gl shrestha tunnel design steps

Upload: saphal-lamichhane

Post on 06-Jul-2018

230 views

Category:

Documents


5 download

TRANSCRIPT

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    1/27

    TUNNEL DESIGN STEPS

    DR. GYANENDRA LAL SHRESTHACEO, NYADI HYDROPOWER LTD.

    19 DECEMBER 2014

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    2/27

    3 Main Effects of Underground Excavation X-Sections)

    Rock block falls

    locally

    Water runs in to

    tunnel

    Stress c

    after ex

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    3/27

    Preliminary Support Estimation By Empirical

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    4/27

    Final support chart for Headrace Tunnel.

    0

    100

    200

    300

    400

    500

    600

    700

    0.01 0.1 1 10 100

        D   e   p   t    h

    Q*

    Support type ISupport type IISupport type III

    Support type IV

    Squeezing zone

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    5/27

    Empirically Estimated Preliminary Supports

    StructureSpan/

    Height (m)ESR De

    25 mm dia

    Rock Bolt

    Length (m)

    Class I

    15

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    6/27

    Assessment of stress condition

    Depth (m) 100 200 300 400 500

    Unit weight (kN/m3) 25 25 25 25 25

    Major Principal Stress – σ1 (MPa)

    2.5 5 7.5 10 12.5

    Unconfined CompressiveStrength (UCS) - σci 

    22 22 22 22 22

    Maximum Tangential

    Stress (σφ)

    5 10 15 20 25

    σci/( σ1) 8.8 4.4 2.9 2.2 1.7

    σφ /σci  0.2 0.4 0.7 0.9 1.1

    SRF Category J/K K/L L/M M O/N

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    7/27

    Overburden and Q* values for support Class I, II, III

    SupportClass

    Cover (m)

    100 200 300 400 500 600

    SRF 1 1 2 3 4 5

    Class I 15 15 30 45 60 75

    Class II 4 4 8 12 16 20

    Class III 0.4 0.4 0.8 1.2 1.6 2

    Class IV 0.04 0.04 0.08 0.12 0.16 0.2

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    8/27

    Preliminary Support Class Boundaries WithQ* and Overburden

    0

    100

    200

    300

    400

    500

    600

    700

    800

    0.01 0.1 1 10Q* Value

        O   v   e   r    b   u   r    d   e

       n    (   m    )

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    9/27

    Class II, 600m, GSI 80 at 100% Relaxation

    Shear

    Tension

    ShearTension

    Both

    Sigma 1

    MPa

     0.00

     3.00

     6.00

     9.00

    12.00

    15.00

    18.00

    21.00

    24.00

    27.00

    30.00

           2       0

           1       5

           1       0

           5

    250 255 260 265 270 275 280

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    10/27

    Axial force in Bolt - Class II, 600m, GSI 80100% Relaxation

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    11/27

    Phase2 Output  –Support Class Boundaries wQ* & Overburden depth

    Support

    Class

    Cover (m)

    0 100 200 300 400 500

    Class I 15 15 20 30 45 70

    Class II 4 4 4.2 8 15 25

    Class III 0.4 0.4 0.6 0.8 1.2 2

    Class IV 0.04 0.04 0.05 0.08 0.12 0.2

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    12/27

    Revised Support Requirements for DifferenRock Class

    Structure

    Span/

    Height

    (m)

    ESR De

    25 mm dia

    Rock Bolt

    Length (m)

    Class I

    15

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    13/27

    Boundaries for support class I to IV with Q*Verses Overburden

    0

    100

    200

    300

    400

    500

    600

    700

    0.01 0.1 1 10 100Q* Value

        O   v   e   r    b   u   r    d   e

       n    (   m    )

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    14/27

    Support Class Boundary Before and After Ana

    0

    100

    200

    300

    400

    500

    600

    700

    0.01 0.1 1 10 100

    Tunnel supports

    Q* Value

        O   v   e   r    b   u   r    d

       e   n    (   m    )

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    15/27

    Hoek & Marinos Method (2000)

    σ cm = (0.0034 mi0.8) σci {1.029+0.025 e

    (-0.1 mi) }GSI

    Ε = δi/do = [0.002-0.0025 pi/po] (σcm /po)(24 pi/po -2)

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    16/27

    Squeezing Based on Strain - Hoek and Marino

    Depth (m) 55 69 155 330 525

    Q* 0.02 0.04 0.4 4 15

    Major principle stress σ1 MPa 1.375 1.725 3.875 8.25 13.12

    GSI 10 15 36 56 68

    Percentage Strain in ε* 1 1 1 1 1

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    17/27

    Squeezing Demarcation Line

    0

    100

    200

    300

    400

    500

    600

    700

    0.01 0.10 1.00 10.00Q* Value

        O   v   e   r    b   u   r    d   e   n    (   m    )

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    18/27

    Details of support for squeezing tunnel

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    19/27

    Capacity Check of RC Liner - SqueezingTunnel, 500m, GSI 56 at 100% Relaxation

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    20/27

    Final support chart for Headrace Tunnel.

    0

    100

    200

    300

    400

    500

    600

    700

    0.01 0.1 1 10 100

        D   e   p   t    h

    Q*

    Support type ISupport type IISupport type III

    Support type IV

    Squeezing zone

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    21/27

    Primary Supports for Headrace Tunnel

    Structure

    Span/

    Height

    (m)

    ESR De

    25 mm dia

    Rock Bolt

    Length (m)

    Class I

    15

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    22/27

    Unlined Tunnel

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    23/27

    Shotcrete and rockbolt support

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    24/27

    Tunnel With Steel Rib Supports

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    25/27

    Concrete Lined Tunnel

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    26/27

    Conclusion and recommendation

    • The support chart considers two variables

    namely, overburden depth and Q*-value, couldrealistic.

    • It prescribes support needed for squeezing tun

    • As it also includes outcomes of Numerical mod

    helps to make construction period optimum aproject cost economic.

    • It is recommended to develop similar chart latdetailed design.

  • 8/17/2019 GL Shrestha Tunnel Design Steps

    27/27

    THANKS