glaciar upsala, patagonia: rapid calving retreat fresh water · century the glacier had reached a...

6
· 1Ilna/s 0/ G/aci%gJ' 2 1 1995 C Int e rnation al Gla ciolo gical S oc iety Glaciar Upsala, Patagonia: rapid calving retreat fresh water In CHARLES R. WARRE.'\ ,* DEBBIE R. /) 1'/)(11"1111 1' 11 1 of Geog ra/) I!J ', Cniz' e/"ji(j' of Edinb urgh. Drllllllllo nd Slreel , Edi nburgh E I18 9. \P . ScoI/and NEIL F. GL. \ SSER Ellglish .\ ·a lure .. \ ·orllullill sler HOllse, Peler bo r ough PE/ /C .- 1. E I/glalld ABSTR ACT. Th e ca h-ing ra t es a nd ea h-ing sty les o f" tc mp e rat e glaciers that ca h- e into fr es h wa ter are distineti\Tly difTere nt fr om those of te mp erate tide-water glac iers. Th ese co ntr as ts a rc imp o rt a nt fo r int e rpr eting and predicting the response 0 [" ice masses to climate change. Gl ac ia l' Cpsa la is a la rge ea h-ing outlet of Hielo Pat ago ni co Sur (so uth ern Patago nia ice fi eld ). Its t\l'entieth-ce ntur y re tr ea t has been c1ima tc-dri\ 'en but sig nifi ca ntly modul ated by ca kin g dyn a mi cs a nd by the tr ansition fi 'om mcltin g to ca kin g at it s eastern termi nu s. H ere. the onset of rapid ca kin g in thc early 1980s initia ted re tr e at at ::; 4+0 m a I. Th c 1992 93 cah-ing ra te (oe) is estimated to I)e 60 m Cl 1 in a me an water de pth (h\\") 0 (" 67 m. A ve/ h\\" rela ti ons hip fo r [i Ts h \I ' at er ba sed 0 11 14 sites aro und th e \I·o rld . includin g se\'en deep-\l' atcr sites, co nfirm s both the linear depe nd enn ' of lie on h\\" a nd thc eo nrr ast bet\\ Te n ca h-in g ra t es in tide \\'ater a nd fi 'esh \\ ·Llter. As \ ·C l. no ph ys ica l explanation for this co ntr ast c xi sts, but diff erenccs in s ub a qu cous melt rates, longi tudin al str a in rat es a nd cr e\'a ss ing m ay prO\'id e a partia l explanation. CAL VING RATES IN FRESH WATER C a h-in g rem ains one of the leas t und erstood glae iolog ica l pr ocesses. Ca kin g glaciers arc sensiti\'e to tr ough geo - me tr y, a nd b eca use of the instabi li ty of ca kin g te rmini th ey ca n n ueruate indep e nd e n th- of clim ate ( :\ Ieier a nd Post. 1987: \\ ·a n ·e n. 1991. 1992 ). Ca h'ing rates co rr elate s tr onglv with both \\'ater depth a nd ice thi ckn ess a t th e te rmin us (Brown a nd other s, 1982 ), bu t th e ph ys ical na tur e of these rela ti onship s re main s un clear ( Hu g h es , 1992; :\l eier. 1 99 4). Te mp erate tide-\\'ater glac iers ha\'e been e xt cnsi\ 'C ly s tud ied , \\ ·her eas fresh-\\'ater c akin g glac iers ha \'e recei\'ed li ttle alten ti on despi te the sign i ica n ee of {i'Cs h-water cah 'in g fo r g lac io -cli mati e rela tion- s hip s tod ay a nd in ge olog ica l time (Kirkbrid e, 1993; Wa rr en, 199 +). I nt erest in fr es h-\\ 'ater ca kin g \\ 'as s timul ated by hydr o-power sc hC'm es in g la ci e ri zed ca tch- me nt s La um a nn a nd \\ 'old, 1 992 ). Such s tudi es r n'ea lcd that, in any givcn wa ter depth (h w), ca h-ing rates (vc) are abo ut an order o f" m ag nitud e less tha n those in tide wa ter ( Funk a nd Rd th li sbe r ge r, 1 989 . Th e L,<.J h\\. rela ti ons hip fo r fr esh wa tcr pr oposed by th ese a uth ors \\'as: Thi s \\'as b ase d on ju st six sites. At fo ur of th ese, h ". was :::;20 m . limitin g the re li a bilit y of th e relations hip fo r pr edicting Vc in d ee per water. Pr ese nt a ddr ess: D e p a rtm e nt of G eog ra ph y, of St Andr ews, Purdie Buildin g, No rth Haugh, St Andr ews. Fif e K Y 16 9ST , S co tl a nd . Th e n ec d fo r a n impro\ 'Cd datab ase of IITs h-\\ 'ater ca h'ing rates pro mpt ed this wo rk in Pat ago ni a . Th e major eas te rn o ut let glaciers of Hi clo Pat ago nico Sur (south e rn Pata go nia ice field ) a ll c ak e int o la rge, d ee p la kes ( \\ 'a rr en a nd Su gden, 19 93 ). In this s tud y of the historic \)eha\'io ur of Gl ac iar Upsala. \\T d oc um e nt th e onsct of ra pid re tr ea t fo ll o win g th e initiati on of ra pid ca h'ing in a n ew prog lac ia ll a ke . W c al so pr ese nt a r ev ised Vel h\\. relations hip for frcsh wa ter, c om binin g ne\\ ' dat a fr om Pat ago ni a \\' ith publi shed inf o rm a ti o n. At se\'en of th e 1+ sites hI\" excee ds SO m. GLACIAR UPSALA Glaciar L'p sala 1+9"50' S, 73 17' \\ ' ) has a s urf ace ar ca of 870 km 2 a nd a length of about 60 km. making it one of the largest So uth ern Hemis ph ere glaciers o ut side Antar c ti ca, a nd So uth Am e ri ca 's longest (Ani ya and Sk\ 'ar ca, 1992). 20 th- ce ntur y thinnin g has c au sed th e tCJ"minus to di\ ·id e into thr ee dis tribu ta ri es Fig. I . Th e la rgest a rm . Lpsa la \res t. te rmin ates in L ago Ar ge ntin o a t a ca kin g fr o nt + km wide a nd 60 80 m hi gh. l ee \ 'C loeities + km be hind th e ca h-in g fronl a rc 700 m it I. , lnd the e qu ilihriu m-l in e a ltitud e ( EL. \ ) is estim a ted to be 11 50 m, gi\'ing an acc umul a ti on-area ratio of 0.63 Ani\ 'a a nd Sb·a r ca . 1992 . gradie nt s in the te rmin al 20 km do not exceed 2.5 , but cre\'assing is int ense, especia ll y west of the medial mo rain es . Pro g la cia l \\ 'ater de pth s ar e unkn own. Ho\\·e\ ·e r. the grea t size and the ta bu la r fo rm of the iceber gs suggest that \\ 'L 1[er de pth s arc considerable: icebergs with ·61 estImated \'ollllll es gr ea ter than 10 Ill" a re co mm on, some of them detac hin g \\· ith ollt ro lli ng O\T r. L.;p sal a ce ntr al a nd east ca ke int o L ago Guillermo, a lake fo rm ed bv rece nt 3 11

Upload: others

Post on 11-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Glaciar Upsala, Patagonia: rapid calving retreat fresh water · century the glacier had reached a nalTo\l'ing point, and it retrea ted 1110re slowly (::::050111 a I) until the late

· 1Ilna/s 0/ G/aci%gJ' 2 1 1995 C Inte rnation a l Gl aciolog ical Soc iety

Glaciar Upsala, Patagonia: rapid calving retreat fresh water

• In

CHARLES R. WARRE.'\ ,* DEBBIE R. GREE~E , /) 1'/)(11"1111 1'11 1 of Geogra/) I!J', Cniz'e/"ji(j' of Edinburgh. Drllllllllond Slreel , Edinburgh EI18 9.\P. ScoI/and

NEIL F. GL. \ SSER

Ellglish .\ ·alure .. \ ·orllullillsler HOllse, Pelerborough PE/ /C.-1. EI/glalld

ABSTR ACT. Th e cah-ing ra tes a nd ea h-ing sty les o f" tcmperat e g lac iers th a t ca h-e into fres h wa te r a re distin e ti\T ly difTerent from th ose of tempera te tid e-wa ter g lac iers. These contras ts a rc importa nt fo r interpre ting a nd predi c ting th e response 0 [" ice masses to clim a te change. Glacia l' Cpsa la is a la rge eah-ing o utl et of Hielo Pa tagoni co Sur (southern Pa tago nia ice fi eld ) . Its t\l'enti eth -century retrea t has bee n c1ima tc-dri\ 'en but sig nifi cantl y modul a ted by caking dyn a mi cs a nd by th e tra nsiti on fi 'om mclting to caking at it s eas tern term inus. H ere. th e onse t of ra pid ca king in th c ea rly 1980s initi a ted retreat a t ::;4+0 m a I . Th c 1992 93 cah-in g ra te (oe) is es tim a ted to I)e 60 m Cl 1

in a mean wa ter depth (h\\") 0(" 67 m. A ve/h\\" rela ti onship fo r [iTs h \I'ater based 0 11 14 sites a round th e \I·o rld . including se\'en dee p-\l'atcr sites, confirms bo th th e linea r depend enn ' of lie on h\\" a nd th c eonrras t bet\\Te n ca h-in g ra tes in tid e \\'a ter a nd fi'esh \\·Llt e r . As \ ·C l.

no ph ysica l expl a na tion fo r this contras t cxi sts, but differenccs in sub aqu co us melt ra tes, long itudin a l stra in rates a nd cre\'a ssing may prO\'id e a partia l expl a na tion.

CAL VING RATES IN FRESH WATER

Ca h-in g rem a ins one of th e leas t und erstood g lae io logica l

processes . Ca king g laci ers arc se nsiti\ 'e to tro ugh geo­

me try, a nd beca use of the insta bi li ty of ca king termini th ey ca n n ue ru a te independen th- o f clima te ( :\ I eier and Pos t . 198 7: \\ ·an·en. 1991. 1992 ). Cah 'ing ra tes co rrela te strong lv with bo th \\'a ter depth a nd ice thi ckn ess a t th e

te rmin us (Brown a nd others, 1982 ) , bu t th e ph ys ica l

na ture o f th ese re la ti onships remains unc lea r (Hughes ,

1992; :\l eier. 1994 ). T empera te tid e-\\'a ter g laciers ha \'e bee n extcnsi\'C ly stud ied , \\·he reas fres h-\\'a ter caking g lac ie rs ha \'e rece i \'ed li ttle a lten ti on d es pi te th e sign i [~ ica nee of {i'Cs h- wa te r cah'ing fo r g lacio-climati e re la tion­

ships tod a y a nd in geo logica l tim e (Kirkbride , 1993;

W a rren , 199+) . I nt e res t in fres h-\\'a te r ca king \\'as

stimula ted by h ydro-power sc hC'm es in g la ci e ri zed ca tch­m ents L a um a nn a nd \\'old , 1992 ). Such studi es rn'ea lcd th a t, in a ny g ivc n wa ter depth (hw), cah-ing ra tes (vc) are a bout a n o rd er o f" m agnitud e less th a n those in tid e wa ter

(Funk a nd R d th li sbe rger , 1989 . Th e L,<.Jh\\. rela ti onship

fo r fresh wa tcr proposed by th ese a uth ors \\'as:

This \\'as based on just six sites . At fo ur of th ese, h". was

:::;20 m . limiting the reli a bilit y of th e re la ti onship fo r

predi c ting Vc in d eepe r wa te r.

Present address: D epa rtm ent o f G eogra ph y, U ni\ ' e rs it~,

of St Andrews, Purdie Building, N orth H a ug h , St

Andrews. Fife K Y 16 9ST, Sco tla nd .

Th e necd fo r a n impro \'Cd d a ta base of IITs h-\\'a ter ca h 'ing ra tes pro mpted thi s wo rk in Pa tago ni a . Th e

m aj o r eas tern out le t g lacie rs o f Hi clo P a tago n ico Sur

(south e rn Patago nia ice field ) a ll cake into la rge, d ee p

la kes (\\'a rren a nd Sugd en, 1993 ) . In thi s stud y o f th e hi s tori c \)eh a \'iour of Glac ia r U psal a . \\T d oc ument th e onsc t o f ra pid re trea t fo ll owin g th e initiation of ra pid ca h 'ing in a new proglac ia lla ke. W c al so present a revised

Vel h\\. rela tionship for frcsh wa ter , com bining ne\\' dat a

from Pa tago ni a \\'ith publi shed info rm a ti on. At se\'en o f

th e 1+ sit es hI\" exceed s SO m .

GLACIAR UPSALA

Gl ac ia r L'psa la 1+9 "50' S, 73 17' \\ ' ) has a surface a rca of

870 km 2 a nd a leng th of a bo ut 60 km . ma king it one of th e la rges t So uth ern Hem isphere g laciers outside Antarc ti ca, a nd South Ame ri ca 's longest (Ani ya a nd Sk\'arca, 1992 ). 20 th-century thinning has caused th e tCJ"minus to di\ ·ide

into three di stribu ta ri es Fig . I . Th e la rges t a rm . Lpsa la

\res t. te rminates in Lago Arge ntino a t a caking front + km

wide a nd 60 80 m hi gh. l ee \'Cloe iti es + km behind th e ca h-in g fronl a rc 700 m it I. ,lnd th e equ ilihriu m-l in e a ltitude (EL. \ ) is es tim a ted to be 11 50 m , g i\ 'ing a n acc umul a ti on- a rea ratio of 0 .63 Ani\'a a nd Sb·arca .

1992 . SUl ' f~l ce gradi ents in th e termin a l 20 km do no t

exceed 2.5 , but cre\'assing is intense, es pec ia ll y wes t of th e

med ia l morain es . Prog la cia l \\ 'a ter d epths are unkn own. Ho\\·e\·e r. th e g rea t size a nd th e ta bu la r fo rm of th e ice bergs sugges t th a t \\'L1[er d epths a rc co nsid era ble: ice bergs with ·61 es tIm a ted \'o llllll es g rea ter th a n 10 Ill" a re common, so me

of th em d e tac hing \\·itho llt rolli ng O\ T r. L.;psal a centra l a nd

east cak e into Lago Guill erm o, a lake fo rm ed bv recent

3 11

Page 2: Glaciar Upsala, Patagonia: rapid calving retreat fresh water · century the glacier had reached a nalTo\l'ing point, and it retrea ted 1110re slowly (::::050111 a I) until the late

Il 'arrfll IIl1d others: Ra/)id w!rillg retreat ill fresh l('{[ter

land Ice CJ Lakes D Ice front positions Height contours - - - 500 - - -

Fig. I. Primal), retreat slage.l of Glacial' L'jJ.lala sillce aboll/ 1600. De/ails ~f sOli/as are giml ill //ze tn/. EG'. Estallcia Cris/il/a .

g lac ier rctrea t (Fig, 2 ). U psala cen tral descends steep l v lO

th e lake, cut by regular crescen tic cre\·asses . \\'hereas

U psala cast has a lo\\'cr g radient and is less cre\'asscc!,

\Iith la rge arcas ol smooth ice within 2 km o f th e term inus.

Caking act i\'ity is infi 'eq uen t and sma ll-scale rc la ti ve to

th a t at U psala \\,es t. ?I [e teorologica 11 y, the g lac ier term i n li S

li es in the transition zone bet\l'Cen mountain a nd pampas climates. The \I'estern margin or the g lac ier is lI'eltcr,

c loud ier and less \I'indy than the eas t sid e, a nd th e

\'egetatio n rc fl ects this cont ras t (1\l erce r, 1965 ) .

METHODOLOGY

The tlunu a ti on histo ry is deri\'Cd [rom published so urces

!Agostini. 1945 ; .\Iereer, 1965: l\Ialagnino a nd Strelin,

1992 ) and remotely sensed data: aeria l photographs fi'om

19+5 , 1967, 1968, 1975 and 1981. a nd a LA:\TDSAT image of 14 J anua ry 1986. The ice-fi'on t posi Li on 0 (' U psala eas t in i\Jarch 1992 a nd 1993 was fix ed using a Lheoclolite / ED1\1

an d a sate llite-posi tio nin g system . An app roxim a te ice­

margin position in 19 14 was pro\'ided by J. l\,fasters whose

famil ~ ' founded Estancia Cristina (Fig. I 1 in that year. \\'ork at Upsa la cas t \I'as carried o ut in the late a ustra l

summCl's or 1992 and 1993 . In \[ a rch 1992 t\l'O markers

3 12

land D lee Q lakes D Ice front positions ......!22L

Depth contours In metres Height contours In metres -- -500---

Fig. 2. Bat!~) ' lIIetlJ' of Laga (;llilfemlO alld ice:Ji'ollt f)oslliom of C/)sala fast during retreat through Ihe lake. COlllollr Illtervaf is 50 III ill the lake alld 100 III elsell 'here . COli/aliI'S Oil the glacier alld ill areas deglacialed .lillre 1981 hm'e been estimated. r , ice-l'elociO' SlIl'l 'q flOilll s; .r, l'elociO' markers ( 1992) ; B. bat/~Jlmetl) 1 suri'£')' /Joillt: .1. ablalioll stakes : alld JIl , meteorological sta tioll ( 1993) .

\\'ere positioned close lO th e geome tri c centre lin e. a nd

displaccments m eas ured durin g a 13 d peri od using a

"total -sta tion " Geodimeter th eod o litef EDl\ I and stand a rd

sun'Cv methods (Fig . 2 ). A netwo rk of lilT ablation sta kes was monitored daily for 14d in February a nd \I arc h 1993, a nd standard meteorological data were reco rd ed co ncur­

rentl y (Fig. 2) . T o map the barh ymet ry of Lago Guillcrmo.

291 indi v idu a l ec ho so undin gs were taken along 23

tra nsec ts. 1 n th e eas tern secto r of th e la ke, loca tional

acc uracv \I 'as ac hi Cl'Cd using a theodolite /ED.\ l ; in thc western sector , tra nsec ts \I'e re choscn bet\l'een prominent lake-,hore rea tures, rowi ng on st ill da),s to minimize drirt.

Tce-c liIT he ig hts lI'ere sun'eyed from th e la ke shore.

Qu a lita ti vc obscrvations of th e c\'oking na ture of the

calvin g [i'o nt, a nd of th e cha rac teristi cs a nd fi'equcnc)' of

ca lving, were recorded througho ut bot h fi e ld seaso ns. \ 'is ua l est im a tes or ice berg \'olulllcs incorpo rated \I'at(']'­depth measurements nea r g ro und ed bergs.

RESULTS

Glacial' U psala has bcen re trea tin g throu g ho ut hislOrical tim e (Fi g. I ) . The neoglaciai maximum a nd subseq uent

retrea t positions a rc marked by p ro nou nced \'Cget<1rion

trim-lines a nd moraines. The maximum \I'as dated

dendrochronologicall\' b y ~l ercer ( 1965 ) to th e period 1600 1760 1\)); ra pid re trea t (:::::: 120 ma I ) comlllc nced in th e ea rl y 19th ce nLur)' . By th e beginning or th e 20 th

Page 3: Glaciar Upsala, Patagonia: rapid calving retreat fresh water · century the glacier had reached a nalTo\l'ing point, and it retrea ted 1110re slowly (::::050111 a I) until the late

century the g lacier had reac hed a na lTo\l'ing point, and it

re trea ted 1110re slowly (::::050111 a I) until the late 1960s,

Between 1970 and 1978, a centra l part of Upsala \I-es t

acka nced about +00 m (Aniya a nd Sb'a rca, 1992 , Th e eas te rn margin retained its pos iti o n from 193 1 until 1981. but th en re treated a t 800 111<1 I until 1990 , Bet\lTen

l\ l a rc h 1992 and 1993 the eas tern ha lf oC Upsa la 'I-es t

re treated about 1000 m, R etrea t rates o f Cpsa la east a rc

g i,-en in Table I. \ \ ' hen o bsenTeI in 1928 h,' Agostini

19+5 ), the bedrock rid ge now separa tin g Cpsala \lTst a nd cast \I 'as s till under ice, By \ 967 it had bee n e;,:poscc\ b y thinning, a nd Lago Guillermo II"<IS beg inning to \() rm,

Rapid re treat occu rrecl thro ug ho ut th e 1980s,

R es ults of' the ice-, 'e loc it y mcasurements arc g i,'en in

Table 2, The a nnu a l \ 'elocitics a re simple c;,: trapo lations, nOI in corpora tin g seaso n a l , 'a riabiliI Y, No seasona l 'T locity data e;,:ist for an y Pa tago nian g lac ier, so th e e r ro r is unkn o\l'n, i\lea n ab lation rates rangedli'om 3,6 to

11, 2 cm \I' ,e, a I \I 'ith a m ea n of' 6,8 cm \I ' ,C, a I , :"lelt-rate

, 'a ri a ti o ll s co rrel ate s i gn ifi ca ntl~ ' (at th e 0,05 icI'el \I' ith

\'a ri a ti o ns in minimum d a il y tempera ture ( I', = 0 ,6+) and w ind speed !,., = 0,60 ) but not \I ' ith maximum tcmperaturc ( 7', = 0,18 ), mean daih- tempera ture ( I', =0 ,1.5 1 or su n

ho urs (1', = 0.4 ), On a nd aro und the glac ier, wind specds

arc frequentl y ex treme, g usting to +0 III slat times,

Th e bathymetry of L a go Guillermo is show n in Fig ure

2, ,\ bo ut lOO m in front o f Upsala eas t the mean d epth (n = 32 ) is 65 m , and th ere is no co nsiste nt shall owin g o r deepening trend towa rd s the g lacier. Th e <\I"lTage ice-c l ill' hei,ght is 34111 ( ra nge: 29 4 1m , Combining icc-c1ill'

heig hts with th e near-ice bath\'metn', thc maximum ice

thi c kness a t the ca h 'in g fi 'on l is est im a ted to be 150 III a nd

th e m ca n th ic kn ess (n = 15 ) to be 101m, Gi\Tn a g lac ier

\I 'idth or 1600 m and a \I 'idth-a'T raged ice \Tlocity o f a bou t 60 m ai, th e a nnu a l mass flu;,: a t the terminus of L.:psalaeast is approx ima tely 9,7 x 10(; m 3 a 1 0 1'0,0] km 3

a I, Fo ll ovling Powell a nd :'II o lni a ( 1989 ), mea n a nnual

caking speed (v(' ) ca n be d e ri, -cd usin g the eq ua ti o n

(2)

" 'here v(' j, related to fro nta l c ha nge ( /)1'1 1992 93] =

25 m a \ ice 'T loe ity (Vi = 60 m a I ) a nd ice melting

(Vill i a t th e ca king face, HOII 'C\T r. suiJaqueo us melt ra tes

at ca king li'onts a re poo rl y kno' I"Il , a nd th eo re ti ca l

calc ulati o ns yield "<.liu es o f uncertain \ 'a lidit y \\'arren a nd o th ers, in press ) so Ve was determined simp ly uSlllg

Table 1, Cp,\{/Ia easl : 2011!-renllll} re/real slalisliCJ

Period Re/fea/ SIII/aa-afea ,\11'{1I1 it'a/er

10.1,' ("'pili III r III a I ) kl11 ~ kill :.? C:I I ) 111

191+ +.5 1300 +2 10,0 0,32 0 19,15 67 2 100 95 1 7,5 03'~ .10 19G7 75 100 l 13) 0,2 (0,03 , 65 197,) 81 130 (22 ) 0,3 0,0+ 75 1981 86 2200 HO +,7 0,9 ~ 1+0 1986 92 1000 167 2,2 0,36 75 1992 93 10 40 ') -_J 0,0.5 0,0.5 65

11 'arml alld ol"l'rJ: Rapid ra/z 'illg rl'/real ill.!;-eJ" Il 'a/er

Table 2, l 'p,lala easl : slI!/ac{' ice-NlociU dala , ,\Iarch 1992

JII/efml dl//l'.) To/al 1l101'ell/fII/

111

~ I a rker I I up-gla cier 16 19 0,836

19 23 1,000 23 29 1,1 00 16 29 2839

:'da rker 2 I clo\\"ll-glacier I 16 23 1,860

23 29 1,260 16 29 2,998

!)ai/r ['flori/)' ;n cl I -

0,300 0,2++ 0,187 0,218

0,272

0,2 1+ 0,231

, l lIlIlIal l"el(lci/)'

III a I -

109 1 89 1 68 80

99 1 78 8+

(3)

This yields a caking specd 0 [' 85 m ai , Gi"en that ('Ill

co uld be a bo ut 20 30 m ai, th e tru e " ,du e or 1'(' co uld be 55 65 III a I,

At Lpsala cast th e ca king e lifl' is esse nti a ll y \"(>rtica l

along its ,,"('stern ha le but sec ti o ns or the eastern ha lf

owrh ang at a ng les of :::;30 , Caking act i"it y co nsists of'

hi g h-m agnitud e/ lo ,,'- frequ enc,' e\'ents, producing pris­

matic icebergs which contrast " 'ith the large tabular bcrgs t\' pi ca l a t Upsa la "TSt. \ ' jsua l est im a tes or berg , 'o lum es sugges t that most a rc ill tlte ra nge 1000

.50000m3 \I 'ith an upper limit of500000m' , L a rge bergs

sUlyi'T in Lago Guillermo (or m ore than 2 \I 'eeks bdc)re

breaking up a nd melting , Caking flux es from Lpsala eas t

are proba b ly a bout t\l'O o rd ers o f m ag nitud e IowCl' th a n those from U psala \lTSt.

DISCUSSION

Os cillations of Glaciar Upsala: climate and topography

Th e on h- lo ng-term rcgiona l climate data ( 1888 prese nt I

a rc li'o m Punta Are nas o n th e Mage lla n Strait. 400 km

distant. a nd m ay no t re liabl y indi ca te th e c limate c hanges

that aITectt ile ice field W a rren a nd Sugden, 1993 1, "\ I ('an

a nnu a l tem perat ure a nd prec ipitat io n halT flu ct ua ted appro:-;i matci y in phase, peak ing' in th e peri od 1930 50

a nd aro und 1980 , Telllpcratures fell b y 1, 2 C bc twee n

19+0 a nd 1969 , a nd th e n rose 0,7 C in th e next 10 \-ears,

These trends co uld acco unt (or the ach 'ance 0(' Cpsala

lI'es t in th e ea rl y 1970s, th e simultaneous cessa ti o n o f

retrc'a t at Cpsala eas t a nd th en th e o nset of rapid re trea t at both termini durin,g th e 1980s ,

H O\l'C'T r, while th e re trea t or Gl ac ia r Upsala most

probabl~ ' has a climatic o ri gin , reflecting a regio na l

\I 'arm in g sin ce th e ea rl y 19th ce ntury, it has been

m ociulated b ~' to pograph y a nd caking dynamics, as noted Iw ~ !erce r ( 1965 ): to pograph ic p i nil i ng poi n ts ha , ' C

determined still-stand loca ti o ns a nd a rTcCled re trea t ra tes,

De tailed patterns and rates o f flu c tu at io n halT been

largely a product of the interaction be tll 'ee n c ha nn e l

geometry a nd ca king insta biliti es , Fo r exam ple, re trea t

rates of U psa la east during th e 1980s ( Fig, 2: Table I )

3 13

Page 4: Glaciar Upsala, Patagonia: rapid calving retreat fresh water · century the glacier had reached a nalTo\l'ing point, and it retrea ted 1110re slowly (::::050111 a I) until the late

rl 'alIen alld others: Rapid wfving re/real ill jiesh waleI'

we re clearl y a mplifi ed b y th e in creas ing \I 'ater d ep th s (:S; 245 m ). If ice \T loc iti es liT re similar to th ose mcasured in 1992, cah 'ing ra tes be tween /98 1 a nd 1986 were a bo ut

500 m ai , a bo ut nine tim es grea ter than at present.

Characteristics of fresh-water calving

Caking , w he th er into fresh or sa lt water, imroci uces inheren t in sta bility into th e g lac ier syste m , but g lac iers

ca h 'in g into fres h wa ter a ppea r to be m o re s table th a n

tid e-wa ter g lacie rs. The mag nitud e/ frequ ency distrib­

uti o n o f ice be rgs produced in fresh \\,a ter also differs

ri'o m th a t in tide wa te r, In both (iT sh w a te r and tide lI'ate r. m ass losses thro ug h caking a re o ft e n d o min a ted by sma ll numbe rs of large bergs. H owever, the profusio n o f

small icebe rgs a nd brash ice so characte ri s tic a t ac ti\ 'e

tid e-water te rmini is ty pi ca ll y absent [I'om fresh-wa ter

fro nts e \ 'e n when calv in g rates a re hi g h , indicatin g a n

e\'e n g rea ter d om ina nce by la rge e\Tnts in (j'esh water. These c harac te ri s ti cs of' stabilit y and iceberg product io n have bee n noted in A las ka (Qamar, 1988), Gree nland

(\\' a rren , 199 1), i\' ew Zealand (Kirkbridc , 1993) a nd

P a tago ni a (W a rren, 1994). The na ture of caking at G laciar U psa la is co nsistent

w ith th ese obse rva ti ons . P eri od s w ith ab und a nt b ra sh ice a rc a typical at Upsa la lI'es t and abse nt fi 'o m U psa la eas t, and th e icebe rg nu x a t both termini a ppears to be

dominated b y la rge be rgs. At U psa la cast, re treat into

L ago Guillcrmo prod uced a fi ve-fo ld inc rease in th e

leng th o f the cah 'ing fron t in increas in g water d epths. In tid e I,,,a te r. thi s wou ld probabl y trigger rap id re trea t e\ 'e n if th e m ass ba la nce were positi\'C. H OII'f' \ 'cr, 15 yea rs o f' near-sta bilit y in deep water (hw :s; 75 m ) fo ll o \\'ed. 1 f thi s

s till- s tand was c lim atic in o ri g in , it s upport s the

sugges tion that the climatic se nsiti\ 'it y o f fres h-\\'ate r

glac ie rs is interm edi a te between that of no n-caking a nd tid e-II'a ter g lac iers (W a rren . 199 1) ,

Fresh-water calving rates

T a ble 3 presents calvin g data fo r 14 tempe rate , g round ed

g lac ie rs th a t cah 'e in fresh \\ 'a ter , Id ea ll y, Vc sho uld be

ca lcul ated usin g Equati on (2 ) . Gi\'en th e poo r kn owledge of VIII at cah'in g fro nts, ho weve r , Equation (3) was used. A ll three terms are in m a 1 a nd aI'e raged OI'e r th e width

of th e g lacier. The d ata in T ab le 3 a re oLva ria ble qua lity ,

Fo r th e g lac ie rs for wh ich only ce ntre-line ice velocities

(vllIax ) a re known, Vi was calcul a ted b y multipl ying Vtnax

by 0.73 , This empiri ca l constant is d e ri\ 'Cd from th e tempera te-tid e-wa ter g lacier d a ta se t o f'Bro\\'n a nd othe rs

(1982) in which th e re la ti onship be twee n Vlllax and Vi (or

12 g laciers is rem a rk a bl y co nsiste nt (0.73 ± 0,05 ) , \ 'a lu es

O[' Vi ca lcul a ted in thi s way are underlined in T able 3. For

th e Patagon ia n g lac ie rs ( 10 13), ice ve locities were

m easured I 5 km be hind th e calv in g front. Th e ca lvin g speeds g iven fo r g lac iers 2 and 8 dilTer from those in th e original sources beca use L au m a nn a nd W o ld ( 1992 ) used

VII1HX to calcul a te Vc wh il e Goldthwa it and o th e rs ( 1963 ) used a minimum ice \ 'e locity , At G lac ial' Grey, h\\' was

m easured by plumb- li ne so undings (persona l commu­

ni cation fro m A. ?o.l ans ill a, 1992 ), a nd at G lac ial' Pio XI h", has been es tim ated from m a ps draw n before a nd a ft e r

th e la ke formed. Estimating Vr a nd Vc a t Tasman Glac ier ,

314

;\ew Zea land , is p roble m atic beca use th e te rminus was

e\'oking [i'o m a m elting to a cah 'ing conditi o n through a phase lI'ith compl ex te rminus geo m etry (Kirkbride , 1989 , 1993 ) . N e\'e rthel ess, it is c lea r that VC' remain ed ver y loll'

while hw increased to a max imum of 130 m. "Norm a l"

caking commenced in 199 1, producing sm a ll numbe rs of

ice be rgs lI'ith \ 'o lum es of s( \ 'e ra l milli o n c ubi c metres IH oc hste in a nd others, in press) ,

Fig ure 3 presents v"/h,,. relationsh ips fo r fi 'es h lI'a te r based o n th e num eri ca l \ 'a lues in T a ble 3 , The e mpiri ca l

data a re ex pressed in the form

Vc = ch\\,

Vc = ch"lax

(4)

(5)

in \I'hi c h c is a ca king coe Oi cien t. For h\\' th e bes t es tim a te

o f c is 2.5 ± a,s, a nd for h\llax rh e best es tim a te of c is

1,8 ± a,s. This contras ts with a value o f c fo r temperate

tid e-water g lac iers o f 27 ,1 ± 2 (BrOlI'll and o th ers, 1982). Th e re \' ised Vc / il l\' re lati o nship fo r fj'cs h wa ter co n­

firm s th e rob ust but un explained d epend ency o f calving

rate o n water d ep th. This dependency is appa re11ll y

li near. H o \\'ever, th e data a lso a llOll' th e possibilit y th at Vc

increases non-linea rly with h\\' . Th e sugges tion o f a non­

linea r in c rease is more pronounced fo r th e vc / h""" d is tribu ti on (Fig, 3) .

Contrasting calving rates in tide and fresh water

Fig ure 3 a lso co nfirms th e ex isten ce o f th e g reat contrast between calving ra tes in tid e water and fi 'es h water, There is no o\'C rl a p o r con tinuum between th(' two re lations, The impo n a nt proccss contras ts must operate a t o r nea r

th e caking front , a nd \ 'a ri o us possibl e ex plan at io ns arc

di sc ussed below,

,1jeflwaler bl/oWl/lc) ' : While ra tes of ice loss b y su baq ueous m e lting are o ne to two o rd ers of mag nitud e lower th a n th ose b y ca lving (Syvitski , 1989), dilTe rent melt rat es in tide water a nd fresh \I'a te r mi g ht a Oec t cah 'ing rates,

Funk a nd R b thli sberger (1989 ) no ted th at g lac ia l

m e ltwater is 200 tim es m o re buoya nt in sa lt water th a n

in fres h \I'a te r , a nd th us suggested a stro ng d epe nd ence of cah-in g ra te o n water d ens ity co nseque nt upo n diflcrenti a l ra tes o f' subaq ueo us melting , This req uires a st rong feed­bac k fi 'om melting to cah 'in g a nd wou ld indica te th a t

melting a t th e cah ' i ng fron t so m e ho \l' sig ni fi ca ntl y

acce le ra tes ca l vi ng , Th is poss i bili ty is supported b y th e

fact th a t at Columbia Gl ac ier , Alaska, VC' a nd VUI both reach m ax ima in th e a utumn (;\fe ier a nd o th e rs. 1985). J'd o reo\'er, s tro ng m e ltll'a te r upwe lling and th e rm a l

stratifi ca ti o n of th e prog lac ia l water bod y are comm o n

a t tid e-water fronts (Powell a nd .\l o lnia , 1989) , whereas

many proglac ia l lakes a re therma ll y ul1st ra tifi ed , \I 'ith

in sig nifi cant spat ia l a nd te mpo ral varia bility in tempe r­

a ture , a nd no e \ 'ide nce of s tron g c ircu la ti on, Such dat a

ex ist fo r g lac iers 3 . 12 a nd 14 in T a ble 3 (Funk and H ae berli , 1990; \\'a rren , 1994; H ochste in a nd o th ers. in

press ) . W a rre n and others ( 1995 ) sugges t th a t sub aqueo us

m elt rates a t tid e-\\'ater te rmini may be sig nifi cantl y

g rea ter th an hith erto th o ug ht. At present, then, this possibi lity rem ains stro ng.

Ellvl7'olllllenlai faclors: Contrasts betwee n ex posu re to wind action , \I'a \ 'e ac ti o n (which ca rves no tches at water le\'e l)

Page 5: Glaciar Upsala, Patagonia: rapid calving retreat fresh water · century the glacier had reached a nalTo\l'ing point, and it retrea ted 1110re slowly (::::050111 a I) until the late

r I'a rml alld oll!er,l: Ra/) id C(lh'illg re/real ill ,Fel1! /l'all'/"

Table 3, Fresh-waler cab'illg da/ajor /-I- groul/ded, lemjJemle glacier,l, h ll1ax , mrllilllulII waler de/)Ih al Ihe w/z'illp,ji'olll : h"" It'idl/l -avemged 1Nller de/)II!: Ulllax , eel/lre-lille ,flll/are ire l'e/ociO': Uj , 11,idll!-(/l'e/"aged ,Ill/face iCl' l'l'loci{J' : 1\ , lIIeall glacier retreal rale ; and vC" calving rate , JJel1 rain al Il!e calz'ingjaa hal'e 1101 bem illcorjJoraled, For/inlher fljJ/allalioll alld dis(lIssioll , see 1nl

(;I([cin, low/io/l

I , Po rtage, Al aska 2, Sou lh C ril\o n, Al as ka 3, No rclbo, G reelll a lld ,I Sab biollc, Ita l\ 5, L nteraa r, Switzer la ncl 6, Oberaar, Switze rl a nd 7, e.; ri es, SlI i tze rl alld 8, ,\ us tdabbreen, XOI'II"ay 9 , ,\uslclalsbrec n, No rll'a \'

10, C re)" C hil e 11. P io Xl nonh , Ch ile 12, .\l oreno, Arge n ti na 13, L psa la eas t, A rgelllina J+, T asma n, Nell' Zealand

Period

197 1- 72 1933 6 1 1979 80 1961 73 1932 -15 1953 67 1968 79 1966 83 1988 89 1 9 ·~5 67 19+5 76 1990 90 1992 92 1982 93

160 58

130 :28 18 33 17 10 33

250 1.30 220 119 130

d, Llibolltr) , 1956

h", 111

11 0 -1 1 90 20 12 16 13 8

25 165 100 175 67 78

(lj VI' L\. SOllID)

111 a III a III a

165 50 21.) a 155 10 1-1.3 b 217 10 207 a

2 50 .32 a

1+ 18 32 a

8 42 50 a

6 31 37 a 19 6 ?-_J C

26 7.3 101 c 330 'r - ,,) 355 cl, p; .3-15 132 -113 (' U '

';-'

.3 10 0 510 f'

60 'r 85 ,r _ J .-, 2 < 115 < -I h, i

V;. Thi \ stll d ~ a, FlInk and Riithli"bcrgcl'. 1989 b, Cold th"a it and (Ither" 1963 ('. Lall lll an n and \I 'olel, 1992

c, \ iaran!-; lI nii-, 1961 I', \\ 'arr('l1, 1 99~

h. Il oc h')tein a nd (Hher:'<!. ill prc')s

i, Kirkl>ridc, 1989,

a nd tid es mi g ht be ex pected to a f1'ec t ca lvin g speed s,

H O\\"e\T r , d egree o f ex pos ure does nOl d ifTer s\'s tema li ca ll y

be t\\"een ticl e-\\'a te r a nd frcsh- \\'a ter COlllex ts, \\'a \T ac ti o n

ca nno t be a necessary co nd ili o n fo r fas t ca lvin g bcca use a t

Columbi a G lacie r t he te rminus ha' been p ro tected fro m

wa\'eS by d ense b ras h ice d uring ca tas trophi c cah-ing

re trea t (?-. r eiel' , 1994), Tid a l ac ti o n ca n no t ex pl a in m o re

th a n a sma ll p a rt o f' th e contras t unless it eithe r g rea tl y

in creases \\'a te r c ircu la tio n a nd hea t ach Tctio n to th e icc fro n t. o r sig nifi ca ntl y wea ke ns t he cah 'ing li'o llt thro ug h

th e cycli cal c ha nges in stress regime ,

,, 'aler chemisll),' I n rock, s tress corros io n o r c h e mical

w ea ke ning of c rack tips g rea tl y in c reases ra tes o f sub­

c riti ca l c rac k pro p aga ti o n , I f th e sa m c h o ld s lruc fo r ice

thi s co ul d b e a co n tribu to ry fac to r. but il h as ye t to be

tes ted , H o wn'er. cah 'ing rates a t G lac ia l' Sa n R a /ae \.

C hile, excced th ose predi c ted [o r ti de \\'a te r e\'C n th o ug h

th e sa lini ty o f th e proglacia l licl a llagoo n is o nl y h a lf th a t

o f th e o pe n ocean ( \\' a rre n a nd o th ers, 1995), This argues

againsl a \\'a te r-c h emistry exp la n a ti on,

Ol'er-,llee/Jellillg oJ/he iceji"07l1: Calv in g te rmini tc nd to \\"a rd s O\'e rh a ng du e to clifTe re llli a l ice fl o\\' , und e rc utting a l

wa ter len>1 a nd su baqueo us me lting, O \ 'e r-s tee p ening 0 ['

th e fro nt a nd fo rward b ending, ca usin g in c reasin g ten sil e

s tress a nd sh ea rin g, m ay b e im porta nt in pro m o tin g

caking ( Hug h cs, J 992; p e rso n a l communi cat io n [ro m R , Le B, H ooke, 1992 ) , L o \\"C r ra les o f' su ba queo us m elting

in fresh \\' a ter \\' ill wo rk to \\ 'a rd s a redu c tio n in o \'e r­

stee p ening, 1\fo reo \ 'C r , unfi 'act ured ice is stro nge r th a n

c re\'assecl ice a nd a bl e to s usta in g rea ter a m o unts o f

Q\'e rh a ng be fo re reachin g a c riti ca l fract u re stress, This is

bo rn e o ut b y co nsid e ra ble o\T rh a ngs a t U p sa la eas t a nd

T asm a n G lac ier.

Straill /'{/Ies: Ex te ndi ng lo ng itud in a l stra in ra tes m ay b e

sys te m a ti ca ll y g rea te r in tid e-\\'a te r g lac ie rs , Acc umul a t­

in g lo ng itudina l stra in s lead to cre\ 'ass ing (e ithe r ac tual

o r in c ipi e nt ) a nd stress weakening or th e ice, Th e re is a n

intim a te link be t\\ 'ee n CTt'\'asse d e nsit y a nd Vc ( Po\\'e l!. 1980, p,36 ) simpl y beca use frac tu red ice is \\'ea kn th an

ho m oge neo us i('e: an y process t ha t p ro m o tes c )'C\'ass in g w ill

in turn facilita te ca ll 'in g, A corre la ti o n bc t\\'Ce n ca il-i ng

ra tes a nd nea r- te rminus stra in ra tes ex ists for ,\ Ias ka n ti de­

lI'a te r g lac ie rs (pe rso na l co mmuni ca ti o n fro m R , L e B,

600

500

Brown and others, 1982

.12 ~v'f'" x

'" 400 .§. III (;j a: g> 300 ';; ;;; u

200

100

.2 x

9. x~ .13

.1 4

20 40 60 80 100 120 140 160 180 200 220 240 Water Depth (m)

Fig, 3, Thl' relalioll.lhip bl'ill'een call'il/g .liNed and lt 'aler de/)II! jor N ji"esl!-I('([ler glacier,l, .l/IOl('illg relalioml!i/Jj Ior ll'/dlh-m'eraged l('aler de/)I/i (h\\') (dala /)0/1/1,1 :,/i01('1/ as dOI.l) ([lid I/UII/IIIUIII l('ater de/)Ih (h lllax ) ( (/"0,1,1/',1) , Dala and sources art' gil'e!l ill Table 3, Relaliom/iijJ,l /Ho/)o,ml ~)' FUllk al/d Riilhlisberger (1989), al/d ~) ' BraWl/ and olhers (1982) jar lide ll'aler, are alJo .1'/1011'1/ ,

3 15

Page 6: Glaciar Upsala, Patagonia: rapid calving retreat fresh water · century the glacier had reached a nalTo\l'ing point, and it retrea ted 1110re slowly (::::050111 a I) until the late

ll 'arren and o/Ilers : Rapid calving retreat ill fresh water

Hooke. 1992 ). It is clear from the 10\1' Vc in deep \I'ater at T as man Glacier (T ab le 3) that deep water does not in itself produce rapid ca king in fresh \I·ater. It is no te\l'onhy tha t Vc at glaciers 13 and 14 (Fig. 3), which hm'e litll e and a lmost no cre\'assing, respecti\'ely, is considerabl y less than th a t predicted by Equ ations (4) and (5), Equall y, glaciers II a nd 12 are profusely cre\'assed and ca lve at above­a\ 'erage ra tes , Lt seems that deep water is a necessary but not a suffi cient condition: intense creyassing is a sine qu a non fo r rapid caking, '~) 'Il/lzeJi.\ : \ \ 'hy should li'esh-wa ter g lac iers be sys tema ti ca ll y slower a nd less crenlssed than tid c-water glac iers, when in

oth er respec ts (e,g, gradient, thickness, melt rates) they arc indi stingui sha bl e? This rai ses th e "c hi cke n-and -egg" questi on or th e relat ionship between Vc and Vi , During ca tastrophi c n:treat at Columbi a G lac ier. both Vc and Vi

haw in creascd rap idl y and in tandem (?\fei er, 1994), but it is not clear \\'hether high 'U{, is a consequence or a ca use of

high Vi , H Q\re\'er, seaso na l re treats co rre la ted wit h acce lera ted Vi du e to increas i ng e!T'cni \'e slope and dee reasing longitudina l effect i\ 'e stress (l\leier and o thers. 1985 ). indicat ing tha t ice veloci ti cs ma y be d riven by cah 'ing rates. If' so , it rai ses the intriguing poss ibilit y that

the depth and density of cre\'ass ing are grea ter at tid e­

wa ter glac iers because high Ve prod uces higher Vi and longitudina l strain ra tes. II1lense cn '\'assing increases the g lacier's su rI~\ ce a rea, in turn i ncreas i ng melt-water production a nd promoting high \-elociti es, Strong melt­\\'<\(er discharge at th e terminus enha nces lI'a ter circulation and turbulent hea t tra nsfer.

This h>'po th erica l sequence of process linkages ac ting in posili \'e ICed-back, combined \\'ith Funk and Rothli s­berge r's (1989) density-contrast hypoth es is and front a l O\'er-steepening, may expl a in \\'hy tid e-lI'a ter caking is so rapid and so much faste r lh a n fresh-wa ter calvi ng, and \l'hy lid e-\\'a tcr g lac iers commonl y atta in high er speeds than comparable fres h-wa ter g lac iers. It may a lso la rge ly expl a in th e contrasting ca lving slyl es: la rge bergs a rc more c1 0 rn inant in fresh water simpl y beca use or the 10ll'er cre\'<\sse density, The empiri caL and physical foundalion s on which thi , sugges ti on res ts, hOll'e\'e r, remain naITO\\'.

CONCLUSION

Flu ctua lions of G laciar U psa la show tha t th e inn uence or cli male change on the position of a cah 'ing front is less significanl in the short term than that of th e tra nsition from melting to cah 'ing, and than subsequent cha nges in caking ra te. Th e rela tive importance ofmclting as aga inst tru e mecha ni ca l caking, and th e effect or the fo rm er on th e laller. arc important unknowns, Data relating 10 li-esh­\\ater caking are still li mited , while the ph ys ics of caking in fresh \\'a ter and tid e \\·ate r, a nd th e difTe rences between the t\\·o, remain largely unknown. HOII'('\ 'er, the strong dependence of cah'ing ratl'S 011 waleI' depth in both tid e \1 ater a nd fiTsh \I'a ter is 1l 0W beyond doubt.

ACKNOWLEDGEMENTS

Th e \I'ork \I'as fund ed b\, a U, K. Nat ura l En vironment Resea rch Cou ncil Fell owship to C.R ,\\·. and -"ER C Grant

3 16

GR9/ 1199. :\, F.G. and D,R.G . recei\'ed grants from the Ca rnegie Trust and the Quatern ary R esea rch Associat ion. Perm ission to \I'ork a t Glacial' Upsa la was granted by th e Pa rque I\acional Los Gl ac ia res . \\'c wish to thankJ . ?\[astcrs at Estancia Cristin a. and especia ll y D. Felclman for all hi s cheerful ass istance. Comments by M. Kirkbride, G. Casassa and an anonymous referee improved the manusc ript.

REFERENCES

.\ g·o' li ni . . \ . :-- 1. de. 19.5. , llId" Pala.wfll ico \. Serolld alilioll. Buen us .\ ire"

Cuillcrll10 Kra rt .

. \ nil<l. :' 1. and P. Sha rca. 1992. Charaneristics and I'ariations or l 'psa la

a nd ~I o ren{) g lac iers. sou th ern Pa ta~{)nia . BIIII. (,'fa rier R,,\. 10. 39 .)3.

Bl'Own. C. S., ~ r. r. ~lei lT and .\ . Pus t. 1982. Caking ' pl'l'd or .. \I a ska licit'wil lcr g laciers. w ith appli cat ion to Columbia G la c il'r. L ',s. (,'{'o l. Slfn' .

Pm). I'u/,. 1258-C. Funk. ~ 1. a nd \\' . l laeberii. 1990. CIe",hcr.r;, al i>unl(s.,(ese h windi g- k{'it i111

Siiss\\'<1'1scr: c ill t' S ll lCl i l' am Nordbog'lclsc her im .J nhan Da hl Land. Si.id­

\\'{'st C ro nl an d . . t/ illrilttJt,~ 1', lll l ET/I;:, 20 8. I +7.

Funk . .\1. a nd H . Ro thlislw rger. 1989. For{'casti ng the dkns or a p la nn ed

""scr\ 'o ir w hic h will paniall~ flood th e tong ue or U nt eraarg-Ietsc her III

Switzerland. , 11111. (;fariol .. l3. 76 8 1. Coldth\\'ail. R . P .. I. c:. \kKc ll a r and C . Cronk . 1963 . Fluct uat ions of'

C ri li on G lacier S,Sll·lll. w llth t'a st .\I a , ka. 131111. 1, 11101'. 8 I .62 71. H och, te in. \ 1. P .. D . Claricige. S. Henry." .\. P,·ne. I) . Ko"es a nd S. F Lea ry.

In pn.'v'I . J)mnl\\"(lS ling oflhe Ta~man Glacier 'Soll th bland. ~Z : changcs

in the terminu s region between 197 1 and 1993 .. \ '.;:.]. (;"01. P/~J'.I .

H ug ht·s. T..J. 1992. Th eore ti ca l ca h-in ~ ra tes 1'1'0111 g laci e rs a lo ng ice wa ll s

g-roun d ed in wa ter o r I'ar ia bl e depths. ]. Glaciol .• 38! 129 , 282 29"1·. K irkb ri ci c . :\ 1. P . 19B9. The illlluc ncc or ... cdimc llt buciqcl on gf'ol11o rph ic

ac ti\'it y or the Tasman Clacier. :\I OUI11 Cook 2\aliollai Park . Ne\\' /.C:lland. ( PIl.D . thesis. U ni \ 'crsity of' Call 1r rbury. )

K irkb rid c , ~ I . P. 1993 . The te mporal significance oftra nsitio lls i'rom 1l11' lli ng

10 raking- termini a t g la(' ilTs in Ih e ce n tra l So uth ern ,\ Ip') of ~('\\

I':eala ncl. l/oIOU'II ' , 3 13 ). 232 2+0.

l.alllllan n , T . ancl B. \\·old. 1992. R eanions or a caki ng- g lac ier to I,"xc change, in water lest! . . Iltlt. (;Iaciol .. 16. 158 162.

L1iboutry, L. 1956 .. \ 'in'ej J' ,!!,Iotiafl'.\ r/f Chile: jilllt!fl/l1f11!V.\ de g lflr i% .!!, I(1.

Santiago. Edicion(''J de la Un i\T rsid a d de Chil e .

,\J a lagni ll o, E. and J . S lrrl in . 1992. Variation:- or L·p<.,a la Glaril'r ill :-,o ulh ern

Pa lagollia "ince Iht' latl' H o loc t n e tu the presl' lll. III 0."arll sf'. R . and ,\ 1.

.\ni ya, Ni.>. ('faciolvgical Je.lt'arrites ilt Pa/agollia. 1990. N a,Il;(Jla . .Japa nese

Socictl' or S noll' a nd Ice . 6 1 83. ~ I arallgulli c. C. 196·1. Obs(TYariull rs ,l!;lilC i o I 6gica ~ ) geol6gica~ en la ZOll a

del Pa,o d e los ClIatro G laciares, H iclo Patag<>nico Sur. I Ph.D. thc,i,. L' nilTrsiclad de C hiit- . ,

~lcil'r. .\1. F. I 99-L Colulllbi:l Glacier during rap id retrea t : in teractioll " he t\\lTn

giacil' r 110\\ and icebtrg f'al\ ' il1~ c\ynamic~ . III Rcch. I\ .. ed. 11 'l) r/;'~ h ()/) Oil 'he Ca ll'i,,/{ Ha!f Q/ II 'fJ \! (,'rem/alld (,'/aria,\ ill NfJ /WII .\(' 10 C/illlale Challgf , Cupenhagen.

St'/I I. 13 15. 1993. Copenha.gl' ll. Dan ish Pil lar Cellter. 63 8 J.. :'leier. :0-1. F. and .\ . Pos t. 1987. Fast tidellater glacier,. J. (;ro/Jh l'1. RFJ ..

92 8 9 ). 905 1 9038.

i\lcier .. \1. F .. L . . \ . R a' lllll sscn. R. \1. K r illllll c l. R. \\ '. Ohm and D. Fra nk . 1985. Pl w togramlllctri c d c term in a ti o ll of surrace a lti tudc. te rminu s

position. a nd ilT \'C' locity of' Co lulllhi ;\ G la ciC'r, , \I a~ k a. { ·.S. {;eo/ . ,)IlIT .

I'ro/. Fit/I. 1258· F. .\ Ic)'ccr. J. 11. 1965. G lac ier \'cuial io ns in so uth e rn Pa tago ni a. (;('(}gr. Rn' ..

55 3 1. 390 ·113.

POII'd l. R. D. 1980. H o loce n{' glac illlarin l' sed ime nt depositi on by tidell'ater

,!1;lac iers ill Glacier Bay .. \ Iaska. Ph .D . thesis. Ohio S tate U nil'Cr, it l'.

Po\\'cl l. R . I) . a nd B. I:' :O-1 " lni a. 1989. Glae ima rin e scd imcntan' procl's,es. I;'\c ie" a lld n1()rpholog> or lilt' sou th-so uth east ,\I aska Shel f' and fjord s. .l/ rtr. (;eol .. 85 , 359 390.

Qalllar. .\ . 1988. Ca1\'i ng icebt' rgs: a ~OLl IT(' or lo\\,- li'cqu(' n('Y sc i-,mic ... i ~l la b fi 'olll Columbia (;lilcier. .\l aska. J. (;1'0/11, )'\ ' Re.l. . 93 B() . 6615 6623.

S)'I'it,ki . .J. 1'. ~ 1. 1989. 011 the d e position ul' sedim ent wi thin g la c ier,

innllenced fjord s: oceanographic cuntrob . . l/ar. G,ol .. 85. 301 329.

\\'arren , C . R. 1991. Terminal elll'ironlllcnt, topograp hi c l'O ll trol and

Ouclua tio n s or \\ 'CSt Greenlalld glac i cr~. B o/,l'{I .1. 20 r 1 . I 15. \\'arl'cl1. C. R . 1992. IcciJe rg cilki ng a nd lil t' glac io-ciill1<1lil' record. I )ro.!!, .

IJ/~) 'j . (;fOgr .. 16 3 . 253 232. \\ 'arrell, C. R . 199-L Frl'~ h \\'ater ca king a nd a nomalolls gi; lcic r osc ill alion:-.:

rece nt bc ha\ 'iour of ~ I orc n o and .\ J11cghin o g lacie rs. Paragonia. Hu/o(/'J/ l' , 4 ... +22 -129.

\\ ·arrcll. C. R. alld D. E. Sugckll. 1993 . The Pata,t;o ll ia ll icrfields: a

g lacioloRical ITI·iell' . . I rel .. 11/). f(" .. 25 ( 1),316 331.

\\ ·"rrell. C. R .. S. F. GIa" et', S. H a rriso n . \ '. \\·i ll c hcs tcr. A . R. K en " lid .\. Ri n :ra. 1995. CharaClf'ristirs of' ti dc-\\atl'J' caking a t Glacial' San R aElc l.

Chiic. ]. (;Iftcio/ .. 41 , 138 ill press \.