The relative molar enthalpy of the gas mixture willbe expressed as:

Hf s (T.P) - yH20 4z0 - (1 - yHz0) 4zS (J/mol)

= yH20(45069

+ RT (Z - 1 + V f tn&&) (5.36)m RTl.Db v

It can be observed from eq. (5.36) that the enthalpy of pureH2S gas relative to H2S gas at 273.15 K and 101.3 kPa can becalculated by setting yH20 = 0. The Redlich-Kwong parametersa and b will be automatically converted to those for pure H2S.The same argument is true for the calculation of the enthalpyof pure water vapour if yH20

= 1.

Table A-29 shows the enthalpy of H2O saturated vapourmixtures for the temperature range 303 to 453 K with systempressures between 1.3 and 2.3 MPa.

The heat capacity at constant pressure employed forH2O as an ideal gas was (11):

C * = 32.2245 + .1923 x 10"2 T + 1.0550 x 10'5 T2

PH2O- 3.5937 x 10"9T3, J/(mol.K) (5.37)

The heat capacity of H2S as an ideal gas is given in eq. (4.6)

Page 65: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 5 8 -

5.J. 9 Entlopy oh Humid HZS [Table. A-30)

For simplicity, it was assumed that the pure gaseswould be in the ideal state at a pressure equal to the vapourpressure of pure water at 273.15 K (i.e., 0.61 kPa).

As with the enthalpy of humid H2S, the entropy ofH2S-H2O gas mixtures referred to liquid water at 273.15 K, 0.61kPa and H2S gas at 273.15 K, 101.3 kPa, can be calculated througha thermodynamic cycle as follows:

1. Entropy change from evaporation of pure water at thereference state:

" ^H2O = 165-° yH2o

2. Entropy change by heating pure water from the referencetemperature (273.15 K) to the final temperature Tf:

» dT,

3. Entropy change by expansion of pure H2S from 101.3 kPa to0.61 kPa at 273.15 K:

^0.63

<! - yH2o>

To bH2S

5aH „ (v + bu o) v \H2o • H2D O I

L-bbu o < V bH2S) v / '

here, v is the molar volume of H2S at 0.63 kPa, 273.15 Kand vo the volume at 101.3 kPa, 273.15 K.

Page 66: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 5 9 -

4. Entropy change by heating H2S from TQ = 273.15 K to Tf:

dT, J/(K.mol)

5. Entropy of mixing at TVc, 0 Gi kPa:

H0 ln yH0 + U " yH0)

ln »

6. Entropy change by compressing the gas mixture from 0.61kPa to final pressure at the final temperature:

f f fA v f ' b 0 5 a Cvf + b)Vl

J W T ni ^ = ^ ^ " tt m <vf + b)v£ '0.61 V / T ' n i xf D t

J/(K.mol)

V! is the volume of the mixture at 0.61 kPa and Tf, andvf the final volume of the mixture.

Entropies of H20 saturated vapour mixtures are given inTable A-30.

5.1.10 Htdt 0& Solution oi H2S In (Hate.fi [Table. A-37)

Heats of solution of H2S were originally calculated byPohl (12) using low pressure solubility data from Wright andMaass (13) and Selleck et al. (3). The Van't Hoff equationwas employed in the calculations,

AH - d(Rlnc) (c. oo\AHs d<l/T) ( 5' 3 8 )

Page 67: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 6 0 -

where AHS is the heat of solution and c the solubility at101.3 kPa. The results were tabulated by Pohl and Hull (14),and Burgess (15) fitted the heats of solution as a polynomialfunction of temperature. This relationship was used inAECL-4255 (16).

However, the heat of solution of gases at high pressureshould account for vapour and liquid-phase nonideality effects,which will yield a temperature and a pressure dependence aswell. Sherwood and Prausnitz (17) derived a general expressionfor the heat of solution with no simplifying physical assumptions,whereby:

AH

Since extensive data on fugacity coefficients, activitycoefficients, mole fractions in the vapour-phase and molefractions in the liquid-phase are now available, eq. (5.39) wasused to calculate numerically the heats of solution in the pressureand temperature range of interest to the GS process. Figure 5.8shows the heats of solutions in the temperature range of 25 to170°C at the pressures of 1.30 and 2.35 MPa. The pressureindependent values calculated by Pohl are also included.

Values of the heat of solution in the pressure range of1.30 and 2.30 MPa and temperatures between 303 and 453 K arepresented in Table A-31.

5.1.11 Enthalpy ofi H20 Liquid Satutiatdd With VlAAolvzd H2S Gai[Table. A-3Z)

With the newly formulated enthalpies of H2S gas, molefractions of dissolved H2S in H20 and heats of solution, usingthe same thermodynamic cycle as in AECL-4255 (16), the enthalpyof saturated solutions was calculated from the equation:

Page 68: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-61-

Hs - *H,S HH2S + (1 " XH2S>

HH20 + XH2S

where:

Hs = enthalpy of the solution at T,P, J/mol

HH Q = enthalpy of dry H2S gas at T,P referred to the purett2b gas at 273.15 K and 101.3 kPa, J/mol

HH n = enthalpy of liquid H2O at T,P referred to the purea*u liquid at 273.15 K, 0.61 kPa, as given in reference (18),

J/mol

xH2s = mole fraction of dissolved H2S at T,P

AH = heat of solution per mole of H2S dissolved at T,P, J/mol

Table A-32 gives the enthalpy of saturated solutions inthe ranges of 1.30 to 2.30 MPa and 303 to 453 K.

5.7.7 2 Li.qu.zfac.tlon TzmpzuatuKe. o& H2S In H20 Mlxtuizi [Table A-33)

This is the temperature at which H2S will liquefy in amixture of H2S gas, H20 vapour, H20 liquid and dissolved H2S.Burgess (15) gives the following equation to relate liquefactionpoint and pressure:

T = 47.558 £nP - 64.206 (5.41)

where P = absolute pressure, kPa

T = saturation temperature, K

This equation does not fit Selleck's (3) data below1380 kPa and a more accurate fit is given by:

T = A + B £nP + C(£nP)2 + D(£nP)3 + E(^nP)" (5.42)

A - -3912.288

B = 2331.902

Page 69: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 6 2 -

C = -495.4914

D = 46.90283

E = -1.64319

Equation (5.42) fits Selleck's data over the whole experimentalrange.

5.J.7 3 Hyd.Ka.te. VoKma.tX.on Tzmpz.Katu.Ke. [Table. A-34)

This is the temperature at which hydrogen sulfide-hydratewill form at a specified pressure. Burgess (15) uses thefollowing equation to fit Selleck's (3) data:

T - 9.3987 lnP + 230.15 (5.43)

where T = hydrate temperature, K

P — absolute pressure, kPa

This equation fits Selleck's data well over the whole experimentalrange.

5.2 TKan&poKt PKopzKtlz-d otf SatuKatzd Solution*

5.2.7 Vi&co&ity o£ HzS Ga& SatuKat&d w-Lth Wate.K VapouK {Table. A-35]

No "iscosity data for the H2S-H20 gas mixture are available.

However, several accurate methods are listed in theliterature (19,20) to determine gas mixture viscosities.

Based on Sutherland's kinetic theory model, Wilke (19)gives the following expression for the estimation of viscosityfor a binary gas mixture at low pressure

y° = m/[l + (yz/yi)*i2] +uz/U + (yi/y2)<f>21] (5.44)

where y° = viscosity of mixture at low pressure, mPa.s

ya, H2 = low pressure viscosity of pure components, mPa.s

yi, y2 = mole fractions

Page 70: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 6 3 -

<f> 1 2 = Ma/M2)%]

The viscosity of water vapour at low pressure (101.3 kPa) canbe determined from the international formulation of propertiesof water and steam (18):

y = 10"- (263.4511 (Tr - .4219836243) + 80.4) (5.45)

where y = viscosity of steam at 101.3 kPa, mPa.s

T => reduced temperature, T/647.3

Equation (5.45) is valid in the range of 100° to 700°C. However,extrapolation to colder temperatures ( 30°C) yields values ofy within 0.4 percent of those tabulated for water vapour at thesame temperature and saturation pressure. Equation (5.45)extrapolated to low temperatures was considered sufficientlyaccurate to be used in the calculation of viscosity of H2S-H20gas mixtures.

Viscosity of pure H2S at 101.3 KPa was determined fromeq. (4.34) given in Section 4.3.1.

liitct OJJ Pie.A4u.fie.

As indicated by Reid and Sherwood (19), the most accuratemethod at present to account for the effect of pressure on gasmixtures viscosity is a modification of the residual-viscositytechnique. Dean and Stiel (21) have presented the equation:

(ym - y^)5m = 10.8 x 10"5(exp(1.439prm) - exp(-l.

(5.46)

where y = high-pressure mixture viscosity, mPa.s

Page 71: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 6 4 -

y° = low-pressure mixture viscosity, mPa.s

p = pseudo-reduced mixture density, Pm/Pcm

p o mixture density, mol/cm3

p = pseudo-critical mixture density, mol/cm3

= P /Z RTcm' cm cm

_ Tl/6. l/2p2/3cm ' m cm

\n is the mixture molecular weight, and the pseudo-criticalmixture parameters are calculated from the following mixingrules:

Tcm = IZcm = I

vcm

cm cm cm cm

To use eq. (5.46), Pcm should be given in atmospheres (kPa/101.3),Tcni in K and M^ in g/mol.

Table A-35 shows the viscosity of wet H2S as a functionof temperature and pressure.

5.2.2 Vlt>co&<Lty oi H2S Saturated Aqatoui Solution* [Table. A-36)

The viscosity of H2S saturated aqueous solutions has beencalculated from the equation developed by Tamura and Kurata (22).

X 2 U 2 < | > 2 + 2 V 1 1 2 ( X 1 X 2 < 1 > 1 < | > 2 ) ^ (5.47)

Page 72: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-65

where u = viscosity of mixture, mPa.s

xi, x2 = mole fractions of components

4>i, <f>2 = volume fractions of components

Pi, P2 = viscosity of pure substances, mPa.s

p 1 2 = viscosity of interacting substances, mPa.s

P12 can be determined as a function of temperature using theprevious equation, if experimental values of y a r e available atdifferent temperatures. The only data availabxe for ym weremeasured by Murphy and Gaines (7) in the. narrow temperaturerange of 28.1 to 35.2°C. The calculated values of n u usingthese data were fitted as a function of temperature using theGuzman-Andrade equation (23):

y12 - A exp(B/T) (5.48)

To determine the volume fractions <j>i, <J>2, the molarvolumes of the pure liquid components were required. Theywere calculated using equation presented in Section 5.1.5 forH2S, and the equation given by Franks (8) for H20.

The viscosity of pure liquid H2S was determined fromequation 4.37 of Section 4.3.1, and the viscosity of pure liquidwater calculated from the equation given by Schmidt (18):

a2

Tr - a 3 r -i

n = a, 10 L1 + (pr-PrS) a" (Tr - a5>J (5.49)

where n = viscosity of water, mPa.s

Tr = reduced temperature

Pr = reduced pressure

= reduced saturation pressure of waterrs

and

Page 73: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-66-

ai - 2.414000000 x 10"*

a2 = 3.828209486 x 10"1

a3 = 2.162830218 x 10" x

a* - 1.498693949 x 10"*

a5 = 4.711880117 x 10"1

Table A-36 presents the viscosity of the saturatedsolution as a function of temperature and pressure in a narrowtemperature range.

It was found that the model predicts the observedincrease in viscosity of the solution with respect to purewater in the P,T range of Murphy and Gaines' experiments.However, for temperature above 40°C the viscosity of thesolution becomes about 4% smaller than that of pure water, dueto the fact that the term including yi2 in equation 5.47becomes negligible at higher temperatures, and the viscosityof pure H2Sj, is smaller than that of pure liquid water. Thisprojected tendency of pm with temperature cannot be confirmedin the present absence of experimental information.

5.2.3 lkin.ma.1 Conductivity o& H2S Gai Satanatzd with Wate.fi Vapou.fi[TabU A-37)

No experimental conductivity data for H2S-water vapourmixture were found in the literature, neither are there anyreliable methods of estimation available for polar-polarmixtures.

As an approximation, the method quoted in Perry (24) forgas mixtures has been used.

The mixture thermal conductivity at atmospheric pressurecan be calculated from component conductivity values with theequation:

z y±v.k "

yH2S(34.08)1/3

+yH20(18.02) 1 / 3

Page 74: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-67-

where k's are in W/(m.K)

and y's are molar fractions of H2S and H20 respectively,(at the actual pressure)

The thermal conductivity of pure water vapour atatmospheric pressure can be determined by the internationallyaccepted formulation published by Schmidt (18):

- 1.0245 x 10"2 - 8.2100 x 10"6T + 1.4096 x 10"7T2

(5.51)- 4.51 x 10~llfI3

where \i is in W/(m.K) and T in K.

Equation (5.51) is valid in the range of 100° to 700°C.Extrapolation to colder temperatures ( 30 C) yields values ofAi within 2 percent of those of water vapour at the sametemperature but at saturation pressure. Equation (5.51) wasconsidered accurate enough to be used in the calculation ofH2S-H2O gas mixtures thermal conductivities.

Thermal conductivity of pure H2S at atmospheric pressurewas calculated by equation (4.39) given in Section 4.3.3.

A correction for pressure effects on the thermal conductivitof the gas mixture is difficult to calculate. However, it isquite small and can be estimated from equation (4.40) of Section4.3.3, where Pr in this case will be the pseudo-reduced pressurecalculated as explained in Section 5.2.1.

Thermal conductivities of saturated gas mixtures are givenin Table A-37,

5.2.4 The.n.ma.1 Conductivity oh H2S Satufiatzd Aqu.eou-6 Solution*[Tabla A-3S)

Several equations have been proposed in the past tocalculate the thermal conductivity of binary liquid mixtures(25, 26, 27). However, usually one or more experimentalmeasurements are required to evaluate parameters of theseequations. Unfortunately, experimental thermal conductivitiesof H2S saturated aqueous solutions have not been reported sofar, ruling out the use of these equations. One exception isthe equation proposed by Filippov and Novoselova (28):

Page 75: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 6 8 -

km = kjWi + k2w2 - 0.72(k2 - k1)(w1w2) (5.52)

where k = thermal conductivity of liquid mixture

Wi, w2 = weight fractions of components 1 and 2

ki, k2 = thermal conductivities of the pure liquid components1 and 2.

This equation was used in the present work in spite ofthe fact that it seems to be only moderately successful withpolar compounds. The thermal conductivity of pure H2S liquidwas determined as indicated in Section 4.3.4. The thermalconductivity of pure liquid water was calculated from theequation presented by Schmidt (18):

v =4 v=3 v=3

* = E \ Tr + (Pr-Prs) E Vr" + <rr-^rs) £• CvTr <5'53)

v = 0 v = 0 v=0

with the constants:

aQ = -9.224700000 x 10"'

aa = 6.728934102 x 10°

a2 = -1.011230521 x 101

a3 = 6.996953832 x 10°

a- = 2.316062510 x 10°

bQ = -2.095427600 x 10"l

hi - 1.320227345 x 10°

b2 = -2.485904388 x 10°

b3 = 1.517081933 x 10°

Page 76: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

cQ = 8.104183147 x 10"2

ci = -4.513858027 x 10"1

c2 = 8.057261332 x 10"1

c3 = -4.668315566 x 10" J

where:

A = thermal conductivity of water, W/(m.K)

T = reduced temperature

P = reduced pressure

P__ = reduced saturation pressure

Table A-38 presents the thermal conductivity of thesaturated solution as a function of temperature and pressure.The predictions were not extended beyond 80°C since the thermalconductivity of pure liquid H2S could not be predicted beyondthis temperature. Anyhow, at 80°C the difference between thethermal conductivity of pure water and that of the solution isnot greater than 2.6 percent, so that for higher temperatures kmcan be replaced by k,, Q for practical purposes.

5.2.5 Vif^iuion Coe.i6icie.nt oh Hz0 in H2S Gai [Table A - 3 9 )

Hirschfelder et al. (20) predicted that for binary gp_aousmixtures the diffusion coefficient should vary only slight-lywith composition, and this is confirmed by experiment. In thediluted gas mixtures of H2S saturated with H20, it can beassumed that the diffusion coefficient is independent of com-position in the P,T range of interest. Due to the lack ofexperimentally determined diffusivities of H20 gas in H2S gas,the most accurate estimates can be achieved with Wilke andLee's (29) modification of the equation of Hirschfelder et al. (20)

V2

pi,2 = B ( l t l ) * 1 M M . 1 (5-54)Pa

2

Page 77: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 7 0 -

with

B = 0.21684 x 10"6 - 0.04985 x 10"6 x + M 2¥MjM2 J

where D1>2 = gas diffusivity, m2/s

T = absolute temperature, K

M!,M2 = molecular weights of components 1 and 2

P = absolute pressure, kPa

°i»2 = collision diameter, ran

= 0.5 (Oj + o2)

n = collision integral for diffusion, function offil'2 kT/elf2

) (x)El, 2 =

k = Boltzmann constant = 1.38 x 10"6 erg/K

£i,2 = energy of molecular interaction, ergs.

For the gas pair H2S-H2O, av,Q = . 3623nro and ou n = .2641nm(19), and equation (5.53) is converted to: n?v

2/2

D,,z = 6.007 x 10"7 — J r^ (5.55)

Accuracies within + 5 percent are claimed for thepredictions made through equation (5.55).

Page 78: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-71 -

The collision integral ft},1! was fitted as a function

kTof T* = - — , using the table presented by Hirschfelder et al. (20)

For H2S-H2O, —,2 493.579

and

fifja1^* = 0.664266 + 0.852823T*"1 - 0.0761734T*"2 (5.56)

Table A-39 shows the calculated values of D ] , 2 as a functionof P.T.

5.2.6 Vllfau&lon Coe.Hlcle.nt ofi H2S In Hz0 Liquid [Table. A-40)

To predict diffusion coefficients of dilute aqueoussolutions, good approximations are achieved by the equationof Othmer and Thakar (30) as modified by Hayduk and Laudie (31)

n 13.26 x 10~9 2. ,_ _7v

Di,2 = , m /s (5.57)

where y2 = viscosity of the solvent (H20), mPa.s

Vi = molar volume of the solute at the normal boilingpoint, cmVmol (35.2 cm3/mol for H2S)

Few experimental values of Dj,2 for the system H2S-H2O.have been reported (32), and they appear to be very scatteredand confined to the low temperature region of 15 to 25°C. Thepredictions through Hayduk1s equation were close to theexperimental data at low temperatures. Table A-40 shows thecalculated values of Dj,2 as a function of temperature.

Page 79: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 7 2 -

5.2.7 Suifiace. lQ.ndi.on oh Wate.1 Agaln-it H2S Vapout (Tablz A-41}

The surface tension of water against H2S vapour wasmeasured by Herrick and Gaines (33) in the temperature rangeof 25 to 40°C and pressures up to about 1900 kPa. Morerecently Strathdee (34) extended the temperature range from25 to 130°C and partial pressures of H2S up to 3200 kPa. Theexperimental surface tension data measured by Strathdee werefitted within the experimental error by the equation:

Y = Ci + C2T3 + C3T5 + P(Ci, + CsT + CeT2) (5.58)

where Y = surface tension, mN/m

T = temperature, °C

P = partial pressure of H2S, kPa

The numerical values of the coefficients are:

Ci - 72.7118

C2 = -.239994 x 10"*

C3 - .885018 x 10"9

Ci = -.275632 x 10"J

C5 = .384792 x 10"3

C6 - -.157879 x 10"5

This equation is able to reproduce the experimentalresults with an average deviation of 2 percent, and its rangeof applicability is 25 < T < 130°C, 0 <_ P _< 3200 kPa.

Table A-41 presents the predicted values of surfacetension as a function of P,T.

Page 80: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-73-

REFERENCES

1. Neuburg, H.J., and Walker, L.G., Atomic Energy of CanadaLimited, Unpublished Internal Report (1976).

2. Mather, A.E., "Composition of the Co-existing Phases inthe Hydrogen Sulfide/Water System", U. of Alberta ProgressReport to AECL (1974)

3. Selleck, F.T., Carmichael, L.T., and Sage, B.H., Ind.Eng. Chem., 44 (9), 2219 (1952).

4. Prausnitz, J.M. , "Molecular Thermodynamics of Fluid-PhaseEquilibria", Prentice Hall, Inc. (1969).

5. Clarke, E.C.W. and Glew, D.N., Can. J. Chem., 49, 691(1971). —

6. Besserer, G.J., "Investigation of the Phase Behaviour ofthe Water-Hydrogen Sulfide System Using the Chueh-PrausnitzCorrelation", Canatom MonMax Report No. 9003 - Part 2,August 1974.

7. Murphy, J.A., and Gaines, G.L., J. Chem. Eng. Data, 19(4), 359 (1974). ~~

8. Franks, F., "Water a Comprehensive Treatise", Plenum Press,Vol. 1 (1972).

9. Lyckman, E.W., Eckert, C.A., and Prausnitz, J.M., Chem.Eng. Sci., 20, 685 (1965).

10. Prausnitz, J.M., Eckert, C.A., Orye, R.V., andO'Connel,J.P., "Computer Calculations for Multi-component Vapour-Liquid Equilibria", Prentice Hall, Inc. (1967).

11. Hougen, O.A., Watson, K.M., and Ragatz, R.A., "ChemicalProcess Principles", Part 2, John Wiley & Sons, Inc. (1959).

12. Pohl, H.A., J. Chem. Eng. Data, 6 (4), 515 (1961).

13. Wright, R.H., and Maass, 0., Can. J. Research, 6, 94 (1932).

14. Pohl, H.A., and Hull, H.L., "Thermal Behaviour of Counter-current Equipment", USAEC Report DP-97, Office Tech. Services,U.S. Dept. Commerce (1955).

15. Burgess, M.P., and Germann, R.P., AIChE Journal, 15 (2),273 (1969).

Page 81: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 7 4 -

16. Galley, M.R., Miller, A.I., Atherley, J.F., and Mohn, M.,"GS Process Physical Properties", AECL*4255, August 1972.

17. Sherwood, A.E., and Prausnitz, J.M., AIChE Journal, 8 (4),519 (1962).

18. Schmidt, E., "Properties of Water and Steam in SI Units",Springer-Verlag, N.Y., Inc. R. Oldenbourg Munchen (1969).

19. Reid, R.C., and Sherwood, T.K., "The Properties of Gasesand Liquids", 2nd Edition, McGraw-Hill, New York (1966).

20. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., "MolecularTheory of Gases and Liquids", John Wiley and Sons, Inc.,New York (1953).

21. Dean, D.E. , and Stiel, L.I., AIChE Journal, 11., 526(1965).

22. Tamura, M., and Kurata, M., Bull. Chem. Soc. Japan, 25,32 (1952). ~~

23. Guzman and Andrade, Nature, L25_, 309, 582 (1930).

24. Perry, R.H., and Chilton, C.H., "Chemical Engineer'sHandbook", 5th Edition, McGraw-Hill, New York (1973).

25. Barrat and Nettleton, "International Critical Tables", V.S.p. 227, McGraw-Hill, N.Y., (1929).

26. Saskena, M.P., and Harminder, Ind. Eng. Chem. Fundam., 13(3), 245 (1974).

27. McLaughlin, E., Chem. Revs., 64, 389 (1964).

28. Filippov, L.P., and Novoselova, N.S., Vestn. Mosk. Univ.Ser. Fiz.-Mat. 10 (3), 37 (1955).

29. Wilke, C.R., and Lee, C.Y., Ind. Eng. Chem. 47, 1253 (1955).

30. Othmer, D.F., and Thakar, M.S., Ind. Eng. Chem., 45, 589 (1953;

31. Hayduk, W. , and Laudie, H. , AIChE Journal, 2_0 (3), 611 (1974).

32. Himmelblau, P.M., Chem. Rev., 64, 527 (1964).

33. Herrick, C.S., and Gaines, G.L., Jr., J. Phys. Chem., 77(22), 2703 (1973).

34. Strathdee, G.G., and Given, R.M., J. Phys. Chem., 80 (15),1714 (1976).

7C

Atomic Energy of Canada Limited Report No. AECL-4255.

Page 82: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 7 5 -

FIGURE 5.1 SOLUBILITY OF H2S IN

7.0

O MATHER'S EXPERIMENTAL DATA

PREDICTED 423.15 593.15

6.0

5.0 ~

Q_

4.0

3.0

2.0

453.15 K

363.15

10 15 20 25 30

MOLE FRACTION H2S (X 1000)

35 40 45

Page 83: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 7 6 -

FIGURE 5.2 MOLE FRACTION OF HYDROGEN SULFIDE INGAS-PHASE SYSTEM H20 - H2S

EXPERIMENTAL DATA BY

O SELLECK, CARMICHAEL & SAGE

PREDICTED

444

310.93Kj I

0.70 0.80 0.90 1.0

MOLE FRACTION H2S

Page 84: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-11 -

FIGURE 5 . 1 SOLUBILITY OF H.S IN MTER

COMPOSITION or L , BASED ON SMOOTHED DATA OF MATHER

COMPOSITION OF L , «T PHASE BOUNDARY MEASURED BY HOIHEH

O L , COMPOSITIONS AT PHASE BOUNDARY MEASURED BY SELLECK et

COMPOSITIONS OF L, AT QUADRUPLE POINT ACCORDING TO

5EUECK c l a l

D COMPOSIIIOKS OF I , COEXISTING l.'ITH SOLID HYDBATE

DETEBHINED Bf 5CHEFFEfl

B L j COMPOSITIOHS flT QUADRUPLE POINTS DETERMINED BY

SCHEFFER

L, = LIQUID WflTER SATURATED WITH HjS

L, s LIQUID H ;S SATURATED WITH HjO

S ( H SOLID HYDRATE x H ,S .6H ; 0

DAS E H,S GAS SATURATED WITH H.O VAPOR

REGION OF COEXISTING L, IHD G«S

REGION OF COE«1S'INS I ,

OH OF COtXISTlNG 5, L, INC U S

24 n

MOLE T R A C T I O N H , S I N S O L U T I O N ( X I O O O )

Page 85: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

5,50[FIGURE 5 .4 DIAGRAM FOR HENRY'S LAW CONSTANT

DETERMINATION IN THE H S-H 0 SYSTEM

5.40

5.30

5.20,

5 . 1 0

5 , 0 0

1 7 1 . 1 ° C

1 0 4 . 4 ° C So

7 1 . 1 " " P

4.90

4 803 7 . 8 ° C

4 . 7 0 11.0 2.0 3.0 4.0

P - Pt (MEGAPASCALS)

5.0 6.0

Page 86: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 7 9 -

FIGURE 5 . 5 HENRY'S LAW CONSTANT AT ZERO PRESSURESYSTEM HnO~H,S

20

(0a.

15

OO

>-

txJ

10

^ CLARKE & GLEU

O BESSERER

PRESENT WORK(Eq. 5.22)

I I200 300 400

TEMPERATURE, K

500

Page 87: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 8 0 -! e

/mo1

e1

jou

1

O

14

12

10

8

6

4

2

0

FIGURE 5 . 6 TWO-SUFFIX MARGULES

O OPTIMUM VALUES

FITTED BY EQ.

1

: /

- /

; /

i I

FROM MATHER1

(5 .26)

/

/

9

I

PARAMETER

S DATA

/

1 1

200 300 400

TEMPERATURE, K

500

Page 88: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

FIGURE 5.7 MOLAR VOLUME OF PURE LIQUID H 2S AND APPARENT MOLAR VOLUME OFH 2S IN AQUEOUS SOLUTION

too

90

ao

70

60

~ 50

ooo

MOLAR VOLUME OF PURE LIQUIDH2S AT THE BUBBLE POINT(AFTER REAMER et al. IND CHEM.42.140(1950))

oAD

- SOLHV,, . PREDICTED BY LYCKMAN CORRELATIONH 2 S

<p EXTRACTED FROM DENSITY DATA OF MURPHY AND2 GAINES

EXTRAPOLATED VALUES OF 4>H s OBTAINED FROM

FORMULATION OF MURPHY AND GAINES DATA:

DA

( d m V m o l ) = 0 . 0 3 3 5 1 + 4 . 8 6 5 x 1 0 ' 5 t ° C

D

A

RESULTSDATA OF

o xH

D

A

XH

XH

EXTRACTEO FROMSELLECK et al

s = 0 . 0 2 2 8

s = 0 . 0 4 3 7

s = 0 . 0 5 5 6 Ie x

30

20

TC(H2S)

1 . I20 40 60 100 120

F.MPERATURE (°C)

140 160 180 200 220

Page 89: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-82-

FIGURE 5.8

MOLAR HEAT OF SOLUTION OF H2S IN AQUEOUS SOLUTIONS

- - O - CALCULATED BY POHL

PREDICTED FROM SOLUBILITY MODEL

-ifc.O

-14.0

-12.0

PHASE \ S. \REGION N \

o

3 -io.o

o

-8.0

-b.o

-4.0

-2.0

20 40 60 80 100 120 U 160

TEMPERATURE °C

Page 90: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 8 3 -

6. VEUTERIUH EXCHANGE EQUILIBRIUM

6.1 Eqalllbulum Constant faon. V Exchange. Be-tween H20 and HVS[Table.* A-42 to A-44)

For the reaction:

HzO^ + HDS^HDC^ . HjS^ (6.1)

the equilibrium constant is expras ed as.

[HDO][HDS]£

KOmlt}

There is some confusion in the publ ' -* literature asto what constitutes Ko. It is often errc --J-y reported asthe mixed-phase equilibrium constant Kg£ because nearly allexperimental determinations have been for Kg£, where:

[H2S]

THDSj

A summary of the experimental and empirical determinations ofKg and K-r£ are given in DP-97 (1). There have been some morerecent diterminations of chese equilibria and it was concludedthat the values reported in DP-97 are as accurate as any otherdeterminations.

The values of Kp can be extracted from Kg£ if the relativevolatility of (HDS/H?S7g to (HDS/H2S)£, aR2S, if known. Themixed-phase equilibrium constate is given by (1):

K , = 0.871 e(2 9 8/ T) where T = temperature, K (6.4)

also:

[HDS]g(6-5)

from where:

Kg£ . a H 2 g (6.6)

Page 91: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

84-

K,£ can also be related to the gas-phase equilibriumconstant Kg, if additionally the relative volatility of(HD0/H20)g to (HDO/H2O) OIH2O.

i s known. The gas-phaseequilibrium constant is expressed as (1):

[HDO1 [H2S1K = , 3 g (6 7)g [H20] • [HDS] K '

K = 1.01 e( 2 3 3 / T ) (6.8)

also:

[HD01 [H20]* (6.9)

[H20]g

and Ko = K . S ^ (6.10)* g aH2S

Rzlative. Volatility oh (HV0/H20)g to (HVO/HzO)^ [Table. A-4S)

The relative volatility a^jp °f ^D0 to H20 has beendetermined experimentally and results from several sources arereported by Kirschenbaum (2). These experimental results fitthe equation:

= 1.1596 e <-65-43'T> (6.11)

6.3 R&tative. Volatility of, {HVS/H2S)g £ • {HVS/H2S)l [Table A-46)

The relative volatility «H?S of HDS to H2S can be calculatedfrom vapour pressure data measured by Clarke and Glew (3) for H2Sand D2S, which were fitted by the equation:

a H 2 S = 1.034 e<-8'037/T> (6.12)

where T = temperature, K

Page 92: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-85-

6.4 Hzat o& Rza.ci.lon faon V Exckangz Between HzO and HVS

For the reaction H2O + HDS Z HDO + H2S, Pohl (1) hasreported for the heat of reaction AH° = -2481.7 J/mol HDO.AH has been recalculated by Norton ^4) and the revised valuefor the aqueous phase reaction is -2369 ± 40 J/mol HDO. Thisvalue is used for all exchange reaction heat calculations.

6.5 Equilibrium Constant ^ofi Vi&tKibutian o& V in Hz0 [Tablo. A-47)

K is defined as the equilibrium constant for thereaction 2 HDO t H20 + D20

w h e r e K o =T7TT

The variation of Ko with temperature has been reported byKirschenbaum (2) and fits the equation.

KQ = A + BT - CT2 (6.14)

where T = temperature, °C

A = 3.7621

B = 1.5057 x 10"3

C = 4.0 x 10"6

6.6 Equilibrium Constant ^oh. distribution o& V in H2S [Table. A-4S)

In a similar way to K in Section 6.5,

_ [HDS]2Ks "s " [H2S][D2S]

The variation of K with temperature has been estimatedby using the method of JacRson (5).

Page 93: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 8 6 -

K = A + BT + CT2 + DT3 (6.16)s

where T = temperature, K

A = 3.33811

B = 4.19099 x 10"3

C = -9.28477 x 10"6

D = 7.1767 x 10"9

6.7 Ovz/iall Vl6tn.lbu.tlon CoQ.HlclQ.nt (6) {Table. A-49)

The overall distribution coefficient, B, should bedefined as:

ft - X E (1 - YE) f63 - YE ' (1 - XE) (6>

where XE -I^ITE? j l i q u i d H , , o + d i s s o i v e d H2S

•WYE »^,TTfgaseous H S + H 0 v a p o u r

At low concentrations of deuterium, i.e., <1000 ppm,

Q % XE f r -I g\

3 % Yg- (b.io)

Spevack (6) derived an expression for £ which issufficiently accurate for design purposes at deuteriumconcentrations below one percent. By defining:

[HDO]N = mnA,— •"r« Ai— = mole fraction of HDO in the water as vapour.[HDOJ + [H2O]

[HDS]n = TupWT—+ [U gi = ra°le fraction of HDS in the hydrogen sulfide

Page 94: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-87-

where Kg = "gas-phase" reaction equilibrium constant.

For low deuterium concentrations the approximationcan be made that:

Kg £ £ (6-20)

The fraction of total deuterium in the liquid regardless ofmolecular species can be expressed as:

Ah = \, 0 .

( 1 ) + S ( l )H2O

aH2S

where S = moles dissolved (H2S)/mol (H20) liquid

au nt au o = relative volatilities

similarly, the fraction of total deuterium in the gas-phase,regardless of molecular species will be:

VP _ n + H N , rYE Ny (6-TT-n)4

where: H = moles (H20) vapour/mol (H2S) gas

Introducing eq. (6.20) into eqs. (6.21) and 6.22, thesimplified definition of the overall distribution coefficient,3, yields:

YTr (S + («„ Q/a H n) Kg) (1 + H)6 ^ YE b SZ q(l + KF.H)(1 +~S) (b.U)

Page 95: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 8 8 -

The original definition of 3 derived by Spevack is equivalentto eq. (6.23), except that he considered aft2s - aji2Q. Equation(6.23) is in general use for deuterium concentrations below1 percent.

To calculate distribution constants accurately atconcentrations above 1 percent D20, a rigorous deviation for

XE (\ — YF^a = Y E • (1 I YR) must be made. For a better understanding of

the next steps, the separation factor, a, will be defined as:

\D+Hy]where: X = x^.TTi•, . .j'liquid water

"(WH)hydrogen sulfide dissolved in water

At higher deuterium concentrations, besides the exchangereaction:

H 20 £ + HDS£ t HDO^ + H 2S £ )

other reactions in equilibrium are also important, namely,

2HD0£ t H2()£ + D20£ and (6.25)

2HDS£ t H2S£ + D2S£ (6.26)

with the respective equilibrium constants given by:

[HDO]£Ko - [H20]£[D20l£

( 6" 2 7 )

[HDS]"and K = JT;-^ * (6.28)

S ln2i>J l D 2 b j £

Page 96: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 89 -

On the o ther hand, the d e f i n i t i o n s of X and Y lead to :

/ n \ [HDO]O + 2[D20]0X _

[water 2T[H20]£ + [HDO]£ + [D20]£)

[HDO] + 2[D20]£

fHDO]p + 2[H20]£

similarly.

v [HDS]? + 2[DZS]5

Introducing the definitions of Ko and Ks in eqs. (6.30) and (6.31)and rearranging:

x K

o [ H 2 ° ] .

iTx = fHlFT1 + 2 [HDO]

2 l™Sh•L + v~

1-Y

By defining:

[HDO] [HDSKRTl " TH7OT7 a n d R S j " TCTI7

^ _ 1 + 2RTi/Kn

(6.33)

Page 97: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-90-

Solving eq. (6.34) for RTj,

2X - 1 + V(l ~ 2X)2 + 16X(1 - X)/K

RT, = ^ 4(1 - X)/KQ " <6"35>

Also:

Y 1 + 2RS1/Ks

TTy = 1 + 2/RS, ( 6 > 3 6 )

and RSi can be obtained from:

[HDO]^ [H2S]A _ RT,

/. KSi = RTi/K^ (6.37)

Thus if a value of X is selected, RTi can be calculatedfrom eq. (6.35) and RSi from eq. (6.37). Substituting RSi ineq. (6.36) enables Y to be calculated. XE can then be foundfrom :

XE = (X + Y.S)/(1 + S) (6.38)

with S as defined previously. This completes the liquid-phasecalculations.

The concentration of deuterium in the water vapour abovethe liquid, XV, is defined as:

XV -( D \VD+H/water vapour

In a similar way as the derivation made for X.

XV _ 1 +

" 1+ Z " 3 9 )

Since all the variables of the right-hand side of eq. (6.39) areknown, XV can be determined.

Page 98: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-91 -

Similarly, the concentration of deuterium in the H2Sgas above the liquid, YQ, is related to that dissolved inthe liquid by the relative volatility CXH2S S O that:

1 + 2RS..q

YE can then be calculated from:

„„ YQ + XV.H -,YE = a + H) ( 6 )

With XE and YE known, the overall distribution coefficientg can then be found from eq. (6.17).

This derivation of 6 is a function of X (or XE) and enablescalculations to be made when X > 0.01. Table 6.1 shows how |3varies with X at higher concentrations. It should be noted thatfor X < 0.001, 3 differs from Spevack's (SRP) value by 0.09% at32.2°C and by 0.02% at 129.4°C.

For low deuterium concentrations, 3 can be calculatedusing Spevack's equation, or through the derived method byassuming a low value of X (e.g., X = 10~6). For high deuteriumconcentrations, 3 can be obtained by substituting the appropriatevalue of X. Table A-49 presents the overall distribution constantas a function of P,T.

REVERENCES

1. Pohl, H.A., and Hull, H.L., "Thermal Behaviour of Counter-current Equipment", USAEC Report DP-97, Office Tech. Services,U.S. Dept. Commerce (1955).

2. Kirschenbaum, I., "Physical Properties and Analysis of HeavyWater", National Nuclear Energy Series 111-4A, McGraw Hill,New York (1951).

3. Clarke, E.C.W., and Glew, D.N., Can. J. Chem., 48 764 (1970).

4. Norton, P.R., and Richards, P.J., Atomic Energy of CanadaLimited, Unpublished Internal Report (1971).

5. Jackson, D.P., Atomic Energy of Canada Limited, ReportAECL-3382, (1970).

6. Spevack, J.S., USAEC Report A-393, Office Tech. Services,U.S. Dept. Commerce (1942).

Page 99: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 92 -

TABLE 6.1

VARIATION OF DISTRIBUTION CONSTANT (Beta)WITH DEUTERIUM CONCENTRATION

kPa°C

SRP Value

D/(D+H)

Beta (Cold)2031.32.2

2.2711

Beta (Hot)2169.129.4

1.6405

.000100

.000250

.000400

.000550

.000700

.001000

.002500

.004000

.005500

.007000

.010000

.025000

.040000

.055000

.070000

.100000

.250000

.400000

.550000

.700000

2.2690

2.2691

2.2691

2.2691

2.2691

2.2691

2.2693

2.2694

2.2695

2.2697

2.2699

2.2712

2.2725

2.2738

2.2750

2.2775

2.2893

2.2996

2.3081

2.3140

1.6402

1.6402

1.6402

1.6402

1.6403

1.6403

1.6404

1.6406

1.6407

1.6408

1.6411

1.6425

1.6439

1.6453

1.6466

1.6494

1.6636

1.6783

1.6934

1.7089

Page 100: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

7. COMPUTER PROGRAM TOR CALCULATING PHYSICAL PROPERTIES OTGS PROCESS MATERIALS

The computer program included consists of threeFORTRAN functions written to calculate the properties ofwater (WATER), hydrogen sulfide (HTWOS), and mixtures ofboth in aqueous and gaseous phase (GSPROP). The propertiesare calculated in SI units following the formulation describedin Sections 3 to 6. Most properties of pure water wereprogrammed from internationally accepted formulations (1).To improve computational efficiency, the original equationswere rearranged and constants regrouped whenever possible.In most cases the resultant calculations may be performedon a programmable desk calculator.

Documentation that precedes the logic in each functionindicates the arguments required, and the properties calculatedin that function with the corresponding units.

The programming structure is essentially modular sothat each property consists of a relatively short number ofstatements executed independently from the rest of the function.Exceptions are those properties which require the gaseous molarvolume, involving the solution of tha Redlich-Kwong equation ofstate which is a cubic in volume. To avoid machine dependencyresulting from the use of a library subroutine, a subfunction wasincluded in each function which calculates only the required rootfor the gaseous molar volume. This subroutine was linked to theproperty modules requiring molar volumes by ASSIGN statements.

The modules are reached by entry points and each entryname consists of six letters. The first two indicate theproperty (VI - viscosity, CF - compressibility factor, etc.).The next three describe rhe material (HHO - water, HHS - hydrogensulfide, HSO - gaseous mixtures and liquid solutions). Thesixth letter indicates the phase (L - liquid, G - gas or vapour,M - mixed phases). For example, ENHHOL is the entry point forthe enthalpy of liquid water, and the user would require astatement such as X = ENHHOL (TK.PK) in his main program toobtain the value.

Since the vapour-phase and liquid-phase mole fractionsof saturated H2S-H2O mixtures have to be determined iterativelyas explained in Section 5.1.1, the tabulated values between 30and 180 C and 1.3 to 2.3 MPa were regressed as functions of pressureand temperature. The vapour-phase mole fraction of water atsaturation was included in function WATER (ENTRY HUHHOG), andthe liquid-phase mole fraction of hydrogen sulfide at saturation

Page 101: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

was included in function HTWOS (ENTRY SOHHSL). In addition tothe properties of pure hydrogen sulfide, function HTWOS alsoincludes entries for the heat of solution of hydrogen sulfidcin water (HSHHSG), dew point of wet gas (DPHMSG), and temperatureof hydrate formation (THHHSL).

Function GSPROP calculates the properties of gas mixturesand liquid solutions not necessarily at saturation conditions.Therefore, the mole fractions of dissolved hydrogen sulfide (XH2S)and water vapour in gaseous mixtures (YH2O), are included asarguments in addition to temperature and pressure. To calculatethe properties at saturation for a certain pressure and temperature,XH2S and YH2O have to be determined from functions HTWOS andWATER respectively.

A number of properties in GSPROP (namely equilibriumconstants and relative volatilities) are only temperaturedependent, and in this case pressure and mole fractions arecarried as dummy variables. Surface tension was measured atsaturation conditions whereby its formulation is only pressureand temperature dependent, and in this case, the mole fractionsare dummy variables. The rest of the properties are compositiondependent, and only the mole fraction of the other phase is adummy variable.

REFERENCE

1. Schmidt, E., "Properties of Water and Steam in SI Units",Springer Verlag, N.Y., 1969.

Page 102: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

05

1 *0ECK HHOFUNCTION WATER<TK,FK>

CC PHYSICAL PROPERTIES OF WATER AKC STEAM

5 CC ARGUMENTSC TK - TEMFERATURE IN DEGREES KELVINC PK - PRESSURE IN KILOPASCALSC

10 C ENTRY POINTS LIST OF PROPERTIES UNITSCC CFHHOG COMPRESSIBILITY FACTOR FOR H20 VAFORC OEHHOG DENSITY OF H20 VAPOR KG./CU.METREC DEHHOL DENSITY OF LIQUID WATER KG./CU.METRE

15 C ENHHOG ENTHALPY CF H20 VAPCR JOULES/MOLEC ENHHOL ENTHALPY CF LIQUID WATER JOULES/MOLEC HCHHOG HEAT CAPACITY OF WATER VAFOR JOULES/MOLE/DEG.KC HUHHOG HUMIDITY CF WATER Ih H2S MOLES/MOLEC PSHHOL SATURATION PRESSURE OF LICUID WATER KILOPASCALS

20 C TCHHOG THERMAL CONDUCTIVITY OF WATER VAPCP WATTS/MFTRE/OEGcKC TCHHOL THERMAL CONDUCTIVITY OF LIOUID WATER WATTS/METRE/DEfi.KC VIHHOG VISCOSITY OF WATER VAPCP KG./METPE/SEC.C VIHHOL VISCOSITY OF LICUID WATER KG./METPF/SEC.C

25 C STATEMENT FUNCTION FOR THE SATURATION PRESSURE OF WATERC

PSAT(TK) = EXPM-.256674F 03 • TK*( .13938PE 01 • TK*(-.318580E-02« • TK*< .405906E-05 + TK*(-.302229E-0P + TK* .1P46G6E-11"5 ))))) / ( TK»< .403865F.-01 • TK* (-. 110066E-03

30 « • TK* .77336<5E-07> ) ) ) * 22120.CC SOLUTION OF RECLICH EQUATION OF STATE FOR WATFR VAPORC

1 7 = SHRT(TK)35 P = -?.771AP « TK/PK

C = <4P9fl.296/IP**l) - 6,0flfl05E-2*TK/PK - 1.60fl47E-AD = -T22.aO01/<PK»T>o = r - R*BR = P « (0 • .5*0) - .S*D

40 D = 0*0*0 • R*PIF(D .GF. 0.0) GO TO 2PSI = ATAN(SQRT(-C)/P)IF (R .I.T. 0.0) PSI = PSI • 3.1A15926V = ?. » S0RT(AFS(O)) * CCS(0.33333«PSI) - F

45 GO TO LAPFL(10»20f30>C

2 0 = SCRT(D)C = R • 0D = R - 0

50 V = C/APS(C) * <C*C)*«.1^6667 • D/APS(D> * (D*D<*•.166667 - *GO TO LAPEL<10<20«30)

CENTRY cn-HOG

C55 ASSIGN 10 TO LAPEL

GO TO I10 WATft? = PK * V / ( f i .31443 * TK)

Page 103: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

RETURNC

60 ENTRY DEHHOGC

ASSIGN 20 TO LABELGO TO 1

20 WATER = 18.02 / V65 RETURN

CENTRY OEHHOL

CT = TK/647.3

70 P = PK/22120.Z = 1. - .84383fi»T*T - .536216E-3/T«»62 - .397208 * (Z • SORT(!.72*2*Z - ,146846»T • ,0995172«P)>

$ #*(-.294118)WATER = 7 - 2.616572E-2 • T»(1.522412E-3 • 2.284279E-2»T> •

75 $ 242.1647«(.6537 - T>«*10 • 1.269716E-10/(1.15E-6 •* -(2.074838E-? • P* (4.34fl04E-8 • 3.317132E-9»P)) /% (1.510PE-5 • T*»ll)WATER = 315.457 / < WATER - 12.93440*T»*18«(.14188 • T»T) •

* (-3./(7.00275 • P>»*4 • 2.99528E-4) • P*»2»(8.00569E-6 -80 % 3.924357E-5*T • 2.41905E-13«P/T*«20>)

RETURN

cc

cc

ENTRY

ASSIGNGO TO

30 WATER*%RETURN

ENTPY 1

TP =

ENHHOG

30 TO LABEL1= 36128.5 • TK#(?3.<;

8.9e415E-10*TK>)>/ T

FfMNHDL

TK/647.3PK/?2120.

• TK»<9.6129E-4 • TK«(3.516PE-6 -- 1 .00344E6»ALOG(1 . • .021966«/\/»

95YDY = 1.6876751»T • 3.217?97E-3/T»«77 = Y • SORT(1,7?»Y«Y - .146fi456«T •WATEP = 542.206367 • T«(-6824.6e7741 • T«( 39412.W7P7 • T«(

100 % -134665.555 • T* ( 2=17071.4308 • T* (-437564.7096 • T« (% 429542.083 • T« (-P70670.1245 * T*( 992(f<J.7?4pp -% 16138.16PQ«T ))>>))))WATER = - WATEC • 7 ,9826t5*7«* (-.2941181 « (7* { ,586207»7 -

* 1.41667*Y • .41(£.667»T»nY> + .073422S»T - ,72«T»Y»nY)105 WATFP = WATEP - P*(.026U57184 • . 022842791«T«T - 2179.4823»

* (T+ .07263505)*(.65371543 -% (T*«19 • 5.75E-8) / (T»#ic> • l,I5E-6)*«2)

WATEP a ii«ATEP - p * < ?. .489P06E-6 • P* (2.6088244E-7 •

HO WATER = <WATFP • 2 4 5 . 7 5 3 9 6 » T««18 • ( . 1 2 6 9 4 5 2 6 • T»T) «* <2.9952849E-A*P • 1./(7.0027532+P)«»3) • P**3»t (2.6698563F-6 • 1 .2701^01EE-12 * P / T*«?0>> » 1263.5696

Page 104: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-97-

115 ENTRY HCHHOGC

WATER = .322245E 2 • TK*( .i:2259E-2 • TK*( .105504E-4 -f .359366E-e * TK))RETURN

120 CENTRY HUHHOG

CP = 1.E3/PKGSPROP = .01852978 - TK* .7E07126E-4 • .6865968E-17*TK«*6 • P«(

125 « 13.544038 • TK*(-.1B88656 • TK*(.1C20128F-2 • TK*(? -.26140565E-5 - .5309210E-10*P*P • TK» (.3036590E-R •$ ,3738S32E-12»P - .1115869F-11*TK)))))RETURN

C130 ENTRY PSHHOL

C,'ATEP = PSAT(TK)RETURN

C135 ENTRY TCHHOG

CWATER = .010245 • TK*(-.82132F-5 • TK*(.1410E-6 - TK».451F-10>)RETURN

C140 ENTRY TCHHOL

CT = TK/647.3p = (PK - PSfiT(TK)) / 22120.WATFP = -.922470 •

145 * T*( 6.72893 • T*(-10.1123 • T*( o.99695 - T«?.31606))) •* "»(-.209543 • T*< 1.32023 • T*(-2.43590 • T*l.51708)) *^ PM.081041P + T*(-.451386 • T*( .805726 - T*.466832)* ))RETURN

C150 ENTRY VTHHOG

CWATER = .407E-7*TK - .30772F-5RETURN

C155 ENTRY VTHHOL

CWATEP = (.2414E-4 • .25041F-12 • «PK - PSAT(TK)) * (TK - 305.))*

« 1O.**(247.4O4P / <TK - 140.))RETURN

160 END

Page 105: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

10

15

20

30

35

-98-

«DECK HHSFUNCTION HTWOS<TK»PK)

CC PHYSICAL PROPERTIES OF GASEOUS AND LlfiUID *YORCG't"N SULFIBECCCCC

CC

ARGUMENTSTKPK

C ENTPY POINTSC

CFHHSGDEHHSGDPHHSGENHHSGHCHHSGHSHHSGPSHHSLSOHHSLTCHHSGTCHHSLTHHHSLTSHHSLVIHHSGVIHHSL

TEMPERATURE IN DECREES KELVINPRESSURE IN KILOPASCALS

LIST OF PROPERTIES

COMPRESSIBILITY FACTOR CF H2S GASDENSITY OF H2S GASDEW PCINT OF WET H2S GASENTHALPY CF H2S GASHF.AT CAPACITY OF H2S GASHEAT CF SOLUTION OF H2S IK H20SATURATION PRESSURE OF *>2S LI«UIOSOLUBILITY OF H2S IK WATERTHERMAL CONDUCTIVITY OF H2S GASTHERMAL CONDUCTIVITY OF LlflUIR H2STEMPERATURE OF HYORATE FORMATIONSATURATION TEMPERATURE OF H2S Ll«tlDVISCOSITY OF H2S GASVISCOSITY OF LIOUID H2S

UNITS

KG./CU.METREDE6.K.JOULES/MOLEJOULES/MOLE/DEG.KJOULES/MOLEKILOPASCALSMOLES/MOLEWATTS/METRE/DEr,.KWATTS/METRE/DEG.KOEG.K.OEG.KKG./MFTRE/SEC.KG./METRE/SEC.

SOLUTION OF RECLICH EQUATION OF STATE FOR +YDRCGFN SULFIDF

T = SORT(TK)R = -?.771Afi « TK/PKC = ?<J9ft.25/(PK*T> - .D = -?73.<f862/<FK«T>0 = c - W»BR = q • (0 • .5«C> - .D = O»O*O • R»RIF<0 .GF. 0.C) GO TO 2PSI = ATAN(S<JPT(-C)/R>IF (P .LT. 0.0) PSI = PSIV = ?. » SQRT(AeS<OnGO TO LAPFLU0«20»30.40>

- 3.08567E-A

5«n

• 3.1415926C0S(0.33333«PSI) -

0cDV

= SORT(D)= P • 0= R - 0= C/ARS(C) * (C»C)«*.166667 • D/APS<D) * <O«D)««.166667 - 9

GO TO LAPEI.(10»20»30«AO)

FNTRY CFHHSG

ASSIGN 10 TO LARF.LGO TO 1

10 HTWOS = PK » V / <fi.31443 « TK)RETURN

ENTRY OF.HHSG

Page 106: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 9 9 -

ASSIGN 20 TO LABEL60 TO 1

60 20 HTWOS = 34.08 / VRETUPN

CENTPY DPHHSG

C65 P = ALOG(.145029*PK)

HTWOS = -942.249 • P*( 895.750 • P«<-260.564 • P»(34.2120 -% P* 1.64319)))PETUPN

C70 ENTPY ENHHSG

CASSIGN 30 TO LABELGO TO 1

30 HTWOS = -9098.32 • TK«<25.8089 • TK«(-6.7918F-3 • TK#(1.92193E-5 -75 $ 8.90742E-9*TKM) • PK«V - 4.43l54E5*AL0G < 1.*.03042537/v>

$ /TRETURN

CENTRY HCHHSG

80 CHTWOS = .341242E 2 • TK*(-.135836E-1 • TK»< .576578E-4 -S .356297E-7*TK))RETUPN

CP5 ENTRY HSHHSG

CT = l./TKP = 1.E3/PKHTWOS = -,197f2823E07 • .493«J2654E07«P • .23553729E04*P»»5 * T*(

90 % .220P1637E10 - ,90716291E10*P • T« ( .66424594R:i3*P • T# {"S -,1001062eF16 - ,24245227E16*P - .71433945E12*P»*3 • T* <$ ,549e8942E18 > .441167O5E18*P • ,42967062E15»P#*2 • T# (% -.12046576F21 - .32115756E20»P • .97538143P22»T )))))RETURN

9S CENTRY PSHHSL

CHTWOS = 10.«»<9.1*0fl - 1212.52/TK - TK*(.89838E-2 - l.F-5*TK) )RETURN

100 CENTRY SOHHSLT = l./TKHTWOS = - .16334891 • .14096132E-4»FK • T»(95.90954 -

f ,56263771E-2*PK • T»»3«<-.2945149E10 • 1 2 . 1 6 7 9 P 3 * P K * P K •10°; f T*(.54391156Efl*PK + T« (-.19275704F7«PK»FK • T* (

f .H00«e54E18 - ,19429'=04E20»T ) ) ) > )RETURN

CENTRY TCHHSG

110 CT = T* - 273.15HTWOS = <1.2966E-2* T«(7.4542F-5 - T*(?.1632E-7 - 6.3247F-10«T)))

<B • <4,7725F-6»PK • l.Q)RFTUPN

Page 107: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 100 —

115 CENTRY TCHHSL

CT = TK - 2 7 3 . 1 5HTWOS = 5>.11O98E-O1 • T*<-4.78236E-04 • T«(-3.94523E-0? •

120 * T«(4.70e«30E-08 *T*T»(3.55215E-12 *T« 9*5!847E-14 )RETURN

CENTRY THHHSL

C125 HTWOS s 9.3987 • ALOG(PK) • 230.15

RETURNC

ENTRY TSHHSLC

130 HTWOS = 19.77 • 1. / (.76215AE-2 - .529257E-3 • ALOC(PK))RFTUPN

CENTRY VIHHSG

C135 T = ALOGIO(TK)

HTWOS = P.1963 • T»l-1.22152 • T«(-1.3P768 • .13337»T>>ASSIGN 40 TO L/»BELGO TO 1

40 RO = 1.E-3/V140 HTWOS = 1 .274E-* * T / HTWOS * ( 1 . • TK*#(-.59> * RO #

« <<?57.31<5 • RO»(1.00283F5 • 3.8252E6«R0) ) )RETURN

CENTRY VIHHSL

145 CT = l./TKHTWOS = l.E-3 • EXP<-8.4013 • T*(2.S92fF3 - 3.0361E5*T>>KITURNEND

Page 108: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 101 -

10

15

20

25

35

50

Cccccccccccccccccccccccccccccccccccc

#0ECK HS0FUNCTIOM GSPROP <TK.PK,XH2S»YH20)

cPHYSICAL PROPERTIES OF H2S - H2C SOLUTIONS AND MIXTURES

ARGUMENTSTXPKYH20XH2S

- TEMPERATURE IN DEGREES KELVIN- PRESSURE IN KILOPASCALS- MOLE FRACTION OF f*20 VAFOR IN GASEOUS MIXTURES- MOLE FRACTION OF H2S IN A9UE0US SOLUTIONS

ENTRY POINTS

CFHSOGDEHSOGDEHSOLDIHSOGDIHSOLENHSOGENHSOLEXHDOMEXHDSMEXHSOGEXHSOLEXHSOMHCHSOGODHSOMRVHDOMRVHDSMSTHSOLTCHSOGTChSOLVIHSOGVIHSOLWMHSOGWMHSOL

LIST OF PROPERTIES UNITS

COMPRESSIBILITY FACTOR FOR MIXTURESDENSITY OF MIXTURESDENSITY OF SATURATED SOLUTIONSDIFFUSIVITY OF H20 IN H2S GASDTFFUSIVITY OF H2S IN H20 LIQUIDENTHALPY CF MIXTURESENTHALPY CF SOLUTIONSEQUILIBRIUM CONSTANT - H2C-HOO-D20EQUILIBRIUM CONSTANT - H2S-HDS-D2SEQUILIBRIUM EXCHANGE CONSTANT - GAS PHASEEQUILIBRIUM EXCHANGE CONSTANTEQUILIBRIUM F.XCHAN6F. CONSTANTHFAT CAPACITY OF MIXTURESOVERALL DISTRIBUTION CONSTANTRELATIVE VOLATILITY - HTO/H2O GAS TO LIQUIDRELATIVE VOLATILITY - HCS/H2S GAS TO LISUIDSURFACE TENSION OF SATURATED SOLUTIONS MILLINEWTONS/MfTRETHERMAL CONDUCTIVITY OF MIXTURES WATTS/METRE/DEG.KTHERMAL CONDUCTIVITY OF SOLUTIONS WATTS/METRE/DEo.KVISCOSITY CF MIXTURES KG./METRE/SEC.VISCOSITY OF SOLUTIONS KG./METRE/SEC.MOLECULAR WEIGHT OF MIXTURES GRAMS/MOLEMOLECLLAR WFIGHT OF SOLUTIONS GRAMS/MOLE

KG./CU.METREKG./CU.METRES«.MFTRES/SEC.Sfl.METRES/SEC.JOULES/MOLF.JOULES/MOLE

- LliUIC PHASE- MIXED PHASE

JOULES/MOLE/DEG.K(BETA)

SOLUTION OF RECLICH EQUATION OF STATE FQR HlXTLRFS OF H2S AND H?C

TARRPBCD0RDIF(D

«rPT(TK)«P.7121' • YH20*(12.71374 + YH20»43.601A).03042537 - YH20 » S.45B54E-3-P.77148 * TK/PK3T.775*AR/<PK*T) - BP*(8.3144*TK/PK • BR)-101.32"J#AR«PR/(PK»T>C - R«B

5»D

• .33131

= B * (0 4 ,5*C> -= 0*Q*Q • R*R.GF. 0.0) GO TO 2

PSI = ATAN(SQRT(-C)/P)ÏF <R .LT. 0.0) PSI = PSI • 3.1415926V = ?. • SOPT<AFÇ<«M » CCS«0.33333*PSI) - FGO TO LAPEL(10»20»30f40)

D)0cD

= S(= R= R

jr.- -'

- 0

Page 109: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 102-

V = C/AGS<C) * <C»C>**,166667 • D/ABS(D> * (D«D>*». 166667 - »GO TO LARELU0»2C.30.40>

60 CENTRY CFHSOG

CASSIGN 10 TO LABELGO TO 1

65 10 GSPROP ~ PK * V / <8.31443 * TK)RETURN

CENTRY DE^SOG

C70 ASSIGN 20 TO LABEL

GO TO 120 GSPROP = (34.Oe - 16.06»YH20> / V

RETURNC

75 ENTRY OEHSOLC

XH2O = 1. - XH2SWATER = <34.0e»XH2S • lfi.02»XH2C) / (XH2S*(2.022E-2 • 4.865E-5*

$ TK) • ie.02»XH20/DEhHOL<TK»PK))80 RETURN

CENTRY OTHSOG

CT = 4<53.5?9/TK

85 GSPROP = 6.007PE-7 » TK«»1.5 / (PK«<.664266 • T«<.952823 -$ ,0761737*T)))RETURN

CENTRY O1HSOL

90 CGSPROP = 1.6279F-9 « < 1 ,E3*VIH»-iCL (TK»PK) ) *« (-1 . 14)RETURN

CENTRY ENHSOG

95 CASSIGN 30 TO LABELGO TO 1

30 GSPROP = <1. - Y^2O»(-909fl.32 • TK*(25.80P9 • TK» (-6.79 lflE-3 •% TKM1.92193F-5 - 8.90742E-9«TK)) )) • YH20« (3612P .5 • TK a

100 « <?3.9101 • TK#(9.61?9F-4 • TK«r3.516PE-6 - R.9P415E-10»TK* ))>) • PK»V - 1S1.9R7 • AR * ALOG<1.•BR/V) /RETURN

CENTPi- ENHSOL

105 CGSPROP = XH2S»(ENHHSG(TK.PK) • HSHHSG(TK»PK)) •

Si (1. - Xh2S) • EKHHOL (TK»PK)RETURN

C110 ENTRY F.*HDOM

CGSPROP - 3.7621 • TK» <1 ."50S7E-3 - 4.0E-6«TK)RETURN

Page 110: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 103 -

115 ENTRY EXHDSMC

GSPROP = 3.33811 • TK«(4.19099E-3 • TK«(-9.28477E-6 •* 7.1767E-9«TK))RETURN

120 CENTRY EXHSOG

CGSPROP = 1.01»EXP(233./TK)RETURN

125 CENTRY EXHSOL

CGSPROP = .9006 • EXP(289.963/TK)RETURN

130 CENTRY FXHSOM

CGSPPOP = .871 « EXP(298./TK>RETURN

135 CENTRY HCHSC3

CGSPROP = 34.1242 • TK»(-1.35S36F-2 • TK«(5.76578E-5 -

S 3.56297E-P*TK)> - YH20M1.8997 • TK»(-1.55062fT-2 • TK»<140 S 4.71074E-5 - 3 .20360F-6*TK)n

RETURNC

ENTRY Of>SOMC

145 X = l.E-6XH20 = 1. - XH2SYH2S = 1. - YH2OAKO = 1 . / (3.7621 • TK<Ml.S057E-3 - 4 . E-6*TK))AKS = 1 . / (3.33P1 • TK«(4.1910E-3 - TK*(9.2848E-6 - 7.1767E-9«TK

150 * ) ) )RT = (X*X-1 • SORT((1.-X-X)»«2 • 16.«X*(l.-X)*AK0)> /

S (4.«(l.-X)*flK0)RS c RT » 1.1104 • EXP<-2A9.9€3/TK>Y = 0.5»(l. • ?.*RS*AKS) / (1. • RS^AKS • l./PS)

155 XE = XH20»X • XH2S«YV = RT * 1.1596 « EXP(-65.43/TK»0 s P« » 1.0340 * EXP(-fl.037/TK)XV = 0.5 * (1. • 2.»V»AK0> / (1. • V*AKO • l./V)YO « 0.5 • (1. • 2.*0«AKS) / (1. • G«AKS • l./C)

160 YE s YH2S*YQ • Yh?O«XVGSPPOP = XE»<1.-YE) / fY€»(l#-XE))RETURN

CENTRY RV^DOM

165 CGSPROP = 1.1596 * EXPC-65.43/TK)RETURN

CENTRY RVHDSM

170 CGSPROP = 1.034 * FXP<-8.037/TK)

Page 111: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 104-

175

180

185

190

RETURN

ENTRY STHSOL

T = TK - 273.15p = PK - PShHOL(TK)GSPROP = 72.7118 - T»«3*(.23994E-4 - .885018E-9«T«T> •

S P*(-.0275632 • T*<.384792E-3 - .157879E-5«T>)RETURN

ENTRY TOSOG

• 6.3247E-10«T )>- 0.4510F-10*TK)>

T = TK - 273.15AKS * ,012966 • T «( 7.4542E-5 •» T «M-2.1632E-7AKO = .010245 • TK«(-8.213?E-6 • TK#( O.141OE-6YS = 3.24215 • (1. - YH20)YO = 2 . 6 2 1 7 0 « YI-20AKM s (AKS»YS • AKO*YO) / <YS • YC)PPM r 1.5fl84E-5»PK / (YH20 - 2.0875 - 13.0218/(YH2O-2.4067)) •GSPROP ~ PRM * AKMRETURN

ENTRY TCHSOL195

200

205

2?0

225

XH2O =SV =

1. -1. /

XH?S<3<i.08*XH2S • lfl.02*XH20>

AKO = TCHKOL<TK»PK)AKS = TCHHSL(TK*PK)GSPROP = SV«<3A.08«XH2S»AKS • IP,0c*Xh2O#AKO - 442.168*<AKS-AKO)«5 XH2S*XH2O«SV)RETMPN

ENTRY VIHSOG

ASSIGN 40 TO LflRELfiO TO 1

40 V =YH2S =T =VIO =VIS =svos =

.0406 « (L.4067 - YH20) / V

VIC =

GSPROPRETURN

AIOGIO(TK).4070E-7*TK - .30772E-5l .F -3 » SSPT(TK) / (6433.5? 6 1 . 6 7 * T ) ) )SORT(VIC/VIS)VTO • YH2O / (YH2CVTS » YH2S / (YH2S.28511 « (Yh20 • 1.

• T«(-958.81 - T»(1098.2 -

YH2SM.5347 • ,6271*V0S>*«2) •YH2C«(.456O • .388P/VOS)»«2>

«.16667 / (S«RT(34.08 - 16.06«YH?O>* (YH20 - 2.0875 - 13.0218 / (YH2C - 2 .4067) ) • * .66667)

= GSP • 1.06E-7 » <FXPU.439»V) - EXP (-1 .111«V»»1 .858) ),

ENTRY VTHSOL

XH2O = 1 . - XH2SVS = 4.865E"S*TK • .020221VO = l».O2 / DEhf-OHTK.PK)GSPROP = <XH2S««2»VS*VIH»"SL(TK,PK) • XH2O««2*VC*VIHHOL (TK.PK) •

I 5.2274F-13 «XH20«XH2S * SOPT<VS»VO) • EXP(6770.3/TK)) /

Page 112: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

— 105 —

$ (XH2S»VS • XH20*V0>230 RETURN

CENTRY WMHSOG

CGSPROP = 34.08 - 16.06*YH20

235 RETURNC

ENTRY WHHSOLC

GSPROP = 18.02 • 16.06*XH2S240 RETURN

END

Page 113: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 106-

APPENDIX A

TABLES OF PROPERTIES Page

Table A-l Specific Volume of H2S Gas 108Table A-2 Enthalpy of H2S Gas 110Table A-3 Entropy of H2S Gas 112Table A-4 Fugacity of H2S Gas 114Table A-5 Joule-Thornson Coefficient of H2S 116Table A-6 Saturation Density of H2S Vapour 117Table A-7 Saturation Density of H2S Liquid 118Table A-8 Saturation Pressure of H2S 119Table A-9 Latent Heat of H2S Vaporization 120Table A-10 Enthalpy of H2S Gas at Saturation 121Table A-11 Enthalpy of H2S Liquid at Saturation 122Table A-12 Specific Heat of Liquid H2S 123Table A-13 Viscosity of H2S Gas 124Table A-14 Viscosity of H2S Liquid 126Table A-15 Thermal Conductivity of H2S Gas 127Table A-16 Thermal Conductivity of Liquid H2S 129Table A-17 Surface Tension of Liquid H2S 130Table A-18 Mole Fraction of H20 Vapour in H2S and H20 131Table A-19 Mole Fraction of H2S Dissolved in H20 and H2S 133Table A-20 Fugacity Coefficient of H2S in H2S and H20 Gas 135Table A-21 Fugacity Coefficient of H20 in H2S and H20 Gas 137Table A-22 Henry's Law Constant Reduced to Saturation 139

Pressure of SolventTable A-23 Activity Coefficient of H2S in H20 and H2S 140

LiquidTable A-24 Density of Saturated Aqueous Solutions 142Table A-25 Molecular Weight of Saturated Aqueous Solutions 144Table A-26 Molecular Weight of Saturated Gas Mixtures 146Table A-27 Compressibility Factor of H2S and H20 Gas 148

MixturesTable A-28 Density of Saturated Gas Mixtures 150Table A-29 Enthalpy of H2S Saturated with H2O Vapour 152Table A-30 Entropy of H2S Saturated with H20 Vapour 154Table A-31 Heat of Solution of H2S in H20 156Table A-32 Enthalpy of H20 Saturated with Dissolved H2S 158Table A-33 Saturation Temperature of Wet H2S 160Table A-34 Hydrate Formation Temperature 161Table A-35 Viscosity of Water Saturated H2S Gas 162Table A-36 Viscosity of H20 Saturated With Dissolved H2S 164

Page 114: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-107-

Table A-37 Thermal Conductivity of Water-Saturated H2SGas

Table A-38 Thermal Conductivity of H20 Saturated withDisso ved H2S

Table A-39 Diffusion Coefficient of H20 in H2S GasTable A-40 Diffusion Coefficient of H2S in H20 LiquidTable A-41 Surface Tension of H20 Against H2S VapourTable A-42 Equilibrium Constant for Gas Phase ReactionTable A-43 Equilibrium Constant for Mixed Phase ReactionTable A-44 Equilibrium Constant for Liquid Phase ReactionTable A-45 Relative Volatility of (HD0/H20) Gas to

(HD0/H20) LiquidTable A-46 Relative Volatility of (HDS/H2S) Gas to

(HDS/H2S) LiquidTable A-47 Equilibrium Constant for H20-HD0-D20Table A-48 Equilibrium Constant for H2S-HDS-D2STable A-49 Overall Distribution Constant

179

180181182

Page 115: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 108 —

u r- n .»cv. n .» .»-I r* o m** —i (vi <\i

<Vi o- — a,c\j n in u>cc -N .j i>c* - oj (vi OJ f

oN

in4)

~ * (vi 45 ir•» 4> CD C(vi in CQ moj (vj (vi r>

oco —> m in r»

in tr- (vi w~ < w ••* -a-

ICO

CM32

CKO

w

• 4O

wCO

<wpa

IS

n in r- cr *«l

ICOCO

~* (Vi (T ~« Hir *7 oj r» r*« in co ry m•» -T -T U' U

»L (V.1 1^

ci*! i - — •» aIT- ir x. <L

o

u. in (Vi u-r, (v. — a-o i v u

* in • * r>o o* (vj

»« r> (vi co«~ ©

co — <t r

cc c r

ir a (vi ir

(V. O* C5 IT f—

c n N wIT a a c

o ir o if:in in »t *>i

i/i ^- iii a-in r: c r- •»n vD o- — -»

c j - m in

o u <jCO © l"> * 0>,•9 in IT in in

(viinco ~ •»'m in in * *

o © <r co r-

•• n if> tn nr ir u- in ir) 41 O" OJ U>

<t 4 ITf - CC »

in in

Ob © -> Or in (vi cr>JJ- r- © "

au ixi ~ * •!m cvi cr m,_ BODr- r- co oc

>H ^* © r ^i (vi © cu in n

o (Vi in covc N- r- r-

cu * (M i^ oi>o in -r (vi -«(vi in a' -< *r* f* r* cv cc

a n in r-,© co m (vi

•» -r r>r* in f*i

* cr oj m'co a; cr &

a ^ nlin •» n D (vico i-* >» r*r cc cc- cr 0s

r Itr <vicr (Vi if l o

r c c

n (Vi © rr- O O- tr i »ti co

© 4.C- 43 45 IT

o> n. m a. HO O © • "

c^ - ^« (VJ rvj ru.

n cc rvj inr- co a ir•c cr (vi in co

r> * a —U! CL -— ITa cc cr o>

cr >£ r: r-<r a- rvj i r(V. ir a- rutr cr cr o

c. ^- — —

• c: O O <-»• • • • •• (\J fVj f\j (\J

O (VI CV. r- O\(T- (M \n CL ©in cr <v LT 0"

4) (VI 41 ©4. CC —

(Vj tr <r (v, trftj a iv r "

<t :(Vl CU -T U-

[Vj (V IVJ (Vl (VI '(V (VI (VI IV IV

corMf if -ir~CMT(Vir nanti r anr-tv

© ir ©fir © w © u"r ' c r o

c * » in a>(^ ct •* cr ffm in co © mco cc cc cr c

in m 4. h- r-oo •»• © \tt (viica " •» 4) crIce o- cr tr c

COMfln O45 -" 454) n © K •» or- o» p> o mm ico r>

OO ©|©-> it

• - Cl ^cir e

41 >T (V•a ©

— r-o e o

rvi (VI rvi

co in o Ln cr[a? 4) j - —. coo r i 4J tr **

(V, (V. (Vjfv. c\

a. I\J in HI O-» D •- cr|r- o rj ui co

cc a © o> crir o ip ir

a cr a.© »-1 (\i

4> 4 inr* o* «-— j - a —-j ^ *j u*

(V (V (V

U U U 4• • • •

(V (Vj (V (V

;(VJ (VI 1VJ

n in co•on ©* r- oe* ^H (VJ

*-" (VI •—41 4 (Vl

•r n ©cr cocr — >i

|f- in (viIT u* tr45 tr (vj

'I -T

•T ivi a•a- in inn a. —

in

V (VJ (

r- ar- ©U 4

© (*• ir r-«i r o- n— » r- ^4 4 4: r-

(V (V. (V. (V,

cc a x>- ina —r- a

(v (V (V.

© IT © IT © IT oin u> >c 4; i«- r- a.'

Page 116: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 0 9 -

4* * *- P-n NC o- — •OCDCCO'

inoj

nj

oj

in

*o eo «•* •*oo a CP CP or

<\j in cc « coi- in «VJ cr- ina> *< •» •€ vco CP cp-

oj <c m in c?

^* *r p» cr* OJ

IM « ff.» p- cr oj inCP CP CP o ©

CO

COCM

X[no

S

u

WuwOHCO

I—1

-iW

pa«£

s>COCO

inotvt

o

1\J

IPcr•

p- o OJ m cc

CO OJ Cr IM CP

ninoirMi

a o oo **

- cr ' a oIT •» •» ru —

) o O »-« f*

cr cr cr a' *sc a- cvj IT cro c •- -

•jiririd*

IM — r- tr* IT r> p- ~<

C O © O

in oo ec n >o

IT i

•onp-oonoino^voiO oo o win

IM (M M M n o n

i-a MMO ^ i-"

D m a;p- «^ in CP n ^ »^

<r c in« ri * a >«

a in rIVJON

U0

p- a r< <c>- i \ (V <v

O L T C I f Ol

IT IT (V IT <£n <v — a p-o- (\» in p* o

icciroir» m m t

ir a ui •- ircr•>- n ir

» in •» oj co n p- i— oj •» r "

i rK. con >f cr «-" *j

! co •— o-3- in in

0- — Oj r-p- <r or

n p- cr o-• p- oj r~ ncninn

•j u U' u- if

r. o. a. icr *c oj CP

r ao (Vim r-

n f1 (""•

HI\JI*I

OJ ^ <i 00 CPp- o> "-< n mn n •» •*

J(\i ui r- tr

->• -I -I -a-

-"O P- <co o —i r> inH j * (C o nj

^ o OJ nCP •-« mp* o oj r

o o

in cc -- •»d o w n

in in m in>- c OJ in P-

— - I M. CC* * M3 >U

r m OJ cc ojI CP tVJ '• ,£> CP •

CC OJ i C O

in >i >c' -t

cc o OJ ccoj p- ojr i r t

cr «- ,• •» i r i r ur I

o u- o u- or> P- a a. CP

in o in o ir c IT e if. ei \ n

O ^ J.' r> r". -» -J

n in r* cr-» .» •« »

p* CO CO IP4 >0 CD O OJ

•» •» -I in u

rip- o coin« N J Kl *cc o oj -r o•» in in m in in

-I ITn in

in in in

in r- CPir in in

* <o inr- oo cr00 O (VI

o *, OC CP

n r\j

OJ •»

p- p- P-

*C cr •— OJ OJ>IJ U* IV

n*jion

— CP

UI U Om P* or- p^ a.

*- a, >T <=cc >-« ir. CP

_ u- nOj IT CP

vC Cr *•« lu1. cr •* <in p* o i

1/ o u. oo C in cca a a a

a } c 4ir a: o na a cr CP

IT P-

a a

r- r- aCP r~oj incr cr

o in o<c a. —cr cr o

Page 117: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 1 0 -

©

GA

S

03rg

S

fc.O

3»COCO

CM

inIT

©i n

uo

f- * •» Pi y.

— cv> .» cr rvi(VI —i O CJ> ©n —• (vi in

m-to r«n cr «••> ai ui

© ui r~ cr (\jcr cr GD r* GO

.0 co <C T fco p- (v c J r>(M i •-• P. m

p- * o» oo r>«o o p- cc •»

•-i <o p- a ©III -T UI UIIVI i wni •

© PI CO 00 I00 U> 00 >O i

rt HCElOJ• <\JI 11 #- P I in

I

pi n P- — cvi— * \o CVJ

*• -^ © in cr ')>ocr*™'(v1 cu cu r> iij ~ ~> 0*'— P I in

«x cc cr cr p-eo — — — CVJ • * \DI

U) UI P" CLao • * <-« * * in

in IT h- c oc

i n o * «

PI s» CVI (© © © I

© p- p i c P I P- —o cr cr oo co p-p-~~ t «O00 © (VI •»

- (VI (VI (V

• o cc in —1 P I CVJ CVI CVI• cr — pi in

^ — in a- —

»-<Vl-»(VIOJ (V

n ui o rxvi>o vo <c

^«vl p-^< n i-# • *

o> r» •» o mU) U) Ul UI «

IT ^^ P] II

>ti in n o•a" •» in co •«

icy ruo1 op- *u o (\j

© in cr

co © CM P I in

M; IT p- ~* «uin in p- <vi <r

innnn

^- r"/ p- in p-

CC © (VI PIa. cc p-

c^«P, U P - C T . - P <TM.

iMrn

OT. If KT CCC>c>cir-iPiri<vo

« r i u"» P- tr »-< P: ui P-

j a — (v.• o cr o* cc

(V tr IT p-

-» ^ p" (V,i>- >c in •» na •- n IT p-

• O IT O IT'Om t v n

IT O IT © IT* in in * £

p-ooj*vOp-oocr•PfOjcvj^^ocrciii^-vij 14) u» • * P» (v

p*KJC7(VI<TVU«f^(VI(vi(vip)pip>r>pi'a">»

- p- <c u

< CVJ CVI (V

UI cv P' Uajoc J

P) PI PI P) (VI

o ^"Pi in(VI (VI (Vl (VI

XP- in cc o

con-tu". (Vi (V (VI (VI

* p - P- PI >O

1 (VI —X O (VI -S--•IVJ IV IV (V

<t IT*D in •

cc p- *c- inC (VI «T U(VI (VI (VI (VI

cc n p- tvcc cr P- -»

cf r- ir p"o cr a P-i« (VI » vC(V. rv. fti (Vi

If Olf Op- cc a cr

* p ( T<c ui • * » n>£) 00 O (VI <9OJ (vi P5ci n

ai ui p- ct>oin - "

oc o —O) p- * * UlVC CO O (VI J-(VI (VI PI D D

. - P) CO O (VI C4onm«

io— p-aimp-oocro

m MJ * p-

P- 0"l«— (VJ *(VI (VI PI PI PI

' p? P I PIUl CC C

i" no — ©» — n u(vi p> r* p

• * O rt

co -r PI a r)

VI — O Cf1 P-

0- — PIVJ IVI n P)

C V p- f> Pec co co r-

(vi PI * in *tfncv o

^ P) • * P- - "

P- P- P- 0D1> U) ^CCiO (Vi"4*

K 00 00 CD CT CM (* C C I O I —

O CO CVI P IUl

«- * — in o>cr c c u i n o p - tfcvi —

cr co »*• *

PI pi j

•» O- O (VI

(VI — O O> IT

>- cr >-< (vi.»

p> cc pi cr in

& ^ P I - " o^ pi cvt — o

•-* P) 1/1i n « *

' — I

ouC — P U | P - C " - " P UP" PI p* P" JP P) -t *»

— crp-u"cvjc*au"p —

O (VI <T Ul ,P* C* — P: ITPI PI PI PI PI ci 4

» p c v , ^ iPl *c o — •<* p- o

p ^ ( , c cI — c r e e p - i n - *

«c ip- cr — f . i»"i p j P I P I J ^ ^

oirouio

MJ «; r- (Vi p;<V p-

f in iMin p- crin in in

cvjnj-uip-cocr —* U) • *

i t • * • * in u-

— cc cr ou* PI « o o

( oo o1 e> —o>ajp-p-«ti

IM D n * in

ic cu ir *-* r)c * ui m in j i

p•j in in mkn ui in

PI pi pi PI* P) (VI — O•c or o cvi

IT Ul Ul

OJ LT — U— vO O O

•a cc ocvt •»r ui ui ui

•->oininr-incccc

— cr p- p- a

p- .c Ulr- >c inau o (VJ•J Ul Ul Ul

n r- (vi cr r-

a- (vi — o- a

P- U *T (VIo cr cc p-cr © ru •»

© a (V: •»

r> — (vi -rivc a ic(v. — cr aa — (V; -»•» U1 ui ir

oiroifui ui <o >u

— tr a.-•* cc •»

CVJ r ) <*ui •» P>Ul p- crin ui Ui

OP-©CD P- oo

ul to P-* U) -TUl P" O>

in

oo oo (Viin — cr

o• p- * )vp- crui in

it p- P)evi in o

pi r> »cr cc P-m p- crLn in in

(VJ PJ IVIcr cr —

•c r- crin ui ui

i> w oin ui -c

pi r>I\J —CL O

* pi (Vj4. a o

-i

PI — (VJ

- ©crj ; u1 PI

a oU l *L>

•» Ui-» (VJ

PI (V.\O Ula eIT •£•

u- ©

p- co

Page 118: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-111 -

in(vi

o(VJ

in

cvi

o

(VI

coco

a

ma

uo

in in (vico cc r> <vj ifQ* *C • * <VJ 0« •» nj • >->ii l l

•-*.<© * r* co

in^ <r (vii I i

— in co o•t r> r> —

CD n tviui a-

Ml PI *•»i r •

n *o « cr CDcom >o © cr

r-nojg>(r^ * • W © (Vl

cr *o r» co ©p» in m p*in n i *- ' (vi i i

in co «£) fvj p-

0 o n o (v^ oj o *-« (vm n » »-« n1 • I

U> CL- 1VI © U

c * n o coO Oi MJ - I Um cvj i ** mI I

o o cr nMJ •-• r- o>

f© * j o n •»4J *tj p- p- P»n r- cr •-< n

ui ir in -r r:7

•r (Vi i •-< ni I

r- (vj * in in

„ n j - i o -

cc ~ <r -jivj cr © p- rcr p- m n •»r •-» (v. •»I I

p~, cr p- p- a** r- m r- ©

in •» « ~c t~

i I

(V <— C CT O<•)•-• (V. IT.I I

Ir- cu <v a iv/ec * «

i-i (vi •-< a* m * \o r»•* >o co © cw

in in r>f- <c o

(M rj -t r>o o <p ou r- w — np — •=< oi nj

-» p- n in•» p- (vi © 4- tun

I— inicruinlcocono-t

fl-f 1/lMhlOnjiC

* P- • * • * (VJ

(vi <c co cr c crin

I C CD O © | 0 CC O »in in in in volm m in in in

J * >ocoK\J (\J (VJ (*1 CO

J " 1i <->p-^i cr

• O i-i (VI —:• co corn co

lenita-taj p-1«- r- *. «ookvj <vj <vi n n

* i o coo —io co in n r>

iii ti mKM (v) (vi n n

(M <\J

KVlin r- ci>-r>KVJ (vi (\J e>

p o o cc in•r in in in -t <3-

in

vi N r- ->o-

»if»p-cr - .

!-• ^- — (vi (vi

mo juin t in o

o r no-(VI -< — O

cr o o a•a- in in •»

.» iv, o r-o o © a*

o if o if,i/> in <c x.

o (vi *

c rifvj (vi. co sr

o n p- o> vein o cr P-r> r> o> M o r- (vikn >c P- <- *

|m p- o> •—kv i tvi n n

n p- cr < r")•

V I O >U U1 <*>in in (vi >o

•* cc \ Jlo o> CT a P-X> C * * PI

oe -» oin4 .» •» n ("> <vi (vi <-••-•<

«SO (Vjlj t O O '« jI n n n * •*

|O M O (\l F<p- »^ (VI #M

,o -r * cr uCD (*) P- O PI

hO "-• P- (VI P-«m in *« co o (vi( * •

n o> •» coco r» P» • * ,

ill • O (VIn n * •»

Jp- - m e c>m •» r i (*>«u tv (v•» •» in \r

nkn ^<cr (vi •-<Rvi © >o r> o>

pcxvi <

to1 n p- »• in

in p- c> •«r n <t

ku tr P* MJ ITn P n

n P- c

p- cr ^ n

I© c o -»©in ©if(VJ<-i<->C

_ >o co © (V; * •* •» in if

U « o in o>n n w H-O CO © (V•r « m u

kc o- •" cf ifkc (vi >c cu i-i|

cc (vi m cc (veo a- p- - £

^ m in inr- n IT u

o n m r- cl ( v

n n (vj (\i — - . o cr-

) IT; inOIV I -T

- (VI (VI [VI

-» in ~ a- r-" o rn

o n p- ^a- a <r r- f-

t 4• - • " (V/ (V (V,

> IT © I f .i

i<r>c(viincDinp-p-cr-© cr cc i

i iv m p- _ ,a-p'xtinin^r^oj^^

p- c "•• tr* n n IM <-

a o (vi <a*

cr —i r; iri cr cr X- P-

p- cr «-! r i

kt a cr <— (VJ: in •» •» c

p- cr "-<

C p- 0" " f.*o ir -* 'J (n* a © rv, •*

IT © IT © If

if- « a cr cIM ••» © C cr<c or o ~ nn m * ^ *

c r' CVi >» P- ©

kv n in P-h, p- <c in -Iu- p- cr •"\ -t tv

If o IT'iw in in >

I IP ~-

c j - cc!cr o coInm p-[in in in

ai © •»If) CU On p" (vjMOO

« cojifi in in

if» <o e»m •» nr- in

(VJ (VJ •-«- I XJ «1

in in

OffP)in o t-- . in ccj n ivj•9- <c a

I in m m

« o •»•» p- o

m co (VJin * *

M © u:o -3- a

p- cr —<c a:

sT « a

(VI CC

cr o

—> a-«» (Vj

>£: a— oP- crm u'

a •»cr —(V. (Vp- ain m

Page 119: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 1 2 -

aITlCM

el

C

gto

CO

c00

inNO

inIT

COCM33

hiO

tg

3CO

d<sEdu2CL,

s5COCO

g• A*

in•

in

-a-

or

o

«* cr a p-. - p- p- >-O IT (VI CMt\jp> m p-

00 (VI CVitVI• I I I

4as * CM —i P Ia. o rvi jCVI CVJ i— O ON

CVJ OJ l \ l CVJ

i • I i

P- (f <O •»*-< .? CD »-4 CV

jcvi <vj cvi cviI I I I

P I o ou cr cvcvi •» m P-

<v, — i o o- ccvj CVJ cvi •-> i i i

cc fn n cp- — •» IT ncr p- « p» ooc o oj *

CVi CVi CVJ • -

I I I I

H. -> UI I - ~Tin .» >-> >o cc

O CV CT* CT1 CVJ

o a? cr ©t\j n ui aj •

r\j cvI I

0 o cr a*i v cvj ••* »^1 I I I

vf cc (>• cvi m

cc r ct p- in

c o a a r-cv » - »™ »-» p™I I I I I

»— a; r a1 t\.ir »-«if t to »^O O »-* T 0 s

» Ti If Ml© u* a;cvi — •-•i i i

^ r. o ȣ cvct a r- o cr

• o tr c cr onj cvi n n j

•jcmth,c

ON oo p - NO

• i i i

O. * O> "t(r r> cvt

tc — m <c croo <o ui in p- o •» cr in"" - " I M in c cvi mf -

\w oo i*- *o in

cv © in o« uia> CVJ c o tnKc cvj oo r- «Im or e n «

[ cr f) * r!••« p- oo cvi c»

"•• OD p- ccvj in P- © P )

| f >0 O- *'T O p- i1

cr cv; -jj p- o[P- P- NJL1 IT IT

I I I I

O/ «/ (/" ^*in p- p i ncv a so i/i m

|p- NO NO in •

I I I

er j ) •* ino u» "H inonnn

i/i u> «j

i I i

© u, tr p/ p,4

.» in cc• •-> *in oo >•* m oc

m •* •» *^i-^ »^ #M »-i i i i i

|in •* r? o cvj|

I I I i I

oo cr r> p- m in (vi r-• 'in « c m "

oincvi « CVJ r- cr cvj»o •-<]a* cvi •u cr m

co cr cvi in ccp- cr n P-Nc cr n *

n cricv-cvj)

i i t i i

<7

D r-o n p-

* cv )«j CVJ cr i rcvj a* * incvi m tr M

I rM O O

• I I

r> r»- cvi *I n CVJ -< oo

CVI O 00cr n p- o

>- « © o c

i n <o < o m tv' (M -» —

-j- co cv

> * r- p> •->• n •» co

i r» #-« m cr

•-'OiOO--> i

t i i

cr o in cc ncc cvi in « scir r- in •» 'tfo ^ cr cvi -

\o- f-< a•) cr »•• « ou

lin *v cr cvj ifl ^ on r

HOCMJ CC

1 «/ u T trltPa, n cr <o cvilcc

<r n cvj cvj »H!C3 O cr au orj

* e i>J1IVOOOcr cvi in x ~*

CNLU'NJ

I I I I i I I I t

p i n o i ntr c tvj rin:inui n a

vj>£'-'P-;'»cvit— oj p' •-• -* a cv M: o

I I I

>t i— c •-rvj - . — tvu a •- ^

oc r- x —in j j•- » p- c

irjrrr

i i i i

IT. O1 -I C N

itr cr a a P-l i i l

n * cr cvi in p. cc a: in •—j r- — r- r~ o a r r- ap- c. . i p- • - if a CVJ >t o

i «ooia a a p-p-

i i 1

© cr © ©

ec c\j ><;• CVJ

PI p- o j p-<c cc c\j i i cvj ff kr

cr »-* cc »c cv.•-.i 'OP-

|rv — — o a

i i i i

i© ire in o ir o v o i rip- p- a cc tr

a p- p- N£I I I I

I? O O x M

CO P- CVI r -fVj P*) (VI CCin oo o~in cr •»ct- co P- r-t t I I

a j i00 O CVI -Tec n r- •-<

in \C(VJ-H

cr pirn *T in P- oi p- •-> *

oo r- <ci i

O id O • - COP- o pi <;

vi NO CVJ © NO

U) O I

^ *u •it ui m

in ~ P. csj,. cr cv Ntm cr -» cc

pi o p- ~IT f\j IP U?

a u>^<7< CVP- <t*H ^ P- •—cr P p- rv.

O P- CV, Jpi « r - crp- o n i»

Lfl IT P1

l i t !

ITOI/.C(V PI P1 •»

OC IM CC • }cvi P- •- -c<c in in •»•i i t i

l a cvi cvi P I|"-« cr P) P ICVJ >c cvi oop •» cr P I

k> in •»• •»

loo •-• oo P-kn •* to cri

|cvj -< P- aj <i'"1 oj .J *^

^ cr p> co

[co in •* cvi o

4- <J P) c\j cv

nn ry a

pi p- • - cv<£ in • - cv

* c p-•jora

P C\ C\ • -I I I I

a cc >c —(vr> c p« •» •-> ap cv r- •-cv cv. - « —I I i

cr © NIV. » *

p- m PIin © in

pi pi cviI i t

CVJ <•-« cr cvicvj cr coP) P- CVi

P> CVJ CVI

I I

m p- in,cr r- «in P) cvjO H I O

ON N(J U lr- cvi r»

CV.CVl —

* I I

\ l -M I -I

CVI CC•-* cco or

P- IT•» >C- I <t•- p:

Page 120: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 1 3 -

CM

u-lCM

G

!xQ

33

CO

HCO

ICOCO

in(VI

o(VJ

o

(VJ

o

n r- IV .» r

>o in * m ft1M (VI (VI <V1 (V• • i I

cti r- m a*n n r) crr» to co OJcc cr o (vi .»in •» •» D (v(VI (VI (VI (VI (VI I I I

(vi r> o m (\tr r- •*• * (vi00 CD ••* tO »Jfi n vc oo cp •••

U I 4<vj i\j <v

r> ** *£> co(VI eg —i a-o o <r crr> c if> <o ou

(VI 00 *•« CT »-»rvi (vi " in *

o < cr -o^

IT •» IT (Vi —(VI CV] (VI (VI (VII I I I

p» o ao p- ir>(vi * in cr m•-* (VJ vu (VI ••*o « rj j - >c

U) O 0* (J1 ^•* *c r» in(VI «T ou -T oc o (V I T oc

u> 'S1 r> (vi ^(VI (VJ (Vt (V. (Vj

IVJ 1* MJ C3 »LO O «C \O £IV ^ CC IT i^ cc cr -*

oj IVJ u i r-ujr o->

L n cr

>* n (vi rvi -•CVi (VI (V; nI I I •

f |(vj (v (vi rvj cv.• I i i

OIL i (V(\- ui « cr^ (vj in

(VI (\J IV) IVJ (\JI I I I I

1" 0" (Vj r

(VJ \0 (VI O *-*

(V ( \ ( \ (Vj (VI I I I I

•» o cr ac•-• »£> (V *M (

r: oj •— oIVJ (VI (VI ojl I I I

c o- a r*— r- i^ — jo m (V; (\j r)(v. (r IT i-. crr: (v »- o o-(Vl (V; (V, (V. - <i i i i i

ou*<oir ot\j(\i n n

a v ^ r- a.ncaivn4 in r~ (vi ocoo o (Vj in ^

O(VI (VI (VJ «I I I I

[vj in *o •&o o n oo -a*in co o cvi in

— © o cr> oo(VI (VI (VI «-* i-t

I I I !

(vi r- •» c> ~( M H O C( M H

run cr -I orim f» © nF<ou< v OJ

(VI C1 (V (V*o e in CMvo in in r~

oo iv vo in if

M (Vi (vi j roc <-> 4 r~

•ioon— h- >o h-cr co t r « inin oo *•• in CD

o o cr a i-

cr cr co i

I I I

cr o oc e x(vj vc r

» o (v cr —

r- cr —in c in I

cr rIT. >icr in rvi *-<* cr OJ ir

^ . - . O ITo (v. cc r-— r- » r-<r <i cr (vi

a, r- >

O U ' C ITIT' IT, * . *

\? (vi in cro cr o n

r- <C IT' If •

T i T

^ c t> o

i «j vc n •"•*cr r- in (vt

i a1 in r i cvip< o <a> cc (VJ vc o

oo - « <r oo «-•

vo in sr

77 T

(v «r crnin * ncr — .» aP: p- © n

<)> OL © U'» vt — vC (Vf-> (V I/' CC r

4 I €ir oc — >c0C — IT 0C

IT • o If &r- a oc cr

ot r i (Vi cr (Vi#-« n in »© cc•» cr i n (vi>c o> r ) r- i-«

m «• IT nec r~ .* o

cr o (vi•* oo n r-

v r ) m (vi (vj

r* n »H <r- -» in

«c « •» • *-j- cr * cr ncr j -« co r-M in cr rvi «c

<socI I

r•» ncr

oo ao cr o~ c o m

•» cr %o « rm «

i p- r> ini — oo • » O1

I (VJ CD vC

IT rxv. (VII«-

* in •» • - n^ r? n

« rvi r> in ao•a- a

i I I I i

VJ OJ o j •— crcr i r (v o <r

0b (VJ \ D CT

(VI (VJ O

I I I I

* — co >c in

> r- n if•» vC r- *•» •» in r-~ M <O O l f

cio cr a c

-i ui ui n) < i n

» OHI

c cr ac ODi I

* <o x >c a

cr — -I »tvj r- o ru- . a t>-

i «-• a— tr crr o

(V r: r(v cr u- ocr <£ ir inu- cr n r-

© If ©IT© ©•-* ~

cr in a p- a'" I-I p- •— (V.

p- CC *• -3

cr ir a r- r-I I I I

r © cr o© © a (Vi in

cc r- rv ~. •-<(VJ n (v. a »-" c a © ^

o a. p- p- u;I I I I

*-* cr ^J © OL#— v£ a ' ui»'ine "

in c -i cr

oo oo r- u3 <cI I I i I

m • * cr (vi *vo o - i •pi cc (v r- .

o M3 (Vj cr r-

I I i i •

(Mr cr cr(VI (VI CC i-l rH/) <7> D CM/1

n O-9 (Toj r- r- vci u>i l l i i

in aj r- cr<c <o r> r- r-r ofcr n cc (vi p-

<f \C Ifi i I

oc oj n © cr•r <i) - er o>

** vc o in cr

> vC O• ao >cI CO <C

cvi in *o-T M5 • *

- U'M MJ • "

© o p-oa.

ou * n• I cr

•» -» n

J IVI VLJ r i <M uu (oinp-ira

ccriccncf "en

cr -j <\J —m p- in cr(V r- r> CT(V vt' r~ IS

>- a »«cr <• vc

p- a (v. vcp- c ©(V a P- — vC —

If UI I

cirII) Ul

.1 -JI I

n r- r-at' IVJ (M

— cr

vC — (VI© a. <•n p- (Vj

p pI I

© v£•J vC

^ ir r-cr ir

n rI

Page 121: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

-114-

a

C/JCM CO

se FH

o w

COCO

S3

ep-

in

uiUI

P- oc oc r-m in in in

(V* o <r cr or- P> (viin •»

o <r in in ccp- in a- o> m

cr o o cr OPH P) *}"

ui ui m (iii •» * in •o p-

•» »« eu u>CO CD P*

in ui in u>

ccinoj-jir. crccir-cc-tr-CT-picr—•- - - -- -ipipicrw

IVJ cvi iv o v•t •» tn m in

>O UI P- P- O CO

>D CO CL a^ i\jtii ni

p- »c «T (v cr

< •» 4 •» >»

IVJ ~* i/i *c cc» ( V C 3

ro co in tnco oo <f as o* co

HI- o a; nO O " -> (M

eo n r- (vi(vi n n

i in m ji ui In in in in in lui

» n in m• c* in r- u

«f D *o n r-ivi c> ui

(VI — p - -I' (V I (V CU

>o r ) o> in of in u> >c r~

a} pi ai r— tv.- rvi r-. ttin IT in in

a « •» -o *(v- in n *ir r ui IU ITa? r a a- on n n n ri

pi a.1 >t> IVJ ar- •»• r- >t o

^ o* in iv. co

fvi cr u •— P-u u * p- r<A ( V (V. (V (V.

i iv ou p* a! Ir* a* i

(VJ OJ '^" <\J « 1

iv. n. n n •* :« IT if ? if - «.

IV c in acc r- r> r-

<-« <o « mr1>- eo co

O ?V IV *•*CO O

cr in o inin o- - i o

1 cr © p»' (v (vi cr

IVJ \D o n* • * IT. If" in in in if

to ui P* >o PI cr u' P;. PI aooMiiinm*"'

cc (vi «o* o © o •—•» IT in in in

. y - U' aj

o- (vi in a.*c P r- r-

v i v ( v . ( v p r r r

i <? *j- o IT' fc- u"- a- n r- H in a <~ •• •— IS. P'< P I hT ^J U ' U ' ,tJJV >t. t/J p- I«<u (v- iu iv v IVJ iv iv iv nj iv <v (vi i

a a ir o irh- If C* (V O

» a •»a a o-

o m c> in o(v rv p; pi *

nomoiroinoinoinoinoin

* -T c m crc pi b • f-a. u. a a

IVJ (Vj t \ j IVJ I V

IP- ~ ft. P)a (v.

iv- in r- o" - ! P", * *

(V. (V. (V. (VI (V,

« i n P) inco -# (vIT PI <t> O•» in in <cfi OJ4 I4 )

M >O * CO* CC —• (VI

n cu (Vi uio u *** *^D

~ O <£>IO •-< (VI •-«

O <T P- OC T <C P-n in in tn

- i-<(Vi O

* (MVI •»« »- C\J (Vi

n m ir

>o a> o»• f~ a. ^

ry c\j ri PI pi-T -T j -

- n in a oau a. a. a:

(V >y

r r<

tr v tr i( V 1VJ IVJ I

<c cc (V ccIT ^ PItCICM•J -» IT U~IV, (Vi IV. ft

moiro(V.P) PI .»

*p O1 A> <T P- t> rvjCO CO

* * Itl

c ftj pi mCO U 1 O 4

(-• pi to tr «PI UI CUPI PI ri<O <4J MJ

cr p- in M itU (VI P- •-* '

CO P - 00111 <V •V

j o n up p- cc a a . . .mininmi/iinmir

PI \D O» Pi

« m cu o (vo(v » p- crPI pi pi PI piir. ui in in in

& o in »p; * a o- cr

l\l XJ -« p- Uln c p- > in

r, p. ir cc -j-n / fv o

co o(VI (M PIr» p- p-

-j cr tnco - < . »

<c cr rvi!>• cr - •

••* P I if i

in in tn

cr cr•T •» -»

in op: o>

r- >o p(VI O P- .»

C U U U'P1 p p r

pi a- m a )cc cr oc o

1 PI PI

p- — CO OPI (T PI CC

tr * a crtr. ir ir in(V. ( V (Vj (VJ

O W O UIin ui <. >c

cc cr •»cr j cr

(V, P)

(v. iv

in op- cc

Page 122: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 115

o(VI

COcsX

I<

COCO

a a a. n uI i • njir

> 1954

i i m © i"-

nc r mu» o< tr

a o: CTH ©I i r- o M3

ay ri p-

au ou®

cr a: - " « -o1 i MI a.—

oc <c a

a a -» r- o

cc « -J-C *••« (VIr- oc oo

a a D — <rI i n (vj rj

X tT T I N vX"1 cr X 1 (V

^ - ;vj m -3

t ij t 4 ' —« CT

• ; ~ - iv, «'i

JL cr •— ni IT »-* c- c*.

r- a a r-* p- a. cr

O UI O ijl Oo* o: r> P1*' "

cc a~ *-* •» •-cr in •* in c

n r- o t\t<co cr <-• OJ r*a>oooc^ * i-< OJ CM O.

in in ao n

r- o oj uisj- <c r-. ao c

x ^ i r DOJN- OJ cr o m

LJS (Jl (Jl & (A

NvXffOHcc ao oo cr cr

*c r- cc cc co

a. cc cc cc cc

f*> tn (*• n IT

* *3 ^ o\i m

x oc* o> in

* r j is. t» a.

•L -3 Od CT vC

n o in o in^ IP m jr• ^

h'finffi

o o o o c0J OJ OJOJ O.

r- vo cr co oj

m i/i n ojOH(\|D ^o o o o o(M OJ OJ OJ OJ

so r- o co N»^- co co oj r>

su u) - ^ n «

cr co <r U) Oa

o r- M cc

r- in n cc

a cc cr cr cr

%o c*i cr ui u

•r i n <X) r- •**•

r< Lf - H LT

IT U" 'VJ IT U

IT l\i J' «

"i tr u »« J?

o in o in or* a a cr

crcr o -H f\

oj OJ oj OJ n

Oi CO *-4 O \£

99

?050,

2fl

2057,

22

2065,

83

2072.

13

?07fl-

cu vu D tr vu

oo o o aOJ OJ OJ OJ OJ

CM CO * • * OJ -4-

il tf *-* • *

sc i^ cc cc cr

it; o IM in cr

in OJ co *j ©

cr cr cr cr cr

x 3* cr o o

j . j^ r*. — P-,

VJ h X 1 If:

** Oj r* ivj r^

•H v( l« J C

n o ui © utj- © © I-I •-»

o 4 r> in Ain eo co m c

CM OJCM OJ O,

cr cr *o >-* <*i

sj- o * oj r-ao cr cr © oOJ OJ OJ OJ OJ

• * co * cr o

ivi f* r i cu r

OJ OJOJ OJ OJ

CD vO © © X

t-N «JD cr cr s

cr © © © o

r- o o> r- n

cr cr cr u1 cr

© cc - I cr <1912

1917

1922

1927

1531

V vT 3 4 X

<r a r- x 4

*s Is- - u' a

rv, 0- r: n

in « in <r

10 O iO N

04 OJ OJ OJ

OJ P" *~* ^) 'r^ ^-t (M OJ 1

OJ OJ OJ OJ O.

aiojr- «u

0 © 0 0 0

OJ OJ (M <M OJ

OJ vO Ct QJ f -Oj OJ f j f ) »00000[M OJ 0J Oj OJ

© cc a1 »-• cr

© ^ 00 oj m

cr cr o* o* c

^ cr 0 0 •*>

m n sj - ji0* 0* cr O1 cr

0 X1 u"> cr n

VJ r~- x cr so

*. •£ <T 'X, S-

•*• tr 0 0 LT

r~ r* c- 0

© U1 © l/lIT IT. < vC

oj ro OJ

0* n ^*r- co coOJ OJ OJ

^ n 0

^ CO OJ

n n -3"OJ O J O U

cr r» MJ

0 © ©CM OJ OJ

cr D nn cr 0

2\

2044

E9

2047

84 2051

2002.

E005.

CM -J -JCT * - * t\j

in in «f

j"* J I mCL- <— -T

O (VJ OJ

tr —

' * IV.• IV. IV

a a

• iv r-

a r-

r- x

Page 123: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

— 1 1 6 —

o00(VI

o©in

«

COCM

f-4 tdb CM

8 3O COco co

i s

iOo

oo

ooc

w

uo

a a a a a

I i i i

t e * . or Ki i i i

a ix ac a a• i i i i

a a a a ai i i i i

a a or a ai I i I I

ct a a. a 0;i i i i i

i i i i p-

(Vi

O ** (V 'C ITJ* f^ 1 UO 0^CC IT - » • - . *or o> cvi p- pi\r p~ ft. © o*

© © © e o© o o o oo o o o o>c I T vf n (Vi

a ct oc ct ct

a: a a tt oci i i i

1 1 1 1 (1

ro

Hasan

M

oIT

a (xa p- eci e i PI c

P- Uin OL

o- r-

i i aj-)'"© pi cr

OOO M>

or pi (vj tc

(VI — — —

PI ©in P» •*.

© PI vt> U* P-

© cr P* <© in

j - PI in & m

. (vu in r-cc (vjm >c

-.cr a ir ©i cr c o (VJ

<irif>t

o o © ©ooo oo © o o

~(V, PI

u. ir p- ui ii

tf) - . - . c o -•-. p- CO (VI ci-i oo <c in j

C- CD O P - CO1") O (VI VO .? o cr in (viu) MJ cr * un

0> CD PI (VI p-vo p- cr o c•JijJP O (ri MJ ivi --> ©co so in •»• P I

in in (M in —in t r (vi —

M 0Q \O >T MJ)

*• w •& PJ rvi

.» ^ P I «< »«•tf t © -T •<— p- o i r •->* « — •-> p-4, UI P) (VI

n PI © «j (vi* p- in r- p-* U' <t r- cr

n >» p) (vi *-

C IM l/~ P- \D

- - - - -

^ ir a it p-

<T PI (V (V( ^^

• O CC (VJ »-

cr in — —». o 4 r ^

p- o •» ec(V. (V.1 — C

© © o © <© © © © c© o o o <I T >C 1 - OC C

a r- ©cr p-

r> o c> cc •;0- o *« *t ffOJ(\J .-HO a

r-f O t/l O ff»y. •> - •-^ o* 4. r- fw/I « O* Pd *

T P* %C *C f*-^ 0 or- 0M« fCU

v^ 000*

* OJ n r tf>11 l ~" IV V *—'* «r ot a ifK - • * OU PI

- . —©cr cr

vj in #- (vi 0j cc r- — 0

n oc (vj p- rvi~ o ©cr cr

n »c ox; * p»- • 0" (VI P-

NiOII'O

(V (vj cc ec (vi

- - " • " • " •

r» (V 0- j p-

r- (v* © pi CL

0 © o> o- or

(VI PI O >C0 in 0 * •

oc r- <c P)(•! r- •» •»0: pi cr ui0* cr a a

3 0 © 0 05 © © © ©3 © O © ©)> O -<(VJ PI

UI «VJO< —

p- in eo in(VIP- (VI CO

cr co co h-

tO CO CD O (71

MVOtflM Pi CC vD 1^ * « - P« PI

r- co co -> <o7> vD (VI r> 1U * * CD CU —•JMI1OUJI

CD CO CD P- P^

in ©cr j - a.•- U) P» (VI -j r i o ocicc.

CD -3* CT «£> (VI

00 ai r- p- p-

<o © cr oc p-© Mn PI p-1 o> cr (vj p-

p- (vi a- m -«cu ay P* P- P-

O CO P- P) ©a (vi <c p- (\ivo — a -

00 a p- p- p-

cr cr (v p- <

IT a - • IVI ->

r- cr pi 0 a.

OP r- r- p. »r

£ O IT (VJ (VjV 1 M J M C T

^ ir (vi in r~j a iron; 0 r- *1 oc •* — a.

E P- p- p- sC

3 O O O O0 © © © O3 O O O O

» in <c i> co

u i r - - j a

o~ in •* in0 p - j - I - I

i> * «ve

3 P I O I 4

•) 0 cr ~*opriw

0 in * PI-1 (vj in 00- ui ui r~J> W H O* * V0 *

VI (VJ PJ tVl

J> M3 P I O

c <o * ve

cr pi © «*» P) — v01 ui p- ©cmnio* * * *

•0 cr .» meo j - cr ©•- U (VIC

ci <u 0 in

74

3T

45

73

1R

P4

93

52

— .» ©«*j -T — cr

. . . .

3«rf.pi . - • a.

0 p- rcr a •-•

: -1 <c P Ipi © cc•C vC IT

O O O0 0 0

0 0 0O — (Vj

(VJ (VJ (VI

Page 124: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 1 7 -

oo

»«evc(VI ©>•* (VI P-

<-> n * <c c>

co © ©o> into(vi i-"0" «-m

o n«o n © p-o co CO PI r> co!•< n in IMT

OJ «-< (VI « OU

M M M C i»- (vi co r- in niko r> cvi.»in

|-> in o f- in !•»•|M N m nj n

*JJ IP (VI O

- . OJ-r in <cH in o iO 4LH M «j (vi ro

> " cr ir> in •-•ui r- no a (vi in inO IP tf* CD *C O

r- xi co « incc r* © cr in

© o f*© •* <o|o u< <l r* < P-

~ ivir>in r-

U 0r> oiir ir ©;^ nm (vi in

i o©

(VI

in >c 0s o* r-« ct <*• I* »tc o o m innw-»o ivil•-> (vi n in r-

o- o i>- f- ©(VI *-• <VJ 0L O

« —. c\jn -

r< m >c r* &© n « n co >c© (vi © ^ *c p-

• • • • • •o ^. (vi n * *o

oo00000

0 © o o of* >o IT .» n1 1 1 1 1

m u* c r, o *m M n © coII) CD t M

ivi i\i 4t

lin 0 *0 MI

U<«(v i (vi r>

, \iv ^ ^ CD okn

\r-it\ 00 « nk -» •« n «

r o> * r-i• - • p- mui c nj ni CDICO

u ai «r ivi ©,* • > *• •

wui Min" au au •»IT m i " ~•» -4 •«• In ~m oi^kn

In in c co (vjkx>w m <o 001-<

r i cc © cc cf© o>(^ © »

9 (Pf1

L-« «o * rn CD]»-i n co crk

« ^ I T in r\

«4p- ui n(viu"

o «trmni^4 ^^ 4 (VI f >

> W *> If© 01 d

< CD m r*

U-« ^- ^ (vi n

• - * * n ct

no- *

© noon o#1 ^ (vi n

— M O I M 4»r (vi n cr *o00 n o* n CD

MMMOIn co oin,r* n on n

O ©COo 000

« o> * * H

4 r i r> col©11 « ivi lu * (vi

HVJ n P- *> <* in * os i

fo co n co —*

I© co<-0'kn i/i •» v —

^ n i\ j 1/1 -o co

<r crIvi © r> ivi •»

« (v ©

on •-_ «>(?• * •«;n P- co o

o> o n © **in ^

SO © ** (VI ©,in «•* c o 0s

|M n IV n 4© (T (VI

cu cr • " OD cr

CMfl (VI ^<(C M O O i*C «? (VI •*CO IP •*

00000

Page 125: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 118-

r> p- <r a r»I T <t> m in ••—

<0 O1 CM •_ _•9 CM -> C> P- Ifl I

nnx^evooiH

•«c«piflnxcM>

#* it) C* * COO *H * * If)CD OCD CMC* CT

0* C7* <7* CD CDO) <O CO P -p -

(MMMIM*in i ou r CD O D P I O DUU)

» r oin r> *H O co

0D O «C <C OJ

oo

as

o

to

5

om cr «r»9 e i n 4

r flu ^ <*i wiuinnoa

r5"> •» oat' ou <•> r}

* o* oj in

m r, w c e

— in in •"""

(TDOO 00cnr- r- •» *

~OJ « CD *

- ! > • « * X) Ifl

r- o in r> •»

•» in •» (vi tr

cu an a a i>-C M O r- / i cvi tj>

cr "» <c r» -«« " • m co oo

4) O 0* i~ M IT I\J I

. - * ^ F^

o CM e CD ri n <ou CL en ou r-

ac cy cc r»

w ou a r-

cr ec jcc oo oc OJ r-

»* cr o* o* 0s cu tot & cc OLM

" * p- o rulC * c O

ao ooooo

o o oo oi>- <e in •» ni i i i i

o oo o

ooCVJ I I

I I

C\i IT f- * »Of- • * <C <C

CO * O<0 iO *

CD [»• <V• I »" CD If) »"

f

(M « OCM O

J T J O> If) - -

p- r- in * r»r tn t o cr

r> r> r>>0 CM p-<a ii ui

cr cu rj o <\itv joab innop-D

* p- a P-p- p- aj

p- p- p- \o -o

<c — — ru -t n>c if CD i>- P-• • • • •

*t CD C71 P- O>c r> o p -

p- p> >c

CD r> (VI CM M»« CV) OD >MP-

p. « <M • -•C •* r* CO p- r- P- >o <i

oooooooooo

n •» m <. r-

Page 126: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 119-

C> * CI CU

* * — a, ep- cc <c *e oc<7> i n * <c CM

(vnin

.» p- -<ir- -r o o<u

r- <vj <vi i nno OPKVp- o r> p- «v

#•4 V * P«* (V

"• O(Uin «

©in (vno " •

i sr «&* «pi •» CM n

••» cu e>CO «* (VI l») 0* J* • * « • * * *

* «O> tVI « " "

iOO

CMVIOU1IT> O> !*• P -

-< p- nj o <p- •»

COCM

IS

n n m o o*C\j -» tfl r*

~ r~ -t a.noiHin^ rvj n *r

uo

io -^ co ao CDo m \c cc co

ui U' a. F - « -f~ (V) IT O-T

» IU >H o o

•~i p- r> o p- p» n

>- «(v

o>co m m o>IV Of « »* (\l Ft Wo II) OK OJ O*-U O

« no <r o M mn44ChCD

i OD OD <o o> o in• * U l J 1 'Sr * f <

mm n o>r-

n <*7 -a* o r-

n OD n c on

•» *» 'O jm <-« m cr

I D UI UI IT

O 0 1^^ry^i^a.' *- ir

ICM ** p-« I

mcunr-uiinuinr-m

ooO — ~ <

ooooo

c o oo o= o o o

oo ooo

n P I cu ou *^oc oc oc

in <vi>-* -a*«C r- - : "r- •» 1M —nj m -j in

• <c r* (VI <u c*" • p -

• oo

CO « 4) •»OD (vi m •» o

IM CM r> » m « p- oo

o* CP

r- co

0- <Vi O C t l <V

j r oc *» .IT O C O> <C UI Id

#-» C\J r~ *•*(VI U1 O C D

iC #- LTI O «

co cc cr IVI p-n

a — — oc in

»j- ^^ o n p-

MT ^ -t P- rtxn

i O", 0U

MnU"<

Page 127: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 2 0 -

gMH

OSO UP-i O

O g

S3 8

H

9

©o

• oo

oo

oo

oo

o

* - " J UP acr 4 a cr irin o in cr c

r- ma in cco oo o p- p-

O (VI * O Ocvi cr r- in crCD o o r - cp- -* o m ~*OD a. COP- r-

(vito a* 4 <too p- ** r* CM

— 4* * •=* in

0D OD CO P- P-

c» o 4 «-• or> >c o •» inin OD cr io o00 4 O (VJoc oc coo- r»

up cr ci cvi 4a. r> —' a (\icc rvi n o mou a: p- (viCC CD CD P** P^

5SaS?c> — i i > cr(V ^) p* m crtr m «-" P* cvioc cc cc p- r-

a cr (Viui -c

U1 tl1 IMP Ooc oc OD r- r-

»-* cr o <i. ino ^ rvi <r r-f*) ^|.i ( ^ q_f | ^

jninoo'o> vt (vice r )a oc cc p- p-

•-• u o «* rvj(*) cr CVJ cc

o «© cvi ct *rcr a OL P- p-

cr. 4- o o 0n >c m » inix CT — (1 4<c o n (Vi ccc> r- r* cr 4cr 0, OL P- p-

ooooooooooooooo«- to m 4 n1 1 1 1 1

cr 4" 4 4 rn r> •-* 4 am r* 4 p. -in ~ (vi cc 1in 0 4 r- '>c *o m 4 *

OOldhC<c <o cr iii 4p- p- 4 n 40 >o 00 m ••« <o m 4 <

(vi 4 or ) -0

in (vi 4 —r>

« « in 41 4

p» *o «o n ruuai x>^^0 co in 4 r»«r- 0 00 c- rt iC(P 1**o *o in 4 4

cr 00 in incr«-• rj 4 cc p-D r> * 4 P-•• (\i * 0 n«<c inm<t

(V) a riru r->-« CO (VI r* <

D CM p- ~ -a<c « in in 4

rviCM -<in«o

a D p- --• ui•e <c \n in <t

0 rvi in ct> p-cr 4" cr 0 4*^ m (j\ gj U1

n cr rj rj cor r) co rvim* * in ui 4

O1 O (VI O O

•£> 4 a 0 m3< 4 arj rut't >t U' IT -J

M cr i n (M (vi- p- * oc p-

— (VI 4 CVI 0" O IT lO CMsin cr n N!»• iC IT m 4

00 0 00D O O O 0OOOOO\ l <••• •-» (VI1 1

-rotf-rcvj 4 cr rvi cv

nocr * (v(VI 4? O* C*r ) 4' 4 cvj an cvj — 0 cc

cvim •-< 4 p.cr r» •-•(Vi crrx-xo 4 «o i n p- cvj cr4 inui •» o>nAiiHoa

cr CD 0 0 covu co in * co

at •» 00 * in

n«v4 — ocr

P- D CM Cl CMlil CU (M 4 V\

CM 0 r> cvTcviu n cu r* "n P- r- « nr> CM -•• 0 cr

a n 4 CT r-m « n eu inooc 4 cvi n4 ••« oc cr >oLJ CL' CO P- 4

r) (vi *-* 0 cr

CAJHIMOp- n cr cr crr» ui n 0 0*••* O 0D ^^

r>cvj<-oa

4 o-« 4^ (j* p-

r> (M cvi •-< c

»«<*«

cr u1 aj 0 4: p- p- 4 cr) 0 t H ao

ri n CM ~ cr

" M J O - OIT 0 a (VJ «c

4 in r- w r>1 -"(VICU C

!T C (VI i-i 0

* r) 0 00 ooJ1<CCC O f )

s x p - cvj in

? cvi n n «» n CM •-< 0

3 O O O Oooooo

1 4 U" N! p-

0

m0a

CDO

On0p-

CO00

CO

inCM

<D

n

00n

CD«•*

cr_VI

cp .

cc

IT4

O

a;

\OT

4/or4a

n»rv:<:4;X

n

Page 128: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

1 2 1 -

o•

o

a.

7.0C

©

3.0(

oo.

CVl

o

o

«

•J

<? IT >0€C 1

-2082,

-1791.

-1514.

-1254.

p* © <O C CD

m © <-m> p-•"« (V) - IP- PI(VI ** « ~ p-,1 1 1 1 1

a> in P I P - - ,<© p- r- tvi —

cvi cu «u i i ) »•*

< I I I I

IT) MD PI O CDp- If) ©CU If

p- P- (7> P) CO

•-> co in P> o

1 1 1 1 1

(VI *H © *H P-cr in m m cvCVl >O P I <O CD

© © mm o(V| _. , * » - .1 1 1 I 1

(vi in « * •-<

-2233.

-1935,

-1651,

-1382,

-1132,

0* O C © CL'U) 0L IT U' (VI

P> •«• CO tt' iC>c <c P- © mIV) U* MJ ^H

M —c ~ r-i —( ( I I I

o - a ~ *)

O> O- © P I CO

rvj cr p- -r r-

I I i i I

* * CT(v!ii

(VJ (VJ PI *O ©P I ^ p* <r evi(VI (VJ •- «H XI I I I I

n3 O p- P) p.P) CVl »-CC 00

m p> pip- o»in in <c cc (vjP) © P- -41 (vj(CrwnHn1 1 1 1 1

o © ©o ©o o o o o

© ©oo op- <c in ^ nI I i I I

o p> «nji

?!??=o >4 i n )O •>pi * oo cr cv

• I I I

in in P-co v

tr cvj ^Pi j - p - * <

T * f i i

dMvionCVl O< (VI CVl «

• • • • • • •

CO *O <* PI (V1 1 1 1 1

(VI CD ©CP U

1 1 1 1 1

n >o © i n "«CVl sC d1 O CD

PI CL f— * OU© C P IVIP- 1)

^ sij m P I evi• I I I I

»n-(t<j© U* (VI CU CL'

-925

-717,

-538.

-389

-277

r*- p* ^* P- »-«r>4 ^ QJ i-N IV|

-947

-737

-554

-403

-287

D CD CC CVJ *»J1 (VJ p- 0. ©

. («. _ « p.

' P- Ul 'T CVl1 1 1 1

C *C P) CVJ CD3DOCDIMVJ p- CP ©P-^ p- cc P I ©• p- in 'J P>

• i i i

o © ooo3 © © © O9 O O O OVj « -.(V,1 1

4 4 m ff n^ m iv cv iv

-190.

-208.

-301.

-496.

no«Mi

sinpoi

• I I I

mm to op-

4 IP III P- O

-»»«(vi * r -• t i i

M (*• *e © PI

.. ^ .. ..

r a- -c evi (vj»<•« m •» p-i I i I i

p* * CP «VI P)

i I i i I

o <c o —<nij> PI m in evi

n ^* *a" n p*

[VI ~* (VI PI *i I I I I

^ NT *O (VI ©nj ir -7 a uia' C in •» PI© a P) »c -1vj >— (VJ P I %u

1 1 1 1

at m in a <*© •-< U) (VI *

F- a> rvj » CDrvi ^H CVJ pi m

1 1 1 1

o a .» p- •»STC4CU)i a, o o~-^ a cvi PI in\j »« (vi p>m

I I • I

u> •» in P IVj CO r * - (VIvj m P I in

I i i I

9© o ©e3 O O O O3© O OO

»— o•- PI

•» •»o ©I/) ^*-«in1 1

—• ai<o cr

2. In• i

P) >C

-133?.

-3147.

P) CO(VI O

•. •)8S2-

© CO« -a-

-1185

-2322

O COec P I

-212P!

PI (VIpj m

-1058

-1968

• - (VJ

-1000

-183!

in ^*p- pi

>o or *-<

D> P*•-*

T> O

n cv' OI <£

1

O O9 O

9 O

Page 129: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 2 2 -

§

3to

& I2CM W

O £•*

Cdi r i « w n

p- t> V fl p:cc n ID p-nj \o CP (vi In•— c. o- o- cc(V (VI ~ ~ —I I I I I

*- o o tr a(VI (VJ (VJ »~t «M

I I I I I

o •* p- nP- cc •$• i n ^

iC (Vi j - - • ^— •£ o- -•• ~^ p- o * p-HOO»IC(V (V (V. ^H

1 1 ) 1

oo

o o © © o© © © © ©

• • • « t

0 o o © oP- >c IT •» n1 I I i i

( *ct ^ o ^ a1

p- p- .o m J-

CC * © «.• p . I-

1 1U) nj

o m o p*cr o n —

co in p- j - a

[n o n r) p-ao ^ CP (v

o (v in p- oloo P- -o in in !•»

I I I i

© o a o ©

Page 130: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 123 —

© -1 » ** .© p- © r> -^

U1M0»<O>D<G«P-P-P-P-P-P-

nj •»• op ic u1-4 r> o oec —V c

n o> <vi to * osCt G *v CO ^ 7 iD v**

i l l iG CU

Ifl <0 (VI Ul >0p- ~ p - o>

Ul «O0» Oo ^ p

on«on•T (T CM P"

,© i - .»•.» n CP© r> .ocp .-•*"

ui ui p» CMOD© <r in p- .r(\II <v co a f-"-< cr « *

in * p- CP oc o o (*

CO

aMJ3O1

H

OH

33CJM

MUWPUCO

CJ0

IHa1wH

OoUl

oo•

*

N«OIMOn«

M m cu o onin — i

SO '

» •-* IU r i -r* r- r»

o * n 00 D O CD h-O C7 * CT CP

Ul * P- 00 <T

Ul © CVI t*

CP CM Ul p- 00

•T *j p- cu t r

a »* n <r ccr i >u »r D oa i^ n r cr

IT f* (VJ C •»tvi <\J ir .» irIP, CC O IT. OC

oo

n oc (\jr- in" oc in » coir oo " * in

in r- oo o>* * * >c

o o o o oo © © © o

0 o © o oop- <c u~. >» nI I I I I

n cc ir * in

ootoor-

© a; iCM © r-1

• oo ao o <r n <vi •-• t— > c v i - « © o < r > *

« « * m p-

•» no oo o> p- u i

•* n h- © in n 5uv r» oo OD <7> r

o \C co w co

ui r- o U) ivi 4.'MDSCCI

l\l CM O> p- 00 •»ai m •» r>co ">

N r» r- r- r-

- n in *p- ui a- -3 ouin o* in nCC *G «» CVJ #^

>C — 0L' Ul •»p- <t> n ~« ©

(M © »-4 O<ti cr n r-n o p- <rirnov

r- P- r- P-

~-< p- onP i O f l ^ilOfl^occ in n a uim •* (vi CP ec

© . .© © o o

© © © o o

C © <\J ti. Cfa © © oc<v*«r f

•COD IVI p- *p- r» oo co c

•j n or- —•oin * CM P»cs cc •]- o p

CM Ul n CMFIPOx4x

*U1O

p- p- oo cc a o

ui •» ui —IV-T H T I

P- p- OC p- Ulf « C P

U P I/ ^p- p- p- ec cr o

in au au pi rm ui ui \t> na

p- P- p- oo ec

occ o p -p- n *£. p- co * p- r>© p- cvj •-«

>o a p- p- ©n c >c n c•c IT -t «a:

tfl C1 iC (*)

-t <C a Cvj COrw p. p. oo *

o © o o ©o © o ©

o o o o<•> • » U l <C P-

Page 131: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

1.30 1.35

TABLE A-13 VISCOSITY OF H2S GAS (xnPa.s)

PRESSURE MPa

1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80

20.

3oT4o!45.50.S5.60.65.70.75.80.85.90.95.100.105.110.115.120.125.130.135.140.145.150.155.160.165.170.175.180.

.012786

.012993

.013201

.013409

.013617

.013826

.014034

.014243

.014452

.014660

.014869

.015078

.015287

.015496

.015704

.015913

.016122

.016330

.016539

.016747

.016955

.017163

.017371

.017579

.017786

.017994

.01R201

.01840ft

.018614

.018821

.019027,019?3?,019438

.012798

.013005

.017213

.013421

.013629

.013837

.014045

.014253

.014462

.014671

.014879

.015088

.015297

.015505

.015714

.015922

.016131

.016339•01654P.016756.016964.017172.017380.017587.017795.019002.018209.018416.018622•01P828.019034.019240.019446

.012811

.013018

.013225

.013432

.013640

.013848

.014056

.014264

.014473

.014681

.014889

.015098

.015306

.015515

.015723

.015932

.016140

.016348

.016557

.016765

.016973

.017180

.017388

.017596

.017803

.018010•01P217.01P424.018630.01«836.019042.019248.019453

.012824

.013030

.013237

.013444

.013652

.013859

.014067

.01427":

.014483

.014691

.014900

.015108

.015316

.01552=

.015733

.015941

.016149

.01635P

.016566

.016774

.016981

.017189

.017397

.017604

.017811

.01801P

.01822=

.018432

.018638

.018844

.019050

.019255

.019461

.012837

.013043

.013249

.013456

.013663

.013871

.014078

.0142e6

.014494

.014702

.014910

.015118

.015326

.015534

.015743

.015951

.016159

.016367

.016575

.016783

.016990

.01719a

.017405

.017613

.017820

.61802?

.0ie233

.018440

.016646

.018852

.019058

.019263

.019468

.012850

.013056

.013262

.013469

.01367=

.013882

.014090

.014297

.014505

.014713

.014920

.015126

.015336

.015544

.01575?

.015960

.016166

.01637C

.016584

.01679?

.01699?

.017207

.017414

.017621

.017826

.016035

.018241

.018446

.018654

.018860

.019066

.019271

.019476

.012864

.013069

.013275

.013461

.013687

.013894

.014101

.014308

.014516

.014723

.014931

.015139

.015346

.015554

.015762

.015970

.016178

.016385

.016S93

.016801•017008.017215.017423.017630.017837.018043.018250.018456.018662.018868.019074.019279.019484

.012878

.613082•61328"•Q13494•013700•013906•014113.014320.014527.014734.014942.615149.015357.015564.015772•015980.gl6187.016395.016602.016810

" .617017.617224.617431.017638.617845

• .018052 ••Q18258•018464•018670.018876•019082.619287.619492

.012892

.013096

.013301

.013506

.013712

.013918

.014125

.014331

.014538

.014745

.014952

.015160

.015367

.015575

.015782

.015990

.016197

.016404

.016612

.016819

.017026

.017233

.017440

.017647

.017854

.018060

.018267

.018473

.018679

.018884

.019090

.019295

.019500

•012906.013110•013314.013519.013725.013931.014137.014343.014550.014756.014963.015170•01537e.015585.015792.015999.016207.016414.016621.016828.017035.01724?.017449.017656.01786?.018069.018275.018481.018687.018892.019096.019303.019508

.012921

.013124

.013326

.013533

.01373P

.013943

.014149

.014355

.014561

.014766

.014974

.015181

.015386 |

.015595 -

.01580? £

.016009 |

.016217

.0164?4

.016631

.016836

.017045

.01~*251

.01. »5P

.017665

.017871

.018077

.0182R4

.0184P9

.018695

.018901

.019106

.019311

.019516

Page 132: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

TABLE A - 1 3 VISCOSITY OF H 2 S GAS (mP,

PRESSURE MPa

1.8)

l . B O 1.85 1.90 1.95 £.00 2.05 2.10 2.15 2.20 2.25 2.30

?6*25.30.35.40.45.50.55.60*65.70.75.80.85.90.95.

100.105.110.115.120.125.130.135.140.145.150.155.160.165.170.175.180.

.012921

.013124

.013328

.013533

.013738

.013943

.014149

.014355

.014561

.014763

.014974

.015181

.015388

.015595

.01580?

.016009

.016217

.016424

.016631

.016838

.017045

.017251

.017458

.017665

.017871

.018077

.018284

.01*489

.018695

.018901

.019106

.019311

.019516

.012936

.013139

.013342

.0H546

.013751

.013956

.014161

.014367

.014573

.014779

.014986

.015192

.015399

.015606

.015813

.016020

.016227

.016433

.016640

.016847

.017054

.017261

.017467

.017674

.017880

.01*086

.018292

.01*498

.018703

.01*909

.019114

.019319

.019523

.012951

.013153

.013356

.013560

.013764

.013968

.014173

.014379

.014585

.014791

.014997

.015203

.015410

.615616

.015823

.016030

.016237

.016443

.016650

.016857

.017063

.017270

.017476

.017683

.017889

.018095

.018301

.01*506

.018712

.018917

.019122

.019327

.019532

.012967

.013168

.013370

.013574

.013777

.013981

.014186

.014391

.014597

.014802

.01500B

.015214

.015421

.015627

.015833

.016040

.016247

.016453

.016660

.016866

.017073

.017279

.017486

.017692•017P9P.616164.018309.018515.018720.018925.019130.019335.019540

.012983

.013183

.013385

.013Se8

.013791

.013995

.014199

.014404

.014609

.014814•015020.015226.015432.015630.015844.016050.016257.016463.016670.016876.017082.017289.017495.017701.017907.018113.018318.018524.018729.018934.014139 -.019343.019548

•012999.013199.013400.013602.013805.014006.014212.014416.014621.014826.015031.015237.015443.015649.015855.016061.016267.016473.016680.016886.017092.017298.017504.017710.017916.818121 ".018327.018532.018737.018942.019147.919352.019556

.013016

.013215

.013415

.013617

.013819

.014022

.014225

.014429

.014633

.014838

.015043

.015249

.015454

.015660

.015866

.016071

.016277

.016483

.016690

.016896

.017102

.017308

.017513

.017719

.017925

.619130

.018336

.018541

.018746

.018951

.019155

.019360

.019564

.613033

.Q13231

.013431

.613631

.613833

.014035

.614238

.614442

.614646

.614850,Q1^05b.015260.615465.615671.615876.016082.616288.(J16494.$16700.016905•017111•017317.617523.017728.617934.018139.018345.618550.618755.618959.019164•Q19368•019572

•013050.013248.013447.013647.013848.014049.014252.014455.014659.014863.015067.015272.015477.015682.015887•016093.016298.016504.016710.016915.017121.017327.017532.017738.017943.616143.018354.018559.018763.018968.019172.019377.019581

.01306*

.013265

.013463

.013662

.013862

.014064

.014266

.01446e

.014672

.014875

.015079

.015284

.015489

.015693

.015899

.016104

.016309

.016515

.016720

.016926

.017131

.017336

.01754?

.017747

.01795?

.618156

.018363

.018567

.018772

.018977

.019181

.019385

.019569

.0130*6• .01328?

.013479

.013678

.013878

.014078

.014280

.0144*?

.014665

.0148*0

.01509?

.015296 |

.015500 -

.015705 ^

.015910 |

.016115

.0163?0

.016525

.016730

.016936

.017141

.017346

.01755?

.017757,0179fi?.018167.01837?.018576.018781.0189*5.0191*5.019393.019597

Page 133: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 126

oCO O

CM

out/1

-3-r-l

<

_

vi r> o H i\>*+ •-» o o* i

o >o * in<* iLO CD tf> ** >D• •-» « ••« © C

•^ c\t rvi IVJ <\j t \

m r- m *> c^ *e in IVHO OC tT" & © f

o o)U)Hr»«-• I-H .- i «-* O C*T (VI fVI CVI (VI (VI

woHin»N*o ~* oinr*

» e *") < UMui u* * i« r* «-•* «=4»-l^4OO

C5 OJ (VI CM (VJ fV)

<o n M J<O (V *C 0C<O"lo cr io ivt co r• f-H H Fl O O

n oi ivi tvi cvi OJ

en W3 cu fo ** o cvi in *•in cr <c DCD r• ** « * o o

o r* exj in oC\l vD 00 C *-•

O ^) I\J O t^-

• - - oo

OL \V CL tl* GL1

O r- Lfl O U~l (V

^- (Vl OJ (Vj IVHVl

© tn «t evj * j

• „ „ „ „ oM (VI (VI (VI (VI (VI

O* Ul (V) P) 0s

Ul <-• N * O >

if. o S 5 o inO (V- (VI (Vj (VI (VI

p> M oc iC <*N (>• •* P) *

o <i PI (v o oo o oc in "\i• (Vj M M M CO (VI (V, (Vl (VJ (V. (

o oo oo <o o o o o e <

o m om s ii i i i i

O.CT l» *•» p) a cr iDCOC^ r^ 4 *^

J I »•* 1 ^ Oi <

n CD ^ «r ij . oo op t - ic

S4oooToo r- o iII (VI * U! iJl (T IVI II) «l* 0D0DI- «

j -n O M M> Ul « o ^

^ ^ 1 ' (Vll D 0> P) IO C

j> co oo r- >JJ

inffffnin> M >r o r-> iC GD 0^ fl>OF1«Cj> a cc r- ic

VI 00 PI O f-^ Aj tfl U

o> o> oo r» r-

•.» (vi o a1 C* (VI P) (V

O> 0C !» I '

OCM-IO,*

o oo r r-

(VI J Ul Oui oc c cr

P) So- (£a o: r r~

CO€ CMFM 0> »V| PI P1.DP) onD O ec oc r-

3O O OOSO O OO

no ui omi i i i t

it o !->inUl >» « Ul •O M P)f»o pi oi* ui » PI

PI n> (\ir-n (vi n o^ 0D O ^D P) > O«in * •*

•-i * •» MPI

•fi ul •* •* P

O (VI 0DI«- Oiri o r* « ^#« (VI PV 1 *'vi ui oo M i

>c ui >» * PI

o (u •» m «fUMDM3 0C O P ) <il Ul Oi (VI I

U3 in •»• * P I

M * M IC1 00 P) PI (Vi in " o iT ID CT PI W

* ui <r -r P)

i r- M c- KVl (Vl J i£ F«• r- O P ) r>-

iC Ul Ul •» P)

•O ul Ul * P)

iC 1^ (VI IT

a M i n ocin IT * tr

o> in <vi ini in m a o

PI .» •C —• o> (vi in o-

IT m 4 PI

o oo oo oo ein ou) o1 M

-T (\j (VOL«>«oriM (vj m or- - . ino .(VI (VI M M

(VI l>" (VIP)w (^ ^

» r- oin

OCD (VIM ,TPI «Mm ivi iC »

CVKVl M M o

i r- cu u) io (Vi h- M i

(VI (VI M M O

M ^ f» * !»•M ic ui tr i>ui r^M (

(VI (VI M M O

OD 00 f-0> 00VI Ul (VIP) (j M D r- c3 •» 0L (VI r-

Cl (VI M M O

ui o* a- ci r- oc (Vi o• •» oc P I r»

P)(VIMMO

? f) (*) *C

(VIMMO

U^ "- (T •*' If; Ul 0L ^>

IT O sj 0C(VI (VI M O

cc o i r inui PI -4 oin vc a tr(V|(V|MO

o o o oo o o oo ui o in(Vl (Vl P) P)

U) «-• O<f ^ MK M I£o> ui coo o

IVI J- O*) Ifl•) l/l OO 0> CJi••o o

MO> (VIVI PI CfU O -TaoigiMOO

- o n•) in c

* iC PI>r- oo; 0> P)

-< lO (VI

SIMF

VI 0C (VI3 •» P)•) .» OCi r- ivi

— n PI• (VI CL

0" (VI1 f^ P»

o 0- cr

o n

cr ao o

cr (vi1- Ca jcr cro o

M O•C UlP! iJT^* ^

o o

o oo oUl o

Page 134: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

— 1 2 7 —

&

00

o

coCM

SB

oo00

3a,

inin

inn

o> D i n <e i•* CO <-«<r 1-» •» in m if

o o o o c

«t> p- o ui ncr (win <o P-•» CO ~* * P -•* •» mininOOOOO

(M * P-(M 0>cr IVI •» <o -.

14489

4820

15143

5458

5765

lOlOlO'OiO

14485

4817

15140

5454

5762

ooooo

•co I H D m in•» oo —• •» p-44ininmooooo

00 O (V P- p- •-• r> •»• in•cr oo >•« * p-

ooooo

p- o (v •» in* oc ••» >» p-•a- * in in in

(v D in o p-P- O (V •» •»•»(0-4P-•s .» m m IT

e c o o o

.» p- .-«.» p-•cr *» u" in i/i

in vc cc (v o*^ cr — D Dj p- ~ .» p-•» <r IT in IT

© I T oir o(V (V D D

•*• p- in •»••-on«D>i

o o o o e

DP- in r- p«</)ri<"o D 4) er IVI•0 <O <O iO P-

ooooo

D16069

,016363

916651

916933

917210

6066

6359

6647

.6929

.7206

OlOlOlOO

16062

6355

6643

6925

7202

OOOOO

in in o OJ cri£7 4J 4J I"**

OOOOO

•* co IT r- n

ooooo

51605<

51634/

316631

)i69i:

31718*

6 047

16340

6627

6909

7185

c o o o o

1 D (V O CO

'• <L. *£ * t°~

1 D - " O P-1 n <£ Q *•*

• in in * *

O 111 (Vl Dcrmtvic <* p - eiup. p . CD CD

OOOO

*P- O(Vp- P- OC CO

o o o o c

(vo-j- in^ P-O(VIIP- P - CD CO CD

- » <•« p-1» p- ocv mp- P- CD CD CD

OOOIO.C

- » 0<0(VIfponiuip- p- COCO CD

ooooo

^ P- O (VI I•* p- CO 00 CO

boooo

/i D P - co inj f p - c (vi m•» p- P- OU OUooooo

31746]

31772'

51799:

51825:

318511

r- in oc tr P-fl (VJ CC -T O* p C M v i i np- p- p- a o;

o o c o o

n (v co <cr op- cr (vi inp- p- ou a

>0 O O 00M CD «*f 0*p- cr (vi ^p- p- cc a

sin oir op- ec coc

879 P

9052

9305

9557

anno

oooo

18793

.9047

19300

9552

,

oooo

018789

.919043

019296

919547

D19799

8784

9038

9291

9543

9794

OOIO.O.

p- o (vim I

ooooo

P- (\l CD D CDp- o mm p-

o ooo o

•-« m p- (r op- orvinp-uvvvvooooo

31876"

319021

319Z7:

31952'

31977(

P762

9016

926B

9520

9771

ooooo

; ••• •» in »t>

- o w in p-i cr cr cr cr

n p- cr o i iO l f l ' - ^o (vi in p-

O IT. O ITo o^> —

O D in CDooooninj cunioooo

mp- •-inoDin <ooooom m iv moooo

=>nin ooo o o o —ni m ni i\i n

>0298

•0551

!0806

.>1062

OOiOO

* cr •«!; o momuiajoo ooo>»IM (VI CM (V (V|ooooo

1CCJ-CMTo cum p- o0000>HIV (V (VI (V 1ooooo

M D 13 •"•<>

0206'

0202c

0205:

0207<

0210'

IVIP- D CC o (V in P- oo o o o ~«v (VJ rv (v rv

020022

020274

020527

0207B1

021037

)Z0017 ,

)20269 ,

J20522

J20776 ,

121032

320264 .(

320517 .(

)?P771 .(

321027 .1

in o in o

p» cr in -t

(U (VI (VI (VIoooo

rv -i cr c rD cr m rvir) m co * -IVI (VI (V (VIoo o oo

M com ivi

(V (VI (VI (VI

-••cr cr cr (M(vi co » — crD Ul CO " - Dp* ** w* (V (VIM(VI (V (V(VOIOIOIO

i—r- •» "«oonmiDxn

(VI (VI (VI (VI (MOOOOO

02131

02157

021831

02210

02238

<C 00 • * D P-

0213(

0215j

0218:

022K

0223"

321301

J2156:

321P2*

32209*

922371

021296

021558

021823

022092

.022366

121553

)21filP

J22087

!22361

cc D (v in» «cc min ec O D»" — (VI (VI(V (V (V (VI

o m o i rin in *> <c

.022687

.022972

.023262

9S2E20

996220'

2S9220

p- w* wp- <cm(VI CUD(V (VI (VJOOO

— in inp- in •»<o er (VrvruDrvifurvO I C H O

02266(

0229S(

.023241

OZ2660

022944

023234

022655 ,

022939

023229

522650

322934 ,

523223

CD 001 cr (V

(vcv! r.(VI ( V CVI

o o c

D (V,(VI —

u wr(VJ CV

p- p-— ocr rv.rvi r.(V (VJ

IT Op. a

Page 135: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

l.flO 1.95

TABLE A-15 THERMAL CONDUCTIVITY OF H2S GAS (W/(m.K))

PRESSURE MPa

1.90 1.95 .2.00 2.05 2.10 2.15 2.20 ?.25 2.30

20.25.30.35.40.45.50.55.60.65.

.014499

.014*31

.015154

.015469

.015777

.016077

.016371

.016659

.016941

.017218

.014502

.014034

.015:157

.015473

.0157B0

.016081

.016375

.016663

.016945•017222

.014506

.014838

.015161

.015476

.015784

.016379

.016667

.016949

.017226

.014509

.014841

.01516=

.015480

.015788

.016383

.016671

.016953

.017230

.014513

.014845

.015168

.015484

.015792•01S092.016386.016675.0169=7.017234

.014516

.014848

.015172

.015487

.015795

.016096

.016390

.016678

.016961

.017238

.014520

.014P52

.615175

.015491

.015799

.016100

.016394

.016682

.016965•017242

•014523.614855.615179.015495.015803.Q16104.016398•616686•016969•617246

.014526

.014859

.015183

.015498

.015806•016108.016402.016690•016973.017250

.014530

.014862

.015186

.015502

.015810

.016111

.016406

.016694

.016977

.017254

.014533

.014866

.015190

.015506•015814.016115.016410.016698.016981.017259

70.75.80.85.9Q.

.017490

.01775S

.018022

.018283

.011542

.017494

.017762•01P027•01P288•01P546

.017498

.017767

.018031

.018292

.018551

.017502

.017771

.018&35

.018296

.018555

.01750T

.017775

.018039

.018301

.0185=9

.017511

.017779

.018044

.018305

.018564

.017515

.017783•018048.018309.018568

.017519

.617788•018052• 0.18314•Q18572

.017523

.017792•018057.018318.018577

.017527

.017796

.018061

.018322

.018581

.617531

.017800

.018065

.018327

.018586 to00

95.100.105.110.115.

.01B79P

.019052

.019305

.019557

.019808

.018602

.019056

.019309

.019561•019E13

.018807

.019061• 019314.019566.019818.020070.020322.020575.020830.021087.021347.021609.021P75.022145.022419.022698.022982.02?273

.018811

.019065

.01931P

.019571

.019822

.018816

.019070

.019323

.019575

.019827

.020079

.020331

.020585

.020840

.021097

.021357

.021619

.021885

.022155

.022430

.022709

.022993

.023284

•UT8820.019074.019328.019580.019832.020084.020336.020590.020845.021102.021362.021624.621890.62216C.622435

•018B24.619079.019332.019585.019836.020088.020341.020595.020850.021107.021367.021630.021896.022166.022440

•518829.019083.619337•619589•019841

•018833•019088•019341.019594•019846

.018838

.019093

.019346

.019598

.01.9851

.01884?

.019097

.019350

.019603

.019855120.125.130.135.140.

.020060•02C312.020566.020820.021077

.020065

.020217

.020570

.020825

.021082

.021342"

.021604

.021870

.022140

.022414

.022693

.022977

.023267

.020074

.020327

.0205RO

.020835

.021092

.021352

.021614

.021880

.022150

.022424

.022703•02298P.02327P

,020346.020600.g20855.Q2U12.021372.021635•Q21901.022171.022445.022725.623010.623300

.020098

.020351

.020664

.020860

.021117

.021377

.021640

.021906

.022176

.022451

.022730

.023015

.023306

.020103

.020356

.626609

.620865

.021122

.021382

.021645

.021911

.022181

.022456

.022736

.02302)

.023311

.020107

.020360

.020614

.026870

.021127145.150.155.160.165.

.021337

.021599

.021865

.022134_t02240fl

.021650

.021916

.022187

.022461170.175.180.

.02?(SB7

.022972

.02326?

.022714

.022995

.623285

.022720

.023004

.023295

.022741<,0?3026.023317

Page 136: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

TABLE A-16 THERMAL CONDUCTIVITY OF LIQUID H2S (W/(m.K))

°c-70.0*-60.00-50.00-40.00-30.00-20.00-10.00

0.00

io.oo20.0030.0040.0050.0060.0070.00

ao.oo

0.00

.236879

.236216

.235244

.233706

.231421

.228303

.224366

.219716

.214541

.209098

.203697

.198696

.194495

.191552

.19047?

.192417

1.00

.236811

.236137

.235119

.233514

.231147

.227945

.223930

.219218

.214004•20P550•203173.198233.194135.191348.190501.192882

?.00

.236758

.236055

.234989

.233313

.zsoees

.227579

.223488

.2ie715

.213464

.208004

.202653

.197778

.1937P9

.191163

.190560

.193421

3.00

.236696

.235970

.234852

.233105

.330575

.227205

.223038

.21P2C»

.212923

.20745*"•20213P.197332.193456.190998.190650•194045

TEMPERATURE

4.00

.236633

.235fleO

.234769

.232889

.230275

.226823

.222582

.217696

.212380

.206914•201628.196896.193138.190854.190775.194770

°C

5.00

.236568

.235786

.234559

.232665

.229968

.226432

.222120

.217179

.211835

.206371

.201123

.196469

.192834

.190730

.190937

.195613

6.00

.236502

.235688

.234403

.232433

.229(^2• 2260..".221651.216*59.211288.205831.200624.196052.192545.190*30.191138.196603

7.00

.236434

.235585

.234240

.232192

.229327

.225628

.221176

.216134

.210141

.205293

.200132

.195645

.192271

.19CS52

.191382

.197773

8.00

.236364

.235476

.234069

.231944

.228994

.225215

.220695

.215606

.210194

.204758

.199646

.195250

.192014

.190500

.191673

.199175

9.00

..23629].235363.233891.231687.228653.224794.220208.215075.209646.204226.199168.194866.191775.190473.1920)6.200455

Page 137: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

0.00

TABLE A-17 SURFACE TENSION OF LIQUID H2S (N/m)

TEMPERATURE °C

1.00 1.50 2.00 2.50 3.OQ

?0.00?5.0030.0035.0040.00

.012P47

.011323

.010413

.009517

.00R636

•01P154.011231.010322•0094PP.0OP549

.ClEOfcl

.011)40

.01023?

.00S339•00P461

.C1196B

.01104S

.010142

.009251

.00*375

.011875

.010957

.010052

.009162•00P288

.011783

.010866

.009963

.009074

.008201

.011691

.010775

.009ft73

.00H966

.008)15

3.50 4.00 4.50

01159901068400916400*8980OCQ29

.011S06

.010594

.009695

.008811

.007943

.011415

.010503

.009606

.008733

.007857

oI

Page 138: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

TABLE A-18 MOLE FRACTION OF H2O VAPOUR IN H2S AND H2O

PRESSURE MPa

1.3P 1.40 1.45 1.50 1.55 i.eo 1.65 1.70 1.75 1.80

?0.25.30.35.«0.4S.

50.55.60.65.70.75.SO.85.•30.<55.

100.105.110.115.120.125.130.135.140.145.150.155.160.165.170.17-;.180.

-D,O0?P0f>

.003739

.004929

.00643?• 00P313•01P647• 013MP.0170??•0?l?67• 0263M.032467.039690.04H??*!.05P217.06985P.08334P,09P«9f,•ll*7?ft.137073

.I«ft31«

.?lci74?

.?4«733•?P5575.3?6=;5<J

.3719*?

.4??143

.47734S

.537BP9

.60407*,676?03.7=4560

-P,0O?71?

• ne-«6?i.004773•0062?7.O0"046.010303

• cno7«>,0164rf-.0205ft«•02c^Ol.03)39(1,(nP37fr•04661?.056?f?.067504.PP.0 = ?9. 09==39.II??1:!.13239?.154690.179919.?0P314.P401/.7.?7=69C

.359057

.407447

.46069*

.51O0Q6

.cfl?9->7

,*c;5Cn =.72O0P0

-R-R

• nn-3Si3.P046?H.006037.007799• 00<59fl4.(11?67?.015950•C19921,n?ii(S93

.C30391•C37150.ft4Cllf,.0S444S,06c319.077912.092A?4.10«061,l?P047.149fiC6•17T9P0.?0141P.?3?17P.P66S23

.•>91803

.445239

.=01649

.C6?311

.630502,7f|->493

-K-R

.00341?

.00449*4,OO5»60• 00756<;.0096PP.012293.015471.019310.023S41.02946?,O3600<;.0437?!.052760.0632R6.07547P.0P9526.105630.124003.J44P67.16P.45?.195001.224760.2579P;

.335P90

.38110.-'

.43005?

.4P5407

.=45041

.610011:• 6P.ce 04

-R-R

.002318

.004369

.005696

.00735S

.00^412

.011940

.016024

.0167=7

.022243

.02P597

.034945

.042425

.051157•0613S0.072208.0O6P22.102429.120232.140446.163296,1PCO13.217840.250022.2P^612.32C469.3692=3.417426.4702=2•5279T1.5S09C4.6=C243

-fi-E

.003230

.004252

.005543

.00715=

.009154

.011611

.014607

.018232•02258?•0277P7.033951.041212.049716.0SSS1P•071085.0P4295.059435.11670=.136312.15P474.1P3415.21136F.242=74.277276.315724.3=8171.404P70.456077.51204=.57302=•639?62

-R-R

.00314ft

.004143

.005399

.006969

.00*913

.011303•014216.017741•021977.027030.033020.040076.04833P.•05795«.069097• 0P.1927.096631.113401•13?439.153S55•17P168.205304.235=94.269275.306590.3477*4.393102.442791•49709P.556266.620533

-R-R

.(J03071

.004041

.005265

.006793•608687•011014•013P50•017281.021402.026319•032146•Q39009.047045.0^6400.067230•679704.693998.110299•1ZB803.149713.173242.199609.?29039•?61762.?58013.338029Oe2049.430314.AP3060.540526.A02941

-R-R

.002999

.003946

.005139

.006629

.0Ce475

.010742

.013506

.016848•020862. 025650.031325.038007.045829.054934.065475.077614.051522.107381.125382.145722.168608.154252.222873.254694.289943•328851.371650.418573.469851.525714.=£6387

-R-R

.002932

.003856

.005020

.006474

.008275

.010487

.013182

.016441

.020354

.025021

.030551

.037062

.044684

.053554

.063822

.075644

.089189

.104632

.122159

.141962

.164241

.169204

.217061

.240032

.282337

.320201

.361848

.407506

.457400

.511752

.570782

-R-R

• 002P.6P.003771.004908.006329.008087•010?4f•012876.016057.019875•02442P•0298?!.036172.043603.052252.062261.0737P5.0B69P7.102037.119117.138412.160119•184438.211575.241743.275157.312033.352594.397057.445643.498569.556047

Page 139: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

l.BO

TABLE A-18 MOLE FRACTION OF H2O VAPOUR IN H2S AND H2O

PRESSURE MPa

l.P= 1.95 -.00 2.05 2.15 2.20 2.25 2.30

20.?.=!.30.35.40.4*.

50.?«;.

f 6**«;.to.75.PÔ.es.9=:.

100.10e;.

iiô.11e;.120.1?S.130.135.140.145.

15*.160.1*5.170.175.1PÔ.

-P-p

.003771,no4<>o«

. 0 0 p 0 "

.mw>.01?P7fv

.016057

.Ol^P"? ',0?.44?P..0?9P?l.03M7?•04360T.05??5;»,o*??6i.073785.OR69R7•10?037.119)17

. 1 f i Î •=»

.1P443R,

.?ÎJ575,?41743.?751=.7,-»l?n3T,1Ç?S94.TQ70S7

,4qpSftC).^••^047

-B-P

.004PCT

.ro^ioi

.«07910

.oioni<5

.01 c^Qi,

.0144??,C?'»Sft7.o?<;i-»?

.n42=p3

."S10?)• 0f)7P7,P750?°.()P4<;(i^

.oqoçpc• 11*-?*!.13c0c;7

.17Q<3->2

•?3C7Q7

.?04->)(l

,4P*icn• C4?n 1

-R-C

,no?7^a

.«04704

.00774?• .nn<3P04,ri?ii(s• OICT;I.rlp<594• nj^'îs?.r?B4«o.pii, 34

#fl41ftl7,<<4<:P^7

#csq3<5i,'1703f'ft.rR?O36,flq7?f:3

.llT^lP• niPflo.1C?S3?.17=^6=;• ?-'!]476

.?3P16S,?M^37.•=qf t,q7

.'13 = '=l;4,''77fll7,4?-iQ94,474?q?.c?o<))l

-c-c

,CPT=4=.004ftlC.or";c;3<;,no7ǻ1.noq^oi

.n?csp,ni5n?7

•0?2P3c

,r?7pc?.033775•04r70i.n^P7ST.rsppftp.n^.p7Qr

• CSICf'P

. l ^ ^ 3 7

.l?P.Pf.7

.14903"

.i^ftpi1;

.??4P?C

.2S5P3Ç

.PQOOft)

.1?7f-Q4

.3^P.1;42

.414C07

.4^3091•S16391

-P-P

.0C364fl

.003477•0C4S21.C1=P?3.TC7433.OtÇ4flP,.011813.01471<5

.0223=9

.027277

.C330<:4

.C?";P33

.04770f.,C=fR13• C^72<;4.0792Ç5• r<;297?• lreAPfi.12600».14=711.U7779.1Ç23Ç6.2197ÇS.2=0049.283474.320229.3^5512.404S2?.4=2454, cf45C0

-C-c

.002601

.003414

.004437

.00"5713

.007?90

.009??f•OllSfll.014427.Ô17P40.021906.026720.032384.039007.046710• 0C.5620.065P7J.077611.0";098f•1Û6157•I23?e?•142=S3.164127•1PP)9?• 214<!34.244=4?•277?11.313131.3=2497• 39=.<?02.44233?.493192

-P-R

.002556

.003353

.004357

.00560*•007155•009052.011361.014149.0174«3.021476.026191.031737.03*223.045764.054486.064520•07600P•0P9096.103941.120702.139548.160651•1P4190.210345.239303.271249.306374.344P67.386915.432706,4P?42C

-R-R

•Ô02513.003296•Ô04281•005509•Ô07027•Ô0P887

.ÔU151

.013885

.017163•Ô21067•Ô25688•Ô31122.037475.044862•Ô53405.063232.074481•Ô?7296

~ .101829•Ï18237.Î36684.157339•Î80376.?05972•?34308.?65567.?99934.337594.37P736•4tJ526.472161

-R-R

•002472.003241.004209•005414.006904•00P731.010952.013634.016849.020677.025208.030535.036763.044003.052374.CC2004.073025•0P5579

".099815.115886•1339S3•154180•176738.201800•229543.260146.293789.330654.370920.414766.462367

-R-R-R

.003190

.004140

.005325

.0067PP

.008581

.010762

.013394

.016S4<3

.020306

.02475C

.029975

.036084

.043183

.051391

.060831

.071635

.083940

.097892

.113641

.131344

.151163

.173264

.197816

.224992

.2S496P

.287920

.324025

.3é3459

.406397

.453011

-P-R-P

.003141

.004075,005239.006677.008*39.0105P1

t013165,016?63.019951.024313,029441.035435,042400.05045?,059711,070307,082374,096054.111496.128851.148279.16994?,194007.220641.25001P.282309.3176P7,3563?6,398396.4440*5

Page 140: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

TABLE A-19 MOLE FRACTION OF H2S DISSOLVED IN H2O AND

PRESSURE MPa

1.30 1.35 1.40 1.45 1.5C 1.55 l.eo 1.65 1.70 1.75 1.S0

20.25.30.35.40.45.50.55.60.65.70.7=;.PO.85.90."9?.100.105.110.115.120.125.130.135.140.145.150.155.160.165.170.175.IPO.

-P.0218*6.019P01.01799P,.016440.1)1509*..013937.01293?,01?057.011289.010610.010005.0094*1.00P967.00P514.6flflO<34.007700.007328.006970.00*6?4.006285.005949.00561?.005271.004923.004565.004193.003R05.00739P.002970.002517.00203".001531

-P.02263?,020COP.01«650.01704?,<nc*=4.0144=*.on4i7.01?51->=011719•01101P.010393•009P31•0093?l,P0OP=4.flfl94?l.0OP017.007634•0072*P.00*914

.006"=*7•00«??4.00CP°2.005535.0051P?.004H?0.004444.0040=2.107641.CC>209,(!027 = 4.00227?.0017*?

-R-P

.021210

.01^299

.017641

.01*210

.014971

.017901

.0129*7

.(11214fl•P11424.010779.010200.009*74.009193

.00^749

.00*333

.007940

.007565

.007203,06*P49.00*500.00*151.00=799.00=441.00=074.004694.004?9fl.007PP4.003449•00?990•00?5Q5.r.01992

-K-R

•02190P•P19943.01P.23P.016763•0154R5•0143R3.013420.01257=• OUP?5.01116=.01056H.010027.00953?.00907=•0OP645• 00fl?4f..0O7P6?.00749?

.007130

.006774•00642P.006063.005700•00572».004544.004=44.004127•00368P.01322*.00273P.00222?

• P-P

.022601

.0^0585

.01P831

.617314

.016002

.014864

.012872

.013002

.012234

.0115=0

.010936

.010379

.005871

.60?4"62

.00P964

.OOc5=l

.OOP1=9•0077PO

" .00/412.007049•0C66P8.006326.00=9=8.0C55PJ.00=154•00475O.004369.003927.003462.002971.0024=2

-K-P

,023?P?.021222.019422,017fl63.016514.015343.014323.01342P.012637.01K>34.011102.010731.010205.069727.009275.008P5*,0Ce45=.00P06P.007*93.007324.006957.006585.006217.005036.005444.005037.004612.004161.00369P.003204.002682

-«-R

.023973

.021856

.020010

.618409

.017024

.015821

.01477?

.013652

.013040

.012317

.011669

.011082

.010546

.010053

.009593

.009161

.00"751

.00P356• 007<Jn.007598.007225.006852.006475.006690.005693•0052R3.004854.004406.003534.003437.002913

-R-R

.624651

.622486

.620594

.51H<3S3

.017531

.016296•615219.614275.Q13441.012699.012034.Q11432.010883.610378'.609907.009465•Q09046.008644.§0H2S4 "•007P72•007494• 6.07115•006733.666343.605943.005528.605097.604645.004176.603670.603143

-R-R

.025325

.023112

.021176

.C19495

.018037

.016770•C15666.014697.013841.013081.012399.CH782.011220.010702•C10221.009769.009341.008931.608534.008146.007762•007378.006991.006597•006192•005774.005339•004884.004406.003903.003373

-P-R

.025994

.023734

.021754

.020033

.018540

.017242

.016110

.015117

.014241

.013461

.012762

.012131

.011555

.011026

.010534

.010073

.009636

.009218•"" .068814

.008419•0C8029.007640.00724P.006850.006442.006020.005581.005123.004642.004136.003603

-P-R

.026657

.024352

.022330

.020570

.019042

.01T713

.016554

.015S17

.014639

.013841

.013125

.012479

.011890

.011349

.010847

.010376

.009931

.009505

.009094

.008692

.008297

.007903

.007506

.007103

.00669]

.006265

.005823

.005362

.004878

.004369

.003832

Page 141: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

TABLE A-19 MOLE FRACTION OF H2S DISSOLVED IN H2O AND H 2

PRESSURE MPa

1.9C 1.91; r.00 .OS 2.10 2.15 Z.20 2.25 2.30

20.2*.30.3*.40.«•;.50.55.60.6S.70.75.PO.p*.90.95.

100.105.110.115.120.I?*.130.135.140.145.150.15S.160.16S.

no. '175.IPO.

-P-R

• O ? * * ^.024IS?• o??no•02o?7o.01904?.017711.01*554.015537.014639•011P41• Ol.li?^.01?4 79.011 ««50.011349.010P47.01037ft.00993].009505.009094,00«69?.00P?97.00790.1,00750ft.007101.00**91•006?65•005P?l.00^.16?.004R7R.004369.003P3?

-P-P

•0?731*•C?4967.0??90?•0?1104.019541•O1°1P?.01^<;9f:.01c9cc,nic03»1

.014219• 01->4fiP.01?P?7.-M22?c

.011*7?

.0!H"

.010679•OlOPPS.P0979].06*373,nop9*c;.00°5ft4.nopl*?.0077f-».no73Sf.00*940.00*511.00*06*.noc*Ol.00^114.00460?.00406?

-p-p

.T2797C,f?=S77.023471.021*35,r?003P.01P649.017416.01*372•P1543?•H14C97.m«49.flni74.IM2SS9.<!1 1994

.011471•C109P1•01P?19.510077

.flO923B

.00PH31,nOP4?7.00P021.007609.0071R9.fO*756•fl0*30H,OOCP4O.00=349.004R34.004?9?

-G-K

.O2«*1P

.02613?

.n?4037

.02216?

.02053""

.019114

.017P7?•0167P7•015P27,Q14q74.014210.013520•012B9?.012316•0117P?•0112P?•010P1?.01036?.0099T!.009511.00909P,00fi6«P.00P27P.C07P62.00743?.007002.006550.0P607P,001?5R =.005067.004=??

-R-R

.029262

.026785

.0245S9

.0226P9

.021036

.019577

.C1P312

.01720?

.016221

.015350

.014570

.013R*6

.013225

.012637

.012053

.011584

.01110?

.01064P.

.010209

.00S7P3

.009365

.OOP950

.00P534

.00P115

.0076P7

.007247

.006791

.00*317

.ftO5S2l

.005300

.0047=2

-C-F

.029900

.027382

.02515?

.023212

.021516

.020039

.01P74P

.017*15,016ftl4.015725.01492?.Ol4?10.013557;01295F.012403.011PP5.01139P.010933.-010413?.01005=.009631.009211.O0P791.O0P.367.007936.007492.007033.00655*.006056.005532•0049PJ

-P-P

.030533

.027977

.025714

.02373?

.022004

.020498

.0191S2

.018026

.017006

.016099

.015287

.014554•013PP8

•••.013JW ".012713.0121P6.011690•01121P.010766.010327.009897.00947?•00904P.008620.0081P4.007737.007275.006794.006292.005765.005211

-R-R

.031160

.028566

.626266•024250.Q22490.020956.619614• 61P.436

•017396•616472.615644•614898•614219

" .§13597.013022.612486.011982.611503.511043.010598.010163.009733.009304.008872.608432.007982.007517.007033.(J06527.005997.005440

-n-R.0317B2.C29151.026815.024764.022974•021411.020045.018845•017785.016843.016000.015240.014549.013916.013331•012766.012273.011787

'"• .C1132O.010869.010429.009994.009560.009124.008681.008227.007758.007271.006763.006230.005670

-R-R-R

.029732

.027360

.025276

.023455

.021865

.020474

.019252

.018173

.017214

.016356

.015582

.014879

.014234

.013639

.013085

.012564

.012070

.61159?

.011140

.010694

.010254

.009816

.009376

.008929

.008471

.008000

.007510

.00699P

.00646?

.005899

-r-P-R

.030309

.027902

.025785

.023934

.022317

.020902

.01965e

.018560

.0175P4

.016711

.015923

.015207

.014552

.013947

.0133P4

.012855

.012354

.011874

.011411

.010959

.010514

.010072

.009627

.009177

.008716

.008241•00774P.007233.006695• 0061?<5

Page 142: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 135 —

»as o n - <Cr- awCD CG CO

CVKMT

f. co CDcocoeDooocrcrcr

I (vi o nCD CO CCD CD CD

a a n j- oji I >o >* <o

a> a- o»CO CD CD

Ocu «r a-CD 00 CD IT

inin

iceo«U CO 0"

E-i

w

1Mo

1

spa

O i n «O> a o o eCD OD IT IT 0*

!»• (VI IT **cncO> ( T O O <•"

» CD <-<in coF « •-< <VI (VI (VI

•1;<-l,«nj<V

r- —ntua- m o> «-• IM ••»

r - o o c o m D» njr> n<-«e in ffivi « ^ n <o O>IMO O O ^ njninjn

• 1^- O> (VI <n n PI » ^

0*

ci !>-••« in oO *«*»*«cr cr IT (T

r* r- ui *— u»* O ^ C BO^CB

^4 * * » * rvj(r c 0s o»

r> in in » (viM m co •-• *[> j (vi n p>0* cr o* c o>

ODO OD •-•eo""* .r» r> •»•»•<

^ GU CU * f IVJ

rvi (Vi n r> r>»• o- a- a> tr>

cc -« r> IT cor * * *

O C3 Oo* 0s a*

Aisoomso T og in r- >— -<MrVI

cr IT IT

o-I

a a in m ooi i n I* »«

o o •-<r-nr-oooccj-o-j

(T O> 0> O> O> <

a in c o oi (vG

IMUKMMJU?

On

oo

a "• m n •«

mm am •*

^H(vi(vi(vir>nrin

CD <t a (VI ITcy> « .» «n » * .»

(T CD Ul.ct.—

O> » 0> 0> th 0»

(T r- n CD r>on«o0- g.

iocr<-<(viD in co o» * •» If) IT

C* Cf 0*

« <J> - < 1*1 IT

*4nKiir

n o so so in~* •& *O QUO(Vi*TsO

r •J-m ui in mIT QN IT

nu>t-ITIMTU1

l

C* o-«•* <t in<r o> a~ o>

CO O* (T CD0D O (VI .»» i n in inc cr o> o-

»» N * mO(V| 4 <Cin in in in0» O 0> Cf

O IT O tflO Oi^^it^

o ri * r-<e oc

- - " OS

•» sr -»in i in in in « «a>o> IT <r o>

o> f» <o •»«- oo o (v <in in « « «o> o CM7

•» (V) OCD «

in « « « ivcrcrciao

vi •» * r-in m m incr c cr> a-

M11F1QUc « nm «in * * « «c

<-r- somn an v

n in in in m

* n oj o r-in r- IT

n in in in <o0s 0 s IT IT

IT f » ~SO CD O (VIin i n * *IT <r tr o-

in <o <o <oo» cr o>

0" cr tr CJS(VI «st SO # 3mintnm

P>P| (VI M•» so CO O (Vin in in <o

•-• IV •» O•o >c «c «

£ i tT IT IT IT IT

*> sOf>- c o> o> cr

~ f - n cc03 cr (vjsC >i> h- cr cf1 *r IT

r- * mI\J -T soSO so sOIT cr cr

SO so soIT cr o>

oo-h-c

• IT

r- •» —ys »4 rj* r» r-IT U> IT

CD mt t sO

r- r-

ir or- co

Page 143: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 3 6 -

o j

COiVi coir

•tin<o cc

I I I NOfO«rtin incc CD

* a <o -»coi i cs in «

•* in <ooo cc cc

CO L _ _p- o co •»

ocotQp-crco.f'p-p-.?I MOD *in in *CD CD CO

a a: <* cr oI i in -» co

in * *CD a CD

inc

I OD i n ~in * p-cu co a.

g

M

IOCM

5

a ox n in ni i

CCOD CO 0 0 CO OD OC

* P- p- co ooOD CO COCO 0 0

"-in r- a.<-<in cr r> r-

co mr- ojin cr•cr-p-oDcoccr-oooooooaooDoDoooocrcrcr

cr ** oj © P- ru *o co oo ao cp. p- oo oo croo aa oo aj

co m .» r> crr> cr c o> P II*, p. cu ai <rcc eo eo cc oo

r- oo a o> o>00 00 CO CO

© c - t / i c — O O P N * C O| | > ^ ^ QJ

p* oo cb cr crCU QJ OJ QJ CU

ITIf

•-< p- m p- oj p- «-ft) cu cr c*

co oc a

ct or < \ j o vo . _i icrinoinoino'P)

vcp-cococrcrcroa a oc.

a a >o n p-i i rv a. n

r- r- coa a a

a a o <c ocI I « - C

r- cc cca. a a

cjo

o i ro IT oo<>ririr

r- Co in r-«c n p. »- ifxo>voo

cc o> o>

r oODOD <x> cr cr

*a4rt »> « m mcr o* cr> O"

o o o —cr cr cr cr

in co »- •» r-^ « oj CM cucf* cf cr cr c

o> m in co -•^- c\i oj O

cc o> o> o oa; a a cr cr

4-" •D O Ul 00a c ooocc a. c cr cr

uio*

BBO »• — — IM

n cr -j co cro n r~ o n* 4 « oj ry

cr a c* cr cr

p- n p- c o- O O> Oj *

a cr cr cr cr

oif or oP- P- CO OU O»

n cr C) i> oucr «v - t cr (V

I-l -4 M (Vj0s cr- 0s c* ct-

r i co ~« 4*

co in

NNWI.or cr cr o- a- cr

n cr LO o "4"^ m m m I\ICKO1 Cf C Ocr cr cr "

» oj m " coM m r\i p-

j ry oj ncr c o> cr

«cc o n *

vi CIJ r> n ocr cr cr cr

a p- n cro> m IT p-ninnn

ec in ~ ic— •» P- O>n ri n ricr cr cr cr

o u o iro o -< —

X P - U> O J CTcc *-« •» «c(vnnn!C..(vinnn

0> C tf C 0>

tr>o>n in co o rv* » in m

* p- C" ri» » ui in- r » » » u inc a B> cr o a a

pio* cr cr cr-

* » in m mcp a» cr- cr cr

n — m cr oj

- cr OJ •» •n <[ <cr cr cr i

oj in co o^N n in cc* » » •»cr cr cr c

p- o n inrvi m P" cr•T •» -T •»cr cr cr cr

P) * P- Cf4 >c co o» » •* incr- cr cr- a*

iro ir oOJ P) PI «»

cr

PI P-

a cr

• in CD — •»

n P- cr o r-O> • " • !

j - j - in in in

u- cs •-> OJ ncc i-i ro in p->a* in in m in* o> cr cr o>

n * •» »OJ -T *o atin in in incr cr cr cr

in in in ino> cr cr cr

44Cin in ir ccr cr cr o>

o in o vmm «<u

u>- n ITin in incr cr cr

in in incr cr cr

nin p-in in in

cr c

* in

if..op- ct

Page 144: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

— 137-

cco

a a ci •» •-i i a

• I m -< i^« cvt iCD I

CD /i njco * o m oCO CD CC CD CD CO CD

« * a- «cI i 0 0 *

<c o — cr)|pp-e>co *

COODQOQDCOCDCOODQDCOQDODOD

oCM

S3

COCM

S3

OCM

O

E-"

WMCJM

WOCJ

CJ

I[14

Ed• J

or a cvi.i i •» — i

COCO in

inI I * ** CO

n .» *oo at a;

oca~corvjtMCM\jn #-<ll i o * n IT •» o m o.

^ ^ n n * o cOU CU OJ (OU QU QU CD CL> '

r> ~ n, p- «»

r)«ininODcccooDco

co co co oo oc

oo n»4p-p)aor>oocvip->»*» in i n * <oCO O GD IS ft) CD CD CO CD GD CO © CO

e c r peoeoecoca

- ai ic cvii m o

< O P - P - O D oo

o> a> coin — vmen

o> co c o oco co cr cr

M pp- r- co ai cr

- I CD .» CO<\/> : ". _" r(Mr e o oco co c ~

* u « c r o c u a aGOCCCOCCCOjCCCCaDCCCO

cococucoiouaucoccco

- » • » CO «-< •»o o o «-« «

ai in — co

•r in inco co

cb oocococcccjoQcoabcoco

Omina, co aH' a, a a ft

o•Tin * *a OL ct o

0: ^ D ^ cI in •" r- (\i

IT * >c r-x a a ou

oo

p-p-oDcocrcoooo<-ia a oc a a

cc p- 4- co o o cc^ ftio- « ifl o np. ccccco ca, cc cc cc a;

oiroir cir oir oi/ioif'Oir o

cr o e oa a u* cr cr

1 OC ftI N O ^

P M *IT a n p-cc OD o aCC CC CO CO 0 "

co co «cv i r -cu (Vi \o oao o>o>©oc oo co o - o

r* o en *o oo•M CM (M (M rvjo> cr cr cr cr

> n -t -f* au --* »» P-

» p- OfVI<t —I (\I(VJC C7» O* Cn

^" M OP-p- o PI in^ cvi CVJ evicr cr o- <r

(vi •-> cc ino m in cc(VI (VI (Vl (Vtco o> o* o"

<r p- c •* p-o ©••* •-« •-<o> o> o o o

OP>_ ft • • *

co co co cr cr

r - a c ODa (vim OD

e

*+ -4 (\i (VI

vi(vi(vicvim n n n

in co o r>(vi (vi n P Id* co cr co

c r- •» oo> fv> in cc*~ (VI CVl (Vi

« o <ccvi

MCVI r u n

cr •* co n p-*-« P I «c co

Oh CO CO CO CO

-rim•3- •»

ft CO O CVI •»PI •» •» *CO CO CO CO

n co n p-cc o pi in

vj cvi PI r -a co co co

cr r i p-o PT in ccpi pi p> P I

r « p- a.O (VI •» * CC-T -» -T >I »

co cr <x o>

in a -> -nincc

nri

orvi * <c p-co o cvi •* o

» > » • » • »o- cr cr eo co

•* m >c p- co oc

CO CO CO CO CO

tr>o m<o mi« in m i i «<

CVl p - • -r. T *n n (OCO CO CO

/ i p- onn<rcr co co

— in ooP-CO-H

o -»p-cr —• r>p> •» •»

m r»* •* >r

cr — PI•» p- v-I -I -»

>o co "

CO CO

CO CO Oson

in in

cr crCVl . *in incr o*

cc cc* <cIT IT.CO CO

IT'OP- OC

Page 145: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 138-

n(VI

(VI

o(VI

a a. ix u> -»• I I IT IT

«C P-

«r K e r- r>l I I o

p-p- r-

co « nc o —

p- p- ec cc

* • : r- co (M• i in in in, _

p- p- p-

— «* noo•? (VI Op-

3o

CM

COCM

O

Ix,o

Ix,Ix,txloCJ

Mo<up[X,

P3

a. a. — a- —I i ^eo

P- 0U Cr- p- p-

a a •» o a-p- eo cr- P- p-

p- u> a. mn •— crcoo

p. p. cc co

c <o c, <o •» «to* o ••» ivr** 00 S) Q

•T •» o- o cc

— « cr Ice ifi !•) <a, a* c H o P-I tvi (P-P>P-QDCUCOCD0U

Q. a „ „I I h 4 J f

S C O |— nj <\j m •»«u cu ct au cu

ur tr •» ivi uI i <vi " o

croot» cc a1

a a f" r> •»i i r \o .tr o «|

I*- cu a

4 inC *C (\J QU

CVJ CVJ f~l ^ ^

a a. a. a. a

uo

oir oir-cimcvrin*

r* r* r>-» — a

-< m mmCO 00 CD OC CD

- ri io

— W <t O •P) P> •• If! La a a a* a

IT o if, o if.» in in *1

o r- o o* op- n<VJ 1*1 1*5 ^CO CO CO CD

-r >oin CJ ifm »«p- n e o

•» -» in u-CD CD ai a' ~ p o

OD TO 00 00 0D GO

P) <TII1||1cc a' ec co

to in ~k > " » o <»* f P- P- OD 00

CD CC CO CD

n OD j - c in•» >r if> i *GL a' cu co ou

t\i a; r> ouin in -o aj cu cu ou

If T * * P-cc ec cc co

CC » > - • CO

m <& P- p*

p- (V «£)•»<iCP- p- OCaid

•» O* <*o>i n i r <c 10oo co coco

nop- I\I

l « <op>KC fO CD CO

5co r-|0D CO C CM0 00 CO CD

caj c cr o>ICC CO CO CC

J* wt © (vj r." •»• O> r i p -•CP- p- a a«c a/ ouaico

P- CO 0 D CCL' CU CU CL>

VI « . a , u< a ." O » CC (VJ>• a; oc a,1 o*~ CO CU CC CD

hNi/iCC CO C C

a' a a cc

P" P- st) (\J

CO C C Ca a a a

P- <C •» oc r ip . —ec c a oct or a. c

, , (VJIVJ •-»cc <VJ<C c

V^ CC CD CCD COCO CO

(p. COP- If)» CO (VI

to co co cto <r ce a>

(T COCO CO <7> CT

U1 O •» P-I p-1— -I p-

C O (au «r «r u*

» ifi a oo P) *c oc» o o *-•c a* c a*

^ o ru n(vi * c rvio © o —cr o* (r cr

(Vi Ul >C P-(/) CC «-< 7O O *•• FM(TCO-C"

p. c o op- O .» P-o ~ —• -*c o> o> o

ITiO UVOi(vi r> r> »

u» cr ("> ui P-,• IN O •» p- o|«* o oolao o> o> »

b- r) « tr CMto* o o o •-»Ice cr cr c

p- *llfl CO •-*

cic* c c

to (vi JT c pk-< If) CD •-• <tb00H«to* c o» o> 0s

kr P- o n '"N (VI (VJo> c a-

> (vi in cu

* c c

****** CVlCVJ (VI (VJ

C C COD *U CT (VIpx FH ** (VJO > l f O - t f

o a »•0s •-• <*

fV

o> c o-

•> <0 •»p- on•x (VI (VI0» C (T

(VJ (VI (VI

c cr o-

« CD) CU O

VI (VI P)• « r

|P- O(VJVI P) P)J. O> C

r> i— <r >o n c ina; « n* - t (VI (VJ n P)

c* cr IT

m PI o >u«v, cu PI

P- •» o(Vj If) CD(V (vi M nC 0s C O*

pi in co0*0*0*

I

op- OL

Page 146: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

o oo o

r\> Mo o1J1 LJ

IM ft)O OLfi LJ

ro ro r>o o cin (

IM M rvlo o oj l *• ro

iv ro f\o o cu i * • rv

* • o a>

M -si41 -g o>

f\J PO CV)o o o* *• u

*• * !\)LJ LJ X-

ro ro roo o ooh in LJ

l/l inm o

JD O J3 -OJ3 -si Ul ro

J3 -J LJ -JJl *• LJ —

O NO .0 tO- j in ru

o ^ oa> ui LJ

LJ ru ns rv* *•

Ul f O Ul -si-j LJ to ro *•

O OD ON CJ —

<0 tO >0 <B•n ih * • « -

0 «•a - j * »-

30 -J. -gLJ -O in

-J *» Ao> o

•- TO ro t>O M* -J X

X X 00 -J ->-si * • O ,T>

UUIU -4 U

n> on no M -,

3D 00 00 -si •%0 5 * • > - •«•

CD a> <» - J •>in >- m *•

JIUIHIMCD

(BOD - J ^ J

in M « »

00 05 ^1 -Jin mm *•oo «• -«i o>»* ro OD <o

LO o ui o in

OOOOOQOOO

o> a* ui in-«i ro -J ro

*• LJ "0 roM in o ul

ro a» -g in I-I

o> > in in *•J LJ TO LJ -J

oo » ro o ro

-» in ^i » uru in * - r\> •*!

3> ui in **•• O ** 3D

oi o> in "M O l

o ro •* oo£ i\) ro •->

*. LJ Ljro«-

(T* no -«jO> ro * •

* LJ LJ ro •-LJ ID •— i n •£

aooahOhoo-siLjos

* u l %o ao i

ox o*1 i nmo LP, ir *• CJ uroivD U O O

£• » t> *•K OD >O *•

ON » in in *>

o> o> in ui»ro -j

CUUN£• 0D f\> QN ^

LJ in in LJ \D-J sO >0» *

«• -J oo oru,0 ^ » n» «•

. « uoON o & oo »i/i uih- inao

_.*•* • urororo o> o uiao ro

** ( j nj TO (J

o » J I in ,.in o in o ut

o o o o o

OOiOOB 9O U T- J) M

t> —> t\) ro • --J *> " • O -s)

o ul > 3 ro

OD >0 X

• o vo <o oo1 ** *i O U' ui r> ON in in in

"^ 'H no M ™j

* o o "• rs

U LJ r\> PO

o o oo o

ao <o oso j > • -

0 * J) O U O)CD LH O - J f LJ

in o> •«»»LJ -J <O M

M4300-sl-slOhJIUI •

N- *• ao i— ui• • • • o

a» ON - j o *•UIO -si

>oin oh i

O O \0-JO U

03 -g •«) o> in uiON J3 ro in 00 ro

O O <OI00 ** & •

OO JJ<oro in OD» * Ul Jl>a in * o

•-J -*J Oh Ul UlJ ^ J

UUM>Ul Ul *• •»! •»

>u-i>-*»«irjf o>

ao -JON ON ino LJ ah o u>

— « - LJ •>) LJ

1 0» 5» J l * •in oo ro <n CD

in 30 LJ 9 LJ

Ul LH •OUff O Ul

^oosCODao^Ohiniti •

ah ui —f o

_ - j ON ON u i— t- -g o *• Ul

o

gMPO

-6ei -

Page 147: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 140-

oCC

i r- e •n (vi -o» cr

a a * r- ITi i o* o nin

cr a c

aM

toCM

ei-

NO

tt C O> 1/1 I"-

* n»Ma \j IVIIVKKIc o> o> o> o> a* <r

a at •? (vi NO m o n o

cr a> a>

cr a cr o inI I n * - .

* n ncr cr a

tilt <7lbVi i in r- r>

(MTC

n rjiuui •"** o o o *-«nonrri

( M T CT CT

a a •-.i i f«

ITu MJ j - -jt tr ~ r-

•» * ria - o > c r

<x o r « ( V nI i ono

in .» n(Mfff

it n r* oI n .-« in •-•

i * <•> <c c>

uo iroir oMV n n

i oo o oW tVI P-4 (M R

o> car

nwonaocrivjkooj. . _ finNCeoo""

N (VI (VI (VI (V r - - - -

O D O[M (vim CM (vi

cr- cr CTN cr

M n •-< •» *«co joc cr

XI 1\1 C- IM (VIo- o- c tr

ivi CM IVI rr>r> n no» I T vr

ui •» I* r•i •» •» innnnn

<om<s IT.NO *O <J f*n m n nif aif <r

r- >c cr *a oo a- cr

n

* ~ " ( V i N ^ m ^ c r o ( V i(V ivi i v i iv (vj ~ —

a, I T ivi NC (Vn >T NU r» ONIVI (VI (VI (V (VI

• *> r» o> o (viIT r- >c r- ai

oo «c m mIVI Sf >£>« O— nn a(vi(vi(viivin * > n n n ^cr cr cr cr ONCr

<j o «\j * ™i o< o — n

oo >c * •»•

o ** (vi n uii n n n n> cr c o

vi n •» in i>-

> n r n n

••< rw •» r-l

VI (Vt < I*" IVIr- (c 01 i -

coin ttOCU O (VI

n •»• -i -r(T o> ON cr

U) n tvi cO(VI NO

n •» •» NJ »cr cr cr

IV r» -» yv 0Ua: o (vi >t NO•» ui in in u

trcr cr cr

(VI J - NtlOU

.*• io a.- cr- * NT ^ >

Cr cr cr cr

n in ec (vi r- r;cr o »-• nn N» •» N»cr cr cr cr

4 « 4 « mcr cr cr cr cr

<T NC Ob (VJ^^ ( v i n t o

» » J 4

nocur-NO CC O *— n» •* in to ui

cr cr cr cr cr

n .»•» • *

cr cr

r n h t oco o oj n I T•* I T in in tr.cr cr cr cr cr

ir>ou* o ITcr OOII-KX

~ ri ui wtf ~ nmn ^ » »n ^ »Cr CT CT

mCT CT1

cr •-• n NCo n m r»

cr cr cr cr

in £> oo •—co o (vi m*r ui in icr cr cr cr

-» cr en n •*** cr IVI m w

i D VC71

CT* cr cr cr

•-" (VI •» NCI V NT \ U auin in in m

r cr cr u1 cr

o- o •- r ir* n NO co om in iri uiJN cr cr cr cr

r- oc cr >-•> in r- cr rvi

in in incr cr cr cr

* <u r- crp- cr *« nui in >o Ocr cr cr cr

( P I I HIT <C NC sCcr cr cr cr

» O M |o n in tt-

n i*. « (viIVI » r- oin in in NOcr cr cr cr

4<9|T«.n m in « N

n IDr-r» i-

cr cr cr cr

vi in r- o n* * r- r»cr cr cr cr

NO cr (vi m<c NC P- r-cr cr cr cr

- a i m.« c >o

n oc NJ;o (v in aor- t- r-cr cr cr cr

o IT o ITm in \t)

nIT tr nCNCt-0- cr cr

au NO•o o

•*(VJ *CO (VI NC

or- r-

r- t"- »

o co a'cr cr

•- o(VI •£>cc cccr cr

n r-a- a'

4 (Vin crat cccr cr

in or» a.

Page 148: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 141-

OJ

CVI

CVI

ofVJ

a tt f-

t c i t ni i i »

cr er erlcr cr cr cr cr

aHS3O"

COCM

X

oCM

X

a. a o-» »t i or

cvi— »«cr o» o*

I

££

CM

6JJ

cr. a n —• —I i c cr r>

ojCr O> O>

CO10

DMcr cr cr

( I H4Sm ojcr cr o>

a a o%o ni i miro

D CVJ OJ

cr cr c

ITCO

a a i i jI I * r - cvi

n oj rvt<r v <r

O of>- <r •n (vi

c

Ooir o ire(vi tvinn *

— o o —oo o

cr cr cr cr

r> a. r> *(VI (VI CVIooo

n r- CM j - oiiMSOoo excr cr cr cr

in o ci oa; aj cu coo o o oo> <r cr V

na> wooCVI ^ CVJ 1V(

ri v cvi a,>» n •» •»•

tvi a> cvi as* in t

CVJ CJ1 O J CCoo r- oo OD

(Vj C1 f\J Co a ooM — cv cvc tr » CT1

O VI O 1/1u>in « *

(i * co o o oO* Cf C^ 0 s

e cv> « c v* •«; cu

n w r» o (v

HHH (M(\l

cc o •«- cr \O

C O> 0 s C^

c ivi r- <<c eo o> i—

CP (vi r- mo cvj n I TCVI (VI (V) (VI

CffUff

0* (VI t© (VIcvi .* ui r»(VI (Vj (Vj (VIer tr o- c

o o (vi u< crO (Vj J f HCfO-CA CMT

nr-nr U' W -Tui r~ o

rvi«vj c u nCf » sr

(V) M0 O * 00

r- cr ** m «o co^H «-4 OJ cvj rvj

(VI (V (VI CVI(T tj* 0s

oj r>^^ ri uiM (VI (VJ OJ OJ

(J> IT

( Ui/i r>- o1 -«(vi cvi OJ r>(T (T 0" (7>

a. cvj r-n ^ oc

rvi (vi rvi rvi0" 0s O* O

oj *

« J^OJ-

o o •— n in (CO4r-o>r<r)ini>orviOJ oj n r> ei n •» •» o-o-crcrcrcro-o-cr

Ia <r a «a o oj incr 01 cr a>

r> in a; — •»r» cr " -7 <cnn *a- cr cr cr

cc co oc cro (vi •$ <c _n n 1*1 (*i fo cr cr cr cr cr ~

«-«r) in cc rv,~ cnir oo

o- cr- o- cr

oif.oiro

m CI aO( M M M M

n e w * <0< •> (T (T 0>

i» o> tvi in con P * *

l» OJO* 00 Oo r x o

o> >o mcviin co •><

.» sT <r -r ino> cr a> cr o>

•» •» m in<r w cr tr

r- o cr oo on t i aj <-< ui# •* •» in in

to m oj ncr oj in co•r in in incr a cr a-

a cr *rw r-

, in incr cr cr

•# in OJ* cr

in in in

r> n cri cr n> in »u

cr cr cr

4) •Vcr cr

in o>c r»cr a-

nooca n •» r-»-* »* >o o m r* »-«m in in to >o « r*cr cr cr cr cr cr cr

o t~ in <cm in oo w*in in in *cr cr cr cr

o IT o i r < _m in * i! r- f» cc

inc n« < c rcr cr

Page 149: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 4 2 -

occ

a ct o r*j r-• • •»

cr P- •• (Moo eo

0 s CT CT 0 * CT CT CT

a a — mt i •»

o-otonct _ . . _ . _ . .. _*«in(*>crrip-oocroD«n o> .» p- o ~

cr p- •» (M crtrcrcraDcooooDp>

S

00

o

OCO

CO

<

OL cc OJ in >-«M p- p» (vi <•

Ito

iAH

ui n •«

cr O1 cr

CO

z

a

cr I T trcr cr 0>

0: Qc .» co IT

U) f l «•"•

cr cr cr

u u ui trI I •» >o r*

._ D c m O P » . .eop-p-p-p->o>o»oifi

B> !«• * (M O>• oa au OD

trtrtroucucooup>cr cr

1*1 00 O> •» *n) <*i o> •* r-

<r rvj cr d n o P-

0> (^ * M O>CD t ^

IMMflMJQ* cr OD oo CD <

i« 4J (t•o •» o •»o> r- in c\j trou QJ a; oj r»-HMJf

in m »-i(KPO1

ctitinocci'i i *• P- i

0- tr o-<r cr cr

r* O (M CO CT U p-p- co p- o ir a

r- u' icr crir v

a (vi r- n ~

r-o- <cr

o

r tr cr cr cr

a. -» ui — r

o i>- ir c\jx cc *» ccr (r (r tr

O N IT I\J O-oo co cc r-(MT IT C"

» o — o•- in ** ir> a

a N ir (\. cau ou a co r-cr a- » a a

IT O IT e IT.* in in «c >t

i t * n o1 rtr-oCO O*

>o m o r - .»0> 0> 0> V C 0> C

OP-• p- p- vo -o

» « ui in ui •»»»%r w cr T

CVI CO O »* Ooo in ~»t^ (\-I oo o

. r

o r •»- MJ \o

j . cr> o> cr cr

•# t~ oo P-o cr r- r

J> tr cr cr cr

P- IT O ITo o> a •»

o p- n oin incr cr

n«un m ui

CM ao cr u

in ui ui ra a a cr[\J CD *»» r> n (vi excr cr a o-

j cr •*M WO CD - I

p- n o o« in in in cr cr cr cr cr

tr ui ^ oo ^i

p- n o <uui ui u i 70i cr cr cr*

•-I p~ n eoui a. rt IM

c .i oc ~ n

<r o p -p- P- * >ccrcrtrircrcro-cro1

cr (vi cu «OOIDIT

cr ui *»r- cvjou 1 cr -* n

»• r- •»p- •£ <cc cr cr

""r- n o *•c in ITi IT <tu c c c ff

p »p- P- \C >0cr cr cr cr

* — P- »P- P- * *cr cr cr a

Ma n v nM ui cr i-4 r i

— p- n o **£• Ul Ul Ul •»cr cr cr cr ir

riscp-icrnoui«-i

— r- n o >cvc u- u- ui •»a cr cr tr cr

ucr o o.i-« ^^

(VI P- CVi P-( '— O P-

(Vi OD * cr* o n <Mcr cr cr cr

M co * cr» n n (vi- - cr cr

n o in oM <«o co

-> in cr ruo * p- o-<*<-< P- cvM *•« « Oo- cc cr cr

O40EOX

<c .» cr \r* n n <VHcr cr c cr cr

** <c ~ r-rvj~ - . ocr cr cr cr

-a* flu * •«• *

M oc « cr uior cr cr cr

P- M P- —(\J *^ CU

M cu •$• v u

3* cr cr o* cr

CC .» C Uln n iv, IMcr cr cr cr

> Ul o >»n —c cr Ui

n ci (vi IMcr o- cr IT

n p- -> «n »• cr ir

a 4 cr U<*1 1*1 (VI <\J

cr cr tr ir

cr <*> r»« cr ir

a * cr ITn n OJ (v.cr ct cr ff

p- m ui cr <\> f* aun > « P C * c

O <Ot-p-^« «M Ocr cr cr

o * CD —o * p-ol-< * • " p-(VI •« -> O

n cr n ui p-

f tr cr cr cr

~ «» *i a

>O • • P> IM~ — o otr tr w cr

IM ui p> crui a o pi

—I r* O Ocr o- cr ,-r

* ** P- «M— — O Oo> cr cr tr

• P- e* _• co O < M

O O

einoirIT Ul <C <C

P- (M <Dcr cr ooocoo co

(ML"-» Op-P- CM >Ccr cr ODOD COCO

P- (M •&cr t r ou•U «l *

•9 noMOOP> (M <O

cr cuoc cc a

P- (M -0crj.eecc ou cc

p- IM <ou> t r au

cc OD

(M <Ccr ccou a

p- no a'

cr oca a

r- nocccv, icr aa CL

cr aca a

Page 150: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 143 -

o

(VI

3coCO

tvi

IM

ina-

oCO

i i i m i

993

a a* <r i• t i in in

993

991

• : acp-incoi i in in in

CPCPtr

i inini/<

inn —

CP 0- CP

Ct Dt P- P- OI i nuio

IX (H CU P" *•*

cr tr cr

a oc oo CD cvi1 i nui*

u> rt ••«tr tr tr

a tr cr cr nI i n ID s£>

cr cr cr

1 | D iO i£l

CP CP CPcr cr cr

1 1 * \C * .

m r- »•«

cr CP CP

a a o(V r-

CP cr o

o IT o in o(vi (vi r> D •»

(Vi * (V p-

0> p- * (VIco oo co coo»c CPCP

* * * 0U CP» »1p» •« -f

0> p- •» (VJ CP00 CU 00 00 P-9> CP CPCP CP

inco«o »H

mn« C P oo (vi r>•» »«r» (vi in

CP P- * (V CP

o> cr CP cr CP

cc o m* cu co cvi in

CP P- * (VI CPco co oo eo p-CP CP CP CP CP

ip ri —i \u p-* (vj com m

CP 1 - «» (VI CP

CP CP CP CP CP

— •» nco CPin r\i cu cvi U)

P P- -T (VI CP

T CP CP CP CP

0 (VI CO (*) *

987

984

982

979.

» CDP- (Vi nn ^ j J f^ 0

ir r- .» (vi CPX CO 0C CO P-T cr cr cr c

n cp CP mn (Vj cc n *

7 P- •» (VI CPD cc cc ec p-T cr CP a CP

** ** ** * CD

C CO CC 00 p -* cr CP CP cr

r oiro ir• m m « <o

*?•<.<OP1 OP-p- p- p- «<

p- (vi in in in

tnopP- P- P- f> •CJ. CP CPCPCP

CP «p.cor-

* (n o p» -

— * C P OCP*• P- «innon op- *

CP c CP a a

n oo •-« cvi *• P- r- m (vi

* n o p- -*P- ^ p- «C <O

iorw Jr- co p-in (vi- e n op- <r

CP CP CP CP

ni m «mcu p- ui ;vi

n op- ^

j> CP CP CP CP

-» p- au r-cc p» m (vi

m op- j -p- p- * *CP CP CP CP

p- O- O OCC P- * dn o p- rP- P- * >0cr a cr cr

CP (VI (VI (VJCC CC * D

riop ijP- P- >C <Ocr CP CP CP

m o p- -jp- p- <o *a CP CP CP

iroir oP- CC CO CP

p- <->m ec

o p - n CP in* m m •» •

D O P- DO^ (vim co oO P - n CP >

cr CPCP CP <

- ivjin cc o

•t> ui in •» >U* tP CP CP CP

•• * -« p- nV ( V I * CO Oop-ncp*

CPO-CPCPff

CP p-n CP in>- (VJ>O COOO P - D CP ** m m •« »CP cr CP cr CP

HtriiiHp

oprnpc

CPCPCPCP

r i * CP o

p- r i CP *i ui in -T -4*

OtPUl"n * CP —p» n CP *mm •* •*CP CP CP CP

in r~ r^ i*)n r- CP *-*p- n CP *m m •» •»cr cr cr cr

p- n cr mDP- CP «prune

> m m •» •*

CPIP «-•£r>p- o -<

p- a o >ci m m m •»

oir om' O O **.«

* CP m i "O CP CC *(Vip- n c P* n PKVJCP CP CP CP

m • " P- P>CUo o co * (v i

(vi co r> CP in* n n (vi (vi3 . CP CP CP CP

p- in » * 0eoa«ncu co m CP in* tn ricvi «v)CP IP IT (P tP

CP in 0 tom0 0 CP * P I

ivi co r> CP in

CP CP cr CP CP

» * (vj co n-* O CP * I"[vi co n cp m^ n r> ivi (vjcr cp CP CP CP

r» co • * CP u>-" O C- sC f livi co n CP m

p CP CP CP CP

<r 0 in -» *^ M ir N f i

cu r i cp u>ri ri m nCP CP CP cp

IVI p- (VI CU« <?• P- n

cc n CP m**> n (vi (viCP CP CP CP

n CP « CPin c* Mn

n n (vj (ucr cr cr cr

in 0 <c «•» 0 p- •«-

n rioj IVICP cr cp cp

r- (V P- iv»« 0 p- *

938.

934.

929.

925.

ir oir 0

n a. n r-CC (VI * CC

0 * »•* *

CP C CP CP

» CP •» COCD (VJ * CD O

(VJ f - " > OO» CPCP CPCP

c p-xooO'

0 * ^* * 1nixxei

P- (V lP -< - *

O * M * CVJ

CP CP CP CP 1

cc n co (vi mw n * CP 0

O *->*(VIfliH^oeCP CP CP CP CP

0 u> CP r i sciCP PI * CP O

CP CP CPCP CP

" * 0 » p-CP ri p- CP 0

u « ^ 0CP CP CP CP CP

p rip- CP 0

916.

911.

906.

902.

CP n * crn p- CP 0

c c cr cr

0.» p- 0^ l>- CP r»

•-. ** O OCP CP CP CP

' » P- CP ~

* ^- *C (U- . — 0 0cr CP cr CP

0 m 0 irm m <c *

n ri cvjocr p-p- ~ *CP C P C 000 CO CO

» >T n0 CPP-

> • • - < *CPCP COCO CO OD

m m 1*1O CPP-

p-« *CP CPCU•1 mm

no •*OCPP-» " *

cc oc a

* * mOCPP-

CP CP a>OC CD CO

p- r- uiO CP P-«. r* *LP CP CUX) CO CO

CO CO *OCP r-

CP CUCU CO CC

CPP-

p CP a;a< a

OP-0 p-(VI >CCP COa a

O CO0 p-(VJ <(.CP 0 0a1 a.'

0 p-

(V •Ccr cca a

m 0P- CO

Page 151: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 144 -

§

oCO

§ow

Q

fc,

o

o

o

a

a

COCO

§Cu Ul

IT

IT.

a a ui — aI I •» •» r

CD COCO

«t a <r op-i i « « n

CC CO CC

0: cc P> o *©I I •» P I P I

CD CD CD

OEIMStfli i « n n

CD 00 00

a a •" r- -»I i » pi PI

CD CC 00

au CD co

a ox ao in CMl l P) P> r»

OU OU CU

a ar •»«i i onn

CD ac oo

i I pi PI PiCL a CD

a o; IT CMC1 PIPI PI CM

a r~ j ~ or1 P ) P ) PI CM

CD 0C CC CC

o u\e> if oCM CVl PI P I .»

ui r>—i <rr. PI p; IMco oo oo co

4* CVIO CC <t• ) P I P ) CM CVl

OC CC OD CC

r > P ) CM «vi cw

co co GO oo ac

noa)«m1*1 P ) CM CVl (M

OD CO 00 CD CO

N O> N <C ^1 CVJ CM CM CM

00 0C CO 00 0D

c cc a . cc co

O CO <C • * PI1 CM IVI 1M (Vi

ou cu au cu au

1^ Ul -41 (MM (M CM (M CM

OD CO CO CC

<t> • * P> <iCM (M CM (M

cc cc OD a

U1 . » CM >-«CV, CM CM CM

CM CM CM (M

a.- cc cc ao

• em o vUl Ul -C O

Ul <3* PI CVJ fCM CVl CM CM C

cc cc CD co a

n * c v ~ *•M C M ( V I M CVl

OO CC CD CD CC

* P ) C M - < OMCM (MCM (VI

00 OD CO OD CD

^ (VI ** O I T

GO 00 CD CD OD

n (VI « o c

COCO CC OD CC

DD CO CD CO OD

njo o » co

cu au ou cc- au

«O(TCU h

1 CO CD CO 00

OCT* C 5 N r-

cc a> cu a

o cr oo r J

CO f <C «£

cc co ac co

If O IT'O

O9ir ib

CO CD CD CO

o c» a a.' r-

co cc co oo a

O 00CD f^ \C

CD 0D CD Ol CD

o> oo r- r> <o

CD CD CD 00 CD

UNMCUl

CC CO CD CD CC

CO CO CD CD CO

r- o «o \fl v

ou cu ou ou cu

r- it ui ui •«•

co co oc ac oc

o in in j -

a a. cc a a

«D Ul >» -O1 PI

f •» * PI PI

x a cc oc oc

r om o IT

p- a. ui ui

OD CD CD CC

«<t m *

cc cc «c co

* in •» * P I

oo co as oc GO

tn in * P» P )

oo ao ai eo CD

n •» •» P I cvi

oc ao cc oc eo

DD oc ou cc a

J- PI PI CM (M

v ou cu ay ay

PI (VI IM !••

) CO 00 OD OC

p) r y « " <-

a' a a a'

(M CM »•* O

a. a a. a.

CM — m o

oc cc cu oc

IT oir. o(M PIPI *

PI PI (M ~

CC CC CO CC

P) (V IM •-•

00 CD CO CO 0

P1(M<-«»«O

CO CD CD CD

NMXOC

00 00 CD CO OD

njrtooir

cc cc ac co oo

CC CC 00 CD CU

M O O C CC

ay cu au ou au

^ o c V a'

OL 00 00 00 CO

O O O1 CD CD

a oo OL a.

c a> cc c-oo oo

<r oc• r- foo o oa CD a ac

ouicirin ui >o *

cca>-< o o

ac ac cc

0* cr cc

oo oo on

O> OD oooo oCO CD CD

U* oa t -oooOD CD CO

OD oc r-

ac oo cc

ao co cu

00 l>- <C

DU au a i

1^ HJ O-1

o o oi 00 00

« mo occ a

*> ino o

a a

in ino oCO CL-

IP O»- OC

Page 152: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

— 145 —

cm I

o

oCO

g<y<

CM

c

03

3CO

oHBCO

V]CO

gPL,

mo

i n

o

inCO

ooc

i i i in •»CO CO

c a a © ii

•00 «D

« «t mo-in1 1 Kl<4

00 CO CO

or or CM GO •»• i in •» •»

CO CO CO

a a -< r- nI i in •* *r

CO 00 00

CO QD 0D

a or o i n CM

flu ou ou

Lt IX 8/ •? ^1 • « <* «

OD or or

at a r- n oi i •» •» *

CO Cb CO

I I •» •» n

a a a

DC OC I T " C Oi i •» * n

cc a- oc

o in o m<o[\j I\J ci i*) ^

n o t » «

0C 00 00 0D 00

CC 00 CO 00 CD

M O - «C •»• OJ* r> r>ri r>CO 00 CO CO 00

.» r> n r> rCO CO CD CO 0 0

o h IT n •**

CC CO OC CO CC

CO 00 00 CC CO

O* »© «T ~* Oi r> r» n r»

cu cu cu OL au

i n r j — «T>

00 CC OC CO CC

cc co a ou ou

"> f i n cv (\J

a a a a'

I O D (VI 0Jx cc oc cc oc

m>© m<o in>» m in >c <c

n Dftjcv t\jCO CD CO CO CO

r> D (\l IVI (\J

0C 00 CC 00 00

rXMAIIMIV

00 CD 0D 00 CD

o co r- « inrXMCMCVICM

00 0D CO OD 00

OD 00 OD 00 00

CO 00 CO CU CO

co r- i n •* <•>nj f\j f\j t\j t\4

ou ou ou a i au

P- * U> >» D(\J (VI (VI CM <\l

co co or CD cc

^ in fi (vitVI CM (VI CVI (VI

a cc ccco tt

M(M (VI CVI (V

cc a a a a

M CM CM IMCM

OO W CC X CC

o mom eP- P- CO OD O>

Ul * <*J Cltocvi<v (v. n. ivCO CC CO CC CD

CO CC 0 0 00 OC

OD CO CO CD OD

•» n CM ** oCVJ CM CM (M (VI

00 00 00 CO CO

CO CD CO CC 0

XJ CD 00 CC CD

. . . . .

au au au au cu

iv ^* o tr v

ao co co co OD

cc a cc cc w

cc cc a a a

o a o- oc p-

oc a co oc oc

IT © iriiomITOOMH

CO CC OC CC CD

•-• O (T CC CO

CC 00 OC CO CD

O CT 0- CO P-

CO CO CO CC CO

ocMseop-

CO CO 00 OD CO

OL cc oo co ec

00 CO 00 00 CO

CC 00 p- >O <C

au au ou au au

Ct P" P» \V U l

CO CO 00 CO 00

cc P- \o <D in

cu a a a cc

p~ ^ <o i n • *

a a a a a

p- <c in i n ^

oo ec ac oc oc

©in oir.oIM (vi n n <T

00 OD OC OC CO

^ * 1/ U) •»

CO CC CC CO CO

«. o i r • * •»

00 CO 00 OD CO

c in in •» »*i

DO «o co co a

CO CC 00 00 0

n*co" co* a* oo

p ^ ^ d CVFH ^ * ^ « 1-4 ^ 4

JJ au a i cu cu

I) <T n IM IM

-. CO CO OP CO

oj a a- oc oo

l a a c c

•> r. cv,»- —

ao oc « a

in IT <o *

« n CMi" f" •«

00 00 OC

r> DCM

00 CO CO

fO CM —

CO CO 00

n CM —

00 CO CD

CO CO CO

X> CO OC

— - o

ou au cu

-» © cr

DO CC CO

-«© o

CC CU CU

oca— o oa a

o c a

r cc a

DITOP- OC

Page 153: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 4 6 -

B Pll\l OlOL Ulr- ^{\JI C O O I M M M C C*4*nnnnnoeionnnmm

m c n> HI r- i© O CN &• CT QD CD

a a rxvi©p» * — <o —•© o> o> o* a> eg

nnnnn•T n n n r> r>

13IS

IT

L/ cu cr o-p* »© 4P •» (

n r> tnnnnnnnnnnpinnnnn

* r- oo f»r -c \n •*

•» O IP O>&• O* QD p-

IP IP ^ ©»• <O IP •* c

w u1

nnrn

u u. (*i ^ crI I OOC-

n n n nnnnn

ct a n * u»I i o e o>

m »' n<r oc «o ^>

a a <\j»eoinfvicc<vcI i o o cr la a- a: a r--* rijri n m n rinmnnmom

r>|r r r- r r-> r>jn n n r> r>

oIPOIPOIT oiroipivnn^^tpipvc

p- C iO II) fr (V-

nnnnn r i «n IVJIVIIV

onr)p-«o(vj © oc >o n

nnnnnnniunnv

o © p- p-i ©co ip m

-too or- o« r>co •»

r- r- rio- (- l/i (

xvy (vi rumpinnn n n n n n

^ r» cr auOD IP »"«•-•

r> ri r> ri n »•) n

-CVI (VI© M3*U III -4"

r* -< « O O

innn n

(T CO iC Xip -» r> CM

n n on <\io ao »o n o

at (C r i cuir. <» n <-

<C * >x IP\r\ •* ri —

U" © IT'©!P- CO CC Cfl

'1 t\t i\t (\J IV

i CMC M l 'MdMC

f\J OJ OJ ^>ri n n r

C\J PH #<« ««l <

ot» notr0» oj o *^ oo •* <o p»r>

o> o> eo oo r-ir)Dr)M(vi(vi(vi(v

CD o ui ip r- ruoc

p ~ CM a o

cr o> co p- <o _IMtMCMCMCJCMCMtVI

vi >c • * oo p»«OII)O

-< M ix o O

p- u> r-r i c •»—i o o CT-BBIIIM

CMP iT(vj oc r> cc

cr n c\j uip- p- rvj >o

o <c e •»

occasn (u (u ru (v

O C CC 00 P"n rv I\J rvj (vi

•» » <oIP \0 <C

0> c fru (\J ni ni f\f

o> ao r-M (vi (vi rvi (vi

c I/) m OD n

vi ivi IVI rvi m

vj ru (\i (vi (vi

pi >o n n n ip ccp" IP P- O> O C - "

M (Vj (VJ (VI (VI

(VI ^ CO I P

n IP <c p-

cc p- <c IP(VI (V) (V! (Vj

o IP © ITIPI/> O <C

CVJP- •»O p-

* «tl <—" 0D O>

>c IP -»(VI CVl (VI

p ^ r>[VI (Vt (VJ

(VI vC(VIC

n p-(Vj (VI

Page 154: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 4 7 -

noj

ITnj

©fti

a a a n cvi • i <

, t *t p> pi PI PIPI p> P> PI PI PI m

at a a P>*>i i i ~o o o> c a a>

p> n

tern * p>.-«i i ooo

C M * oIKTfflTCC

CO

aM

sCO

a

|H<cCO

to

°HSO

a)

COCO

u>•

O

ino•

a a -» n«I I O O O

n PI rt PI PI

cr r- * oc* o> cr o«

a a * PI •-<

n ~ ~

I I•» •» *

ri n PI

I I O O O

err- <r » XJ

nnnnnpinnnn

. - _ P1P1PIP) P)PI PI PI P7 PI PI PI I

« n o in

r- n n n n

4« r> ir uW COD CO

* P)C •*tf» I T ou au

U L t ' » O j ^ « _ _ _I l O O O C T O - O - C C C C

D P) P) PI PInnnnn

ct at -I i jMffi

OOOIMMTI O)

PI PI P? PI I1 PI PI I

I O O- OU Ul OJ to PIocc-ccoa

P) P) P) PI P) P)

or P> M o «c IT

•»•»•»

PI P) pi

PI PI PI P: P.P) PI

a o> o- ai oo

p> p pP) P) PI Pi P-

«C I - «C >C IT

P) P) PI P) PI P) P)

D> IC O P) P)

p>np)PipiriPiPiP)P>P)p)P)P>Pi

oor- «in.» n ojo o> r-) p ) ) p i

p> PI pi pi p>

p> p) p> pi PI

o « >c r- r-

!">P!PlP!P>mPlPlPlP!

Pi P I pi mrt fl r> PI PI

nnnnnnn P I P> P I p>

i •* in i«- r- >u ui

i P I PI PI pii PI PI P I PI

au *- PI •» PI^ r* * if) •»

PI p> PI PI pin PI PI PI PI

— fy n —r* \o ID

P- C\J Ul *ev.-t-i a r

Pl P) P) tVl l\p) P)

'I PI PI PI PI PI PI PI PI PI

I CO

Pl PI OJPI PI PI PI

HO(D

PI PI f\J OJi PI PI r

p> PI p> PI p>PI PI PI PI p>

• O *C O OJ OJ OCI ^ OJ r* 0- r*- f

pi P> pi pi pi Pi

o- oooc<O « Ul P)PI PI P"l p1.PI pi PI

eo P I in ui OJoj — o> r- ui

4COC4

P"; P) OJ Oj OJPI PI PI PI PI PI

uioinoirouioircr o o ^-^H

OJ OJ OJ ~PI P) P) p>

0D«JP)O • •

oocr o-PI PI oj oj o.

r» OJ OJ « <op~ P I oo oj <o

p- OJ r- u"

t\l tu »* ** —Ipi n pi PI pi

«r- 4- orvi o j * N «•« »^i PI pi PI PI

\i nj •— i-t(*i pi P I pi

vi c >o oj ao

— r- o- r-o< ui •- r

~ — •-. oPI PI PI PI

p « p u(Mr otr

PIP) PIW

oo •» O>P> r-

000PI PI OJ OJ I

O3 ? 0P1P1OJ0JOJ

o o cr cr »P I P I cvi rg OJ

ri r- P) •» C

l~ r» OJ Oj

Pl OJ OJ CVI OJ

ru ni nj oj

i». cr * >oh- i t ui ooo- o- a. r-oj OJ oj oj

*0 P- Oj ^*« o * r»

o. tr oc »~OJ OJ Oj OJ

oo r- M>oj OJ OJ

i eo tr> OJ

<C 03M •» in

oj pi

Page 155: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 148 -

a. a oo xfi i cr <c

in *oc oc

inr-

• * - < r -

00 CC

a • : to tvi r>I I eui

<o P- co00 CD

N (vip->-<in o> P>

cc a o n (v• i P> cr in

r» p- ooOJ CO CO

"- P - * CO 00

©|»- OU OUCO CD CO

1enCO

u iz w <I I-MVI

00 CO C0C 00 Of

a a oo •» >oI I Uli«J

CO O1 rcu au au

i o inocr cr00 CO C

a. aI I 4 0 4

cr o ©a1 a. cr

oi o n ivi cocrir o oa. a. cr cr

»» inM\JN M0> O © »»cc cr o» o"

o

* ClM(Mr e IT* ooca> otc CCOD oo co

ri ou flu m cr cr p-oo aocr t r oeo ocoo cc

« * ro- o- cr

OD * f- oo t*~ T> c o(vi

oo co oo cr cr

cro o ocu cr cr o*

or occr cr cr

* a> #-«•»© © #-« ^«o> cr cr c

« ix >H (vi (vJ» cr cr cr cr

«o cr o cr *o.r- cr (vi«"> in

(V O Cl O

f- CO P-ou w <r p-rt (\J (VI (VIcr cr cr cr

EO • - * rF > CVI (VI (VJ (

^4©,£ crocrmoui © *a* r-IT O1

© «T *D ITIVJ (vi (vi (Vi r>

u> tr I T y>

o -< ~i tvicr cr cr

n«on«^>(V/<VIcr cr cr cr

O C I43 cr fn %o•~r*W (VIcr cr cr cr

r-> tr <r r- acr •-< j - vo

n a © -«cr (vi -c cr~ (V. (v. (V in r,C O1 cr cr cr cr

IVI (VJ (VI (^

cr cr cr cr

i (V P) p> ncr cr cr cr

. <o cr ~r, pin 4• C cr cr

© i r o i r oir->©ir omm « * >- (- CL a. cr

cr u> OL © on ui « "

r- n r*- OL. a.i- IT « ir. *fon(*)(*>o

cr cr C cr cr

" • O C Cm m p- © —•(vi (v (v o ncr cr cr cr or

_ © r> mn in * h*niortocr cr cr cr cr

m r- © © a>

crcrcrcrcrcrcrcrcrcrcrcrcrcrcr

co © o cr mcr (vj in r-wnnnn

f o n ( ) >crcrcrcrcr

(vi in p» r- mr- co cr o —

cr cr cr cr cr

*t <••/ r- © ©r- ot, a cr cr

cr cr a cr cr

•-• r- »< r i P;

. . 1 -» •» •»•or 0h cr or cr

** « cr © c r<v(Vcrcrcrcrcrcrtrcr

crcrcrcrcrcrcrcrcrcr

VI <?PI n PI n PIcr cr cr

fw (V * co ro* * co IT —

P) Pi r i •»cr cr cr- cr

- I •— r- •->cc © »H mPI -3- * *cr cr cr cr

4 I H• I -t >T •» •»cr cr cr cr c

in ** r~ o© (VI P)•r ^ j - •»c cr cr cr

4> ( I 4J C(VI - I ID vC•»•>»• >T *cr cr c c

ic (vj in r.» >c r>- as•»•»•*•»

Cr cr O1 O

I PI n ui in in m m

cr cr cr cr cr

<o r- r- in (vi(VI C I <7 L/l MJ•» ^ * •» 'tr v tr tr l/»

>- •» >» J —oc a cc oc ocr -T * .» ^

cr cr cr cr Cr

ry (vi © r- (vi- x cu cr

.».»•»•*">•r cr cr cr Cf

© a- P- P> cccc a cr © ©

n

t r o u•» m IT m mcr cr cr cr cr

o IT © IT OVI (VI P) PI • *

•C cr <~ © oo

-» -» J •»1 tr tr IT o*

cr * —a a ap) pi piO> cr cr

•» <>• J-cr cr cr

cr in ccpi pi cvi

cr cr cr

ID U> U>

« c c r i0s cr cr cr Cr

in in ui in inCT CT (T Cr

>c >G P I crVI (VI (Vj (VI —• _

" in in ir in m in

o IT oir _ _1/1 U1 « til r MEJ

o cr ain *

Page 156: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 149-

a a.

a a u * r-i i i i - *

oCVI

m a o M o*I I Od <VJ O

fn t

sCO

tn•

cr a: -T r

(X.

o:=>COCO

ai OJ o* cr

r» ^ *cc cc cc

tr CVJ cr>k- a *c a tr* *t in 4>oc ao GO ac

d h CO CO CCGCCOCCD

<r in in %c poo eo cc co a:

m <o * r-I CC CC CO CO

•c r- GOOD v a

> >o fy coin co

ice cc oj cvi r-r> o * »-• * r* r* ou

ec or cc co co

04O

CJ

03

toCO

I

w,4

uno a; a- ou OJ oc aj a% a-

©in © -d ccco OD cr crco co oo CD

ninn r* •-*a a> cr- cr oCD 0 0 0C 0 0 CP

;oo IT c*-'t(J m Ulco cr cr o o lco cc cc Q> cr

-T CC (Vir coo

CL cu aj y> cr

a ct NO ai i <-« t r

j - j - inou au ou

^ U i <4J

a cc oo

a. a co in <<oI I C? CO IT.

IT IP *a. a a.

a a: ri r- »ti i IT OJ cr

IT sC >O

a a a

a o: cc a IPi i a *c n;IT. *c r*a x cc

f^ r* cc coOL ou ou QJ a j

a cr ©O ©cu tr tr LT

cca cccccrcr<rcrc^|

C C T O O Oa a1 a a OLCJ-ITCTCT

* io o o -H H)

ro in *t ff1

in © IT. aI** ac c- aOL ac a a

. N* c »o* © © i • - H

t cr tr ra ~* * t- ©a © o © OHco & cr a-

m IT r- <r •-*ft

C cc o© n r -o o o < p- cr —•

cr C1 (T cr cr

_ _ _ OH © p- oj in in © ITcviocroj*» jp-croMOj* i ' | in<x>p- cccc

W •-» OJ OJ OiKM 04 04 CJ CV

0 <\J O> eo « _o © <— — —

[cc cr co - j co© ru •* in

j o - OJ OJ CM OJ|

p- © n sc- CD

cr <r cr cr cr

N MT OOJ - « r-

|oj cy OJ oj OJi cr cr cr cr

^ — OJ OJ

tr IT u» tr

^H o- rv oj0> o cr (T11

x[fs. co te o> o*OJ OJ OJ OJ O

r CJ* cr

ojincoooj^^oNoj OJ OJ OJ oj n i

OJ a* n in

cj CJ

a cr t * 0s

jcr pn in ^ * P-oj ru cvj OJ oja cr cr cr cr-

)0<\) nj n n nk cf P cr <r

M w w I\J nh n n n n

,-VJ © vt.1 U^c cc cr © OJOJ oj oj n r)CT- cr- o> cr cr

OH <\j CVJ CVJ

cr c IT cr

| OH co n * r-_ c OH f\j n

(\j (\j n rn nu1 cr tr cr

«-* OJ OJ C\) (VIc ^ inC\J n D n ncr c a tr tr

in a © ©n if) ec ©

Vl O J CVJ O J C",cr cr cr <r

|r n r- cc cc'o< n ^ inocr cr cr <r cr

OH CT U I I T OH

n ncr cr

n a OJ^ in in *cnnnnncr cr cr a cr

[n m n n ma- o" cr tr tr

^ r, r> o o|p- a cc <r crci r, d d ncr cr cr cr cr

oiroir oir © tn © in

cccOJ OJ OJcr cr cr

OJ OJ OJ

cr cr cr

p- ec p»co co ccOJ CM CM

cr cr cr

cr p- ^

OJ CCso inn ncr cr

cc a

cr cr

Page 157: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 150-

CO

IE-iX

M

COQW

CO•z,uQ

W

03

H

COCO

o00

i n

pi ic © *y OD PI r* i

m•a

© in

i n

* ) r > ( v i i(\ic\j(\i(\j(\j(vinj<vicxi(\i

: a: in (vi>-

ojoor-•» (VI f -

vo o in omo<c

rvicViMcvjrvjrurvirvitvicvj

i in r-HOC)in cr PI

or a. a> (vj »••I I Cr © O

•» •» 1*1(\i (VI OJ

I n (v/i»-P! OC ITrr> n ivi(Vi (VI (VI

a a c*i n r-I I r I\J (M

in o mm n a;

o p t * - rf - © . c <> c • - > i n '

* in <r m o— <y

to sr r- •"i id « 4 a

* a « ( 7 i c r o ( v i * < i * v t * c

in o* *^ c* -^h- o in r» hKtvr r>

••* in (7s tn( V I « 0 \ D * C Oc u u i i n p -« • ( v i r -

« m in (vi in« « ou (vio> -» o> in

D 4 9in o in o «

OOIMTIO(VI <VI «H .

_ . <D so inK r- r- in »

( v j c o [ * > c r » * o >o

r»f- r- r-D (VP -> o trnj oo 4- o m

I CC • * *O 'o cr i00 P I I

n (vi o oiso 0 s cvi r> <

9> O <• i C C - J '

( \ I I \ l O O ((VI (VI (VI (VI {VI|(VI (VI

^ 0 U •-• I T U -»• oc a> m

r<•« <C ••• <C (VJ I*-

o (vi <r t r cu* F - > n

« » r > ( v i ( v ocr> u< <-• r -

>- <o © r- i[l ct tr i1 cr in PI I

•TtTtt) -ICO D 00 — O

• j - r» m ©i «vi ou o *i pi r*- cr

UL u ~ o <ri i o — m

ffO* P-0>40

o • » • » e c - »V J o c r ©-* f ~ ( v i c r

s> cr cr a.1

cc cc OD oo i nI I - M O

PI IP ©r-* yt, (VJ

r- co cr iN * in r- i

n cr in <

j - (vj r- Pi Pin n ot• OD ©

r © m a, -i ~ r-

- » ( V j i n o ;• * (VI (VJ (VIirunor - ( V i a . »

o c r « ( v i o >» ( V i ( v i # • *

c r i n ( V i a

oojir(VI IVI ^

a o MO- -<i <c - • r-

oc —• o

o iro in o(v (vi r> o •»

u a: a> r- *•-

n oc •»-• n NIVI a

r o mom« in m >o <c

IVI a. a. * uim D (v

*• >u *o *c m

>- c in a in© cr PI cr r-^ © cc in PI

b i r o i n u _r r a, OD O» cr o

«. © -» n cr m_ © ( v i n * "~

t » P I 0 0 P I 0 0» - < I * - ( V I C D P I

o r- — r>o > « v i o u o(vi tr in (vi

r ^ | i n P I • » « v i

© * C D

M I I « PI co cr ini

0D •» © iC "a

r> P I CD « o> in

cr a oc a: r-

no-wt-o> r> m (vi ooin •-• r* P I OD

OC 0D f

h - ^ O J i n MPI © eo r- m

i i-t au (vi (viMin r» e

a- ui »

H in aj r(vi © in *©pi P"- o n

vi.» » r- crin in - (vi

n vg av <-ir- ^- (vj o •—p) o * oj r-

fl III « 4 <>

in es o oo Pl -« PI0> »0 PI cr.» »» a 4

P ) p i

r inI O ^t «-«

m <r r- » r-Pi h- •-< < C

* ©in

j- cr Pi Pi *ou •» P- j - j -PI •» PI i-< r-

C T • » O 1 • » C T

(vi *•• cr u• r < t ( v i c

n i n - » • » P >

in r i ou ur - i n ( v j o cr- ot ouJ O * W

n P>

n (vi in ** r-^ p^ OC (VI

et •— Pi P) P>VI cr in « r-

n cr »*J PI c-<c (vi a in OD

in r* cr o»Pl C U: —

(Vi (vi (vi

<£ <C PI PIP I a >t *(MMi«

M r- •» © *

P I cvi (vi (vi •—

m o m<VJ (VJ P I P) •

r- in «vi r-in o m © -*

>oin in •*

i «O P» PI

i o m o •*

• — © « min PI -T ctsit oo au

— n o u ( v_ cr — r- .»

cr * rK P I c r • » o -

VI (VI »•* »^ O

4oo PI « r-a c cr

v *• — o o

4- r* u: •* PI1 »-4 (VI) ( V <O OC

• cr » cr

sC O (VI» r- pi (vi >-c •* **<cM oc * cr

*- o o cr o>

• m © m

~ ( V i ( V ,a PI r-

-<P1 •*•» 0C M

© 0 0 ( V I

(vi in inC PI r»

(VI <O P-- t 00 (VI

in o <oPI a.' o

* r v i r »« » c r r i

cr ocin in.» cr

in >c<c croc -J* cr

m ©r- r- a>

Page 158: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 151 -

B

oo

MSco

DWH

H

CO

faO

ooCN

03

mCM

O(VI

O

(VI

CD

gCOCOw

inocv

oa

oo

CE a. a ~ <-•I I I OD IT

a a nI I i cr o>

o —i• •

<C IT

<O O i-iIS CVI CM

er o o p» o er

in..* nn n n

CVI»-<OIO O-n r>n n CM

a a: o n $I i n o aj

p- m eoO X <\J«» m cvin n n

at a >u *>

r- cro ** n

n cvi ••»m. r> n

I IC

a> n tr

«n in

n ."i cr o »i \o cc> • •

i -t n (M **« o tr tr" rj (vi oj

r> •» •» * ui

CM nm r- o

cr COP- .in cr CMcoin^ (CM "f ^> C1

94a> in m « a-r- «-• m o>

^ in or- t-o> «c •» *r* ^ w o ui^ r- o» n «

rvj r r T r»o r- (vi o r-CT* m * oin aj ^» ui CD

tr cr oo r-n CM c\i cvi <\i

r* •» •-•i- c m

c\J (V tC ^^- « • * r- —•

pi ic o n

0 0 1 o* con cvi cvi <vi

art COP- OO~ C V I *

r- a> PJ n oco « n o «o * eo n oo

crn co (v

n rvitr o> o o

ni» rj tr «ou cvi r* ^ \o

oc cc r- >ccvi cvi C V I M cv

cvii-* cvimo <r cc cvi r-

cvi * cvi n

r» -c * m incvi cvi cvi cvi nj

o <£ oc cop- p- (vi crn co in cvi

~ r* D cvin or~ o->c cvi o —<~* in o* n

in i/i <T rVI (VI CVI CVI CVi

1 >O J P- Oi o p* m m

or a m o cvii i w n

m oc in

p- tn n cvi ODr- o o n

p- CM f cv

a a o- <-• o>i • cvioo in

P f «C i ' UCVI CVI CVI CV CVI

cvi -4-1£> n« a * cyiMirono-> -i o- n r-

c co r-<Vi CM CVI

a a oo 4 <cI I 4- n M

• o in o ir <cvj CM n n •

r- <o i n in(VJ CVI CVI (VI CVI

oco <rp- o

cvi * >"

cc r- * * IT in * .CVj(VICVCVICVI(VI(VICVI(V,(Vl

cvi n r-oc cvi r- cvi

>c in a t -cvi P- cvi r-

r i r i cvi cviC\J CVJ CVJ CVI CVJ

0- n vt o ccCVI ~ CVI *n -t <c & rtm o in o

<f n n CM cvi >-<CVI (VI CVj

oir omor- P- oc cc CP

cr r- —oo o n* T

p-r- <o « i r(VI (VI CVI (VI (V

cr (vi « in r-

cvi cvi cvi cvi cv^ n n CM CMcvi cvi CM cv

cvi a (VIM nn * *n oo nr- »Hp- -< * om cr

ci ui w •»ru (vi cvi cvi cv

r i r i cvi ivi -"cu cu (VI (U cvj

in in •»•-» ncvi cvi cvi cvi cv

n ooin o c -^IPHIXI 4) 4

<ono

CVI CVI CVI (VJ (VI

H a* *" n crin c •» cr n

r *CVI (VI CVJ CVI CV

nr» <cr •» cf> -»

- j - r > n cvi CVJcvi CVJ cvi cvi (Vi

n oco * f->« o aj o n-« — o « «-

VI (VJ CVI CVJ (VI

VJ O CVJ p - CVIm -o P- OD o— * —• * CVI

CVJ CVJ —< -~

p- r- •» 0>n cr p-

o cr o crp- o m ODn cr •»

— o o crCVJ CVJ CVI ^ *

o-» n o>o cvi in MJn oo n oot-ry or n

o o c- cr(VlM — w>

ou*' o ino o « ->

• UI (VI f - •-«4CMC

_i oo >- n inc n co (M o <*

p nha uicvi » j - >

m o <cm nco cvi

.•*nn(Mcvi-<oocf(M(U(M(MCVI(M(MCVI(VI>-<

i we njnri

<a>(ocMincoo»^*-«oco

p- p- p- n co. «<vi M4-r-co co- n r - •-<

•» r- CVJni *_~ — otr cvi *

p- r- <M ft r* CM

i o o cr crI CM CVI »

<o n co (vi

cr <r cc cc(VI •-* ** ~* >•*

vr CM cr cui p- r- n ini CM p- M m

cr cr oo cc r-

[>cr^«(vjcvicr <r co — cvi

b l p

«ocfp!4e>uiau r» r- i\j)r— cvj *

coco r-

•r cu -*<t r» ~*

m m p-P- P- 00cvi cc cvi* p- —

•O p - <t>••* 0> COcvi a; ocr CVJ

* in

o— cr «

p- -«

«np-rt

'ou

NO P- CM ** cviin n o n -H

CM 3 « O'CO O CM CO *rvixcocricrcrin^cM•^ in 'C *'in rn o m cr

p - G o m n ^ o o c v j c v jc r ^ o P < iin co o x>^4 C9 co <r coo ix #M so:* * o in cr

cr a1 co p-:r- <v «c m

*^ cr •* (Vi'»c - t ^ cffr-or-p- —• 4 \C-3- o in o

. —• 4 vc p- P-

* CV|p- •» oo p- crp- p- in (M p-in oin o .»

<c m in •»

iromoinoinoin- — «inn

p- UI Cl•— n m

o-c oo» o crr-* p * CCcr r i sc

r:

U—i« O

a CM

4onPlan~ CVI CVJcr n p-

Page 159: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 5 2 -

I I <Cttl —

© <C <•» «*• PI OC. , J CO <0 >O !*•

(M - I P* O CM in CO

inp-

: e «.• © -»i — •» PI

n * on i_.cr m o co if

»-i CM o r- CP

a c* * ~I IP If) <C

• * oo i n <o a>i- ri.»

o

Io

CMre

HM

sQwE-i

(XCCG0C0COQDO3C01

I

P I co P>oj *<; CMP) in cc

tr a a OJ coI 1 0 0 4

cc nj coIf) O If)pi « ct

1P-. OJ p- p>

irno-pi o co

•4" P> 0D »CCD 0D «•« CP

oj oj p> pi

© P I pir\ •» <M ifi cv

O> CVlPlf- —tMPir- ifi CP« o -r er -i

Pi <*

^ 0b CM (M <llK J O U I O U)

CP CP © P> cvif) P I <

-T If) (^ 1/1f r- CP -i> PI <c » n>" — . i C

co r* ODajajn

r i i T ' O «[VJ PI P) "3" «tf

—i OJ O> 00 CP

- . — ^ (VI (V

^ c CP inP- 00 * If) —•

pi P) •;

M oo r j o in-9 U) OL n•» r* o j --< •-< ( M « M

^ - w w

i oO>:CM ui ou ~ in

or a • * oo r- in ri i i f r u r c M i f )

; o•a- r cr'o. u* o. (v. w.

<-• ^^ CM OJ

c oj r pi © o *-» *o(M Ul P- O P ) <C O> CM *)

• - " - " • " CM CM

a O u JIOJI O O ••* Ol^<

X PI © ~IOC -T PI o OC<M » "< P-'» * >O — tlpi in cc O I P I •c <r pi >c

! p ,v

oirCM CM

Olf) Ollf O |fl O IflP) PI * l »rl •* in I/) <C <C

^ Pl Pl Pi >^CM P" <

n in M3 r

fi r- in ~ CP

s j Ou

*T Oi CM »" O P* O OU

P)P- P) Otvi n n •» 4

in P- "«inM >o •» ou p-

nmncp

oo- cr •» otvi ~ vo P-^ <r •»

vin PI * m

IT IT OJOJ0^ 0 If) P»«» CP in »-"pi n ^ m

c oj

* p * plf) © >t OJp> » •» in

1/MOIfl ©P" 00 00 CP

in ii) CM a>—• ct — ->

OJ C\i <~i • *

in in * r»

Olf (VI Oin OJ st *

© OJ P I •-<to P i u n nOP*N

IM Ifl O <T in« <M « r-•" * U> PI 1n in « (^ CD

M CM P- O OCO —* 00 ©

>• in o o> (»•V U I 4 K 1

in <o co«. CO N O O O

'CMC* » 00i © p- « m

* 0» O>IMP- •» » OB

cu n n <f—• C let) -» Ul (M

"• in * -rI PI ~« OL'

p* pi n ui ou

T 3" PI IM/) CM O CP CPn -c p- p- co

M ^* •-• (M >

") O CO CD CPp. co a- ©PI ~* © f*

«c inIM *CCM >

a <toccCT* PI p- C•» r ; cv, P\C p- a. cr

P- * «—

•4 •* P> #-•p» o* in *v* •» -I mMi r- ou CP

© in p- ©p- «c cc p-

CP PI CP 00p- <O •« »p C

U) If) © ©OJ P) OJ

in o o P-m © p- • *o- © — • *DOHN

CP PI « CDM P- O I M

tr in (MP-© OJ p- p»— •-< PI «IT O <-<IM

00 —• FH CP f

n- p- oi —tM r t v i <#»»• © « m

t M n r

p-o*-

U£ * 0fl P" <J> "-"PI

co n in * i

CM <C — IflP-•- >~ <O PI «D

O> (T PI HC* CMo OJ PI in

M CP oo o r-

<M <u -r oOj Lf> O 0~ CM • * in

o> ^ a mec CM >-< *

in •-» o-p- in <c •»•join•-< IM •» *>

© 00 00 P-p- in co ~o in p> CP,» in ~ np- -> p- •»-« PI •» *

p- in PI a,o> PI * •-«

©•TOO.'(M PI If) <C

PI PI © *CD O «O CP

p. x (VOJ PI CP (VIP) CC •» P>OJ PI IT I*-

•-> * © r-^ r i ©

•» •» P- •»00 >O <T CPnoonf\ t- oo ©

•U © OJ 00O •— CP CO If

OJ •-• P» OJ00 © P- OJ« * CMPI

• I l f l <Olfl(VI © ""•>

tc co o OJ *r

* m in p- -<

au HJ IVI c\•j- in -£ if

J) U I P© CP © P1P-

<c -< P I m

PI -«0U (M «i> M

M IT a> PI•7 CU (M

j -T in aj .»CP •-• P I <C

• CM CM (VJ

O P I P- OJp- P- CM >»

o p- in m-» <c «<o OJ in P"oj oj OJ CM

oo in

o- n r'Piin ©*mCP PI CC >UO PI Ul OJCM OJ OJ OJ

PI J ©p- P- CC CP

P! * PI 00in P- (M ©in a ic m

pi CCP

o in ©in

ui in tc *

o o in—i« OJ<»PIfl •>• o(M IVI PI

in p trCMflPt

Ul IM««OCM

CU 4P— CC CD

00 — #(M PI PI

00 I O O JU) MJ ^^

cr «p- <M

n i>-pi pi

in >coj in

p- o>p- PICP in

Oj CPPI 00

m PI©p->CCPPI PI

in>©r- co

Page 160: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 153 —

in

o(VI

cvi —in —

mm P-OOP-i s * ~ "co-no©

n p- to* »o -r« -

era o o-r-

— o-fm o^ * tvi ui • •

a;r>o

Io(S

33

XH

w

<

CO

CO

CU

p- r> —(M1M0O1 f t

a a in in (viI I CO tOtO

COCO

cc <c inin —tvjin

u m. cu ui uI I p- to©

a a D top.i i •» •» n

o oo •*•CO (VJ CUo m

tt tx nj o OJI I co — <c

in moo— to —— n «

• — © in P- s oo in in"1 D * tfp-

-m » r>ucvj <vin

tO 0* (VI m CO

tO P- D — (VI 5 .»p — .r op-

ciivi p-

m © m c co ec <vi •*coin _ _ .p-m •» inp-« c aim co

-ao co (Vi o>y in o> * •u n j n i n <n

Iftl P- p- .co n to

•C (VI 4 —> CC

— cr o* to nco in *r m cop- © r i <o cr

II (VI F l < •

Pi — PI © (V

r» r- •" oM >£»oinVIM n n

— o p- r- o»(vi —r- in

t- o m * nlo <D o * <rtvi ««i.» -» co co •-•ir i\i|r«> ui * ~ *« o n I - «•« « »«

l

I\J • • IVI Ul "" « < • " ! » • «

^ o» co ~ir» tr- (

rvi » in com (VJ •» •» &•c ui <c CM/i J >c (v) (vii— •» p- o • * co (vi r- (vj

S3IS oa

inCO

©cc

CJ

o

Q: Q: >O oo —i i o> in oo

CD CD O* r> (VI'O C (VI f* dO f < \ o n

OP- (VI

mema f r > r p c o »-« o> o> o n c co — co o>Ic » a •••.»o.c>f-(\i

o x a o c *i i co cr crto oo p- p- r»p- — « cvj «

co r> co n n (vi

a a ru - » jI i >c (vi —

o ic —(VI * (V | T(v « r

I H too p> o in in P- ini n (vi p j * n vo r> in(vi in co Hm c p n a n*^ ^ — (\i(vi cvj n rt ^

— t£ O p- tCIO

p- n eo.c <c p-(v m co iv in o>

> ru co n m<in r> —

« (VIcc oc — c (vi

; * oo (*>

omoi fou io i r on i n c p c c o c r

D I/) «0«VI»

(n o> i«VI»o> in —

•» • * in -o

p- — co IMP-o> — p- co

o « in in iv— p- cr p- <v•4* (T in (VIT «» in * p-

<£ (M OCO«m — noeop

4inin«

•» * Miro o> co «o (v

CO »O (VI — O(VI O .Tini — P--i m in

ii m o H n00 00 O —(V

— *c o u"— in — n m to to o* •-« ©

ffinc0C P- (VI (VIin — eti m n•T in in <o p-

p- o m —« — •» or «v— -« — (VI ITK C O — (V

in>O (VJ C « »

in in <c p-

VI CU >T Ul IVI

t/i -T p-au •» a1 i[VI (VI (VI p-co cr o — (vi

— — CO — (VJ(*

ivi * p* uO1 r* ac (vi

p noaj *^ m «

r> <c n (vj —c o n (y

•» >r <r m an P- in — >»

•» —u- p-•a* in *o *c p-

p- n (vi —vi in in w p-

m (vi o oin MI r* p*

in (VJ CD Or* CO *^ — C

vj w — j - o•r in no*C (*) TC ( ) ^H CTin « P - p-

• » • * * (VI© *O Ob *©

— «C tO CD•* (vie inp- « m voP- OB o* o

co P - — o> <c

* -TCVI O COo p- p- co trPOJO<OH

— in p- r> —n (vi 4- (vi

«o> O P - p-•r in « i n ui <•> «r in •» r-

rt •» >O«D o>

CO -T (VIP- M3

ooo n o- p-r> m * co

ui cu — MI(VJCO P- P-M vC p- (V (V

r- n 4j <cu ui-» o -» *0 O — (VJ

n o>(vj (vj (vi nin *o oc —

— « o r)3 cc cr (Vi to

* p- © n0" © (vi n

(vi © n m•c oo p- (V)

— a a. o^ p- fti ©ot o> rvi «cr © IVJ

o o r>-t (u co

c o P- co©p- * ^© — •» CO© — (vi n

in <o co o>oo so so cro^cin

eo — — —P- © PJO0

p P o«(VJ « (VI COn -4" to r*

m © (vj oin P- ««•-•

(VI © tO P» COiO cr p- t vj

©m onivi i-4 n

tCl— p- • * •— ui * co

•» (VI — CO Cto n m co CV

— in (vj m nIVJ co n p- r i

Mliaipd co in r> ri•» in p- a —

n — O) p- p.i r- cr i~

* — j (vj in- j <jt OP-

) CC O (VJ—(VJ (VJ

co (vj in cc.* in P- n

ui » toao o (vj— (VI (VI

tC ©— n•» p- <o c c *o cc oc op- cc o— — (VI (VI

© in © inui ui to to

ocvj r\coin coevi n in— r> in(VI M (VJ

to •» P -— (VI Ot*p»^* rj ui(Vi (VJ (Vj

•r o cvj00 00 —(VI ^^ OJr im oc(vj * to(VI (VI (VI

(vi * p-(VI (VI (VI

o o to

r to coo» •»— n coDUl P-C\l (VJ (VJ

h (vi cr1 — to

IT CCVI (VI (VI

vi cvj (vjto ^ —

to aVI (VI (VI

p- inin coa -jtc cr(VI (VJ

tC Op- •»oc cro co

c cocr uito rviC7> P -r - ©(vi n

p- cc

Page 161: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 5 4 -

OS

o5!

pa

rs

I C1MTr

P> <\J <VJvC vO >CI I I

in -r mw ic i- p- co p- r-

UlU1

p> (vj»«

I i -o oo inPI (VJ ©(VI P) •»P I (vj o <c cc

<\i « cr- M P>o m c* n «

-»•»•»•» (v

or a: 1/1 in ru *1 1 o> cvic ""

o or-C* OO

(VJ —

1x1 ouirr- * •»i r ^1 Is-

J (V U- — p -C (V.I— >c

i * in in 1/i i i

>o I P m m u

_ i — •» o>ru •» -» o o>nuinOHH-Off

o o a N ir>c m in in in

in cc -j•T CO P-r*i CO © Ulco p- p- ir

a* CL- P- <v in1 in ir in m

1 • •

cc r» inp" •cu ir <

: ic r ui in m ini i i i i i

•— a . u: — m— a u —

^ *JJ uii t i

o: a <• cr aI i rvj in in r ir tr 1- r-

1 1 1

a c ~ n n1 — <v >r "

•cr- * n

t M ui u'l i l t

a a OITMI SQO4

sea. r» r.o. r; -a u— o a a

O IT © IT oc\j c\j n n <T

r- *L u ru u u u

I I I I I

II U'I I

< K » nr IT IT. IT IT

© u" © IT

e ~-1- a.•ir oc a a r.

» oirai •» P ) - < .i in m m <»i i

r- a" 1*- uiin * m n n o

n n m j

c i f _

cvj >o (Vi cr co<t> r ~ t

O1 p- P>

» o •— cra a •» cf(p * 9 s

cr «r-o 00 •>-

n co j - >c -H

_ o co o •»•H _< p* oj r>

•M l-l <O (VI^ in co <

f

O (VI Pl-« PI

cr Uicr ~*

m o *

M in j oc in

r in in •i i

M. r: SL- ( T I J— p- a —p- —<»

— y P- ^IT -I •! CI I I I

© cr p- ui

I I I I

(V O p - -<ir —cr o

IT 4 •»•

1 1 • 1

ir oir ciP - CCOB CM

c •-• o c(Vi 4 Off)(VJ O

~ o >c tr CP* *j- »- a- in

1 1 1 1 1

l ^* IVI UIp- ^<ncr (Vi »N

in n o oc in

1- Pi Ui ft(v o c r- niC RiiM<— (V.* OJ •» n

n (vi (vi in P*o p o> ui

ui n p- -a-CC (VJ C (V* ir ©• a-o 0 cc oc

cc p- cr p-«c i/i P) p> _m •-«cc wo*

P- (VIP- (VIo (Vi o p -ou ui (Vi ^r) p- p- (vj (v

n c im —m j ru (vi «

p- (VI .» • - p-_ P)in -<

O VC •«• © i ^ * -

» Um (vj (vi (vj •-«

in «* (Vjo a; n o p-p- CU »(J CP »O

r i (vj (vi * -

P- cr» n ^P- au *T *J

• UJ (VI P - ('rvj rvi —• —I i I I

ac * r- <f —

CC P- CVj (VJ P-

p- c (vi a inr n a

a o o u

1c f n•JOCI J" oc -c a- m

C (V. C U~

0 p- <r o1 I i i

IVJ © © m t—

• " OC P- - • If.

a .» a * —ui - . — sc in

* a r- — 1/1

©IT O IT O(vj (vi n n

4 C (vi n-< I I1

in in cvj ©n o> P- 00* j ; n ui

- (vj m in<c & & ri' « rvi P- f

« (VI (VI PI

IVI MJ

UI P) ^ 0>P» (VJ PI O

UI (VJ p-CO p- O> (VI

o j - p- cr

„ r-o (vi r-oc ui '^P! «P- (VI U

vC LT: -rvi Pi

a, ivj PIp- a. uiivjnor- p- p-

cr Pi pi — cr

a p- o cc 4(VI CU cu [VI U>o j - •» cr -3-

(V a- i", (© p- cr ©p- © 1—1(vj ec — (VJ

P) (VJ — H OC

<t .T n Pip-* ivi n

iv f- >£• <cp- p- (Vi ap- •» a oca rv. . j >£

a p- >t *— (Vi PI

LI' Ui(Vj OC U''c r- (v

PI —IT- 00 00> i CVi P>

© © ©-I to —CD «T P-inr- r-

-« o oPI -a-

m m «o»• i n C JCVJ Ul P-ai (vjin

I PI

©>-•-»rvi cr ui

cc a; cr

p- o- *PV cr

vj r- ^*n -aiC LT

© n^ p-

u- op- tc

Page 162: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 155 —

a:o

oeg

33

H

QU

2

enCM

>PL,

§EH

COen

in

in

IVI

ino

occ

uo

a a ai» • —

c a or *I I I Ul -T

p>c

a u. <c —I I — •©

O« (\(VI (VI

PI (VI — O CPso « * su IT

f Ul <7

a or -o — in• i ni

rue in

an oI I •» so P>

•? — aso f- p-

ui •» P>|

u (I aj u)i i ciriv

irrnoln ^ in

in •» PI

a a -t PI -j

l i — o —I

TsD sO sliI I I

i i a. © PI

^ p' ru|sU *d silI I I

o: a (vi in colI ( — in c

a sc m>j in sr

sO siI

I CC UI © Ir- so -T

*r ri IVsu sC' sLi i •

a a. sc m mi i © I T m

n (Vi (\iSO SO *• i i

oiroir o(\i ru PI PI •»

| O 0L CT (V! (Vknacr aC T * (VJ s£

Qs C^ O CO

vC so sC so IT1 ( 1 1

» o> o rsTNOOsOOsO sO sC sO sO

»» IT — -I

! (vi o so •«

oo (vi in o r),m in — • *

(VI M

Iso P- in PI'•* r~ so in iJO © (VI •» • _(VI © I- P! 00

'» IVI •-• O ITst) sO sD *D 1/1

P> — •? so OI - sOlT ""

— •*• m (vi

T (V-l*-i© O1

sO sC sG sO in

PI •» o* IT<? (vi <u *

uoc cc ec cc P-

sc sc so in in

so PI or-c* o r- ccin so m

vi — o o > oosO sO sL in IT

^ — — cc

— O C OLso st ui ini i i i

- ~» so^ * o'•*•r- in PI c

00 f- sO •» P>IT in in in u-i i i i

CD r- sD •» P)in I I I in in

I i i i

p- PI PI uiI CD P* P> CI — (VI PI —

p> © p> r-|r- (•- p» in oo"so in so r«. iroo © © co -^

N sO U" •* (Vnmininin in

[— o a — inso PJ O P) (VI|P1 IVI (VI —

r — P- — I

o (vi sc oin so o

I— r* m to'in so so » o-

r- so ir PI (vin in in in in

i l l

n cc P- pi— IT PI •V IT

^- ui -o* Pm IT in ini i i i

o c t r oc r- -» ^ sc —

— • - © a' p-sU siJ UI I I

p- •» (vi (\j© O sD sOn PI cc aP- P- st IT

c si/ st aO1 sC p- ©I(vi (vi r- r*-•I -I P. (VI

© o> a p-

<t sT (Vi O(Vi m — p-fvi — * •»— — © o>

© o- a

• (VI —I) U) UI I

*-4 f i © c Dp ^ ^^ O1 ^— sC — PI P!

— a P/ P-

O Cl Mi l— sr in sc«c r ' t v MCC — (VI —

— O 00 sOtn in •* >ti i i •

( — — >c aIMP- — (V)in OD in (vi p- bsifi r- «c p-

** os p~ inUl •» •» *I I I I

m •»• (vi o (\4- p-m -os£

(vio o to tv(vi -» •« PIO>

I P- * ©s*PI PI PI (\

I I I I

sO — C D (VI (VlO" P) O PI Ca; 4 O1

fc>- oo in o ©I

OO- P- o < P : © SCIn ri PI PI (\

I I I

O P> O (\\o- © r- —Vi so •» cr irru f\j cr (V (\

© CC so •» —

n -» -» -t -»

00 •» P- O1 UIO UI P- -» ~p- sc (vi in

© 00 sO PI —n -r •» sr ^

I I I

• ui P I •

I I

I— (\j a «3-CC sC IP-iCltstca ^

P- *J IV cr-T -T -» PI I I I

u aIMMfOOS (V U' P- Pi

a .* <r

©UI sC •* P-0- — P- a' P)IT cc tr 1p* -* © in O1

P I —so in ir ui m u-. w in •»

p* P* cc OD cH

cr p- (Vi (V o>O P- — ©IsO P- UI sO

lir u P' cO sf — (T

•» -T •» -T I'll

i n f i— cc co <t a— o> sc o ^— © a PI

ec < P: — a

i i i

O IT © IT © IT © IT o \ft0> © © — H

(V. si; p- rsjP* C (\l (Vr r - oc ai(Vi •* P ) O>

— oo m —* pi pi PIi i i i

in p- p- p- p-, •*•©•»P- CJ1 0C PI IT

0 p- sr — p-a* PI PI PI1 I i I

p> — PI ©— in ©oc a© o — ooPI ^ (VI sC

,C so (V Qs U"P) PI PI (VI C

CD UI (VI 00 •»"' PI PI (V (V

p n t cPI (VI W P- P-

PI PI PI (Vii i i

SJ p- Pi O-r su in *

r PI cc O1 so

CC- O> P- P-(vi •* incc c ivi P Isi © f p-

P' O sL —PI P (VJ (V.I I I I

(VI IT UI OPI (VI IVI IVII I I

pi in (v ©© © p- pi(v r- — (vi(V) -J PI P-

(V, a. •* o-P) (VI (V. —]

in ©in(VI PI PI •»

PI © © si,sc a in o(V1- O IT (V— so so oj

-» O- •» (T(VI — —• II I I

PI 00 PI 00 (VOJ — —

I I

p- eo in (vi *OC so P- •»pt •» (rinin co so ©

O UI (VIIr- P I soCC (VI (VI

so o so so a>IT* — ui cr osO O* sO Ct

CD CC UI PI •»isTOMT— PI P* cu U"CO C UI o p

(VI — — II I

PI in ui PI PI© — P) (VI sDO- O- -T -» —

— — II

— p- sO ^^ O1

r* © a; o p-

X' PI a; (vi

i

O1 P- O P- — i

^ (Vi p-— II

in oj (vp- — rvi cc>c © ^u1 p* P- a

— u

I

o •» (v o-— I

p ^M © (Vi sO,in o «• —© a1 a

c (Vi pi —I I —

Ipj c p-GC W-t

I— (Vi O>

p- -T P!— (VI

a> so ir— (VI

so P I (VI(VI CL

*•" sCCU —

o a.'— (\i rvj

u- o-\T- (VIPi (VI

u u-cc wP- (V,P) —

Page 163: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 5 b •

inr-

in

C/l (KN a m

W o-i mt/j •

fc W *•*

o S

oC/l

a

eo inom-a - r - -© . *o toinco <vi tvt

tt a cvj ~ <oI i ^ 1/1 *

_ CVJ i n n j — . -* f"- CVI CV •-< O Oin -

.— a> ino <\i cvj

i I •

K wo>r» m

m co ro evi *•»

ct a. — -c _1 1 cr cum

_ * o * —>c voin in 00

in •-«r.t— r-co new

nnooivi

i i O CVI .

I I I )

1 1 £ •* °!

in tr cr-j — r-n n evi

T i 7

a? evj i*) 0s to

eo co CVJ r- cv

ui r>- vuin OJ CO

aj in oj ir ajco co co r» CMN O O

a cc <v/cnr»t 1 »f •» •»

•» •*! •»*> cocrnri

0D * —•» -t ~r- -<T or> r> r>I )

a ex in in •»1 1 r~ o -»

r- r- n•t rucc

1 vna>«

r» a. o irOD 4 " i n

a * ir. © r-1 ^ n .» *

— in <y CM<\> o <t t\i^ •» n fo

t 1 1

o tno iT'O

wmnru

_ mtn

ouioui

r- ~ o *^* O D H

r> <c <o m

00 •» * ~ r-o< o> in r-in «i no>o 1 o> «o CD r*

I I I

o not- M

r-itvi r- n cjo- o> aj a) r-

1 1 1 1

" r~ •* I \* CT1 r> a. r:N--00

CD "

^ rvi m nh- n o p*

VI-I-.OO

l i l t

f co *c AJ no n o c in

\t C\J * O

I I I I

r o rH4CCII «

o a

omc

I 1 I

in D c\j n uit» » o n c\j

VJ © •» <c •*aifO4ifO4 «

#•• m © inOJ ** ©

III 4 U) «#~ CVJ s© CC

DCVL •-< «3 CM _t> O> CO co r>-I I I *

• — r» co CM in

<c •-> <c evi coV O» CU CO P-I • I I

co n * *n ©m *

n r- r- ,»• in<c o « nvirff

r-©cucv. 'cr»'C'Oin« _ — CVJin . - r - co c» f- <£> •*> inI i i I

in * •»• a> «oWO C(T «i>- n co n ocr- cr co co p-1 1 1 1

© cc- cr <r cr a> ~ © r - #>*

o- a. cc r1 1 < 1

« at — vD IM

I I I I

vj cr »0 co ccn o o .0 o

j - <• o cvj^ cvj in ©

C C U' Ocr a a.' a1 1 1 I

cr » j r00 r* cr a- a;

in <c o» n oj> » o> in ©

IT CO CO COI I I I

r> ~* © M* a « •»

<c © IVJ cco en r- cvj

rmoira o cc cc• 1 1 1

in ©ITr- r. co co cr

© <-c .» ifOOOIU4« O <C (VI 00f. » it> \o mI I I )

© coin co <r

* © *o cvj

i i < «

i> CO 40 sO CV

siunnn nco-coocrr^r-

n n 5r *i t i i

^ rvj *^ _pro~S-cvjcocoinino|Ln

to n * f- <cco ou cu cr ••*

C^G

a co © o r>-

-• * in » >»r ** <a nj

iri— a 4 ~n m - * •» ~

I I « 1

- -O CVICO CVI

in <->r~ n o>i>- r- <c >o tn1 I 1 1 t

*•* r* r> orr- -o * in1 1 1 1

Off 01 O1 1"rr- r* >t>

I I

^* .» CVJ I-* ©^ CVJ CM

^ j cvj rv cvj ITn CVJ~ cvj n

cva <>r~ r- * * *

1 1 1 1

aj «« o- r*in -» >» cvj

•a © • » r- 01

•o m •» •» in<o CVJCL <r

n ir cvi crm ^ a

co I T «•> fvi evir» f~ cc

>m © in)OHM

o a & n M -o <r in a< » •» r~

in in •J »- * — «D l/>

in-J-J^iococotvicvii i i • i i i i t i

CO (VIIV ©I vD

©tvincouiocrm m i * i>- ©Ccr r> r- CVJ^ t * ©in in -r •*• «»

* coin co- - j -"•<» intn r> r» CVJ <vjI I I > I

<o n nm in« c •*•© n

•orSncvjcMWcM*'I I

n in :til

^ co co >o m^^ UI © MJ

n in •»>»••*i I • i

CVI »< « •— ©

» n o»CVJ - fVjcti *> r*-

) * - »f*- © D l> CO

!«• -i * ini». r-cu «

• ^ i » — CC <C

» x* t." © r

* CM co t r• <r cr © CVJ

cr in co M r- - •" " "" - « CVI

n o» •» * «-

i< cvj co in *"n 1/1 sr -» -r

1 1 1

LJI 0 cvj n u*ito in cvjcr

t cvj <r m cvn ui •» *r >j

I I I I

t to i v f ^ co« CO CO CO CO

X3 IT CO © 4>n co evi t~ evi

cv; t r U ' cv.ir •»•»-»1 1 1

co * m -j-tO >C >O CVJ

.j o -cj if jIT1 in m

i ^ -1 -r1 1

CVJ I - . » . .© a cr .»

co cr *c cviin •» * •»i i i

•>corocvjcviMcvj~

-™cvjin©c7> n o -t

j rrv» cv> rvj CVJ **

r- n in >- >«- in •»• in p»i; in CM cr» n n cv fu

I I I I I

co « cvim n<r » « * coHIIMHCO CO CO CVJ CVI

I I I I I

o cr in *«-« o «£ cr in

tvjcr r- cc coco h- »> cr

cr m I\J cr *t>D D D CVI CVJ

1 1 1 1

CVJ CO •» f - — >a cvj cc m r-cc *» © cr ©CVJ o cr co ©co co cocvi cv;

1 1 1

ir o in © in<? in m \o >c

CVJ *

U l CM

CVJ —I I I

* CC COi n CVJ

•» " <r

N © in>o in in

[VJ CVJ ^ *

I I

vi ir nV >c CVJ

— crrvjevi >«

1 1

f - COCVJ

co in«r

evi «1 •

in of - CO

Page 164: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 157 —

©

rvj

inCM

CM

OCM

in©

COCM

S

o

o toH £h-) P J

CO

I

a a a oI I I t>

ix a. tx •» oi I I

|\J **

I

a or co -T oI i r> -

oj oj cr-in s

ox a: in rvj coI i n ao ^

CJO

n (v. aoj nj «

cr a: in cr* ccI I a: «

O. OJ (VJ

I I

© f\j IPHI IVJ -«in -r —IVJ IVJ iVj

I i

a. a: sC ~ p-1 I o n r

(VJ VJ .V

i i T

P- UP IVJ

a a f° j

IV l"~ IPIT A -t

I I MT iv

ivi a uIT st. Oj

a a. a a. rv.I I — P - p-

IT' U" Oc a ITm rvj ru

oircinooj OJ n ro

V <o » -»r- J- o> nm a* •* o~ o o ©

GO r» <c co•» >o « «

-T oin co <\^ o in o *£^ ^ o

OJ CO O < Co r- n in o>

H cc co OU *T OJ 1\J CV

CO cu p .

I I I I

n * r- .* r-

-• -H O O 1/

I I I

-1MMO1Pcr- o in

i r — <& — r-«HOOC»

rvj t v <

i n © ru .—<<T OJ 'T<-* f»- OJ— O C CP— — — II I I

ui r- ur •—ry ( ru a;— c o o-

1; js 7- -'ri a r*

— ~~ _~ il l l -

x -» a co

st ui in mir o i r o^- « o o

O IT. O ITin in i -c

r r- « >on o c » c o^ r* OJ coa* co co r-• i I I

oo in rn oj p*•r oj in o

o ^ « ivr - co OJ OJ

in in r* «rviin cop D cp c

r o •c in iri i i

r- p. « « H-H IVJ (j. n oj

in co in in ucu «o m ir

CU CU II I

- " P - CO CO

j o o co in

CP oc co r-I I I

CP o -j- CPO -t OJ r<a, a a p-I I i

cr i > a.' ~O f ^ Ul J0" •» O •Ccc a' xI . I I

a X a.I i I

n 'vj —

i i i

cr cc a. p-i I I i

in n >c in con in »*- o en

M co r- coin in oj o*

© OJ os «aioni

a. -t o <c~o & <c in

CP f \J C

in -T avj n in p- ©

co -»• c~- sO sC s£l IT

I I I I

o CP m co n"DN-i

CP O CU J - CP

cp so rvj

I I I

CO OJ COCP ^ O J

-* n in o rv

n o ivj CP

H)s1«sO >£ >o mI i i I

<-« u i >u (')U^ O (>J l i0L' 111 — P-

4- in r~ J-

ii' v"' I']-a- cr si>

— i • 4 1

o c tv •

h- <c <c i rI i i I

O O r-4 ^

rvj sti Doj m r- ©<]- co a> r>in o"s s* ooj co in njin -» •» .»

i i i

tn oo co inp- ~ « njoj en in oj

» si; ri ip

I I I I

a sU i>sC n j j

a c\j in

P- O l\jinn

J" -3 -J -Jl l l l

i l Ul vti sj-MV1CU-

* Jm * in con o j CP MD!»>(») OJ OJi i i i

t *> IT in£> CO f** vD

0 (^ cpn o j o> -o

f t IVJ IVJ

1 I I

n rtj (\iI I I

>C O. OnnivnI I

j — o j %r apvL n o T

n rv. ni I

(\J sJJ CL- CU

ri ri u) VP

n n IVJI I I

•e ± x vin JP in

u- * u 1 >-

r •$ •— sic-. ~:> t v u"^ .— a u

— o

< •-« a 1/r nivi\i I i i

O IT o ITin IT -Li si'

in vc —•cc OJ • !

* mCP CP —M IT CO

a- n o>co in in

rvj o cot\j IVJ ^I I I

OJ CP OJOJ ~« CO

! O CCOJ - «

I I

in uij oa-vj oj —

I i

fVj —

i i

IVJ ~I (

c a.IVJ *^I I

CP CP0 aO J —1 I

u of- a

Page 165: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

— 158 -

QUH en

en

3en

oCM

a:o>>(JH

2;

W

a a. r- ni i

. O l l / l CO P- CV _a o IT In" •»>•-<« p-

P- (M « t CM— CM CVJ CVJ

. ~m » P>« w <MIPI PI m < 4

t t « n CM CM «u «\i« <i i ew CM p» c D * a> *

in vo<co> o »«co PI p-

neehnCM N CM (M a•-« Ift G* PI p-

or-

a: iI

CMsaw

oenen

invO

a n o n .•«i i in o ng>

** CM r> eo •»n

•-• (VI CM PI P) n

a a. p- vo a> «•• r- cc a P-f • •» vo *y vo i n r> C\J *

H in CB m <ofcn m in « vo

in in inleo <o * in . ,co in n i n r> ~>» —>\

» w~ CM P I P> P I P ) CV

i «(vj m PI n *

tn n n c•» p- ©co unmet) CMO"OOVIV

•»• r> m•- in c I NPI P)

. - • i n C M *«n in m -o vc

co p- r i p -•j- * co cvj

c P I r- *« m O1 m p-i-< CM CM m PI " *

D (M (M O C CD^* i n o^ CVJ «cn in IT « *

ma, ^

U IK U) IVI ,t i in * M«"> «D •« in in

I ^J © CM CM CO CVII C?||P U) l i l <T

• ** m o- m p-

o n oo ri o co in ia a.t ( ou r i ^N|

coI N •-< ou co n

r- cr r- ri r*-u< ui m -rdffn

ex ex IM r* a» cu CM «3 II I CMCi M.-I » h- CM CM

r) CM CT11-* in o c> CM-T m tn'o >o * in intr r> .i«-i ui c n r-

\

o: a. o> m PII I p- m m CM cr vo m CM

in *ca- r, f* * CM CVJ

a n « * _I o in oc o

r- >o >o m»* u cr r,n n n »

* r- n CMin •* m o tM|

(M O a ITm * <o r-

on

oo

a r> * •* *I o DCM ec

_ _ .»" •« ft. cv, n

a, cc u- o cvjlI*" »^ f^ vO

-« in o> n r-D n n - •»

O vD O (Min o in in CM

»«tr P- (vi in m »" in P-vl> VC P- CC CD CC CO P- VO

i« in ? n

in o IT o in^ in in ic >c

a ou o p- IMI

- m cvjlo1 P- * (MC' oo P-lm •* P) (M ©

in« iv <o lo » so nj cUn tn in <o «c r- f -1» « oo

[« ac <c r* inH O C t CD p> <C IT) n CU P4

H D O p* «C

- • N CM o oo

i i r (V .) in vD vo

I CM © P- -3* CVlICP, * ip n njO - I CO <M vO

C'XMCXM'OCMMr-*

« n or-ui •» N •"* M

•*|CM O 0» CQ CPlO CM *

vo o" « r> * co r>

cr vo CM cr P»vo i n •» CM ^*

cToc *i» p- r- cc co

-» •» CM

* •» mCM CO I T CVJ 0 *p» m * •^• - i

, e » cc cvi vo| p . p . p . CD CO

TPm-o e p-r <o in •» ira «)p- * iro> n p» « ITCOCMTO ~

et r» <o r-Cf CQ p* to Ifo» n p it

, . > © in <vm vc o> •» © ~

Un * nno

cvico

•»«n r- n CM inco a> o \<c M i i o n

- cr co r uo n > - ir

C7* vT CT O O

KM * CO CVJ CD

kn <r c o n cv

l o -< — cvj cv

i r f n:O CT CO P- vC[0 n r- - • _

V? (T1 O O

I T o« n <om in vo «£

in cc in CMr- * ^ n CM© •» 00 (VI vOP» P- P- CC "

co in •» p- <tco r- r i o

aj P- ~i - .CM «ui o>

HXf ^ ^ Pvtt U) C l CM•»• 00 CM '

(p. p- p. oc a

CVJ O vu (/>CT CM IT CM

CM cu in o p-vo p- o> r i o>

CM co tnnmoo1

m o*> r> vo

M00 >o in •* cyO *» CO CVJ C

CM CJ> p - mf O p- m cvj a,r> CM 1^ I Tu a o *U' IT <C <C

in cv' cr in•* D aelm » DP-IT IT vC vC

I T O I A Op* cc CD cr

In (vj 00 — m

o> n p- co 00

o vo cvi f ' m •* CM•s- p- a a;

M D C 0> D n O CVJ VC vOD o> p- o|o> P- m in o>

p- n t r IT "co P- in «» r i

r co CM vo|p- r- p- co co

i8> P- CM O vCvo r i (M •*

_ o (V CO »o> r- vo •» nO ^ CD CM VO

p- p- p- ec co

ir<'O IT o in0-00 — —

in p- o vo inkr o> in

• m ©CM i

CT CO P- P-V" CU P* VOn p- —. mo> o» o o

IMfo t> P- \0.» p- ~ in

vo m * CM

on«vo •» cvj — ~

0 0 co p-lo •» r- — ukrecoo

,;n r) n en incc n in in *

a »c j - n r>oo> co p--» p* in

n -< »• n p-ru vc p- * ^« ec «c in inIM oo> eo p-[o ^ r- »« m(MMTOO

o in o m-o

;«\i ri r i ri^ vo ci

vD <T (M P-» n newor r> p- •-<O - H — CVJ

co m CM <r r- vc © «-<in i n —>

co — J cr ir•» r> IM cvnr- «-nn** ^« (u (V

. _ 0D CO ** *vo cs CM e» eo

* IT * p «

in •» -T n no r> p~ « in

IV

r- cvj (Ma or>

ki> r> p- m

^ in eo n CM

,_ (Min ovo in •» •» PIcr n p- —* in

in co cr P-Y o o

M •» r- «M ccin •» •» nr"> p- « u

vO VO •» (MFIUIOC

vc cr •» am » •» nn p ir

00 — in -<m m •» •»n p- ->in

(V<V

VC CM

o o- oIM x(M(Vi PI n

(VIMIMCVJ CVJ CMo< PIP-CM ri n

* r> riCM CM N

m mCM CM CMa PIP-CM PI n

CO P - p -CM CM CVJ

,0> P I P -CM C! P)

CO VO 1/1

•i ri rio> m r »M PI P>

vO vO PI

cvj r>ri nr> p-

M r>) r i

CD CCp> P:PI P-r> PI

IT. OP- CO

Page 166: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 159-

C/JCsl

SS

Q

CO

en

H

QWH

oCM

33

ft.O

HSW

en

inIM

CM

rvj

coCO

uo

i i • c CM cr <c o n•» P-n .»(M <CCM CM

CD P- n in •* m M3 p- p. p-

(M iC O * I

a a ai i i

r*in co o>p- *0 IT •*O * GO IMm m m <c

«J •» !•• tfl- - cocoIM p-

C r p r- P-o <? ao CM *£

* in CJ r- p-1IM o rm CM

p- « <o m -»O * CD CM <Cu> u i i n vo

• : • : «J> P- CM CM CM * i n PI

•T « CO <T CD CM «

« IV 16 O -9 if (\jM CVICMIP) PI P) *

m o> r» in « •*>in *

a: Q:i I

o CM v im PI p- o» p-

ce CM >ci<I

a 0: r-i I r- o*> n p- co p. cu

Ol ^ - CC CM PI *m

^ co CM *cu r- I M eo

a; a> r- <C ino -j a. (V *i rm in <: *

CM O ~\mm - 0 3 J ^NOrt

PI Ul PMr-lr- •» r- a! cr o> (r cr

0CCM<0O«aDC« evi CM'D r> n

I I (U« D O >LI O l

^* niri tr rj r> oaa CM >o!o * c n r-*-* oj CMin c*> n

ac u u1 r- •TiI I •£ OJ r-I

o cc CT»ICT- in CD a? m« r- cc|0* o o o oa CM «jo m o> n r»

a o: >o ui M ' O < ii i in o CMIM C .

a a mi i «c

o " evico a* oa IM r-" IM 4M

a a r- ii i i i

i>- crcc c oa CM i -

oiroiro

i »o ct *y coi *c r- co • -

• *c a »*• •»• IP (T p i r^

. ocMv,in •» ~* ec

CM •* ct a> M CM IV CM M• >-m & n r-

© CJ C> •»d CC IT C

a. in a1 m i"-<v ui o «v n

') CM "" O IPD ^ a ( V IT- t - p- co oo

o1 PI ui -a- P-

tr ai r- * tn_ ^ eo CM *n in in *

p- CM CM o~Ul V O

-» in •» •»

CM n n CMa. x P- e^ co CVJ

p. M « CMC ) CM CO •£>

o> co P- xa

cc ic n0 CO p- <OCM * ^ O <rO » CO <~

p- p- CO

r> p- » ct a.'

CMP- P- CMp- J-C •»

OO«CDIMp- n «

^ D * " O 0>o •* a' c\j I

r n \ i c•7 oo CM in

p- p. p. co au

D if) CC CCCD p- «

P- Ul D ^ IT

*T CU CVJ UP- P- CO Cb

in o> •*i n r-i CC M3

n i-i nj 1 o> ^

.» n «sr aj (\i

CM • * CM CVI

P- < CV C7-vtniuo«XCUvCp- p- cc ec

in in tn un tr

•o in m mp « i n •»

P>P

o o CM in a*

co » p- eo o>p- « ui •$/ rt• n p H H

oo r- in in •»i i M - ir

co IT- cr o

CM i n C71 <vT OPI CM ** ** " «

<r o m -r i

m CM CM CM nCD p- * in -»c* ri p M IP

oo P- CM n M

PI p- — in

M tfiUt * CMn CM in i r CM

eo cc o>3< p- -c in •»

i P- — m

••"BOU1UI P- M3 CM

M »- O O - "co P- <c m

a co coM p- CO •£ CM

M » p- oOOND

* in * ina; r- »c inn p tfi

IT 4 ri o io> o m *

CM IM •

O — M |- i n »> PI P-CM fM [M PI PI

p- CM CDP)IM » M

S r i p» «— w eCM c« IM n r>

CM r u n (7> •»9 O ( * ) ( V J

n p. o>co

>•««

o o& n P-IM n n

* p- — o CMn CM CM •«<-<

O •-< i-t CM CM

CO 1/1 — 0- O

<c o- n p-I tVJ (VJ M Mn p. M

> *— M IVj CM

n n P- s- p-

cc m c p- p-

i >o •-> p-

p- •-« m

tr p- o

0> n («.CM ! - ! <-)

m •*) noc « o

P) p-

^iCCIO O CM cc in * o> a •»

PIIM CM~

M* #- CM IV

M Ul iO >Ctvj p <t 4

p- O IT •-"n n CM CMn p- —

(T cy hc*i en CM CMr> p. - i r- • • -< CM CM

in P- •»eo p- na;p a

r> p-

~ j- np- * CM

C1 0" OCVJ M CVJ

cr n p-cunn

Page 167: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 160 —

uo

ao

gco

g

u> r- r-w cii n ^ if *cj - . . •o •-* c\j n < if

• (VJ <Vl (VI CM (V

ooo

O ^^ (VI D ^ IT• I\J M (Vl(M <V

in o ~(•-« c\j r j »»• u

M l r t <M

^^ ^ T (\l OD

o o (vi r? «r in• (VI (\J <\J (VI (VJ

n n n rim

o o~njn* fo ry ru AJ nj

1 o U1 <cr- r- ain

(VJ (VJ (VJ CM (V)

O O — IOJ (V) OJ OJ OJ

n xt cc co irOJ fO * IT O

OJ (Vi <V) Pd OJ

(VI (VJ (VJM fO

(OMDtcvi <vi cvtCJri

i*- co croj OJ OJ n

OJ OJ OJ(V* «-4

* r- cc c oOJ O4 OJOJ D

>— «*• ^ nOOQOO

r* co C of\i OJ OJ n

H n c n o m

vi oj oj OJ OJ

o n ^ nooo oo a oc a.

m %o r- co OT1

rvi OJ OJOJ OJ

fV> OJ OJOJ OJ

#-*,-i»>««-irvJ(Vt<VJA;fUAJfVJ

Page 168: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

TABLE A-3A HYDRATE FORMATION TEMPERATURE (°C)

PRESSURE MPa

MPa 0.000 .005 .010 .016 .020 .025 .010 .035 .040 .045

1.80 27.45 27.47 27.50 27. = 3 27.55 27.58 27,601.P5 27.71 27.73 27.76 P7.7P 27.81 27.83 27 f861.90 27.96 27.9f> 21?.01 2P.03 2S.05 2P.08 28,101.95 28.20 28.22 ?/?.2S ?fl.?7 2P.30 2P.32 28,34?.00 28.44 28.46 2P.49 28.51 2P. 53 28.56 28,582.05 28.67 28.69 28.72 28.74 2P.76 28.78 28,812.10 28.90 28.92 2P.94 28.96 2P.99 29.01 29.032.15 29.12 29.14 2-5.16 29. IP 29.21 29.23 29,252.20 29.33 29.36 25.3P 29.40 29,42 29.44 29,462.25 ?9.55 29.57 25.59 29.61 29.63 29.65 29,672.30 29.75 29.77 29.79 29.81 29.S3 29.85 29,87 25.89 29.91 29.93

27.6327.8828.132S.372«.6021.8325.052S.272S.482?.69

27.6527.9128.1528.3928.6228.8529.0729.2929.5029.71

27.6P27.9328.IP28.4?2fi.f>528.8729.1029.3129.5229.73

Page 169: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 162 -

H

8uCO

bJ• J

Ct tt to d u,i i CM d d

— p- <•) O

n IT p-c H n in Mf F<

•C K — <O M CO l/>t I O O — ~

CO

GA

S

CO

K

vTE

D

1CO

OS

I?

SS

UR

E 1

in

-

.60

.55

a a: oc « oi i ece

cvj -a- p- a-

a a ui — P -i i r- OD oo

CM •» *

m n ^

I I U IM U1 UlI I « >C P-

d d d

a a a <c dI I -T Ul «

CM •» *Ori n CM

r x r u> —•» •» in «o» — d in

o o o o o

— (vi (vi n— d i/i p-c — n in P-

<r in in in u*iO O C I C I O

— cc «c dO O M I M

6J — d UI r-

o o o o o

\j c p- u) rt-\ o» o —

aomu

CO • * CMp» ou <r oOCM •» P-

45

UC IX P- >» IMI I ~

<VI - I vOn n i»i n •*

IT P- Ul r! —p- CD

CX' C3 CM <T «

O C3 O O O

a. a. m (v oI I (M n •«

(M »» ^i

c o o o o

O — (M (MO (VI -J •&r piffpi

I cr o o —CMVJ <t <C

oo

IOIT'OITO

n < 4 •» •»

ooooooooo

o o o o o

If. O If O If* i/i in >o \o

-I — a. ui IM- cere

•* in in in uio o o > . o o o o o o

> O CD in (M CTo p* r- CD <r

» in IT. IP tn ui *

OiOChOO

n -tf in o— r>m r-

•* IT in in in

QJ 4J IVIM CM n in

a* p- — oj<C OD

Ul Oj C71 ->C IV

oooooooooo

o p- in CM ojp- * — OD inCD CD 0* O — — CM CO rn 4*

— n * co

jp- ^ <— CM I

| O CM •n in O P - p-o CM •» * ooao oo co ao co

O.C"O O'OiOiOOiO

ooc in n —p- P- aj o> oO" — c> in «utf^ D D ^D D

eo in r> o•""• (Vj (*1

O (M -» *P- P- p-

o o o o oo o o o o

'COt l < ? C M C P P » - ^ - U J* O — CM CM

o- — n m p-it! p- p- p- p-

n * * in >oOCM •*- <0 OCCD 00 00 00 00

o o o o o

— CM r> »r ui m >JJ— dtnp-cr* — n i nU) U> U) If I jl/l *J * <il ^J

OOOOO^OC9^

cc in tn ocr cr o — i1

— -t -o ooMV P- r- p- p-

i

QJ <u u> o | — o« a. ijj •»o — (vjn^^in-cp-•"•nmp-o*^«nuip-inintninm>cso4>«cOOO O|O O O O O

co%Dinnj(V'ocop-ino n m p-ia — n in P-

O O O O O C 7 0 0 0

cop-in.»fM — croo>cco cr- o — 'CM n n 4

/ o i n

ooo o.o ooooooooo

p- oc a o'— (MPI n .o(vj^p-ic ^«rriinitninmLnlin «£*£<£'

CJ" C? O •-« —

— tr p- -r —cc cc <r o —o* — n *u au

o o o o o

cc co cr oo» — n m co>c p- p- p- p-

o o © o o

cvj o p- m• p- oo au &

K. p- p- p- p-

_ n — o> <cin *o p- p- ac

— nm r-•c P- p- p- p-

o o o o o

Ifi.OlT11

CM CM n d •

p- * » Ulp- oc oc OO CM •» >C00 CO CO CC

v in — P-p- 0U CD

O CVI •» *0C 0D OC 0D

o oo o o

O O CM CC•JU1UI«1*

CC OD CC CO 0D

CM rj -» •» uO (VI »• >D 00cu ou cu cc cu

u» fvi au •»— CM d r io rvi »» >c aj

ao co ao oo

o o o o

p- J- c— M d dCVI -» « 00co co a

o o o o

V >O CM CCO — (M CM

— 00 .» —O O — (MCM <t <c aa co cc cco o o o

o i r o i nin in <t< *

* — *— d ino> cr o-

o o o

f*> OCJ>OO

dina a <r

p. p. a,o CM •»

i ^.i <t><vj • *vr IT

ui —in <cCM C7- (T

o o

CO d<r in(M -Jv a-

o o

m *cr cr

(M COd dCVi J-

o o

Page 170: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

TABLE A-35 VISCOSITY OF WATER SATURATED H2S GAS (mPa.s)

PRESSURE MPa

1.80 1.85 1.90 1.95 3.00 2.05 2.10 2.15 2.20 2.25 2.30

20.?S.30.35.40.45.50.55.60.65.70.75.80.85.90.95.100.105.110.115.120.125.130.135.140.145.150.155.160.16S.170.175.180.

-R-R

.013328

.013533

.013738

.013943

.014149

.014355

.014561

.014768

.014974

.015181

.015388

.015595

.015802

.016009

.016217

.016424

.016631

.016838

.017045

.017251

.017458

.017665

.017871

.018077

.018284"

.018489

.018695

.018901

.019106

.019311

.019516

-R-R

.011342

.013546

.013751

.013956

.014161

.014367

.014573

.014779

.014986

.015192

.015399

.015606

.015813

.016020

.0U227

.016433

.016640

.016847

.017054

.017261

.01746?

.017674

.017880•01P086.018292.018498.018703.018969.019114.019319.019523

-R-R

.013356

.013560

.013764

.011968

.014173

.014379

.014585

.014791

.014997

.015203

.015410

.C15616

.015823

.016030

.016237

.016443

.016650

.016857

.017063

.017270

.017476

.017683

.017889•OleO95.018301.018506.01871?.01*917.019122.019327.019532

-R-fi

.013370

.013574

.013777

.013981

.014186

.014391

.014597

.014802

.015008

.015214

.015421

.015627

.015833

.016040

.016247

.016453

.016660

.016866

.017073

.01727?

.017486

.017692

.017898

.018104

.018309

.018515•01872C.01892=.019130.0)9335.019540

-R-R

.013385

.013588

.013791

.013995

.014199

.014404

.014609

.014814

.015020

.015226

.015432

.015638

.01E844

.016050

.016257

.016463

.016670

.016876

.017062

.017289

.017455

.017701

.017907

.018113

.01831R

.018524

.018729

.018934

.019139

.019343

.019548

-K-R

.013400

.013602

.013805

.014008

.01421c

.014416

.014621

.014826" .015031 '.015237.015443.015649.015855.016061.016267.016473•01668C.016886.01709?.017298.017504.017710.017916.01812).018327.018532.0ie737.018942.019147.019352.019556

-R-R

.013415

.013617

.013819

.014022 ~

.014225

.014429

.014633

.014838

.015043

.015249

.015454

.015660

.015866

.016071

.016277

.016481

.016690

.016896

.01710?

.017308

.017511

.017719

.017925

.018130

.018336

.018541

.018746

.018951

.019155

.019360

.019564

-R-R

.013431

.613631

.613833

.014035

.614238

.614442

.614646

.614850•015055.015260.615465.015671.615876.016082.616288•616494•Q16700•016905.(117111•617317•Q17S23•017728•617934•01P139.018345.618550.018755•618959.019164.619368.619572

-P• ft

.013447

.013647

.013848

.014049

.014252

.014455

.014659•014863.015667•015272.015477.015682.015887.016093.016298.016504.016710.016915.017121.017327.017532.017738.017943.018148.018354.018559.016763.018968.019172.019377.019581

-R-R-R

.013662

.013862

.014064

.014266

.014468

.014672

.014875:i615679 '.015284.015489.015693.015899:0l6l04.016309.0165)5.016720.016926.017131.017336.017542.017747.017952.018158.018363.018567.018772.018977.019iei.019385.019589

-R-P-R

.013678

.013878

.014078

.014280

.014492

.014685

.014888• OJ'5092.015296•015500.01570=.015910.016115.016320.016525.016730.016936.0171'!.017346.017552.017757.017962.018167.018372.018576.0187PI.018985.019189.019393.019597

Page 171: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

1.30

TABLE A-36 VISCOSITY OF H2O SATURATED WITH DISSOLVED H2S (mPa.s)

PRESSURE MPa

1.35 1.40 1.50 1.55 1.60 1.65 1.70 1.75 1.80

20.25.30.35.40.45.50.

-P•902020•flQ0934.717310.647266.587954.537245

-P.902017,e00933.717311.647269.587958.537250

-D

-P.P0C33.717312.647271.=87962.=37255

-R-R

•800S32.717-313.647274.587966•S37J60

-R-R

.800921

.717314

.647277

. = (?7970

.537265

-R-R

.800930,717315•64727S•5P7974.537?70

-R-R

.800930

.717316

.647282

.587978

.537274

-R-R

,800929.?17318•f47285,5<=7982.537279

»P-K

.(00928

.717319

.647287

.cg79£6

.537284

-R-P

.800928

.717320

.647290

.S879S0

.537289

-R-R

•8009?7.717321•647?93.587993.537294

Page 172: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

1.80

TABLE A-36 VISCOSITY OF H2O SATURATED WITH DISSOLVED H2S (mPa.s)

PRESSURE MPa

1.85 1.90 .00 2.05 2.10 Z.15 2.20 2.25 2.30

20.25.30.3 "5.

40.45.50.

-R-R

• »00<327.717321.647293.SP7993.537294

-P-P

.800926

.717322

.647295

.587997

.537299

-R-P

•P00925.717323.^47298•cRP001•c37304

-s-p

.P00925

.717324

.'•47301

.c»S00=

.53730<5

-9-R

.800924

.717326

.647303

.5PF009

.537314

-c-K

.800923

.717327

.647306

.588013

.53731?

-R-R

.800523•7173?R.647308.588017.537324

-R-R

.800922

.717329

.647311

.588021

.537329

-R-R

.800921

.717330

.647314

.5*>B025

.537334

-f?-R-K

.717331

.647311s

.588029

.537339

— R-P-R

.717332,64731<;,5RflO33.337344

Page 173: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

TABLE A-37 THERMAL CONDUCTIVITY OF WATER-SATURATED H2S GAS (W/(m.K))

PRESSURE MPa

1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.B0

20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95.100.105.110.115.120.125.130.135.140.145.150.155.160.165.170.175.180.

-R.014796.015118.015432.015739.016039.01633?.016619.016901.017177.017449.017716.O17«»fiO.018240•01P498.018753.019007•019?59.019510.019761.020013,020?64.020517.020771.021027.021286.021548.021B13.022082.022355,0??*34.022917.023207

-R.014799.015123.015436.015743.016043.016336.016623.016905.017181.017453.017720.017984.01«245.018502.01P75P.019011.019264.019515.019766.020017.020269.020522.020776•021032.021291.021553•02181P.0220P7.022361.022639.022523.023212

-R-R

.015125

.015440

.015747

.016047

.016340

.016627

.016909

.017185

.01745-

.017725

.017988

.018249

.018507

.018762

.019016

.019268

.019520

.019771

.020022

.020274

.020527

.020781

.021037

.021296

.021558

.021823

.022092

.022366

.022644

.02292R

.023218

-fi-c

• 01512<i.015443.015750.01605C.016344.016631.016913.01718?.017461.01772";.01799.1.018253.018511.018767.019020.019273.019524•019776.020027•02027S•020532•020786.021042.021301.021563.021P.2P•022098.022371.022650.022934.023223

-f?-R

.015132

.015447

.01S7S4

.016054

.016348

.016635

.016917

.017153

.01T465""

.017733

.017997

.01P2E8

.016515

.018771

.019025

.015277

.019529

.019780

.026032•0202P3.030536.0207S1.031047.031306.021568.021834.032103.032377.0226=5.022939.023229

-P-B

.015136

.015451

.015756

.016056

.016352

.01663?

.016921

.01719770T746? ~.017737.01800).01826?.01852C.016776.01902?•01928?.019534.019785.030036•02028e.020541.030796.021053.021311.031572•031P3?.022108.032382.022660.022944.023234

-R-R

.015140

.015454

.015762

.016062

.016355

.016643

.016925•017202.017474.017741.018005.018266.018524.018780•019034.019287.019538.019790.020041•02029T.020546.020801.021057.021316.021578.021844.022113.022387.022666.022950.023240

-R-R

.015143

.Q15458

.015765

.016066

.01*359

.016647

.016929

.017206•017476•017746•oieoio.018271.618529•012784.019038•619291.619543.019794.020046.620298.020551.6.20806.021062.021321.621584.021849•022119•622392•022671.022955.623245

-It-*

.015147

.015462

.015769

.016069

.016363

.016651

.016933

.017210

.017482

.017750

.018014

.018275

.018533

.018789

.019043

.019296

.019547

.019799

.030051

.020303

.020556

.020811

.021067

.021326•031589.021854.022124.032398.032677.022961.033251

-R-R

.015150

.015465

.015773

.016073

.016367

.016655

.016937

.017214•017486.017754.016018.018279.018537•018793.019047.019300.01955?.019804.020055.020307.020561.020815.021072.021332.021594.021859.022129.022403.022682.022966.023256

•P-P

.015154

.015469

.015777

.016077

.016371

.016655

.016941

.017218

.017490

.017758

.0180?2

.018283

.018542•01879P.01905?.019305.019557.01980P.020060.020312.020566.020fl?0.021077.021317.021599.02186=.022134•02240P.0226P7.02297?.02326?

Page 174: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

TABLE A-37 THERMAL CONDUCTIVITY OF WATER-SATURATED H2S GAS (W/(m.K))

PRESSURE MPa

l .f iO 1.P5 1 .«90 1.95 .00 2.05 2.10 2.15 2.20 2.25 2.3H

?0.25.30.35.40."45.50.55.60.6«5.70.75.

eo.85.•5Q.95.100.105.110.115.120.125.130.135.140.145.ISO.155.160.16S.170.175.180.

-P-R

.015154

.0154*9

.015777

.016077

.016371

.016659

.016941

.017218

.017490

.01775R

.01802?•01P?P3.01*542.01H79H.019052.019305.019557.019808.020060.02031?.020566,0208?0.021077.021337.021599.021865.022134•0?240«.02?687.02207?.02326?

-P-R

.015157

.015473

.015780

.016001

.016375

.016663

.016945

.017222

.017494

.017762

.01P027•01P28P.01*546.01PS0?.019056.019309.019561.019813.020065.020317.020570.0208?5•0210»2.021342.021604.021870.022140.022414.022693.022977.023267

-P-R

.015161

.015476

.015784

.016085

.016379

.016667

.016949

.017226

.017498•017767• 01P.031•01P292.018551.01P807• 01<5061.019314.019566.019H1B.020070.020322.020575.020830•0210P7.021347.021609.021875.022145.022419.022698.(!2?9fl2.023273

-c-R

.015165

.0154RC

.01578P•01608S.016383.016671.016953.017230.017502.017771.018035.018296.018555.018P11•019065•01931P.019571.019P22.020074.020327.020580.020P35.021092.021352.021614.021880.022150.022424.022703.02298P•02327P

-P-R

.015168

.0154P4

.015792

.016092

.016366

.016675

.016957

.017234

.017507

.017775•01P039.016301.018559•OieP16.019070.019323.019575.019827.020079.020331.020585.020840.021097.021357.021619.021885.022155.022430.022709.022993•0232P4

-R-R

.015172

.015487

.01579=

.016096

.016390•01667E.016961.01723F..017511.017779.018044.018305.018564,oi8P20.019074.019326.019580•019P32.020084•020336.020590•030P4C

.021102•0Z136Z.021624.021S90.022160.02243=.022714.022999.023289

-R-R

.015175

.015491

.015799

.016100

.016394

.016682

.016965

.C17242

.017515

.017763•01R048.018309.018568•01«824.019079•0J9332.019585.019836.020088.020341.020595.020850.021107-02136^,.021630.021896.022166.022440.022720.023004.023295

-R-R

.615179•Q15495.015803.016104.016398.016686.016969•017246•Q17519•517788•018052•018314.018572.018829.619083.619337.619589•619841•020093•020346•620600.620855.621112.021372.021635.621901.622171.622445.622725•623010•023300

-R-B

.015183

.015498

.015806

.016108

.016402

.016690

.016973

.017250

.017523

.01779?

.018057

.018318

.018577•018633.019088.019341.019594.019846.020098.020351.020604.020860•021117•021377• 0216'0.021906.022176.022451.022730.023015.023306

-P-R-P

.015502

.015810

.016111

.01640*

.016694

.016977

.017254

.017527

.017796

.018061

.01832?

.018581

.018838

.019093

.019346•01959e.019851.020103.020356.020609.020865.021122.021382.021645.021911.022181.022456.022736.023021.023311

-p-R-R

.015506

.015P14

.016115

.016410

.01669P

.O169S1•017259.017531.017800.018065•0183?7.018586.018842.019097.019350.019603.019855.020107.020360.020614.020870.021127.021387.021650.021916.022187.022461.022741.023026.023317

Page 175: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

TABLE A-38 THERMAL CONDUCTIVITY OF HjO SATURATED WITH DISSOLVED

°c

20.2S.30.35.40.45.50.55.60.65.70.75.80.85.90.

1.30

-R.014796

' .015118.01543?.015739.016039.016332• 016M9.016901.017177.017449.017716.017980.018240.018498

1.35

-R.014799.01=122.01c436.015743.01*043•01*336.01*623.016905.017181.017453.017720.017984.018245.01"502

1.40

-R-R

.015125

.015440

.015747

.01*047

.01*340

.016627

.016909

.017185

.017457

.017725

.017988

.01P249

.01P507

1.45

-c-p

.015129

.015443

.015750

.016050

.016344

.016631

.016913,017189.017461.017729.017993.018253.018511

1.50

-P-R

.015132

.015447

.015754

.016054

.016348

.016635

.016917

.017193

.017465

.017733

.017997

.018258

.018515

1.55

-K-B

.01513*

.015451

.01575?

.01605?

.016352

.016639

.016921

.017197

.017469

.017737

.018001

.01826c

.018520

H2S (W/(m.K);

PRESSURE MPa

1.60

-R-R

.015140

.015454

.015762

.016062

.016355

.016643

.016925

.017202

.017474

.017741

.018005

.018266

.018524

1.65

-R-R

.615143

.615458

.615765

.016066

.Q16359

.(J16647

.016929

.017206

.Q17478

.017746

.618010•018271.018529

1.70

-H-R

•015147.015462.015769.016069.016363.016651.016933.017210.017482.017750.018014.018275.018533

1.75

-R-R

.015150

.015465

.015773

.016073

.016367

.016655

.016937

.017214

.01748*

.017754

.018018

.018279

.018537

1.80

-R-R

.015154

.015469

.015777

.016077

.016371

.01665?

.016941

.01721P

.017490•01775P.018022.018283.01854?

I

001

Page 176: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

l.PO

TABLE A-38 THERMAL CONDUCTIVITY OF H20 SATURATED WITH DISSOLVED

1.8S 1.95 .00 2.05

PRESSURE MPa

2.10 2.15 2.20 2.25 2.3"

20.2S.30.35.40.45.50.55.60.65.70".75.R0.p.s.90.

-P-P

.015154

.015469

.015777

.016077

.016371

.01*659

.016941• 017P1R.017490•01775«.018022•01P2P3.01*54?

-P-R

.015157

.01^473

.015780

.0.6081

.016375

.016663

.016945

.017222

.017494

.017762

.01*027•01*2RP.01*546

-P-R

.015161

.015476

.0157*4

.01*085

.016379

.016667

.016949

.017226

.017498

.017767

.01*031•01P292.01P551

-P-C

.01516=

.015480•01578P.0160P-"5• 016.183.016671.016953.017230.017502.017771.01803"?.018296.018555

-R-P

.015168

.015484

.015792

.016092

.0H3P6

.016675

.016957

.017234

.017507

.017775

.016039

.018301

.01P559

-P-K

.015172

.015487

.015795

.016096

.016390

.C16676

.016961

.017238

.017511

.017779

.018044•01P305.018564

-R-P

.015175

.015491

.015799

.016100

.016394

.016682

.016965

.017242

.017515

.017783

.018048

.018309

.018568

-R-R

.615179•615495.015803.016104•016398.016686.616969•017246.017519 ~~.017788.618052.618314.618572

-R-R

.015183•015498.015806.016108•016402.016690.016973.C17250•017523•017792.018057.018318.018577

-p-P-R

.015502

.015810".0T6Tlt.016406.016694.016977.017254.017527.017796.018061.018322.018581

-R-P-P

.015506

.015814

.01611=

.016410

.0166^

.0169M• 0172«;<3.017531.017800.018065.018327.018586

Page 177: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 170 —

CO

oCO

CM

oINill

o gtoCOCO

wou

§

E*1

oa 4ec!\. IT a.i~oc o- a- CJ> o

ifi IT o - . p-•T <o o> ojin—i •» p- ri *o>tr p o o

er r- o a •-T n c (v <c•» oci — ir ao o — — —

© -a- c> p-» ©p- .»(V. >£ O- IT:cvj CM M n

3j* n p- *H **» in in

tvojaoocc <»"n r c u

— ~ in © \o

UI*PI oj oc in cvi o

o p- *i > t\j

r*- (*) a- u) ^-n c\j « ^o j a.— ~ — fk. fy

— •-> a —oori n ri ir r-•j a iv >o o*- »- (v C\J r/

* '.- — O U.ir *t cy <v trtt' <\l * "" IT

© -><?-•» r»* - vr I* r\, r-n t» — •c on. « n r, j

oo

oir oiroif oir cir

*'^ n o rt a" -«• ur» in in

ac <\t

cr n r- rv:j f n a (\.r n -f -j ir

t- ir o (v *•n o oc * inir o -» (7- -*

IT IT IT *

cr ^ © <« * — u

IT

r» o •-•n o oo >r

p. c •-

a (v p-. « *•» ir >c tc oo ^ cr » o

p- cc a

oir oiro

c cr cr

j ru in >c P.

cp

I\J rv; a »-oeic<r

a

o u i r c

n a, n crucrco

O v£ 0-r~ M r- -4o c ~< I-a o — —

. ft. ft.

O If O IPo o ~«•-<

rp. j rir c ci cc

in cr j - oa n* >o r r- eo

o> o> *in o> *

r- r- r- OJ a>

>•» r> t> i/> p-»n P- •r^r'SffttOO^GOCC

UHMUMM

*> r*> & jt a«c <• r\j

™ in o ui oc tc a c o

ac n- r-tTOO

fti r* r- n

cc r> ac n

a c- -i •*n p- ft; r-oc cc » cr

cunconoo

(t n " n- r* — M Pn o in o in

in oo ^-

>» cc r> af\j p- n cc~ <— (v r\j

^- p- o u' >r

a- in cc f-- i»-CC vC ITO l f . ^ Nj •» u- if

n ir' ooc >c in inac .* o -

— o o- o- o

PI n c p<C p- o ma •* »- p-ir c r~ r

ft ft. ft. <\. ft,

IT o if o in

tr 4 •»cc if a-•t o- -tO O i-<CVJ (M fti

/- in m

in oF ~ fti

r\j o ftin m P»

(V U

v. rv. tv

^- IT

a ir

cr irr- a

a- a

IT op- a'

Page 178: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 175 -

or.

incvi

©CM

x f a- **in © -a © mo>tv.. •*•*•• tr* rr~ r- r- cc cc cc o> o»

.» o* cc -«<cr» rvi oo ui • " _oj m f- © ran

4 © sD O^ p~ cr cvi inr~ p~ r- oo cu

— i - co -r •» tr c- m -» .»cvi cc in co c~ jcr cu a CL ecl o a ^ - f r* c cvi i/i cu —r- r- cc cp cc cc c a c ©

cr> o> -7 cvj inb> * •» cvih 41 O1 ftl UICC CC CO 0 * O*

* •» r>(MCO -« •» l»S 7 9 7

oo oj o r> o - " r-o n »

o r>o> r- >o in •»

r> >o crcr- cr cr

r- cvi - * w CM•» in -o p. c|ru t/i oo - 'o o o « «

t— n o - %

Io ao i/i c tvi& o n c OM IT a -r- ot ou co cu o> tr cr o o

— -H — cvi r )

O CU 4J iTt U'o nj in cc ~<a> a.1 a ou cr

1^ -ff '4. C) Uo a1 cc or cc(Vi .3- p^ o n,x cc a o tr

n p- h- rv rvifcvj * - r-t I\J n^ r~ o na o cr C

^- m •-• •»IT IT * M M* tr ivi 10 cca a tr f

cjo

o IT o m iiv i\i r> n

•» i-- o n >cr o ^

|^- n o • - f*CT O CVJ t ^

o n 4i ifo o o o o

• «c o IVJ in• CM if. cr CM

-J X >4J O~ .» P- -> •£cvi I T ar rvi m

C O — >-"

r, r CVi cc-» a: . in cc

>t ft *fc r:tC IT

cr^ooo

ao p>- r* cu© n *o o>

a © o o o

in CJ •» - . .pi »H i cvj I . , , _o n >o c cvi in coo o o © ~*

o in oo in r~* O CC ~ J

»" 11 CO|>H « CVI CM CV

4 <OD4•T r» -« ui

o- a. — aii< •» in IN- er,c r- * o (v<M ^ri 4 (V

c •— p- t*- -"u r i o

^ CVt ITCVI CV

-< j - r- © Tcu »-4 «j ao «-•!^4 cvi cvi cvj n

n >o "-I uo •a r- — •*cvj cvj cvi n m

n c ncoir- © >(VI n n n

Ui f- *—f~ (VI

H •"" <- cvi ru

— © I T^ C71 0" CVi «40 ©

X' cvi " inr> <-• c? r*

In N ^- >j a

n (vi r-- it>t (v a. inCVJ >u c r icv) rvirvi r-

© r» j rv.€ O"P1

it' *: o C »(vj x in cvi cr«© n p* »

• - i •* CC CVJ

»•»•«• I/1

!— ir. cc cvi r-<r <r !/"• m

tr •* n * r l r i oj >u cr u

<. o-fvjDr' j'.r* <t a r. >tv K •* •» m in

o- »- a a' <vcc cvi in o^ •»CO CVJ 1/1 CD CVCM n n n ^

CVI CVI «£ .*• >Oco Cvi <£ «-H «c• - • i n co cvju:n n n -j- ^>

cvi rvi r- i/i cocvi co • * • < - • «

|C^ CVI **0 © CO•r in in o ^

CT> o co -» incc n co * o•r CD *- in cr

p CO " C DKO CO iHCO «Jcvi <3 o nin in *o «o

c . •o •& — ©*-• *O CVI O* CCCJ ~* i n a . cvien .» <r in

— co in n• m cc oj *•» •» ui in

-t cvi in nr* ui r> ivj

Ji co rg *o

r- ina(\j <

r- in aj ^in in IT >o>£ o .» cc

CC T O(\j© •» c

VI T- t- IT« CVi .» |v or1 ir ff o cc•C >C >C P~ P"

IT ©irohroinoir c ir © ir ©( v r p

— n cr cr P)|«-« n trb <r o u i cvijo «*> nin o- ru * "~ —

* in in •

n © cvi «• cc•— o~ r- >o

t © n r* ^i n ^ »*o >c r*~

ui tr r-i n a *© rvr-

* •» 0>ho >* cvir- — inko i«- r»

C O 0;in cr nr~ r» oc

© cr ccI© ^ r~ — ir-

* CC CVI >O ©CU

u- p- .T icr >-> -»<C ^ I f

- p- in o.© ^ a

C •» •»p. cvj p~o — in ©<x c cr c

O IT © ITin m so •*•'

4- oc rvia. a, ir

— -T p-cr r: p*cc a o-

ir a in

o- <t •»_ L0 (V•» » -ac- c i—

CV. (V

Page 179: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

TABLE A-40 DIFFUSION COEFFICIENT 0. H2S IN H20 LIQUID (nm2/s)

°c

?0.?5.30.35.40.45.50.55.60.65.70.75.RO.85.90.95.

100.105.110.115.l?0.1?5.130.135.140.145.ISO.155.160.165.170.175.l«0.

0.000

.001636

.001871

.002121

.002388

.002669

.002965

.003?75

.00359R

.003934

.004281

.004640

.005010

.005390

.005779

.006177

.006583

.006997

.007417

.007844

.008277

.008715

.009159

.009606,01005ft.010514.010972.011434.011898.012364.012833.013303.013775•014?48

.500

.001650

.001895

.002147

.002415

.00269R

.002995

.003306

.003631

.003968

.004317

.004677•00504P.005428•005«18•006?17,0066?4.007038.007460.007887.00P321.008759.009203.009651.010103.010559.CU01P.0114PO.011945.012411•0128PO.013350.013822.014295

1.000

.001682

.001920

.002173

.002443

.002727•003G?6.003338.003664.00400?.004 352.004713.0050P5.00=467.005P5P.006257.006665.007080.007502.007930•00P364•O0P804.005248.005656.010149.010605.011064.Oil1-?*.011951.O124'5«.01?9?7.013397.ni1P70.014343

1.500

.001705

.001944•00220&.00247 0.002756.003056.003371,.003657.004017.0043P8.0 04750.00512:*.005506.005857.006258.00*70*.007122.007545.007973.0OP4C?.P0Pfl4P•009?5?.009741.010154

.011110

.011573

.012038

.012505

.012974

.013445

.C13917

.01435'.

TEMPERATURE UC

2.000

.001728

.001969

.002226

.002498

.002786

.66308?

.003402

.003731

.004071

.004424

.004787• O0M61,OOt.i544.005937.00633e.00*748.007164.007587.00801?.008452• oe^r-.-?.01 'IT

.010240

.010697

.011157•011619.012084.012552.013021.013492.013964.014438

2.500

.001751

.001994•002253.002526.002815.063118.003435.003764.004106.004459.004824.005199.005583.005977.006379.006789.007206.007630.008060.008496.008936.009382.009832.010285.010742.011203.011666.012131.012598.013068.013539.014011•0144P5

3.000

.001775

.002019

.002279

.002555

.002845

.003149 "

.003467

.003798

.004141

.004495

.004*61

.005237

.005622

.006617

.006420

.006P.30

.007?48

.007*73

.008103

.008539

.008981

.009*27

.009«77

.010-531

.010788

.011?49

.011712

.012178

.012645

.013115

.013se6

.014059

.014533

3.500

.001799

.002044

.002306

.002583

.002875

.003180

.003499

.003831

.004176

.004531

.004898

.005275

.005661

.006057

.006460

.00(872

.007290

.007715

.00ei47

.008583

.009025

.009472

.009922

.010377

.010834

.611295

.011758

.012224

.012692

.013162•013633.014106.014580

4.000

.001823

.002070 '

.002333

.002611

.002905

.003212 -

.003532

.003865

.004211

.004568

.004935

.005313

.005700

.006097

.006501

.006913

.007332

.007758

.008190

.008627

.009070

.009516

.009967

.010422

.010880

.611341

.011805

.012271

.012739

.013209

.013681

.014153

.014627

4.S00

.001R47

.002096

.002360

.002640

.002935

.003243

.003565

.003899

.004?4f

.004*04

.004973

.005351

.005740

.006137

.006542

.006955

.007375•007S01•006?33.008671.009114.009561.010013.010468.010926.011388•011851•01231P.012786.013256.013728.014?01.014*75

Page 180: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

TABLE A-41 SURFACE TENSION OF H2O AGAINST H2S VAPOUR (N/m)

PRESSURE MPa

1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.T5 1.80

20.25.30.35.40.45.50.55.60.65.70.75.f>6.85.90.95.

100.105.110.il5.120.125.130.

-R.047796.049487.050981.052260.053339•0S41R9.054813.055212.055391.055357.05512?.054703.054123.053410.052598.051727.050846.050009.049279.048730.048442.048508.

-R.046850.04S615.050180.051533.05*667.053575.054254.054704.054930.054938.054742.054359,05-»810•05T124.052335.051484.050618.049792.049070.040524.048236.048297

-a

.047743,o49378.050798.051995.052961.05-'95. 05<.i<56.054469.054520.054363.054015.053497.052838.052073.051240.050389.049575.048R60.048318.048029.048085

-R-fi

.046871

.048577

.0500£'«

.051323

.052348,05313f.053688.054008.054102.053984.053671.053184.05255?.051810.05C5V7.050161.049358.048651.048112.047822.047874

-R-R

.045999

.047775

.049329

.050650

.051734

.0=2578

.053180

.0=3546

.053684

.053605

.053326

.052871

.052266

.051547

.650753

.049933

.049141

.048441

.047906

.047616

.047663

-K-K

.045127

.046974

.048594

.64997?

.051121

.052019

.052672

.0=3085

.053266

.053226

.0S29P2•0S255e.0=1980.051284.0=0510.049704.048924.048231.047699.047409.047452

-R-R

.044255

.046172

.047659

.049306

.050507

.051460

.052164

.052624

.052847

.052846

.052638

.052245

.051694

.051021

.050266

.049476

.048707

.048022

.047493

.047203

.047241

-R-R

.Q433B3

.045371

.0^7124

.048634

.649894

.650901•551657.052163• 052429.«52467• 05229'.051.0?,e a8".• vO22•049248.048490.047812.047287.046996.647030

-R-P»

.042511

.044569

.046389

.047961

.049280

.060343•051149• OS 1702.052011.052088.051950051618£1122

.050496

.049779

.049019

.048273

.047603

.047081

.C46789

.046819

-ft-P

.041639

.043768

.045654

.647284

.048667

.049784

.050641

.051241

.051593

.051709

.051605

.051305

.050836

.050233,049S3'5.04879!.048056• 0«i7393.046875.046583.046608

-R•R

.040767

.04296*

.044919

.646617

.048053

.049225

.050133

.050780

.051175

.051329

.051261

.05099?

.050550

.049970

.04929?

.048563

.047839

.047184

.046669

.046376

.046397

Page 181: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

TABLE A-41 SURFACE TENSION OF H2O AGAINST H.,S VAPOUR (N/m)

PRESSURE MPa

1.80 1.85 1.90 1.95 2.00 £.05 2.10 2.15 2.20 2.25 2.30

20.25.30.35.40.45.50.55.60*65.70.75.80.85.90.95.100.105.

110.H«5.120.125.130.

-R-R

.040767

.042966

.044919

.046617

.048053

.049225

.050133

.050780

.051175

.051329

.051261

.05099?

.050550

.049970

.04929?

.048563

.047839

.047184

.046669

.046376

.046397

-R-R

.039895

.042165•0441P5.045945.047440•04P666.049625.050319.050757.050950.050917.050679.050264.049707.04904P•04P334.047622.046974.046463.046169.046186

-R-R

.039023

.041363

.043450

.045273

.046826

.04P107

.049117

.049858

.050338

.050571

.050573

.050366

.049978

.049444

.04P804

.048106

.047405

.046764

.046256

.045963

.045975

-K-C

.038151

.040562• 042711;.044600.046213.047549.048609.049397.049920.050192.05022P.050053.049692.049182.048561.04787P.0471RP.046555.046050.045756.045763

-R-R

.037279

.039761

.041980

.043928

.045599

.046990

.0481C1

.048935

.049502

.049813

.0498P4

.045740

.049406

.048919

.048317

.047650

.046971

.046345

.045844

.045549

.045552

-G-C

.036407

.038955

.04124=

.043256

.044986

.046431

.047593

.048474

.049084

.045433

.049540

.049426

.049120

.048656

.048074•047421.046754.046136.045638.045343.045341

-R-R

.035535

.038158

.040510

.042584

.044372

.045872

.047085

.048013

.048666

.049054

.049196

.049113•048834.048393.047P30.047193.046537.045926.045432.045136.045130

-P.-R

.634663

.637356

.639775

.041911

.643759

.645314•646577.047552.048247—•048675.648852.048800.(J48548.048130.Q47S86•046965•646320•645716

•645226•644930•644919

-R-R

.033791

.036555

.039040

.041239

.043145

.044755

.046069

.047091

.647829

.048296

.048507•048487.048262.047867.047343.046736.046103.045507.045620.044723.044708

-R-R '-R

.035753

.038305

.040567

.042531

.044196

.045561

.046630

.047411

.047916

.048163

.048174

.047976

.047605

.047099

.04G50P

.045886

.045297

.044614

.044516

.044497

-P-R-P

.034952

.03757?

.039895

.04191P

.043637

.045053

.046165

.04699?

.047537

.047819

.047861

.047690

.047342

.046856•046?80.045669.04508P

" .044667.044310.044286

Page 182: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 7 5 -

oo

wCO

3CO

o

g£_,

ST

i

C_"0

E-'

w

oO

•in

©

oo

©©

uo

u. n co <t cc n cc

(VI (VI <VI OJ ftj

r>.» in P- tnr>cc I T in >c

«rucn nj ^* ~ ©(VI (VI (VI (VI (VI (VI

(Vi * « ecC4ITIOM(vi in I rft IVI •— «•* O

(VI (VI (VJ (VI (VI

» ( f CD ~ ©P>- O O Ml Ml(Vi <£ O * 0*D (VI (VI — O

(VI (VI (VI (VI (VI

~ cvi Mi r> CD.» r- >r ~ on«omon (vi (vi ^

(VI (VI (VI IVi (Vi

(VltC <f vO O^- n (vi vc in

V X- •»M IT (^ — C7-O O> in (VI OCOIKMf

» a- * (vi co tr cr tr

»O 00 GO m ( i • * oo m•T D « (VI IT

M (VI •

oirjo

^ im •-« r«- n o

ec « nm * c m" r* r> o

r> ^ (Vi oa o a (Vi< 0C « vC —C) (VI (VI » i«

•) If.r- in

D (VI IVI ~- •-<

(VI (VI IV (VI (VI

cc (V) «M ac mi\jnol\:on (vi (vi •— -^

(vi (Vi (M rvi (Vi

(Vi 0C (Vi C. IT© & «£ « ITlMTDMVn OJ (vi <— *~

(V (VI (V, (V (Vj

oooooooooo

o cr a- IToyi\j CL(V h- »t oo cr a* cr

n<t a. «or cr cc ^>in (vi o (>•oc oo OP h-

HAIU1O«nocOJ CO 00 M

n (Vi o in^ in oc (vi

O P* Omom

M! n i » - cc M00 00 00 (

© o n r-r- «* • - cooo oc a r

r»- o o %on >o o i n

>c (*- in oMI a (vi a.» ^- c >coo cc P- p-

(vi a r © ITr- (vi cc if • ~~© © cr cr cr

—• rv. p- •"« i

p- r, a- ir —© © a- CT- a-

O- <- U' O

(M (VI - f P- (VJco IT. <vi a ra. a. co r

m oo n <r (v: (\j- in m MI © m

oc m (v. © r~cc oc cc x r

© © © © ©

f P- O> CVI .»f— © cr (vj »

•-• o- P' inr- p- tc vo <c

CK 00 01) O —in rvi »n n a P-

p-(vi •» >c o> n p- r>

I 00 CO 00 Oi * •» in r»i F- cr p- ui

«. >ti n a~ >c •-

n cvi © <r•c * xr in

a p- r>p-• i o> -r

-J (VI O C« 41 sVUI

r i CP r>- p~CD M> Ml P- U

•; — tr p- ITp 3

3 p- m •»o cr a? c» « o> p- MI

p- r- MI Mi

r- -> r- *VI — Or*T (VI O CC Ml^ p- p*

(Vi r o crn (vi(V. © or Mip- r» Mi *

M, -> j - in( ^ in or n p- ©

* Mi M) M;

-» p- — If.r - M; p* x(VI O cc M:r» P- MI sc

p- © ncc o> o© or p-p* M) M"

© o © ©

(VI Ml O M-* (VII— cr

c <oin

(vi cr n MIp» cvi p-(VI ~" CTMl M LH

<• cc. ©menu•» M •» cr

' M> U

n ^ -»« < cc- n

o © aVI IT o •»•

d M ©Ml M~ M

Page 183: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 7 6 -

o

O

QWX

a! oo

5 y

eg w

S3

• J

oo

oo

oo

IO

•o

oo

uo

•3 u* ci r*•» in I T cvor co r > *cin .» pi w

C* o o \O or>.» n o>in ^ n oj

-» <or- P» *r> m e «pgr> ui p-in -* * i OJ

oj OJ oj rvi o.

n .» inin <r rr

m ^ «r <v

so oc- x ^W O ^ ^ 00 COIT in r*- <r cjir * n (OJ OJ OJ OJ OJ

•c P- m •» iroj p- oj ui in

* as *i aOJ *• o oj OJ

OJ oj oj oj OJ

cc a cc moOJ IT CO O 0>co cc cr oj ^m -* n n oj

OJ l\j OJ Oj OJ

^"~ .^>p - CC

ir •» .» n oj

0. C\J <\. OJ

o o o o o

r<fIHCU<vi M3in p-

r- ui r- io1 c iooo-

o in <o

•-* 1-4 d OJarm «o —

p- p-" O © U*

VJ OJ OJ I\J

>t Oj C-n cs *- in

air ui <•T O Oojr- OJ

N n coin in co

>K O P

r- n .» wc CJ r- •»

r w on in o co© * no>c CD CD r-

in in OJ ojt o »o * n op-«r « • m ^

o> co co co r-

in « -> r- *^H p- ^- o

o -j-oCC » i-< P-a. a OD p-

cc ^ ~ aap ec a? r-

OJ * ^ tr-ou •- r-- inoc in — a.CU CU (U

© * - p-OJ IT O CCcr in OJ a.ot oc oc p-

CC P- •-« P-m ec j - —c IT OJ acc co co P-

oooooo*?©©>£ p- a crioi •" "i •»

o. <r tin a'ir a e-o © co in nr- p- « <c

«£) in * * ^* u iCO ^* tO PJ Q»n<-< oc <c PIP P- C

•»PJ >C U1P-~ * CO •» —•T — » * -»P P «

M co ~ <o o< P) oo

p- cr PJ CP *o^ ^ U1 »O «3"

j> nj »- >c ^71 OJ * ^ CO•» oj a P- •»

P t

t c a«— o- p- m•cm in in

— to <o mCO P- CO O— a p- >c>o in in in

<M CO * " "

CON

J © 00<t< * u

OJ 0s P- Ip- I t

<*, nj Dr — * ojoj © p* ui

P) O P- I^ fw )l} <

© n OJ inPI NO ** p -n o cc inp- p- >o c

a a o i\© cr p-

•JJ •i) U' Ui

^"0> p-in

<-i o> a coin n n ^

ooo©

Page 184: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 7 7 -

a. m. ci #- r>

CO

*-« OJ 10 cc ~to ro (v O

•— a e. r- ©C «-• F- u- tr10 o m o•- « o c

<\JOd(\J0>J<\JAJ(\j(\JPJ*-<

ooo

>O flD €C vG #Hn j n 4T «o OJin -r D f\i tvj

CO © > £ } < - • •

*-" it O O ;-'

-J Lfl >3" <0 CO

HCJ

REA

wC/J

aMc• J

p i

o

Hto

o

IBR

Il

i - i

u

uo

aai

OS

CL,

g

i C•

oo

10

oo©»

,000

0

nu cvj at (\J CM

oo o etci»'ir t^'oin ^ nn

r> <o » -«n p* «t> tr

nj (M m m (

( \ j (VJ (VJ (VJ (VJ

ry •£> o* o(vi tr •* (*-r~ cc -^ *y

(VJ (VJ (VJ tVJ (VJ

r* <r I T o tf1

pi o MVp- CC CT1 rv; I TLP » n (

cru oc m <VJ oc

oo or oc r-

IVJ « t n « o>v- o in n (vj

i i n * - p- oo <"> oo— m oo * inn cr Ki c

rir«*<

cvi c m r-cr CVJ r i crp- (vi r~ M r-

(v rvj rv; rvj <

m co * co noc (V; h- (vj oo

o ou r(7- in

cr tr a a a

<VJ IVJ

in a c rvjr> cr ui cr occ a~ o (v

o n n »t Ir* cr »u r~ <cr r aj r

rv rvi (vj rvj rv

0- o- •-IT. •»

m P- >o o>n r- — n

o o o o o

nj cvj (vj rvj •—

© cc n cr (VJ

O CC .» C! Cd c — (V •£

cc <c o ain o inn

p- -» <vj o"p- p- p- *

* (vj m (vi r>in cc cvj a, inP- •» (Vj O- p-p- r- p-

ci <r in ca1 (vj cr r~o p- n ocr a cc a

a. o cr n a(VJ IT (VJ C

x cc st in occ in a in n

— p- -» —cr a. a a

• - •* »o © m" Of PH© in a- <* ©" : • - < © © ©(v (v t\i rvj (v

O O O © ©ir <c r- a. tr

r> <c o cc o>x a e> cc <cIT Hit 4Mcr a cc cc cc

o o © o o

rg .» -< tvip-POKIMO)

* (VJ O CC*o <c *o in

m (virviin « CD

* rvj © cr

* fy «cp- p- oc cr•T (V OOP

i © in <o o>• r ) p- m o•••a-i"- a P-

m o ir w o —r tv— cr> >o «c in

© u op-in M © P-p- P- r* »u

i n » »i >c * m

p- rvj p- mnnnirin m »«o>

a (vi >t —u u uir n >- o--t vc * in

IVJ ir crh- p- cuD ^ cr

n « ^ —>t CU- IMin n o ccp- P- P- >L

© so co mc rvj p..»icnoetp- p- p- >c

0©©0©©O©

(VJ (VJ .» •£rvj -< — (\j»C >* M ©C C %C XT

Page 185: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 178 —

oo

ooo

>c ir a ci u

co i\j ~ r- cl00 \D PI CT ml*-• <v r> r> •*]0 s CT O* CT CT|

*> w v v ir|

oCM

33

oo > co ao <? r- *D

• <M r> r>

o

o

H

3o

3

3O

oo©

oo

a> r> -* « »IT n o r> n

- nj n nIT c o1 w

i/i rj tr»-* CM fV (

(\j a o a <\il

n »- oc IT H•-* (\j (\J m si( M M M f ff!

•— ru <\. n »Iffff Off

uo

o o o o ol

meM r» n t- Rn o i

P l M I ,tfl tfl * »O I*" f- CCa« o« cr cr cr

- -- © o r»l(vi « >- . ^) (M I - —I»»»,

in- I T vo * r-

O if. C! M) Olui IT ^ c r

c ip o id o|in ic >o r i

cu u1 o* o a.«u ^ t r ui o-

IT' IT >C >C

» if c >7— I T o- r*cc cc cc ao> o> cr a

o •-< occ oc c

cr <r - - •

V » r v» «•

c o o o o

n oo « OJ tvr> * cr

a O o ooc tf o oo

© -4- ^ 0* cr>* c r oj in oocveeel

a <4 n iv oV cc ec a o-

j r- cr <o *m u> n r^ • -

^ M « e»cr o* 0s cr 0s

n in in n•» a- r> r~ ~r- p- ec cc <rfff ffcur

a D r* o|r» h- cc cc o-c- c cr c CT1

n h H n nm co M in cuIccoooo» a* © © o

•» co *" vn cca- o- © o okr v © © ©

^ a; ff r01 O- O O ©Icr c © © ©

jr- n <u ^ colI mir >ocr cr cr o cr

cc co m •*M CO <") CO]l 'O t

CM r- >- n rr- — -j r-cr © ©

* O (M O «n a (M c ol" f - CO CC O>cr o- o- o> o-

4n r» o » r-cr cr o © ocr cr © c

p »-• m crr- cc ec cccr cr » cr

oeooooo c©o

—• vc cc cr co I I T o ^ r- oclc cr o o ©Icr a © © ©

o o o © oin >c r- ec trt

j c\j cr uiCM IT- f- ©^ - IM »-4 CM© © © ©

(M Of- Dcvi in r- ©» « ~ (V© © © ©

cr r- -.t o— * I* aM M »- «\J

sob

vo <r — oo(»-*«» r* cr© © © a

n »• cr if.^ *» »c cr

\c m on >t/ u>

booo

n IT cco o ©

- r- in (Mcr (vi in co

coo:*- (M r

Page 186: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 1 7 9 - .

ooo

oM

COcvj

as

ICO

o^ s OCO O

* s^ w

i iH(-1• J

w

<

o00

oo

oo

in

oo

oo

oo

Oo

U IT vC P- Cto o o o eo c o o c

.0049

1.0058

1.0068

1.0076

1.0084

1

0048

1

0067

i0075

10084

1

•* ir> * r- ao o o o o

.0044

1.0055

1.0064

1• 0073

1.0081

1

.0043

1.0054

1.0063

1.0072

I.008C

1

(V n rvj •-• o

SoSSS

•* u> ic >o r-o o o o oo o o o o

o o o o o

c> © r** r> cr0* C O i— i—o o oo c

o o o © o

0091

10099

10105

I0112

10118

I

#-« a L'> • - r-

)90 l.<

)97

l.(

04

l.(

11

l.(

17

l.(

c o oo o

T >D P) O *D

o o o o o

a u- o o r-o o oo cs

CL IT <\J CT IT

30P7

13094

131

01

13108

13114

1

cc a o o —

o o o o o

o o o o ou" •£ p- a c

UlOtflCUiv ri r' ^ o o o o c

f c in o i/i

o o o o o

0124

10129

10134

10139

10144

1n cc (*i cc ci(vi (vi n H *o o o o o

rvj cc m oo nrvi(vi m n

o o o o o

»-• p- fVi p- (VI(vi rvi P) n ^

o o o o o

« « rvi p- PJ

O O C9 O O

3120

131

?6

131

31

I3136

131

41

1

oin ~<c **VIIVJ O (*) 4"o o o o o

o o o o oO l f x (VI P*V •$

CT 'T OL (\l U-» IT, ir <t <o o o o c

-» in in o \

o o o o o

0149

10153

10157

10161

10165

1

CO (VI p» ~ •»

ec <vi <c o *^ I T m ^ «c>

o o o o o

P" (\J * O J-< m ir» *o *O O O C5 O

h <" Ifl (Mr•» 1/1 IT l/i *.

o o o o o

* >-< !/• r (T

oS"So

IT O CC (VI•» tfl ITl XT *

o o o o o

o o o o oir <c P- cc a

Cr r i tfl (T* p- p- r-coco

& (vim o>

o o o c

cc (vi in co«i> p- p-

co <•* in co

co » - i n <c* p- p- f-

o o o <>

p- ^ •* P*«© p- p- P-

o o o ©

p- O ^ P-«t; p- p- P-

o o o o

t^ O -T p-

c» o o «

H66

131

70

13173

13176

1

o o o c

o c o oOl»- (V, (T\l (VI (Vl PJ

Page 187: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 180 -

a. e •— <\;<c <c if, <00 <C OD 00

ooo

n m e> n

iv * a i d —«

OD 0D 00 CO QD

(*> d n n

o cvi r— n «vonin < ^* - M> IT . » «*>

oo'O

d d d d o

r- o « d cvion

«tr •*CD ac ao co QD

oQ

d d d d d d nnnn

4 a IT n nr- >e in •» nac a: oc a> caCO OD 0C P~ P**

EH

m

g

OSCOH-l• JM

cw

oo

w

ooo

oo

I-- * m •*a cc a a a

n n n n n

(J1 ^ (\j cvj nI\J U) r- aj our- -c IT •» rCD CC CC 00 00

*0 OJ - i-* nn * a.- cr c

oo

n o o* o j•» r- a. o o|1^ <O IT, l/l <a co o. oo ou

nnnnn

o N r o *•* r- a <-r- >c IT IT *cc a: co OD ocl

n n ml

o o o o o o(V m

coicnien ©a> occo oo r- «--

~o> <rco eo r-r- r-r> r> n n n

WUlCUl-Jn -<cctfi <\j * - «r «t P-

h» p- «oo «

r>-ojcr ooIVIOV

v.<->ooc r-ao oo co r- f -

rinnnn

00 oITKVICT U1—occ rou OL p*

nnnnn

f n o o i!*• * -T >i I\i — © a i

OD oc oo r-1

4a. ^ if (\i cu

*o in r* ©. CD *£- O ©\j — * © & ao

OL 00 f^

nnnn

C ! ITM O O CCoc oc r- r-

3 OOO O

v. •a t~r" I-- c

(\J •-"

r- r-|i- to m « a

* * if

in (\j *•* **m » OJ •»^ (Vj #M o

oc oc ©© nn - .

r*- in in ODcc oj in r•r n f* o"

<\i ( n >c© •» r- cin m •« »r r 3

00 00 © -.in c ~in ci • - ©f- r- r~ r-

n n n r>

a w — *IT in U: d'«-» (V; ©«o «o <o >c

r~ t r n ooK r- r- in

t» o> •* ©J. <J> CO I f

hnnn

,« o> » (\i «:

3 >C * If• • • I

Id d d d d

cr * uim m -jin n ~*

•- IT d - ."' <o >o in

a> o» ou r-lIf) d »-<

d d d d

ccoco.il<*i d d H<C ^ (VI ,

d d d rt

n it* *~a >» <r ui d © ocin in in •»

n — ain in in •»

Cf - < * (VI(VI 0s « C1

* n - - «uU> UI U> -7r> d d

n in in •»• • • •

\m d d d

in ^r- d cr •»

n in in *

d o o>« (VI >C

>0 •» (VI Oi in in <

d d r: d

vi cu *r trJ- (vi cmm •*

— o o^ p- OJm nj oU' U\ Uld n d

in * md O1 ^in (vi oin in IT

CO CC » •

in d ©IT, in m

^(Vl d(VI (VI (VJ

Page 188: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 181 -

I - O t- Ctv. CP -» 0> *.» •* in tfl vOa o> a o- »

oo

© C CM •» CVj|j-CM CO •» CP . , _<r -»• in m voKpCP CP CP CP CP

r> r> n

r) co \0 CP N|M

•T * i#i in «vvvvir

MUJfl••» IT" IT

CO

egoI

CO

a

ooo•

inCVJ

ra

o

CO

§

CJ

o

2

©©

CO

.J-1• <

u

oooCM

oo

CJ

o

r*i r> n n f*)|ri

CP I T I T CP CDCP * M P C V Jm •* m in vo[

n n n r>

o> in — c»n * in in >ocr c «• ir cr

n n n n n

ui n >» cO; U) *-* *" 1n » IT ir a:

CT

Ct M, © © CLCC CM «C CP «-<<c r» p- p-

pnnnn

ru vu r> in loCM in oo —ip- h- p- ccCP cp CP t r k r CP CP

, •» inin -i•» <C CO O <VI|kc cc cc cr c«

o CP r v .» (cc »x in co •

i|r> >o og O ( Mhu au «o I T cr

K •" V ~

— OkC CP — — OPimwoni'cc a cc CP CP

P CP CP CP

ri n n or

«\J ""!>- cc r-r- ~ •a P- ©>o r» p- p- cc

r* cr cj» coir r- sr -<|

CO CO CC OC O>to -. cr o> o>

cc r- n m •»>c i» r-1» cc01 <r tr tr cr

>c p- r- r- cc

IP O D sO C>£) r r* r- rtr tr tr v* v

r- ^ o m o|n .» ir IT «'o» a c c* c*i

n » m o'cr o- o- o- ao< i v <oit P- r-c o c

oooooo ooootv r 4ir * p c

* r r MV* "C a c «v

CD CC 0^ O*

a c <r cr

ri r; rt

inr m p- CPco cc a ab

to M ^ ir inVJ U1 P- t P > "

CC CC CC CPCP CP CP CP

<c o CM n r>OL- a.1 co a r

tr tr tr ir

n

!n cc o i r*M * P- CP »"

CO CO CC CO CP

cr CP cp CP CPn n n n nh n n m n

_ m ec cp CP\J * <C CO O

CO CC CC CO CPCP CP CP CP CP

o o o o o

u -j rj n u-* >c a o cvCP o> o>CP CP CP o o

* <O CO © CMCP CP CP © ©

ICP CP CP G

<-> CO vP* p - CP <M

© o o

H O W ok") co m^ * r- otr ir tr c

CP co r- P - cobutp tP ^,

c a cp.oa cr c cr o

\ n D m &

n in r*> cr ^CP CP CP CP oCP tr ir cp

n »-* CM

•« r- © n

>O O> CVI

H in n r>

mo©I « CP CMVO O © "

* a• »«© © •-«

o o

f > U ' P* CP »••CP CP CP CP ©CP CP CP cr o

Ml jn\rt u> a: —ko © © «o © o o

\l O CP CP CPm »u coCP CP CP Otr tr tr o

•» -T •» -I

t-> in •- oi in a• ~

|n n n n

© CP P- p- p-» 4 a on » 4* a

CP CP cr CPcr CP CP CP o

CP n CPCVJ in P-

cc p» >o i r in\ 4 >C to o

CP CP CP oCP CP CP CP ©

© o o © oin vc P- or Q

CJ in p oo © o Ho © o ©

Page 189: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 182 -

HCOa8oH

PQ

TR

I

CJJMQ

, J

si>o

COa.

1COCOaCu

oCO

inp-

o

mso

inm

in

Oo

a. ci (vi (Vi u— «C lu f f P-sOfti crin (Mr> D evifvi (V

(vi (vi (vi nj cv

cr n o o <v(vi p- n o CLso (vi cr so OJn ci (\j (vi (v

(VI (VI (VI (VI (V

l*« OC CP (VI m0> * P) -" 00

(VJ(VI(Vl(VI(V>(VI(VI<VI(VI(\j

c>s n

sO (VI _n m (vi (vi (vi

cr co o (V) sc >-i >-s <c CD © ( V I so

~ ' - — CD

onmor-in t r •» —< crso OJ cp so (vtn r> (vi ry tvi

CP (VI p- (VI p-oo cr © n socr so «•« cuP^^«^4M o o o o c r c r

(Vi IV-(V (Vi'IV

— (vi p- in •»so o m PJ ©so r> cr *o nm m (vi (vi ru(VI (VI (\l (VI (VI

« r> o* «n n *\i c\»

(VJ CM OJ (Vi OJ

OJ OJ <\l OJ O J

U J v ro* r oc -l nj»o n o> * nro rr ry oj A/

r- o- - as 4) f ) F<

© sc nj tr r-o n •-• co *o

<\J (V 4\J IU

\j OJ OJ OJ f\j

\i oj OJ OJ oj

ou r> r- crCMT •- Qt

^ oc

'} fk _ fr,o ui cvj o1

^ n •-• CDo o © <r

OJ OJ ru •

n •-« o* *oo a a

p* m o <n ^ cro o c

r- »o r* o

cr cr oo CD

^ ^ N *H kr, cc © -N

\J OJ OJOj OJ OJ

m •» in cc ^-(\j nj n mo r - -J — acOJ •- - » -

oo«n«isTtff> - J i— CO

rv A I (v> ru nj

o>r>(vi-*crr-scp-co©(Visc^Nph<^r>c^*^sco

n r, n rvi (V

O U O 1 /(vi (Vi nr> •*

•» so OD 00 I -nifiHirO o O O1 O1

ino tTO4 in in si> .

(via * . - cso n - sT sOO O O C 0s

CC © F* (M or) o71 in rvi osO (1 O> (s.

© o 0s C

n ^ IT. in n>* a in (v; ©* f i -« IT r>-OOOCMI

oin o IT o" OB CO OS

Ou -j r- a.in in I T >c* (vi o oo0 s 17* 0 s 0C

r- o oso in * r* co4- (VI O CO socr c c a cc

in© nsC>£> so P-COj m o 00 so

o> or cr co oo

«- in in »«— * r- —in n > o ooCD 00 CD 00 I*-

co m <o inso so sp r-j (vi o a socr cr cr co oo

sO Os CC •»p- so so r- cr« (VI © CO socr cr cr ec co

in o © in~ -t 00 (VI so

^ C9 00cc oc co co r-

r (vi j m cr(VI © 0C sE

p- cc ©^ ru o cu

cr cc co

cc o cr *f*- cc co o(VI O CC P-cr cr a a.

^ n ^ p-co co cr ©(VI O CD P-<r cr a a

r*- so *— f—o n p- «in n •— ©op co cc a

canniT•-• m r- -• i

CC CC CO CC P-

- . sOso o c r-«so (vi cr in>» in •* (vi «p- p- p- P- p-

oc co ou ao r-

n CO QD (Vi O« so (vi cr sop- in •* (vi P-I

p r

-• p- n o> *** in <st (vi ^«i» p- r- P- p-

•sT CC ( V >Dn ^ © ctco ou

- . p - <•) Cr soP IT <* (VI ~

in cc (vi r-

co a co r*

in cr com oo (vin ~o a

m cr o P-n ^ © coa a OL P-

or CD cr o(VI O K P-CT CT CD CD

c i\i pTi cr r> p-

ir ei >•« o co~ c& a. cc p-

OICO IT. o IT ©in oIV (v n n »

r- tv (vi P- u© st/tvi oc inp- in •» (Vi «p- P-P- r *

opv in •»• (vi "p p p r p

o> crO COos r»

"" so *

«• i n •» (Vi —

r- n s> soin »r «\J *-p- r- P- r-

co P- « crp» n © soin » f" ~r- p- p- r

a. <r -»(V <E CC© C P-P- « sC

sjj sow~ crcr r*-sC sD

CC p -—> crcr r-sC sC

© cr mcc n © P-m -sT rn !>• P- P" P-

(VI **cc J © P -m >* n —p- p- P- p-

o IT o in © ir<©

n cr cr-» •-• cr

Os p -

IT n in ~ '•<•* (Vi ©

cc!"- sC so

Page 190: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 183-

o(V

E5

Hcn

ou

sHta1-1

cri

CO

Q

u

CO

g3COCO

(X,

in

(V)

o

°,(VI

ITo-

uo

— » n • -in — a inn n CM CM CM

CM CM CM CM CM

pc .- n *

<c r. o

«. c *.< •>ry oc •» ru —m -« oo inf*l C* CM CVJ tVJ

vj ( V (M CM

n or I T r> >•«in -< co in <\jn D cvj <\J cvj

(VI IVI CXI (VI IVJ

CMCMCMCMCMCMfMCVJ

r rn o a)-H ^ O

CVJ ( \ J CVJ CVJ CVJ CVJ CVI

•p-ccifn* m o a> o O O- O-

i p- n aIxCCITr't

ccoca

o irut i"-• M * f>- ~*>C <VJ OC *

* f*) o co>u> m o <o -4t O j O O C> C C

[Vj (Vj tvi (Vj (VI (Vj (V; (vi

in — a; u> «vj|o> « n o g i

ocoui-uCM-O CM CT -4

m n o co vtjo o o o- o-

j fV' CV.|CV Oo CVj-(v, C\

(VJ CVI CVi (VJ CVJ

*+ P- in •»(\J cc i/i c\pn cvj (vj v

cvj cvj cvj cvj rvi

*c cc *—cvj ou *u -

I cvj CD in f

CM CM CVJ CVJ ( V

(^ I / 1 »tJ Lfcc n (7 * inin CM OL in cvjn n cvj CM CM

in in r

cvi i

» -» •» r "

IT CM 0> m CMn r; CVJ CM CVJ

-J n um ^- a. c

? CVJ 0 * t/1 CMtr CM (M CM

a n CM c\' inri <C CM O1 f>»nr <M ©• IT CMn n CM C\J (V

CV. CM (V. CMCV

,o tr-'O tr o

(M (M CM CVJ CV

ooolfir

«o (M c sc nIT iC 1^ O »

>on « oc

>c i> c « in

CM CV. CV. CV. ( M

LT o in o trj IT in *

CV IV Oul •

CM »M CV — >-

K- .» O I>- >n ^ a. s

o o o a1 C

m o* CM noo ^ o cu »cT n — a <cO O O CJ- <7

^- cr n *4J r

in n «- a- *o o o tr tr

i p- o- o! —I CC f~

P U: O — o-CM cv r i .»- t CVl O CCo- a tr cc cc

o a CM MCM n •* so

•JWOCOcr o- cj- a cc

^t CM o cci oC7 O C7* CO OP

AJO" O OJ CD

o in MD CMo- CM in o> • *^ n in c? caco ou cu r

n cvj a" a • *CM m o1 3

a n ^ cr ccco cc «r

-»•» in r-CM o to >c

co a; a1 ct r-

.T -T -T Uj rvj o cc <c

I/1 W Oj CL

» -j ^ -c i

VJ CO CM CV' C.» in >c r-(

~ u. m (vjin IT <t cc(\OCD

.» r- ff ^in tr * oc-CV O CO >C

cr cr a <r

rt n u oa ~ •» o-^ r i -> O"cc cc a P-

u ui •-< cvco —< in o^

Jcc a cc r- p-

eo oo n vj-oc ~ m o>

co oc co »>* r-

m r- r- •cr in - " P- -r* ui •»• CM —

p- p- p- p-

n w o co

o CM -c o inm ci ^ o a

M ~* *c P- rMsc o in

n n i-t o tta. a a a- p-

p-. ^> — - < p-n p- -H IT.n e c

rj -3 CL fa -I c * r-\c in -t CM i->p- p p*

a » o p- r>»o i n -3" ru <-*

^ p- p-

<-< P- P- (M »"•» o iv *

•o in •» (vi ^r

cr CT* - j n^ oi> jin .T CM «

o p-a <

o ec

CO <CO CC p -p - >O >C

WO- p-CC p-

P-N r^ ccCM tp r-

oo f^

o m -« co m

r» -c *

o- cr- n CMIT w cc inT 4 M

o o in>c ivi cc inin **• <\i **r- p- r~ p-

«V CV' P- IT*c CM cc min •» CM ~r p- p» r

in in >c >c p- o cc

p- •»• •»•P-H CT> P-

a.1 p*

rvj c a.o- r

(M OCM o aO CPP-

o; -» -»MOI

C N

Page 191: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

- 184 —

APPENDIX B

CONVERSION FACTORS

Page 192: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

APPENDIX B

CONVERSION FACTORS

psx atm torr

pressure

1 pascal (Pa)1 lbf/in. (psi)1 atmosphere (atm)1 torr (=1 mm Hg)

6.89476x103

1.01325xl05

1.33322xl02

1. 4504x10"*1

14.6961.93368x10"

9.86923x10"6

6.8046x10"2

11.31579x10"s

7.50062x10"51.7149

7601

1 bar = 100 kPa = 10s Newton/m2

m3/mol

molar volume 1 m3/mol1 ft3/Ik mol

ftVlbf mol16.0185

1= 0.0624280

1 litre/mol = 1 dm3/mol

SpecificEnthalpy

1 kJ/kg1 kcal/kg1 Btu/lb1 pcu/lb

kJ/kg

14.18682.32604.1868

kcal/kg

0.238845

0.5555561

Btu/lb

0.4299231.811.8

pcu/lb

0.2388451

0.5555561

1 pcu (pound-centigrade unit) « 9/5 Btu

I00

MolarEnthalpy

1 J/mol1 cal/mol1 Btu/lb mol1 pcu/lb mol

J/mol

14.18682.32604.1868

cal/mol

0.2388451

0.5555561

Btu/lb mol

0.4299231.811.8

pcu/lb mol

0.2388451

0.5555561

SpecificEntropy orSpecific HeatCapacity

1 kJ/(kg.K)1 kcal/(kg.K)1 Btu/(lb.°F)1 pcu/(lb.°C)

kJ/(kg.K)

14.18684.18684.1868

kcal/(kg.K) Btu/(lb.°F)

0.238846111

0.238846111

pcu/(lb.°C)

0.238846111

Molar Entropyor MolarHeat

Capacity

1 J/(mol.K)1 cal/(mol.K)1 Btu/(lb-mol.1 pcu/(lb-mol,

F)3

K/(mol.K)

14.18684.18684.1868

cal/(mol.K)

0.238846111

Btu/(lb-mol.°F) pcu/(lb-mol. C)

0.238846111

0.238846111

Page 193: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

APPENDIX B

CONVERSION FACTORS (Continued)

DynamicViscosity

1 kg/(m.s)1 poise1 lbf/(ft.s)1 mPa.s

kg/(m.s)

10.1

1.488160.001

poise101

14.88160.01

lbf/(ft.s)

0.6719690.0671969

0.000671969

mPa. s1000100

1488.161

ThermalConductivity

Diffusivity

SurfaceTension

1 W/(m.K)1 kcal/(m.h.X)1 Btu/(ft.h.OF)

1 cm2/s1 ft2/h

1 N/m1 dyne/cm1 lbf/ft

W/(m.K)

1= 1.1630= 1.73073

1 pcu/(ft.1

cm2 / s

1= 0.258064

N/m1

0.001= 14.5939

kcal/(m.h.K)

0.859841

1.48816

i.°C) = 1 Btu/(ft

ft2/h

3.875011

dyne/cm

10001

14593.9

Btu/(ft.h.°F)

0.5777890.671969

1

.h.°F)

lbf/ft

6.85218xl0"2

6.85218x10"5

1

Values of the Universal Gas Constant R in Various Units

R = 8.3143 J/(mol.K) or dm3.kPa/(mol.K)= 0.082055 dm3, atm/(mol.K)= 62.361 mm Hg.dm3/(mol.K)= 1.9858 cal/(mol.K)= 1.9858 Btu/(lb-mol.°F)= 21.85 in Hg.ft3/(lb-mol.°R)

Page 194: GIROLER-SULFIDE PROCESS PHYSICAL PROPERTIES

The International Standard Serial Number

ISSN 0067-0367

has been assigned to this series of reports.

To identify individual documents in the series\ we have assigned an AECL—number.

Please refer to the AECL-number whenrequesting additional copies of this document

from

Scientific Document Distribution OfficeAtomic Energy of Canada Limited

Chalk River, Ontario, Canada

KOJ 1J0

Price $9.00 per copy

989-77